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We present a detailed investigation of the XXZ Heisenberg model for spin-1/2 and spin-1 systems on square
and honeycomb lattices. Utilizing the density-matrix renormalization group (DMRG) method, complemented
by Spiral Boundary Conditions (SBC) for mapping two-dimensional (2D) clusters onto one-dimensional (1D)
chains, we meticulously explore the evolution of staggered magnetization and spin gaps across a broad spectrum
of easy-axis anisotropies. Our study reveals that, despite the lower site coordination number of honeycomb
lattice, which intuitively suggests increased quantum fluctuations in its Néel phase compared to the square
lattice, the staggered magnetization in the honeycomb structure exhibits only a marginal reduction. Furthermore,
our analysis demonstrates that the dependence of staggered magnetization on the XXZ anisotropy ∆, except in
close proximity to ∆ = 1, aligns with series expansion predictions up to the 12th order. Notably, for the
S = 1/2 honeycomb lattice, deviations from the 10th order series expansion predictions near the isotropic
Heisenberg limit emphasize the critical influence of quantum fluctuations on the spin excitation in its Néel
state. Additionally, our findings are numerically consistent with the singular behavior of the spin gap near the
isotropic Heisenberg limit as forecasted by spin-wave theory. The successful implementation of SBC marks a
methodological advancement, streamlining the computational complexity involved in analyzing 2D models and
paving the way for more precise determinations of physical properties in complex lattice systems.

I. INTRODUCTION

In the complex world of quantum magnetism, the interplay
between spin interactions and lattice geometry crafts a fas-
cinating landscape of ground states and excitations (e.g., see
Refs. [1–3]). A central subject for this exploration is the XXZ
Heisenberg model [4], a cornerstone that has deeply enriched
our comprehension of anisotropic magnetic systems [5, 6].
The model, celebrated for its versatility in representing real
materials, allows for the examination of quantum fluctuations
– the quintessential quantum mechanical effect that destabi-
lizes classical magnetic order, paving the way for the emer-
gence of novel quantum phases like spin liquids [7, 8].

This paper focuses on comparing the manifestations of
quantum fluctuations within the S = 1/2 and S = 1 XXZ
models on two fundamentally distinct lattice structures: the
square and the honeycomb. These lattices, emblematic of dif-
ferent coordination environments and geometric constraints,
provide a compelling backdrop against which the interplay
of spin magnitude and lattice topology can be meticulously
dissected. The square lattice, with its direct links to high-
temperature superconductivity [9] and magnetic order [3] in
solid-state compounds, and the honeycomb lattice, notable for
hosting exotic phenomena such as the quantum spin Hall ef-
fect [10] and potential quantum spin liquid states [11], are
ideal platforms for this comparative study.

Numerical simulations of such systems often pose signifi-
cant challenges. When instantiated on a finite-size lattice, the
total degrees of freedom exponentially increase with lattice
size. This constraint on the geometry and size of the clus-
ter becomes particularly notable for systems in more than two
dimensions. Consequently, an extrapolation of physical quan-
tity to an infinite system size is imperative to ascertain the

bulk value. However, the execution of such finite-size scaling
is usually fraught with challenges due to the presence of mul-
tiple scaling dimensions, such as the x and y directions in a
2D case. In our previous studies [12, 13], we introduced an
efficient numerical method for determining the local order pa-
rameter in 2D systems through the use of spiral boundary con-
ditions (SBC). This method provides a promising approach to
address the challenges associated with finite-size scaling in
numerical simulations.

Applying SBC allows for the exact projection of lattice
models, even those extending beyond 2D, onto 1D periodic
chains that maintain translational symmetry. Within this pro-
jected 1D chain, each lattice site is denoted by a single co-
ordinate, contrary to the dual coordinates used in the original
2D cluster. This simplification means that only one finite-size
scaling analysis along the chain direction is necessary to as-
certain a physical quantity in the thermodynamic limit. We
have demonstrated the capability of precisely determining the
magnitude of staggered magnetization for the XXZ Heisen-
berg model on a square lattice ranging from S = 1/2 to 6 [13].
We here consider the extension of this technique to studies
of the honeycomb-lattice model and further demonstrates the
systematic calculation of excitation energy in the bulk limit.

In this paper, we investigate the S = 1/2 and S = 1
XXZ Heisenberg models on square and honeycomb lattices
employing the DMRG method. We delve into the evolution of
staggered magnetization and the accompanying spin gap with
easy-axis anisotropy. It is shown that by applying SBC to both
lattice types, a finite-size scaling analysis towards the thermo-
dynamic limit can be effortlessly conducted for the studied
physical quantities. The efficacy of our approach is corrobo-
rated by comparing our findings with pre-existing numerical
and analytical results. Our analysis reveals that for most cases,
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the staggered magnetization and spin gap within the easy-axis
Néel phase can be approximately accounted for by series ex-
pansions (SE) of the 10th to 12th order in terms of 1/∆. How-
ever, for the S = 1/2 honeycomb lattice, the results signifi-
cantly deviate from those of the 10th order SE across a broad
range near the isotropic Heisenberg limit due to strong quan-
tum fluctuations. Furthermore, for all models considered, we
obtain results that are numerically consistent with the singular
behavior of the spin gap near the isotropic Heisenberg limit as
predicted by spin-wave theory (SWT). Also, we find a marked
reduction in quantum fluctuations transitioning from S = 1/2
to S = 1 across all physical quantities assessed.

The paper is structured as follows: Sec. II provides a de-
tailed description of our spin model. In Sec. III, we elucidate
the method of mapping 2D models to 1D using SBC, along
with the procedures for calculating physical quantities via the
DMRG technique. Sec. IV presents our numerical findings,
examining the influence of lattice type, XXZ anisotropy mag-
nitude, and spin size on the stability of staggered magneti-
zation and the magnitude of the spin gap. Additionally, we
incorporate a discussion on the specific behavior of the spin
gap for the S = 1/2 honeycomb-lattice case. Finally, in Sec.
V, we conclude the paper with a summary and further insights
into the observed phenomena.

II. MODEL

The Hamiltonian of the XXZ Heisenberg model is repre-
sented as follows:

H =
∑
⟨ij⟩

(Sx
i S

x
j + Sy

i S
y
j +∆Sz

i S
z
j ) (1)

where Sγ
i (γ = x, y, z) are the spin-S operators, ∆ is the

anisotropy parameter, and the sum ⟨ij⟩ runs over all nearest-
neighbor pairs. In this context, we consider two types of lat-
tice structures: the square lattice and the honeycomb lattice.
The XXZ models associated with these lattices have been sig-
nificantly examined thus far.

