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Abstract: 

Two-dimensional (2D) semiconductors have demonstrated great potential for next-generation 
electronics and optoelectronics. Their atomic thinness facilitates the material design for desirable 
electronic properties when combined with other 2D materials in van der Waals (vdW) heterostructure. 
Although the carrier mobility has been well studied for suspended 2D semiconductors via first-
principles calculation recently, it is not clear how they are affected by surrounding materials. In this 
work, we propose a model to consider the Fröhlich scattering, an important scattering in polar materials 
from polar-optical (PO) phonons, in vdW heterostructures. Exemplified by InSe surrounded by h-BN, 
we found the InSe Fröhlich mobility can be enhanced about 2.5 times by environmental dielectric 
screening and coupled PO phonons in vdW heterostructures. More interestingly, the strong remote PO 
phonons can enhance the InSe mobility instead of deteriorating it once considering the PO phonons 
coupling. Then several quantities of surrounding dielectrics are proposed to optimize the InSe Fröhlich 
mobility, and then used for filtering potential 2D dielectric materials. Our work provides efficient 
calculation tools as well as physical insights for carrier transport of 2D semiconductors in realistic 
vdW heterostructures.  

 

Introduction: 

 Two-dimensional (2D) semiconductors are layered semiconducting materials with a thickness of 
only one or few atomic layer(s), weakly bounded to neighboring layers due to their dangling-bond-
free surfaces. When stacked with various other 2D materials via van der Waals (vdW) interactions, the 
vdW heterostructures can be built without the constraints of lattice matching and processing 
compatibility for individual layers. It offers unprecedented opportunities for properties tuning, such as 
band gap engineering, twistronics, plasmonics and so on [1-3]. One of the useful properties is the 
carrier mobility. The current 2D semiconductors suffer from relatively poor carrier transport properties 
at room temperature [4]. For example, the upper limit of intrinsic carrier mobility (ignoring impurity 
scatterings) of MoS2 monolayer is predicted < 200 cm2V-1s-1 based on various first-principles 
calculations [5-7]. Many 2D semiconductors, including many 2D transition metal dichalcogenides [8] 
and indium selenide (InSe) [5,9] suffer from strong Fröhlich scattering induced by polar-optical 
phonons (POPs). Although many studies have been carried out on transport properties of 2D 
semiconductor, most of calculations focus on suspended monolayers, which is far from the realistic 
operation regime and ignores the effects of surrounding layers. It is still elusive how will the carrier 
mobility of 2D semiconductor change in different vdW heterostructures.  



 For non-vdW heterostructures, the dielectric continuum model [10-12] is proposed to compute the 
remote phonon scattering rates. By assuming the semiconductors as dielectric continuum, an analytical 
equation for remote phonon scattering rates can be obtained. However the complexity of the equations 
grows with the number of heterointerfaces in the system, and usually single- or double heterointerface 
systems are studied. Therefore, only simple heterostructures like double heterojunctions [13-16] or 2D 
materials embedded in semi-infinite substrates [17-22] are studied in the past. In addition to the 
complexity in vdW dielectrics, the dielectric continuum model takes materials as continuum and 
neglects the atomic details, which is important for atomically thin 2D semiconductors. For example, 
the confined phonon wavelength in model might be lower than the thickness of 2D semiconductor and 
lead to fictitious electron-phonon scattering [10]. In addition, the POPs coupling between the 2D 
semiconductor and dielectrics are usually neglected [22], which, as we will see in the following, leads 
to considerable errors on scattering rates and mobility calculations.  

 In this work, we propose a simple and efficient model to consider Fröhlich scattering and mobility 
in channel materials in vdW heterostructures. The effects of surrounding layers can be mainly divided 
into two parts: First, the electrons in surrounding materials provide dielectric screening for the 
electrostatic field generated by POPs, which alleviates the Fröhlich scattering and thus increases the 
mobility. Second, the POPs contributed from surrounding dielectrics influence the electrons as well as 
the POPs in the channel material, and consequently affect the mobility in a nontrivial fashion. We 
found the overall effect of these remote PO phonons will significantly enhance the mobility in 2D 
semiconductors in most cases, which contradicts the intuitive that the remote phonon scattering usually 
reduces the mobility. Exemplified by InSe surrounded by h-BN layers, we shown that the InSe Fröhlich 
mobility can be enhanced about 2.5 times by environmental dielectric screening and coupled POPs in 
vdW heterostructures. The InSe mobility can be further improved once the surrounding materials 
satisfying more desirable properties, i.e. moderate POP frequency, large Born effective charge and 
smaller in-plane polarizability. Using these descriptors, we filtered additional potential dielectrics 
besides h-BN from 2D materials database for optimal intrinsic InSe mobility. The discovered dielectric 
materials as well as the mechanistic insights shed light on vdW heterostructure design for next-
generation electronics/optoelectronics. 