There are three phases depending on ∆ [14–18]: (i) For
∆ > 1 easy-axis Néel phase with antiferromagnetic (AFM)
spin alignment along the z-direction, (ii) for −1 < ∆ < 1
easy-plane Néel (XY) phase with AFM spin alignment along
some arbitrary direction in the xy-plane, and (iii) for ∆ < −1
ferromagnetic (FM) phase with fully-polarized spins along the
z-direction. The phase transitions at ∆ = ±1 are both first
order. For ∆ = −1 this model can be exactly solved: the
Néel and FM states are degenerate at the ground state where
the energies are E0 = −2NS2 and E0 = −(3/2)NS2 for
square- and honeycomb-lattice models. At ∆ = −1+, the
wave function of Néel state is expressed as

|Ψ0(XY)⟩ =
∑
m

λm|ψm⟩, (2)

where |ψm⟩ are bases restricted to Sz
tot =

∑L
i=1⟨Sz

i ⟩ = 0
subspace, m is summed over all possible combinations of the
spin configurations, and λm are determined for each S [13].

The magnitude of staggered magnetization is S with the di-
rection parallel to the xy-plane. At ∆ = −1−, the function of
FM state is

|Ψ0(FM)⟩ = 1√
2
(| ⇑⟩+ | ⇓⟩), (3)

where | ⇑⟩ and | ⇓⟩ denote fully-polarized states toward z
and −z directions, respectively. These states |Ψ0(XY)⟩ and
|Ψ0(FM)⟩ are orthogonal.

In regards to the square lattice model, it has been numeri-
cally confirmed that for S = 1/2 [13, 19], Néel long-range
order (LRO) always exists for ∆ > −1. On the other hand,
for the honeycomb-lattice model, due to fewer bonds between
adjacent sites compared to the square lattice, quantum fluctu-
ations are larger, and there is not yet a complete consensus on
which S and ∆ regions stabilize Néel LRO [20, 21].

III. METHOD

FIG. 1. (a) 2D square-lattice 4 × 4 cluster and (b) 2D honeycomb-
lattice 3 × 3 cluster. The regions outlined by red lines represent the
original clusters. Through the application of SBC, the 2D clusters
are projected onto 1D periodic chains, where the sites are aligned
along the green lines. (c) Schematic depiction of the 1D open chain
utilized for our DMRG calculations, focusing on staggered spin mo-
ment mz

α(S,∆) and spin gap εα(S,∆). In the square lattice, pinning
is applied to L sites at each end, while in the honeycomb lattice, pin-
ning is applied to 2L sites. Upward and downward arrows signify
pinned spins with Sz = S and Sz = −S, respectively.

A. spiral boundary conditions

Applying the DMRG method to 2D systems introduces sig-
nificant challenges, primarily due to two factors. Firstly, the
entanglement entropy, which quantifies the quantum correla-
tions within different parts of the system, follows an “area
law”. This law indicates that entanglement entropy scales
with the boundary area of a region, complicating the sim-
ulation of large systems. Secondly, the DMRG’s sweeping
process, which optimizes quantum states site by site in a lin-
ear fashion in 1D systems, encounters difficulties in the more
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complex geometries of 2D systems. This complexity can lead
to inaccuracies because a straightforward sweeping mecha-
nism is harder to implement across 2D lattices.

To address these challenges, careful management of bound-
ary conditions is essential for accurate DMRG simulations.
Traditional approaches often employ cylinder or torus config-
urations for 2D systems. Yet, these configurations can create
short bond loops and impose an unnatural periodicity on the
wave function, leading to inaccuracies such as an unexpected
plaquette constraint on particles or spins. An inappropriate
choice of boundary conditions might also skew the energy
states observed in finite clusters away from those relevant in
the thermodynamic limit, instead of systematic errors due to
the finite-size effects.

A promising alternative that circumvents these limitations
involves the implementation of SBC [12, 22]. SBC enables
the exact projection of lattice models, including those ex-
tending beyond two dimensions, onto 1D periodic chains that
preserve translational symmetry. This projection effectively
transforms a 2D L × L cluster into a 1D chain, maintaining
nearest-neighbor and (L−1)th-neighbor bonds for square lat-
tices, and nearest- and (2L − 1)th-neighbor bonds for honey-
comb lattices, as depicted in Fig. 1(a,b). This innovative ap-
proach prevents the emergence of artificial short bond loops
and ensures an even distribution of quantum entanglement
across the chain, leveraging translational symmetry.

Notably, SBC minimizes the distance of the longest bonds,
denoted as d, to L − 1 for square and 2L − 1 for honey-
comb lattices, optimizing conditions for DMRG calculations.
In contrast, conventional periodic boundary conditions would
increase d to 2L and 4L − 2, respectively, posing challenges
for DMRG analysis.

Furthermore, SBC provides a significant benefit for finite-
size scaling analysis. By projecting the original 2D lattice
onto a 1D chain, SBC enables the indexing of each lattice
site with a singular coordinate, rather than the dual-coordinate
system inherent to 2D clusters. This transition to a single-
coordinate framework simplifies the analytical process to a
unidimensional scale. It facilitates a more direct method for
extrapolating physical quantities to the thermodynamic limit,
enhancing the accuracy and efficiency of our simulations.

B. density-matrix renormalization group

The investigation of the ground state of the 1D chain, trans-
formed via SBC, is conducted using the DMRG method [23].
For this purpose, we implement open boundary conditions on
the 1D chain, a choice that significantly enhances the preci-
sion of our DMRG calculations. Our study encompasses open
chains with lengths up to N = L2 = 196 sites for the square
lattice and up to N = 2L2 = 162 sites for the honeycomb lat-
tice. To ensure the robustness of our calculations, we retain up
to m = 8000 density-matrix eigenstates, with all calculated
values subsequently extrapolated to the limit of m→ ∞. The
maximum discarded weight observed is on the order of 10−6.

Furthermore, we intentionally break the spin-rotation sym-
metry by employing a spin pinning technique. This approach

FIG. 2. Comparative profiles of the local spin moment for 12 × 12
square (left panel) and 8×8 honeycomb (right panel) lattices at spin-
isotropic case ∆ = 1. The profiles depict ⟨Sz

i ⟩, the expectation
value of the z-component of spin at site i, for two distinct total spin
sectors: Sz = 0 (top row) and Sz = 1 (middle row). The bottom
row illustrates the differential profiles, showing the variance in ⟨Sz

i ⟩
between the Sz = 0 and Sz = 1 sectors.

effectively lifts the degeneracy of the ground state, thereby
efficiently reducing the dimensionality of the Hilbert space
required for our calculations. As a result, even for computa-
tions of 2D systems, the discarded weight remains minimal,
enhancing the accuracy and feasibility of our analysis.

C. physical quantities

1. staggered magnetization

We examine the Néel state for ∆ ≥ 1, where the magni-
tude of staggered magnetization serves as the order parameter
in both square and honeycomb lattice XXZ models. In the
original 2D clusters, Néel order characterized by k = (π, π)
is transformed into a magnetic order with k = π along the
projected 1D chain through our implementation of SBC. For
the analysis, we utilize open chains and determine the magni-
tude of staggered magnetization by measuring half the ampli-
tude of the Friedel oscillation of ⟨Sz

i ⟩ from the system edges.
Given the condition ∆ ≥ 1, it is sufficient to focus on the
z-component of the spin moment.

To establish such an open chain configuration, we sever L
(L+ 1) bonds between adjacent sites on the projected 1D pe-
riodic chain for square (honeycomb) lattices, as described in
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recent works [13, 24]. We specifically examine the local mo-
ments of the two central spins, ⟨Sz

N/2⟩ and ⟨Sz
N/2+1⟩, em-

ploying spin pinning near the system edges, such as setting
⟨Sz

i ⟩ = (−1)i−1S at sites i = 1, . . . , L and i = L2 − (L −
1), . . . , L2 for the square lattice; at sites i = 1, . . . , 2L and
i = 2L2 − (2L− 1), . . . , 2L2 for honeycomb lattice.

While pinning is typically positioned at the system edges,
i.e., at i = 1, i = N , the last L− 1 (2L− 1) sites at both ends
of projected 1D chain corresponding to square (honeycomb)
lattice are left without their original bonds, necessitating the
placement of pinnings at these outer sites to accurately esti-
mate staggered magnetization [see Fig.1(c)]. Therefore, we
define the magnitude of staggered magnetization for a given
spin S and XXZ anisotropy ∆ as

mz
α(S,∆) = lim

N→∞
| ⟨Sz

N/2⟩ − ⟨Sz
N/2+1⟩ |/2. (4)

Examples of local spin moment profiles, ⟨Sz
i ⟩, for the Sz = 0

sector at ∆ = 1 are depicted in the top panels of Fig.2. Here,
the parameter α adopts the value ‘sq’ for square lattices and
‘hon’ for honeycomb lattices. In both square and honeycomb
lattices, the oscillation of ⟨Sz

i ⟩ smoothly decays towards the
center of the system, validating the approach of defining the
Néel order parameter via the local moments of the two central
spins, ⟨Sz

N/2⟩ and ⟨Sz
N/2+1⟩.

2. spin gap

The spin gap offers insight into phenomena such as quan-
tum fluctuations and the stability of the Néel state. It also
provides us with understanding of how classical behavior
emerges from quantum systems. The spin gap (singlet-triplet
gap) for given S and ∆ is defined as follows:

εα(S,∆) = lim
N→∞

[E0(N, 1)− E0(N, 0)], (5)

where E0(N,S
z) is the total ground-state energy of the sys-

tem with N sites and the z-component of the total spin, Sz .
Here, the parameter α adopts the value ‘sq’ for square lattices
and ‘hon’ for honeycomb lattices.

To verify the validity of our spin gap calculations under the
imposed pinning distribution, we examine the spatial distribu-
tion of a spinon as the spin sector transitions from Sz = 0 to
Sz = 1. The spatial distribution of the spinon is visualized by
seeing the variance in ⟨Sz

i ⟩ between the Sz = 0 and Sz = 1
sectors, δ ⟨Sz

i ⟩. We plot the profile of the spinon distribu-
tion for ∆ = 1 in the bottom panels of Fig.2. In both square
and honeycomb lattices, it is observed that the probability of
spinon presence is maximized near the center of the system,
with minimal presence near the edges. This observation con-
firms that the spin gap in the bulk limit can be correctly es-
timated using Eq. (5). We note that the distribution of ⟨Sz

i ⟩
for the Sz = 1 sector and δ ⟨Sz

i ⟩ are aymmetric because the
rotational symmetry as well as mirror symmetry of the system
is broken.

FIG. 3. Extrapolated values of mz
sq(S,∆) to the thermodynamic

limit as a function of ∆ for the (a) S = 1/2 and (b) S = 1 square-
lattice XXZ models. Dashed lines represent the results from the SE
up to the 12th order 1/∆ [25–27]. Red crosses denote the results
obtained via the CCM [28] for the S = 1/2 case. Insets show
mz

sq(S,∆) versus 1/∆2 in the large-∆ region, with solid lines in-
dicating the SE results up to the 6th order of 1/∆.

IV. RESULTS

A. staggered magnetization

We start by looking at what we found about staggered
magnetization. This measure adeptly quantifies the AFM
alignment of magnetic moments throughout the lattice, offer-
ing profound insights into the stability and resilience of the
Néel state against external perturbations. Our investigation
spans two lattice configurations, i.e., square and honeycomb
structures, and encompasses systems with spin magnitudes of
S = 1/2 and S = 1. The primary objective of this analysis
is to delineate the degree to which staggered magnetization is
influenced by the lattice geometry and spin values.