 

Methods: 

The carrier mobility μ for band transport at low electric field can be obtained from the Boltzmann 
transport theory under momentum relaxation time approximation [5,6]: 
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where α and β are the direction indices, q is the charge of carrier, A (ABZ) is the area of unit cell 
(Brillouin zone); τnk is the momentum relaxation time for the electronic state with band index n and 
wavevector k, vnk is its group velocity, and Enk is its energy; f is the Fermi distribution function, and 
nc is the carrier density which is related with f and the electronic band structure through: 
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where ne and nh are the concentrations for electrons and holes respectively. Since we are interested in 
the Fröhlich-limited mobility, we consider a perfect material with the Fermi level at the middle of the 
band gap and the Fröhlich scattering only. The Fröhlich-limited relaxation τF can be calculated as: 
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where the initial electronic state nk is scattered to the final state mk+q by interacting with a phonon 
νq with frequency ωνq (ν is the phonon band index and q is the phonon wavevector); n is the Bose 
distribution; v is the group velocity vector; gF is the Fröhlich coupling (EPC) matrix element. In 
suspended monolayer case, the gF induced by phonon νq can be obtained by: 
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where α is the index of the atom in the unit cell, M is the atomic mass, Z* is the Born effective charge, 
τα is the atomic position in the unit cell; ε|| is the in-plane dielectric function of the 2D material, ψ is 
the wavefunction of initial or final electronic state; i is the cartesian index, eν(q) is the phonon 
eigenvector describing how much the α-th atom moves in the i direction in phonon νq. Here we ignore 

the band index m, n for simplicity and ( )| |ie αψ ψ⋅ −
+〈 〉q r τ

k q k  can be approximated by 1 since the Fröhlich 

scattering involves phonon with small |q|.  

 The Eq. 4, widely used in 2D semiconductor mobility calculations, is only valid for suspended 
monolayer. When stacked with surrounding layers, the semiconductor’s gF will be affected by vdW 
heterostructures mainly in 3 aspects: (1) The in-plane dielectric function ε|| of the channel materials 
will be increased due to the environmental dielectric screening from surrounding layers, as shown in 
Fig. 1a. The larger ε|| will lead to smaller gF, larger relaxation τF and thus larger Fröhlich mobility μF. 
(2) As shown in Fig. 1b, the remote POPs (here we refer the POPs to the q·Z·e≠0 components from 
all phonon eigenvectors) will also scatter the electrons in the channel material, leading to ν insufficient 
to describe all POPs existing in the vdW heterostructure. Therefore, it is necessary to use a larger 
phonon band index μ for whole vdW heterostructure (or equivalently lν representing ν-th phonon mode 
in l-th layer) to include the additional gF induced by these remote POPs. (3) The remote phonons will 
be coupled with the phonons from the channel material, which will modify the phonon eigenvector 
eμ(q) and thus the gF. In this work (Fig. 1c), we consider the POP coupling due to the long-range 
electrostatic potential induced by corresponding POP vibrations. To evaluate the realistic eμ(q) in the 
vdW heterostructure, it will be necessary to build up a dynamical matrix D for whole vdW 
heterostructure and then calculate the eigen-vibrations by diagonalization of D. In the following, we 
start from deriving the D of whole vdW heterostructure and then evaluate the gF based on 
approximations on D. With gF in hand, we insert it into Eq. 3 and use Eq. 1 to compute the Fröhlich 
mobility in vdW heterostructure. 

 



 
Figure 1. Diagrams of three different effects of surrounding layers in vdW heterostructure on carrier 
transport of top channel materials: (a) dielectric screening, (b) remote phonon scattering and (c) POP 
coupling. (d) The diagram of POP coupling exemplified by InSe and h-BN bilayers. The blur arrows 
in the background indicates the electrostatic field induced by POP vibrations, and the thick arrows 
connected to atoms indicates the POP vibrations. The left (right) column represents POPs without (with) 
coupling. 
 
 The dynamical matrix D for phonons in vdW heterostructures (see Appendix A for derivations) 
can be divided into analytic contribution Da and nonanalytic contribution Dna [23]: 
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where llW ′  is the screened Coulomb interaction (See Appendix B for details) between l and l’ layers, 

zlαi is effective Born effective charge corresponding to atom α in l layer moving i direction: 
*( ) /ˆl i l i lMz α α α⋅= q Z  . Since we are interested in Fröhlich scattering which involves intravalley 

scattering with small |q|, the Da(q) is approximated by its value around q=0. Furthermore, the interlayer 
coupling in Da is neglected, so the Da in Eq. 5 can be calculated via density functional perturbation 
theory (DFPT) for individual layers in vdW heterostructure at single q point (q→0): 
 , , 0)(a a
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 The dimension of D in Eq. 5 is linear with the number of layers in the vdW heterostructure, leading 