1. square lattice

In our preceding study [13], the magnitude of staggered
magnetization for the S = 1/2 and S = 1 square-lattice
XXZ Heisenberg models was quantified as a function of ∆.
We here revisit these results to consider the extent of quantum
fluctuations in the Néel state at ∆ ≥ 1. They are plotted in
Fig. 3. For any S, the quantum fluctuations are maximized at
∆ = 1, correspondingly minimizing the staggered magnetiza-
tion magnitude. Specifically, for S = 1/2, we previously es-
timated mz

sq(
1
2 , 1.0) = 0.3065 [13], aligning closely with ex-

tant numerical estimates: 0.3067 by DMRG [29], 0.3093 via
the coupled cluster method (CCM) [28], and 0.30743 through
quantum Monte Carlo (QMC) [30]. These values approxi-
mate 60% of the classical one mz

sq(
1
2 ,∞) = 0.5. For S = 1,

the staggered magnetization rises to about 80% of its classi-
cal counterpart mst

z (1,∞) = 1, as numerically determined to
be mz

sq(1, 1.0) = 0.8017 [13] via DMRG and mz
sq(1, 1.0) =

0.802 [31] by infinite projected entangled pair states (iPEPS).
These results underscore the substantial suppression of quan-
tum fluctuations with an increase in S. In fact, an expansion
in terms of 1/S yields mz

sq(S, 1.0) = 1 − 0.1966019S−1 +
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0.00087S−3 + O(S−4) [32–34]. Since the coefficients of
higher order terms than 1/S are very small, a rapid conver-
gence to the classical (or Ising) limitmz

sq(S, 1.0)/S → 1 with
increasing S is naively expected. This trend has received nu-
merical validation [13].

To explore the evolution of quantum fluctuations with ∆,
we compare our DMRG results to SE predictions. The
SE results are plotted by dotted lines in Fig. 3. At ∆ =
1, our DMRG analysis yields mz

sq(
1
2 , 1.0) = 0.3065 and

mz
sq(1, 1.0) = 0.8017, whereas SE up to the 12th order offers

mz
sq(

1
2 , 1.0) = 0.3462 and mz

sq(1, 1.0) = 0.8579. Despite in-
corporating terms up to the 12th order, a discrepancy remains
due to unaccounted quantum fluctuations, with errors around
7.9% for S = 1/2 and 5.6% for S = 1. Increasing ∆ slightly
to 1.05 reduces these deviations significantly to 0.76% and
0.44% for S = 1/2 and S = 1, respectively, illustrating a
marked decrease in quantum fluctuations with enhanced XXZ
anisotropy. In the ∆ = ∞ limit, SE approaches exactness,
nullifying quantum fluctuations. These discrepancies high-
light the challenge of fully accounting for quantum fluctua-
tions, with a deviation of approximately 7.9% for S = 1/2
and 5.6% for S = 1. However, a slight increase in ∆ to 1.05
yields mz

sq(
1
2 , 1.05) = 0.3640 (DMRG) and mz

sq(
1
2 , 1.05) =

0.3678 (SE12) for S = 1/2, and mz
sq(1, 1.05) = 0.8767

(DMRG) and mz
sq(1, 1.05) = 0.8811 (SE12) for S = 1, sig-

nificantly reducing deviations to 0.76% and 0.44%, respec-
tively. (Hereinafter, when considering up to the nth order
in the SE, we denote it as SEn if needed.) This definitely
suggests a pronounced reduction in quantum fluctuations at-
tributable to XXZ anisotropy.

In the limit of ∆ = ∞, the SE analysis approaches ex-
act since quantum fluctuations disappear. Utilizing SE up to
the 6th order in 1/∆, we express the staggered magnetiza-
tion for S = 1/2 systems as 2mz

sq(
1
2 ,∆) = 1 + m2/∆

2 +

m4/∆
4+m6/∆

6. The coefficients are calculated to bem2 =
−2/9 = −0.222222 . . . , m4 = −8/255 = −0.0355555 . . . ,
and m6 = −0.01894258 for S = 1/2 [25, 27, 35–37]. In the
case of S = 1 systems, staggered magnetization is similarly
formulated as mz

sq(1,∆) = 1+m2/∆
2+m4/∆

4+m6/∆
6,

with coefficients m2 = −4/49 = −0.081632653 . . . , m4 =
−0.026959099, and m6 = −0.0136997515 [26, 27]. The
magnitude of the lowest-order term, i.e., m2, for S = 1/2
is approximately 2.7 times that for S = 1, implying a
significant difference in quantum fluctuations between the
two. Fitting our data for 0 ≤ 1/∆ ≤ 0.05, we obtain
m2 = −0.222222225, m4 = −0.0355542736, and m6 =
−0.0189663810 for S = 1/2, and m2 = −0.081632653,
m4 = −0.026959397, and m6 = −0.013867377 for S = 1.
These coefficients are in almost perfect agreement with the SE
results.

Additionally, in contrast to the singular behavior near
∆ = 1 predicted by SWT, which posits that mz

sq(
1
2 ,∆) =∑∞

n=0mn(∆−1)n/2 [15, 27, 36], our observations reveal that
mz

sq(
1
2 ,∆) is almost linearly proportional to ∆− 1 within the

range 1 ≤ ∆ <∼ 1.01. This behavior aligns with results from
the CCM) [28]. However, we further ascertain that, except in
the immediate vicinity of ∆ = 1, the staggered magnetization

FIG. 4. Magnitude of staggered magnetization for the S = 1/2 and
S = 1 honeycomb-lattice XXZ models as a function of ∆. Finite-
size scaling analyses of (a) mz

hon(
1
2
,∆) and (b) mz

hon(1,∆). Ex-
trapolated values of (c) mz

hon(
1
2
,∆) and (d) mz

hon(1,∆) to the ther-
modynamic limit as a function of ∆. The dashed lines show the SE
results up to the 12th order of 1/∆ [38]. Insets show mz

hon(S,∆)
versus 1/∆2 in the large-∆ region. Solid lines represent the SE re-
sults up to the 6th order of 1/∆.

for the square-lattice XXZ Heisenberg model at ∆ >∼ 1 can
be approximately and quantitatively captured by SE, provided
the expansion includes up to the 12th order of 1/∆.

2. honeycomb lattice

In exploring the honeycomb-lattice XXZ model, we note
that each site is connected to three neighboring sites, a con-
trast to the four neighbors in the square-lattice model. This
difference leads us to hypothesize that the Néel state in the
honeycomb-lattice model might exhibit less stability com-
pared to its counterpart in the square model due to the po-
tential for increased quantum fluctuations. To investigate this,
we delve into the dependence of staggered magnetization on
the anisotropy parameter ∆ for both S = 1/2 and S = 1
within the honeycomb lattice, drawing comparisons with our
previous findings for the square-lattice model.

In Figs. 4(a,b), we perform finite-size scaling analyses
for mz

hon(
1
2 ,∆) and mz

hon(1,∆) over various values of ∆.
Broadly, this scaling examines the decay of Friedel oscilla-
tions with distance from a spin pinned at the system edge.
Given that the Néel state features a staggered (commensurate)
arrangement of spins in our projected 1D chain, we anticipate
a smooth decay of the Friedel oscillations with distance. This
has been verified in Sec. III C 1. Consequently, mz

hon(
1
2 ,∆)

and mz
hon(1,∆) extrapolate smoothly to the thermodynamic
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limit as functions of inverse system size. Furthermore, the ob-
servation that convergence with respect to size occurs more
rapidly as ∆ increases reflects the diminishing quantum fluc-
tuations.

The extrapolated values of mz
hon(

1
2 ,∆) and mz

hon(1,∆)
are plotted as a function of ∆ in Figs. 4(c,d), respectively.
In the case where the quantum fluctuations are largest at
∆ = 1, we obtain mz

hon(
1
2 , 1.0) = 0.2764 for S = 1/2

and mz
hon(1, 1.0) = 0.7646 for S = 1. These values are in

close agreement with various numerical methods from previ-
ous studies: 0.2857 [39], 0.2720 [40], 0.2611 [41] by DMRG,
0.2677 [42] by QMC, 0.262 [43] by exact diagonalization,
0.2730 [19] by CCM for S = 1/2, and 0.7412 [19] by CCM
for S = 1. These are ∼ 55% and ∼ 76% of their respective
classical values, only slightly smaller despite of the greater
quantum fluctuations compared to the square lattice case. On
the other hand, the SE analyses up to the 12th order of 1/∆
lead to mz

hon(
1
2 , 1) = 0.3409 and mz

hon(1, 1) = 0.8139 for
S = 1/2 and S = 1, respectively. These values, when
compared with those obtained from our DMRG simulations,
exhibit discrepancies of 6.5% for S = 1/2 and 4.9% for
S = 1. Interestingly, these deviations are rather smaller than
those observed for the square lattice, where the discrepan-
cies are notably lower at 7.9% for S = 1/2 and 5.6% for
S = 1. Furthermore, the increase in magnetization when
S changes from 1/2 to 1 is similar to that in the square lat-
tice. This may be expected from the coefficients of the 1/S
series expansion for the honeycomb lattice mz

hon(S, 1.0) =
1 − 0.258193/S + · · · [15], which are close to those for the
square lattice.

Let us then see the ∆-dependence. As illustrated in
Figs. 4(c,d), the magnetization rapidly approaches classical
values with increasing ∆. It is also evident that, apart from
the immediate vicinity of ∆ = 1, the magnetization is well
captured by the SE12 predictions. Indeed, a slight increase
in ∆ from 1 to 1.05 yields mz

hon(
1
2 , 1.05) = 0.3188 (DMRG)

versus mz
hon(

1
2 , 1.05) = 0.3478 (SE12) for S = 1/2, and

mz
hon(1, 1.05) = 0.8242 (DMRG) versus mz

hon(1, 1.05) =
0.8427 (SE12) for S = 1. The discrepancies between the
DMRG and SE12 values significantly decrease from 6.5% and
4.9% at ∆ = 1 to 2.9% and 1.9% at ∆ = 1.05 for S = 1/2
and S = 1, respectively. Nevertheless, the quantum fluctu-
ations remain comparatively large, and thus the reduction is
not as dramatic as in the case of the square lattice, where the
discrepancies decreased from 7.9% and 5.6% to 0.76% and
0.44%.

By employing expansions up to the 4th order in 1/∆, the
staggered magnetization for both spin-1/2 and S = 1 sys-
tems can be expressed as mz(S = 1/2) = 0.5 −m2/∆

2 +
m4/∆

4 + o(1/∆6). The coefficients are found to be m2 =
−3/16 = −0.1975, m4 = 31/768 = 0.0403645833 . . .
for S = 1/2 and m2 = −3/25 = −0.12, m4 =
−17977/54000 = −0.3329074 . . . for S = 1 [38]. Fit-
ting our data for 0 ≤ 1/∆ ≤ 0.02, we obtain m2 =
−0.187499964, m4 = 0.0394523682 for S = 1/2 and
m2 = −0.120000004, m4 = −0.0332430099 for S = 1.
These values are in good agreement with those from SE.

Thus, our examination of the honeycomb-lattice XXZ

FIG. 5. Spin gap for the S = 1/2 and S = 1 square-lattice
XXZ models as a function of ∆. Finite-size scaling analyses of (a)
εsq(

1
2
,∆) and (b) εsq(1,∆). Extrapolated values of (c) εsq( 12 ,∆)

and (d) εsq(1,∆). to the thermodynamic limit as a function of
∆. The dashed lines show the SE results up to the 10th order of
1/∆ [27]. Insets show εsq(S,∆) in the large ∆ region.Solid lines
represent the SE results up to the 6th order of 1/∆.

model reveals that, akin to the case for square lattice, stag-
gered magnetization can be reasonably approximated by SE12
for ∆ > 1.

B. Spin gap

Next, we delve into the investigation of the spin gap, which
serves as an indicator of the stability of Néel LRO when
spin rotation symmetry about the z-axis is explicitly broken
by staggered magnetization. This parameter is essential for
understanding the energy required to excite the system from
its Néel ground state, a facet less explored compared to di-
rect magnetization measurements. Employing methodologies
analogous to those used in our magnetization studies, we ex-
tend our analysis to both square and honeycomb lattice con-
figurations for S = 1/2 and S = 1 systems. Our aim is to
elucidate the behavior of the spin gap across varying lattice
geometries and spin magnitudes, offering insights into the in-
tricacies associated with excitations from the Néel state.

1. square lattice

Let us first examine the spin gap in the case of a square lat-
tice. In Figs. 5(a,b), finite-size scaling analyses for εsq( 12 ,∆)
and εsq(1,∆) are shown across various values of ∆. Our scal-
ing analysis reveals that a smooth extrapolation of the spin gap
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FIG. 6. ∆-normalized spin gap for the (a) S = 1/2 and (b) S = 1
square-lattice XXZ models as a function of 1−∆−2. Circles denote
DMRG results in the thermodynamic limit, while the solid line rep-
resents a fit using Eq. (6).

often suggests that the scaling function resembles the contour
of magnon band near the Fermi level. For both spin mag-
nitudes at ∆ = 1, the spin gap data aligns closely with a
linear fit, extrapolating towards zero in the thermodynamic
limit, albeit with minor numerical uncertainties inherent to
the extrapolation process. This linear fit aligns with expec-
tations for gapless systems where the linear magnon band
structure near the Fermi points dominates. The actual val-
ues of extrapolated spin gap are εsq( 12 , 1) = −0.00170006
and εsq(1, 1) = 0.00684318. This hints at a Néel LRO that,
despite being stable, exhibits a spin gap of zero due to the ar-
bitrary direction of symmetry breaking. Moreover, at slightly
increased values of ∆, namely 1.1 and 1.2, the observed small
gaps corroborate the quadratic dispersion expected near the
Fermi points. As the gap widens, quantum fluctuations wane,
leading to a narrower bandwidth and, thus, a diminished size
dependence of the gap. Utilizing SBC to transform the 2D
lattice into an effective 1D system allows for the original 2D
Fermi surface to be conceptualized as a ’Fermi line,’ aiding in
the smooth scaling of the gap.