to difficulty in matrix diagonalization. Therefore, we first diagonalize the Da and use the eigenvectors 
of Da as the basis of D. The new eigenvector basis eqlν can be easily obtained by diagonalization of Da 
for individual layers. Under this new basis, the D in Eq. 5 can be written as: 
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where ω0lν is the phonon frequency at q=0 for ν mode in l layer, zlν is the effective Born effective 
charges from collective atom displacement: 
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 The D in Eq. 7 has many zero elements and can be calculated as a sparse matrix, which facilitates 

the diagonalization. The diagonalization of D in Eq. 7 generates a set of eigenvectors e µq  and the 

eigenvalues 2
µωq , where μ is the phonon band index in the whole vdW heterostructure. The Fröhlich 

matrix element (see Appendix A for derivations) for electrons in l layer due phonon μq is: 
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The Wl’l is the screened potential in l layer induced by charge from l’ layer, which can be calculated 
from Quantum Electrostatic Heterostructure (QEH) model [24,25] (see Appendix B for details). 
Inserting gF from Eq. 9 into Eq. 3 will give Fröhlich relaxation time τF, and with τF we can calculate 
the Fröhlich mobility μF using Eq. 1.  
 
Results and discussion: 
 Before discussing the consequent μF, we use different levels of approximation and try to isolate 
the different effects of surrounding layers. Here we use InSe/BN vdW heterostructure as an example, 
consisting of InSe monolayer and multilayer h-BN. The h-BN can be located on both sides or only one 
side of the InSe. The layer index of InSe is fixed as 0. The first approach stresses the importance of 
dielectric screening and is called “all isolated” as shown in diagram in Fig. 2d. It neglects all the remote 
phonons in the surrounding h-BN layers and only consider the dielectric screening due to the h-BN 

layers, i.e., , 0 0 , 'l l l l l lDDν ν ν νδ δ′ ′ ′ ′=  . The second approach considers the remote phonon scattering but 

ignores the remote phonon coupling, and thus is called “ph isolated” here. The D is assumed to be: 

, ' , 'l l ll l lD Dν ν ν νδ′ ′ ′= . The third approach is the most accurate and consider the full D matrix and is called 

“all coupled”.  

 The InSe Fröhlich mobility using different calculation approaches in InSe/BN vdW 
heterostructure is shown in Fig. 2a. The Fröhlich mobility of suspended InSe monolayer is 125 cm2V-

1s-1, slightly higher than its total mobility 117 cm2V-1s-1 from first-principles calculations, indicating 
the carrier transport in InSe is limited by Fröhlich scattering. As shown in Fig. 2d, the Fröhlich 



scattering from our model (blue line) is consistent with the Fröhlich scattering calculated from more 
accurate model via EPW (grey scatter). When stacked with BN multilayers, the Fröhlich mobility 
increases with number of BN layers but converges at 7 layers of BN (~2.3 nm). When wrapped by BN 
from both sides, the InSe Fröhlich mobility can be further enhanced up to 304 cm2V-1s-1 due to stronger 
coupling between the InSe and BN layers. The InSe mobility enhancement has two origins: First, the 
electrons in BN layers provide dielectric screening and reduce the Fröhlich potential induced by POPs 
in InSe. It can be seen from “all isolated” approach (blue line) in Fig. 2a, which excludes the remote 
phonon from BN layers but considers the dielectric screening via Wl’l in gF (Eq. 9). Fig. 2d shows the 
“all isolated” scattering rate of InSe with different BN layers. Indeed, the dielectric screening increases 
with the number of BN layers, and consequently decreases the Fröhlich scattering. 

Another mobility increase originates from the POP coupling between BN layers and InSe layers. 
As shown in Fig. 2a, the introduction of remote phonon in BN will slightly decrease the Fröhlich 
mobility compared to “all isolated” approach, without turning on interlayer phonon coupling (yellow 
line). However, when phonon coupling is considered in “coupled” approach, the InSe Fröhlich 
mobility can be further increased by 15 cm2V-1s-1 in one-side model and 40 cm2V-1s-1 in double-side 
model (gree line in Fig. 2a). The mobility improvement can be understood because the Fröhlich 
potential is screened due to the lattice vibration, in addition to the dielectric screening from electrons. 
Here we take the InSe/1L-BN as a simplest example. As shown in diagram in Fig. 1d (left column), 
the isolated BN has a larger POP frequency (>0.16 eV) while the POP of InSe monolayer locates at a 
lower energy (~0.02 eV). Once a weak POP coupling is included into model, the two previous POP 
states will give rise to two coupled vibrations and two new eigenvalues (right column in Fig. 1d). The 
new coupled LO1 has larger frequency due to the stronger electrostatic field contributed by both POPs 
in BN and InSe. The coupled LO2 will have opposite POP vibration and thus a weaker Fröhlich 
potential compared to original InSe POP. This can be easily understood from a two-level model 
dynamical matrix: 
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where ω1 is the lower InSe POP frequency and the ω2 is the larger BN POP frequency, and η is the 
POP coupling. When the η=0, the eigenvectors of D are u1=(1, 0) and u2=(0, 1), representing the pure 
InSe POP and BN POP vibration respectively. When the POP coupling η>0 due to the Coulomb 
interaction, the diagonalization of Eq. 10 gives two hybrid eigen-vibrations: 
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The u1 indicates the pure InSe POP is combined with a small component of opposite BN POP while 
the u2 means the BN POP is accompanied by an aligned small InSe POP vibration. The u1 generally 
has a weaker Fröhlich potential than pure InSe POP vibration, due to the lattice screening from -sinθ 
component of BN vibration.  