Figs. 5(c,d) display the extrapolated spin gaps εsq( 12 ,∆)
and εsq(1,∆), showcasing a trend similar to that of magne-
tization with increasing ∆, rapidly approaching the classi-
cal values 4∆S. Excluding the region immediately around
∆ = 1, the behavior of the spin gap correlates well with
SE predictions up to the 10th order in 1/∆. Specifically, a
SE up to the 2nd order in 1/∆ formulates εsq(S,∆) = 2 +
m2/∆

2+O(1/∆4), wherem2 equals −5/3 = 1.6666666 · · ·
for S = 1/2 and −50/21 = 2.3809523 · · · for S = 1. Our
data fitting for 0 ≤ 1/∆ ≤ 0.02 yields m2 = −1.66803135
for S = 1/2 and m2 = −2.37996804 for S = 1, in close
agreement with these SE coefficients, demonstrating the va-
lidity of our method.

Investigating the behavior of spin gap near ∆ = 1, SWT
anticipates a singularity, encapsulated by the following rela-
tion:
ε

∆
= η1(1−∆−2)1/2 + η2(1−∆−2) + η1(1−∆−2)3/2 + · · · ,

(6)

with constants η1 = 4S − 0.431436 and η2 = 1.2732 de-

TABLE I. Comparison of spin gaps as a function of ∆ for the S =
1/2 square-lattice XXZ Heisenberg model obtained via DMRG and
CCM calculations.

∆
εsq(

1
2
,∆)

∆
εsq(

1
2
,∆)

DMRG CCM DMRG CCM
1.00 -0.0017 -0.0086 1.60 2.1995 2.2279
1.10 0.6810 0.5601 1.70 2.4578 2.4921
1.15 0.8722 0.7811 1.80 2.7083 2.7465
1.20 1.0461 0.9805 1.90 2.9535 2.9934
1.25 1.2088 1.1646 2.00 3.1942 3.2344
1.30 1.3627 1.3371 2.50 4.3496 4.3828
1.35 1.5118 1.5004 3.00 5.4546 5.4790
1.40 1.6560 1.6563 3.50 6.5306 6.5481
1.50 1.9334 1.9509 4.00 7.5880 7.6008

rived from SWT predictions [44]. To scrutinize this pre-
dicted behavior, we present DMRG results for the normalized
spin gap, ε

∆ , as a function of 1 − ∆−2 around ∆ = 1 in
Figs. 6(a,b). For both S = 1/2 and S = 1, we can reasonably
fit our DMRG data by Eq. (6), yielding η1 = 1.36394987,
η2 = 0.0667245772, η3 = 0.572388620 for S = 1/2 and
η1 = 3.23450360, η2 = 0.754467400, η3 = 0.0226881660
for S = 1. These leading coefficients are close to the SWT
prediction of η1 = 1.568564 for S = 1/2 and η1 = 3.568564
for S = 1, indicating an increase in η1 with S, consis-
tent with the fact that in the large S limit, the gap jumps to
εsq(S = ∞,∆ = 1+) = 4∆S as soon as XXZ anisotropy
is introduced. Our numerical investigation thus substantiates
the SWT-predicted singularity in the spin gap near ∆ = 1.
Nonetheless, for S = 1/2, contrasting viewpoints emerge,
such as those from CCM analyses, which suggest a near-
linear relation, ε ∝ ∆, diverging from the expected singular
behavior. This discrepancy could arise from our extrapola-
tions to the thermodynamic limit, particularly near ∆ = 1,
which are marginally higher than those deduced from CCM.
As reference, Table I compares the spin gap values derived
from DMRG and CCM for various ∆ settings in the S = 1/2
case. A more in-depth examination will be imperative in fu-
ture studies to resolve these discrepancies and fully delineate
the characteristics of spin gap near ∆ = 1.

2. honeycomb lattice

Finally, we examine the spin gap for the honeycomb-lattice
model. In Figs. 7(a,b), we conduct finite-size scaling anal-
yses for εhon( 12 ,∆) and εhon(1,∆) over various values of
∆. We see that smooth scaling is possible for all values of
∆, similar to the case of the square lattice. Consistently,
at ∆ = 1, the scaling function is almost linear, approach-
ing to nearly zero as 1/L decreases; while for ∆ > 1, a
quadratic behavior indicative of gap opening is observed. The
actual extrapolated values are εhon( 12 , 1) = −0.01916648 and
εhon(1, 1) = −0.01447616, indicating slight but larger devia-
tions from zero than those observed in the square-lattice case.
The square lattice, having one site per structural unit cell, al-
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FIG. 7. Spin gap for the S = 1/2 and S = 1 honeycomb-
lattice XXZ models as a function of ∆. Finite-size scaling analy-
ses of (a) εhon(

1
2
,∆) and (b) εhon(1,∆). Extrapolated values of

(c) εhon( 12 ,∆) and (d) εhon(1,∆). to the thermodynamic limit as a
function of ∆. The dashed lines show the SE results up to the 10th
order of 1/∆ [38]. Insets show εsq(S,∆) in the large ∆ region.Solid
lines represent the SE results up to the 6th order of 1/∆.

lowed calculations up to L = 14, whereas the honeycomb
lattice, with two sites per structural unit cell, limits compu-
tations to L = 9 for a comparable computational cost, po-
tentially leading to relatively larger scaling errors towards the
thermodynamic limit in the honeycomb-lattice case.

The extrapolated values of εhon( 12 ,∆) and εsq(1,∆) are
plotted as a function of ∆ in Figs. 7(c,d), showing a behavior
broadly similar to the magnetization versus ∆ relationship.
Interestingly, the saturation towards the classical value 3∆S
seems to be more gradual than observed in the square-lattice
case, possibly a reflection of heightened quantum fluctuations
within the honeycomb structure.

A notable finding is that SE analyses up to the 10th or-
der in 1/∆ are almost inapplicable in the region ∆ <∼ 2 for
S=1/2. Due to the large coefficients of higher-order terms,
adding each successive term causes the values to oscillate sig-
nificantly near ∆ = 1, making approximation by SE very hard
in the vicinity of ∆ = 1 (see Appendix A). This emphasizes
the critical influence of quantum fluctuations on the spin exci-
tation in its Néel state. Conversely, for S = 1, the SE results
up to the 10th order in 1/∆ can reasonably describe the gen-
eral gap behavior, except in the immediate vicinity of ∆ = 1.

To substantiate the accuracy of our DMRG calculations, we
undertake a comparison with SE predictions, particularly in
the regime of large ∆. The SE up to the 2nd order in 1/∆ is
expressed as εhon(S,∆) = 2 + m2/∆

2 + O(1/∆4), where
the coefficients are determined to be m2 = −15/8 = 1.875
for S = 1/2 and m2 = −39/20 = 1.95 for S = 1 [38].

FIG. 8. ∆-normalized spin gap for the (a) S = 1/2 and (b) S = 1
honeycomb-lattice XXZ models as a function of 1 − ∆−2. Circles
denote DMRG results in the thermodynamic limit, while the solid
line represents a fit using Eq. (6).

Fitting our DMRG data within the range 0 ≤ 1/∆ ≤ 0.02
yields coefficients m2 = −1.85284825 for S = 1/2 and
m2 = 1.94992536 for S = 1. These findings are in re-
markable concordance with the established SE coefficients,
further affirming the reliability of our DMRG computational
approach.

In alignment with observations for the square lattice, SWT
also forecasts singular behavior near ∆ = 1 for the honey-
comb lattice. The asymptotic form of this behavior is encap-
sulated by Eq. (6), with SWT providing the coefficients as
η1 = 3S − 0.423239 and η2 = 1.2405[15]. To verify if our
DMRG data align with these predictions, we analyze the nor-
malized spin gap, ε

∆ , as a function of 1 − ∆−2 approaching
∆ = 1, as depicted in Figs. 8(a,b).

Our fits to Eq. (6) for both S = 1/2 and S = 1 seem to be
reasonable and yield η1 = 1.03093109, η2 = −0.614589918,
η3 = 1.06200153 for S = 1/2, and η1 = 2.12914213, η2 =
0.923738066, η3 = −0.0550192661 for S = 1. These lead-
ing coefficients exhibit a notable correspondence with SWT-
anticipated η1 = 1.076761 for S = 1/2 and η1 = 2.576761
for S = 1, underscoring our numerical validation of the pre-
dicted singularity in the spin gap as ∆ approaches 1. Inciden-
tally, the observation that η1 for S = 1 is larger than that for
S = 1/2 suggests a trend towards the discontinuity where the
gap leaps to εsq(S = ∞,∆ = 1+) = 3∆S with the introduc-
tion of XXZ anisotropy in the limit of S = ∞.

V. SUMMARY AND DISCUSSION

We have achieved a comprehensive study of the S = 1/2
and S = 1 XXZ Heisenberg model on square and honey-
comb lattices. By employing the DMRG method, we sys-
tematically analyzed the evolution of staggered magnetization
and the associated spin gap across a wide range of easy-axis
anisotropies. A key to enhancing DMRG performance was
the implementation of SBC, which enabled an exact mapping
of the original 2D clusters onto a 1D chain. This technique
significantly improved our ability to perform efficient finite-
size scaling analysis, thereby facilitating the extrapolation of
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FIG. 9. (a) Ratio of the spin gap to the magnitude of magnetization,
which is normalized to approach unity in the classical limit, as a
function of ∆ for the the S = 1/2 and S = 1 XXZ Heisenberg
models on square and honeycomb lattices. (b) The values plotted in
(a) subtracted by rhon(

1
2
,∆).

physical quantities to the thermodynamic limit with high ac-
curacy.

Given the difference in the number of adjacent sites – four
for the square lattice versus three for the honeycomb lattice –
it is reasonable to anticipate greater quantum fluctuations in
the Néel phase for the honeycomb structure. This implies a
potentially lower stability of the Néel LRO in the honeycomb
lattice as compared to the square lattice. Contrary to what
might be expected from the increased quantum fluctuations,
we found that the magnitude of staggered magnetization in the
honeycomb lattice is only marginally smaller than that in the
square lattice. Furthermore, across all models investigated,
the dependence of staggered magnetization on ∆, except very
close to ∆ = 1, is well captured by SE up to the 12th or-
der. The ∆ dependence of the spin gap closely mirrors that
of staggered magnetization, with most cases being approxi-
mately describable by SE up to the 10th order. However, for
the S = 1/2 honeycomb lattice, significant deviations from
the 10th order SE predictions are observed near the isotropic
Heisenberg limit, underscoring the pivotal role of quantum
fluctuations on the spin gap in its Néel state. Moreover, for
all models considered, our results align numerically with the
singular behavior of the spin gap near the isotropic Heisenberg
limit as predicted by SWT.

We here delve into why the ∆-dependence of the spin gap
for the S = 1/2 honeycomb lattice case significantly deviates
from the SE predictions. The spin gap in this context serves as
an indicator of the stability of staggered magnetization in the
z-direction within the Néel LRO. To analyze this, we consider

the ratio of the spin gap to the magnitude of magnetization,
normalized to approach unity in the classical limit, defined
for the square and honeycomb lattices respectively as:

rsq(S,∆) =
εsq(S,∆)

4∆mz
sq(S,∆)

, rhon(S,∆) =
εhon(S,∆)

3∆mz
hon(S,∆)

.

(7)

We plot the DMRG results for all four models as a function
of ∆ in Fig.9(a). In all cases, as ∆ approaches 1, increased
quantum fluctuations reduce the stability of staggered magne-
tization, driving the ratio towards zero. Notably, at the same
∆, rhon( 12 ,∆) is particularly lower than the other three cases,
suggesting that the S = 1/2 honeycomb lattice experiences
larger quantum fluctuations relative to its magnetization size,
implying a relatively unstable Néel LRO. This observation is
consistent with the larger coefficients for higher-order terms in
SE. The differences between rhon( 12 ,∆) and the other three
ratios are plotted in Fig.9(b), revealing the largest quantum
fluctuations around ∆ ≈ 1.5 for the S = 1/2 honeycomb
lattice case, with the S = 1/2 square lattice next in line, as
intuitively expected. Conversely, for S = 1, this physical
quantity appears less dependent on the lattice geometry. The
data plotted in Fig.9 are shown in Appendix B.