The above inferences derived from the simple two-level model can be verified via our more 



accurate Fröhlich model. Indeed, we found the hybrid POP frequency changes as indicated by Fig. 1d 
in vdW heterostructure. In Fig. 2g, the uncoupled and the coupled POP frequency are plotted by dashed 
lines and solid lines, respectively. Note here we used a similar InSe/HfO2 system, which shows the 
frequency difference more clearly. The lower hybrid POP has lower frequency than the original 
uncoupled ones while the higher hybrid POP has higher frequency. The hybrid POP also weakens the 
Fröhlich potential for InSe POP and thus leads to lower scattering rates as shown in Fig. 2b in InSe/1L-
BN system. The first scattering rate peak around 0.02 eV corresponds to the InSe POP and the second 
peak (~0.18 eV) indicates the Fröhlich scattering due to POP in BN. In comparison to “ph isolated” 
without POP coupling, the “coupled” approach (red line) gives slightly lower scattering rate due to the 
lattice screening from the BN layer. The lattice screening can be further increased by more BN layers. 
As shown in Fig. 2e, the scattering rate difference with (red line) and without (green line) POP coupling 
is larger than Fig. 2b, due to 5 layers of BN is included in InSe/BN vdW heterostructure. The 5 layers 
of BN also display more complicated hybrid POPs with different frequency (see right part in Fig. 2h), 
which leads to multiple POP peaks around 0.18 eV in Fig. 2e.  
 

 
Figure 2. (a) Mobility of InSe monolayer in InSe/BN vdW heterostructure using different calculation 
approaches. The “double-side” indicates the InSe is embedded in BN layers and “one-side” means the 



h-BN is stacked on one side of InSe. (b), (e) The scattering rates of InSe in vdW heterostructure 
consisting of InSe/1L-BN and InSe/5L-BN. (c), (f) Similar to (b), (e) but the dynamical matrix of BN 
is modified to 1/16. (d) The scattering rate of InSe in InSe/nL-BN system, using the “all isolated” 
method. The grey scatters indicate the Fröhlich scattering from first principles calculations. (g) The 
frequency of InSe/HfO2 system using “all isolated” (dashed line) and “all coupled” (solid line) 
approaches. (h) The comparison of frequency in “all coupled” InSe/1L-BN and InSe/5L-BN systems. 
(i) Comparison of InSe/1L-BN frequency between original BN dynamical matrix and modified BN 
dynamical matrix (1/16).  
 
 The overall screening from surrounding layers, dielectric screening from electrons and lattice 
screening from remote phonons, on Fröhlich potential lead to InSe mobility improvement from 125 to 
304 cm2V-1s-1, with 15 layers of BN on both sides of InSe respectively. This leads to another question: 
How will other 2D materials enhance the InSe mobility in vdW heterostructure? Before doing real 
calculations with other 2D materials, here we modify the frequency and Born effective charges of BN 
and use these “artificial” BN layers as surrounding layers in InSe/BN vdW heterostructure to see how 
these two factors affect the InSe Fröhlich mobility.  

The influence of POP frequency of surrounding layers on InSe Fröhlich mobility can be seen in 
Fig. 2cf. The frequency of BN can be modified by reducing the analytic part of dynamical matrix Da. 
Modifying the Da to 1/16 leads to POP BN frequency at q=0 (ω0) decreasing to 1/4, i.e., the BN ω0 
reduces to 0.04 eV as shown in right part of Fig. 2i. Compared to original BN with ω0=0.16 eV in Fig. 
2be, the lower ω0=0.04 eV of the surrounding layers in Fig. 2cf has mainly two consequences on InSe 
Fröhlich scattering rate. (1) The lower ω0 leads to stronger remote phonon scattering due to larger 
phonon occupation. As shown in Fig. 2c, the scattering rate around 0.04 eV corresponding to remote 
POP scattering is more significant than the remote POP scattering peak around 0.16 eV in Fig. 2b, and 
is supposed to decrease the InSe mobility. (2) The POP coupling is strengthened as well and the lattice 
screening from the surrounding layers is more obvious. Note that the scattering rate peak around 0.02 
eV in Fig. 2c is much lower due to the strong lattice screening than Fig. 2b. This can be understood 
from Eq. 11. The lattice screening in coupled POP (characterized by -sinθ) increases as the (ω2