Additionally, we have tested the application of a recently
proposed novel method for numerical calculations in 2D sys-
tems, demonstrating its effectiveness. The application of SBC
has proven to be particularly effective in mapping 2D models
onto 1D periodic chains, significantly simplifying the compu-
tational complexity of our analyses and enabling the precise
determination of physical quantities in the thermodynamic
limit. This methodological innovation opens new avenues for
the study of quantum phenomena in complex lattice systems,
providing a robust framework for exploring the effects of lat-
tice geometry and spin interactions on magnetic order and ex-
citations.
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Appendix A: Series expansion for spin gap in the S = 1/2
honeycomb-lattice XXZ Heisenberg model

Around the classical limit, perturbative expansion up to the
10th order in 1/∆ for the S = 1/2 honeycomb-lattice XXZ
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FIG. 10. ∆-normalized spin gap for the S = 1/2 honeycomb lattice
case obtained via DMRG and SE, plotted as a function of ∆. Here,
the SE results incorporating terms up to the nth order are denoted as
SEn.

Heisenberg model yields the spin gap as:

εhon(
1

2
,∆) =

3

2
− 15

8∆2
+

2.3046875

∆4
− 7.05102539062

∆6

+
26.3766856347

∆8
− 111.596182008

∆10
. (A1)

We denote the results obtained by considering terms up to
the nth order as SEn and plot them as a function of ∆ in
Fig. 10, alongside a comparison with our DMRG results. As
indicated by Eq.(A1), the inclusion of higher-order terms in-
troduces significant oscillations near ∆ = 1, due to the in-
creasing coefficients of these terms. Consequently, within the
region ∆ <∼ 2, there is a noticeable deviation from the DMRG
results. To approximate the DMRG findings even closely, it is
anticipated that a considerably higher order of terms must be
accounted for, suggesting that the impact of quantum fluctua-
tions on spin excitations is significant in this Néel phase.

Appendix B: DMRG data for staggered magnetization and spin
gap

For additional context, we present the values of staggered
magnetization and spin gap obtained via the DMRG method
at the thermodynamic limit for various values of ∆. Tables II
and III detail these quantities for the square and honeycomb
lattices, respectively. Moreover, the values of the ratio of stag-
gered magnetization to the spin gap, as plotted in Fig. 9 of the
main text, are also provided for reference.

TABLE II. Extrapolated values of staggered magnetization, spin
gap, and their ratio defined by Eq. (7) to the thermodynamic limit
as a function of ∆ for the S = 1/2 square-lattice XXZ Heisenberg
model obtained by our DMRG calculations.

∆
S = 1/2 S = 1

εsq(
1
2
,∆) mz

sq(
1
2
,∆) rsq(

1
2
,∆) εsq(1,∆) mz

sq(1,∆) rsq(1,∆)
1.00 -0.00170 0.30651 -0.00139 0.00684 0.80170 0.00213
1.05 0.46158 0.36402 0.30191 1.11193 0.87667 0.30199
1.10 0.68102 0.38422 0.40284 1.62512 0.89616 0.41214
1.15 0.87217 0.39752 0.47696 2.04938 0.91139 0.48883
1.20 1.04607 0.40789 0.53429 2.42961 0.92172 0.54915
1.30 1.36273 0.42488 0.61679 3.09541 0.93763 0.63487
1.40 1.65602 0.43681 0.67699 3.69616 0.94862 0.69578
1.50 1.93344 0.44593 0.72262 4.25626 0.95670 0.74149
1.60 2.19954 0.45312 0.75847 4.78831 0.96291 0.77699
1.70 2.45781 0.45891 0.78761 5.29980 0.96780 0.80532
1.80 2.70835 0.46366 0.81128 5.79559 0.97174 0.82836
1.90 2.95351 0.46761 0.83108 6.27901 0.97497 0.84740
2.00 3.19416 0.47094 0.84781 6.75247 0.97765 0.86335
2.50 4.34959 0.48173 0.90292 9.02033 0.98619 0.91467
3.00 5.45464 0.48742 0.93257 11.19124 0.99058 0.94148
3.50 6.53058 0.49081 0.95042 13.31055 0.99315 0.95731
4.00 7.58805 0.49298 0.96200 15.39881 0.99479 0.96747

TABLE III. Extrapolated values of staggered magnetization, spin
gap, and their ratio defined by Eq. (7) to the thermodynamic limit as
a function of ∆ for the S = 1/2 honeycomb-lattice XXZ Heisenberg
model obtained by our DMRG calculations.

∆
S = 1/2 S = 1

εhon(
1
2
,∆)mz

hon(
1
2
,∆)rhon(

1
2
,∆) εhon(1,∆)mz

hon(1,∆)rhon(1,∆)
1.00 -0.01917 0.27637 -0.02312 -0.01448 0.75925 -0.00636
1.05 0.30264 0.31882 0.30135 0.77160 0.82632 0.29644
1.10 0.43473 0.34256 0.38456 1.14549 0.85580 0.40561
1.15 0.55835 0.35957 0.45010 1.46041 0.87559 0.48345
1.20 0.67549 0.37295 0.50312 1.73880 0.89047 0.54241
1.30 0.89595 0.39335 0.58403 2.24251 0.91197 0.63051
1.40 1.10423 0.40856 0.64351 2.69467 0.92701 0.69210
1.50 1.30397 0.42045 0.68919 3.11703 0.93819 0.73831
1.60 1.49774 0.43004 0.72558 3.51818 0.94683 0.77412
1.70 1.68690 0.43792 0.75531 3.90403 0.95368 0.80267
1.80 1.87243 0.44451 0.78007 4.27815 0.95924 0.82592
1.90 2.05486 0.45008 0.80097 4.64300 0.96381 0.84514
2.00 2.23472 0.45484 0.81887 5.00033 0.96764 0.86126
2.50 3.10562 0.47085 0.87944 6.71114 0.97988 0.91319
3.00 3.94431 0.47960 0.91379 8.34704 0.98624 0.94039
3.50 4.76235 0.48494 0.93529 9.94248 0.98997 0.95649
4.00 5.56612 0.48843 0.94967 11.51335 0.99237 0.96683
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