2-ω2
1) 

decreases, resulting in lower scattering rates and a larger InSe mobility. The overall InSe Fröhlich 
mobility is determined by the trade-off of the decrease of the InSe scattering and increase of the remote 
POP scattering. The Fig. 3a shows the Fröhlich mobility of InSe wrapped by double-side 7L BN with 
different POP ω0. Indeed, the “coupled” InSe Fröhlich mobility shows a non-monotonical change with 
respect to POP ω0. A lower POP ω0 will introduce strong remote phonon scattering, leading to 
degradation of InSe Fröhlich mobility, while a larger POP ω0 will result in weak POP coupling, weak 
lattice screening and thus lower InSe mobility. The optimal POP ω0 is around 0.06 eV and gives a 
largest InSe mobility around 360 cm2V-1s-1. Note that the “ph isolated” method, which ignores the POP 
coupling, will severely underestimate the InSe Fröhlich mobility in vdW heterostructure, especially 
with small POP ω0 (e.g. < 50 meV).  

 Another important factor on lattice screening of Fröhlich scattering is the Born effective charges 
BCs of surrounding layers. From Eqs. 7 and 8, the off-diagonal term in dynamical matrix is 
proportional to BCs. Therefore, larger BCs will lead to larger η in Eqs. 10 and 11 and a larger lattice 
screening component (i.e. -sinθ) in u1. In Fig. 3b, we modify the BCs of BN (from 0.27 to 10.8; the 



BC of BN is 2.7) and calculate the InSe Fröhlich mobility in double-side InSe/7L-BN system. Note 
that we used a more delicate quantity Δω which contains all components of off-diagonal term in 
dynamical matrix in addition to BCs. The Δω is defined as: 

 POP

A
ez

ω
α

∆ =


 (12) 

where e is the electron charge, zPOP is the effective Born effective charges corresponding to POP 
defined in Eq. 8, α|| is in-plane polarizability of the 2D materials and A is the area of unit cell. The Δ
ω is approximately the frequency difference of the POP frequency at |q|>>1 and |q|=0 (see Appendix 
B). As shown in Fig. 3b, the InSe mobility continuously increases with the Δω, indicating a larger Δ
ω is more desirable for surrounding layers in vdW. It is counterintuitive since a larger Δω usually 
means larger BCs, lower dielectric screening and thus stronger remote phonon scattering. However, 
the large Δω of surrounding layers benefits the InSe Fröhlich mobility in two fashions: (1) A larger Δ
ω leads to larger POP coupling, enhances the lattice screening, and thus increases the InSe Fröhlich 
mobility. (2) The Δω also generates a large POP frequency at |q|>0 given the same ω0, leading to lower 
phonon occupations and thus lower remote phonon scattering.  

 

 

Figure 3. (a) The InSe Fröhlich mobility calculated via different approaches, in double-side InSe/7L-
BN vdW heterostructure. The BN monolayer frequency is modified and the POP frequency at q=0 (ω0) 
is shown in x axis. (b) Similar to (a) but the Born effective charges of BN are modified. The x axis 
shows frequency increase Δω (see Eq. 12 for definition). (c) The InSe Fröhlich mobility in double-
side InSe/7L-BN vdW heterostructure, with different POP frequency at q=0 (ω0) and POP frequency 
increase (Δω). (d) The Fröhlich mobility of InSe wrapped by 7 layers of GeO2, ZrO2 and HfO2 from 



different calculation approaches. The blue, yellow and green lines indicate “all isolated”, “ph isolated” 
and “coupled” approaches respectively.  

 

In Fig. 3c, we show the overall influence of POP frequency at q=0 (ω0) and POP frequency 
increase (Δω) on Fröhlich mobility of InSe in double-side 7L-BN vdW heterostructure. The lowest 
and highest InSe mobility occur at the left-lower corner and right-lower corner, respectively. At the 
left-lower corner, the low ω0 in conjunction with the low Δω contribute to the low POP frequency in 
the surrounding layers, leading to higher phonon occupations, stronger remote phonon scattering and 
thus lower InSe Fröhlich mobility. Moreover, the low Δω indicates smaller POP coupling (i.e. smaller 
η in Eq. 10), which reduces the lattice screening and InSe mobility. The highest InSe mobility appears 
with the combination of large Δω and low ω0, both of which lead to stronger lattice screening (i.e. -
sinθ in Eq. 11) between the surrounding layers and the InSe. The larger Δω implies larger POP 
coupling (η) and lower ω0 means smaller POP frequency difference between surrounding layers and 
InSe (ω2

2-ω2
1), both resulting in larger sin2θ (Eq. 11) and stronger lattice screening. At fixing Δω, the 

InSe mobility shows a non-monotonical trend with ω0, which is consistent with Fig. 3a. In contrast, 
with a given a ω0, the InSe mobility increases monotonically with Δω, in agreement with Fig. 3b. In 
general, the InSe Fröhlich mobility has a stronger dependence on Δω, hopefully leading to an 
extremely high InSe mobility > 700 cm2V-1s-1 once Δω > 300 meV. 

In the following, we explore optimal dielectrics for high InSe mobility using the knowledge from 
above analysis. Using Computational 2D Materials Database (C2DB) [26,27] containing more than 
4000 2D materials, we extract and calculate the desirable quantities for optimal dielectrics, screen the 
C2DB database through 3 steps: (1) First, we identify insulators with electronic band gaps over 3 eV. 
Note that here we used the HSE bandgap which is more accurate. (2) Then we exclude those lack of 
“dynamical stability” and “stiffness stability” as labelled by the database. (3) For the remaining 
materials, we calculate the Δω corresponding to their lowest POP mode and use Δω as the only 
descriptor in search for the optimal dielectrics. This is because from Fig. 3c we found the Δω is the 
more important factor than ω0 for InSe Fröhlich mobility. The top 5 2D materials with largest Δω are 
plotted in Fig. 3c, including BN, ZrO2, HfO2, AlN and GeO2, in the descending order of Δω. As we 
can see from Fig. 3c, these new 2D dielectric materials are close to the iso-mobility contour with 300 
cm2V-1s-1, similar to BN. Indeed, in Fig. 3d, the Fröhlich mobility of InSe in doube-side vdW 
heterostructure consisting of different dielectric materials has similar upper limit (~ 300 cm2V-1s-1) for 
BN, GeO2, ZrO2 and HfO2. Although the InSe mobility wrapped by ZrO2, HfO2 and GeO2 is not 
significantly better than that with BN, the wider bandgap and larger dielectric constants of ZrO2, HfO2 
and GeO2 are likely to lead to smaller leakage currents [28] than BN, making them more promising as 
dielectric materials in 2D nanoelectronics. It is also worth noting that in Fig. 3d the difference between 
“ph isolated” (yellow line) and “coupled” (green line) mobility can be up to 3 times, indicating the 
importance of POP coupling in InSe Fröhlich mobility calculations.  

 

Conclusion: 



In this work, we developed an efficient model to evaluate the Fröhlich mobility of 2D materials 
in vdW heterostructure. Using InSe/BN vdW heterostructure as an example, we showed that the 
Fröhlich mobility of InSe surrounded by BN layers can be up to 300 cm2V-1s-1, nearly 2.5 times of 
Fröhlich mobility of suspended InSe monolayer. The change of mobility has mainly 3 contributions: 
the dielectric screening from surrounding layers, the remote phonon scattering of remote polar-optical 
phonons (POPs), and the POP coupling via Coulomb interaction leading to change of Fröhlich 
scattering strength. We found the POP coupling is of great importance for correct Fröhlich scattering 
in vdW heterostructure, which generates additional lattice screening for Fröhlich potential and could 
provide 3 times of mobility enhancement compared to that without POP coupling. Exemplified by 
InSe/BN system, we uncovered the fundamental physical properties that lead to optimal Fröhlich 
mobility in InSe: moderate POP frequency at q=0 (ω0) and larger POP frequency increase (Δω). Using 
these descriptors, we filtered out more potential 2D dielectric insulators for vdW heterostructures, e.g., 
AlN, GeO2, ZrO2 and HfO2. The discovered materials as well as the mechanistic insights bring us a 
step closer to the next-generation electronics/optoelectronics.  
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Appendix A: Dynamical matrix and Fröhlich coupling in vdW heterostructure 

The Hamiltonian of lattice vibration in a vdW heterostructure can be written as: 

 tot tot tot tot tot tot
na a naaH V VH T V++ += =  (1) 

where T is the kinetic energy term, Va is the analytic potential term due to the short-range interaction 
and Vna is the nonanalytic potential term leading from long-range Coulomb interaction [1]. Here we 
assume the interlayer distance is large and thus the interlayer coupling in Eq. 1 only comes from the 
Vna term. Therefore, the Ha in Eq. 1 can be decomposed to individual layers: 

 tot
l

a a
lH H=∑  (2) 

and Ha is: 
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where p is the index of unit cell in the whole supercell, α is the atom index in the unit cell, i is cartesian 
index in x, y, z; h is the atomic displacement from their equilibrium positions, R is the position of the 
unit cell, M is the atomic mass and Da is the force constants due to the short-range interaction. A 
standard solution to Eq. 3 is to transform the coordinates hplαi into a set of complex normal coordinates 
uqlν:  
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where eqlν is the eigenvectors of analytic dynamical matrix Da(q): 
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and Da(q) is the Fourier transform of force constants:  

 , , ,1( )(0) pia a
l i l i l i l i p

p
D D e

M Mα α α α
α α

⋅
′ ′ ′ ′

′

= ∑ q Rq R  (6) 



Inserting h from Eq. 4 into Eq. 3 and combining Eqs. 5 and 6, the Ha for the whole vdW heterostructure 
can be written as: 
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 Before explicitly expressing the interlayer coupling term Vna, here we give necessary descriptions 
on boundary conditions used in the vdW heterostructure system. The BvK boundary conditions assume 
each layer contains Nl = Nl1×Nl2 unit cells, since each layer is periodic in xy plane. The total area of the 
supercell is denoted as A and the area of the unit cell is Al, indicating Atot=NlAl=Nl’Al’. Here we assume 
the primitive lattice vectors of each layer have the same direction for simplicity (This is not necessary 
since we are only interested in zone-center properties). We have such relations of primitive lattice ali 
and reciprocal lattice blj: 
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The Bloch wave vectors ql for each layer fall on a uniform grid:  
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b
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From Eq. 8, the ql have common values around the zone-center for all l layers.  

 The Coulomb screened potential generated by dipole induced by atomic displacement hplαi from 
layer l is [2]:  
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The Wl(q,z) is the screened potential with in-plane reciprocal lattice vector q and out-of-plane real 
space coordinate z, which can be calculated in QEH model [3,4] (see Appendix B for details). Note 
here we drop the subscript l of q since we are only interested in zone-center properties (W is considered 
as a long-range interaction and vanishes when |q| is large) and the ql have same values around zone-
center. The interaction energy between dipole induced by atomic displacement hplαi and dipole from 
hp’l’α’i’ is: 
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where Wll’(q) is the screened potential matrix which can be obtained from QEH model. The Vna in Eq. 
1 thus can be written as: 
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Inserting h (Eq. 4) into Eq. 12 and applying orthogonal normalization relations: 
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We can write the Vna in normal coordinates uqlν:  

 
22

* *
tot

',

| | ( )
2

na ll
l l l l

ll l l

V u We u
A A

z zν ν ν ν
νν

′
′ ′ ′ ′

′ ′

= ∑ ∑ q q
q

q q  (14) 

where '( ) [ ( ) ( )] / 2ll ll l lW W W′ ′= +q q q  and zlν is: 
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Writing the Eq. 14 with a dynamical matrix form: 
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Therefore, the dynamical matrix can be deduced by comparing Eqs. 14 and 16: 
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 With Ha from Eq. 7 and Vna from Eq. 16, now we have all the ingredients in Hamiltonian of lattice 
vibration Htot. Around the zone-center, the Htot can be written with normal coordinates uqlν: 
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which gives a new dynamical matrix of vdW lattice vibration including long-range interlayer phonon 
coupling: 
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The ωqlν is calculated from diagonalizing the analytic dynamic matrix Da, which should be smooth 
around the zone-center. By replacing ωqlν as ω0lν which is calculated from Da(q=0), we obtain the Eq. 
7 in the main text.  

 Next we diagonalize the D in Eq. 19 and then we are able to obtain the hybrid vibration of vdW 

heterostructure. Similar to Eq. 5, the ;le µ νq  , 2
µωq   are eigenvectors and eigenvalues of dynamical 

matrix D, respectively: 
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With ;le µ νq , we are able to transform the normal coordinates uqlν into a set of new complex normal 

coordinates Uqμ: 
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The Hamiltonian of lattice vibration Htot is diagonal with complex normal coordinates Uqμ: 
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 With the frequency of hybrid phonon µωq , we are able to calculate the Fröhlich electron-phonon 

coupling Fg . Following the definition in [5], the Fg  in BvK boundary conditions is defined as: 
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where ψlk is the wavefunction with wavevector k in layer l and Vl
c(r) is the total Fröhlich perturbation 

potential acting on layer l: 
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where Vl
c(r;hplαi) is Fröhlich perturbation potential due to atomic displacement hplαi defined in Eq. 10. 

Inserting hplαi (Eq. 4) into Eq. 24, we have: 
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It is obvious that from Eq. 25, we have: 
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With Eq. 26 and Eq. 21, finally we can calculate the Fg  (in Eq. 23) by: 
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In Eq. 27, we assume the |q| is small and thus we use ( )l lW ′ q  (see Appendix B for how to calculate 



from QEH model) to approximate ( ,| ) |i
l l lzW eψ ψ⋅

′+〈 〉q r
k q kq . The Fg  can be evaluated as: 
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Note that the Fg  definition in Eq. 23 leads to Fg  depending on BvK boundary conditions: i.e., the 

Fg  in Eq. 28 is determined by Nl’. In realistic calculations, we prefer to eliminate the arbitrary Nl in 

Fg . In the following, we show how to define a new F
lg µ  that is independent to Nl. First we note that 

the scattering rates should be a well-defined observables: 
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where S(k,k’) is the transition rate from initial state k to final state k’, Kl is the set of reciprocal lattice 
grid. In Eq. 29, we use an integral on Brillouin zone to substitute the summation on final state k’. This 
leads to: 
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where the property of BvK boundary condition AlNl=Al’Nl’ is used. The Eq. 30 can be simply written 
as: 
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where F )( ,lg µ k q  is: 
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The Eq. 32 is the calculation equation of Fröhlich coupling (Eq. 9 in the main text) and the 
corresponding scattering rate can be obtained by Eq. 31.  

 



Appendix B: Dielectric properties from QEH model 

 In Appendix A, we used screened potential matrix Wll’(q) to accurately describe the dielectric 
screening in vdW heterostructure, both in dynamical matrix (Eq. 19) and Fröhlich coupling matrix (Eq. 
32). The screened potential matrix Wll’(q) quantifies the screened potential at layer l’ induced by bare 
charge at layer l: 

 1W V−=   (33) 
where ϵ-1 is the inverse dielectric function and V is the Coulomb kernel. In QEH model, the ϵ-1 and V 
are calculated using a mixed density/potential basis [3]: 
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where l, l’ are layer indices in the vdW heterostructure, α, α’ refer to monopole and dipole basis. (The 
definition of density/potential basis can be found in Eqs. 13-15 and 18 in Supporting Information of 
Ref. [3]) Here we are interested in Fröhlich scattering which only involves in-plane lattice vibration 
and “monopole” like charge distribution. So we omit the α subscript in Eq. 34 in the following. Using 
the same basis, the W in Eq. 33 can be calculated via QEH model by: 

 1 )| | (( ) ) (ll l l l k kl
k
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where ϵ-1 and V matrix can be obtained from QEH code. The screened interaction llW ′   used in 

dynamical matrix is defined as:  
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 When l=l’, the Wll’ can be approximated by [6]: 
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for isotropic 2D materials, where α|| is the in-plane polarizability. Based on Eq. 19 or Ref. [6], the POP 
frequency for individual layer l with Wll(q) from Eq. 37 has: 
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Therefore, for large |q|, from Eq. 38 we have: 

 2 2 2
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where Δω is Eq. 12 in the main text: 
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 (40) 

From Eq. 39 we can see the Δω is indeed the frequency increase of POP, verifying the statement below 
Eq. 12 in the main text. 



Appendix C: Model verification from first principles 

 In this section, we use the first-principles approach to verify our Fröhlich heterostructure model. 
A heterostructure ZrS2/HfS2 is constructed and Density functional perturbation theory (DFPT) 
calculation is performed on this structure to obtain electron-phonon coupling g matrix and phonon 
frequency of whole structure. The ZrS2 and HfS2 are selected due to their close lattice constants and 
large Born effective charges, which ensures large POP couplings between two layers. In practice, the 
first-principles calculations are performed using the Quantum Espresso Package [7,8] with SG15 
Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials [9,10] and the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [11]. The 2D Coulomb cutoff technique [12] is 
applied to avoid fictitious EPC between image charges in DFPT calculations [13].  

 Figure S1 shows the calculated EPC strengths and phonon frequency for selected optical phonon 
modes. In Figures S1 a and b, the EPC strengths in ZrS2 from different calculation approaches: first-
principles DFPT, model EPC without POP coupling (denoted as ‘ph-isolated’) and model EPC with 
POP coupling (denoted as ‘ph-coupled’) are compared. Since ZrS2 and HfS2 have anisotropic effective 
mass, here we compare the EPC with same initial state at CBM but with different final states along 
different directions, as diagramed in insets in figures. We can see for both directions, the full model 
EPC strengths (blue lines) are consistent with the DFPT benchmarks (red circles), especially for two 
coupled LO phonon modes (indicated by ‘LO1’ and ‘LO2’), which verify the correctness and accuracy 
of our heterostructure Fröhlich model. We also show the model EPC strengths without POP coupling 
(orange dashed lines) originating two LO modes in two bilayers. As we can see, the EPC without POP 
coupling deviate from the correct trend, especially for LO1 around q=0. The direct comparison here 
proves that the LO coupling indeed reduce Fröhlich scattering for one LO mode while enhance another 
one. The Figures S1 c and d displayed similar trends of EPC for EPC in HfS2. As last, the phonon 
frequency for all optical modes calculated from DFPT and our Fröhlich model are compared in Figure 
S1 e and f. As we can see, all optical modes show smooth dispersion at q scales considered around 
zone center except LO modes. In addition to EPC strengths, our model correctly captures the q-
dependence of LO mode frequency for both q directions.  

 



 
Figure S1 Electron phonon coupling strengths in ZrS2 in bilayer heterostructure ZrS2/HfS2 calculated 
from first principles (DFPT), heterostructure Fröhlich model with (‘ph-coupled’) and without (‘ph-
isolated’) POP coupling (see main text for definition) for phonon wavevector q along x (a) and y (b) 
directions. (c) and (d) are similar to (a) and (b) but for EPC strength in HfS2. Phonon dispersion of 
ZrS2/HfS2 optical modes for q along x (e) and y (f) directions.  
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