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Abstract: 

Two-dimensional (2D) crystalline semiconductors hold promise for next-generation electronic devices 
due to its atomical thickness and consequent properties. Despite years of search, literature-reported 2D 
semiconductors commonly suffered from low room-temperature charge mobility (< 200 cm2V-1s-1), 
due to the dimensionality-increased “density of scattering”, undesirable defects during fabrication 
and/or strong electron-phonon scattering. Therefore, understanding charge scatterings in 2D 
semiconductors via computational tools and discovering new 2D semiconductors with high mobility 
(> 1000 cm2V-1s-1) are both desirable. Here we review the accurate ab initio approaches for electron-
phonon/defect/boundary scattering developed these years, and the efforts made in high-mobility 2D 
semiconductor high throughput screening. Starting from these studies, the common genome of high-
mobility 2D semiconductor are summarized and discussed, which would contribute to further 
discovering of high mobility in 2D semiconductors.  

 

1. Introduction: 

Two-dimensional (2D) crystalline semiconductors are semiconducting materials with a thickness 
of only one or few atomic layers. The extreme thinness of 2D semiconductors introduces many unique 
properties compared to 3D counterparts, such as high electrostatic control1,2, optical transparency3, and 
mechanical flexibility4,5. These properties earn 2D semiconductors immense interest for various 
applications in next-generation electronic devices, including optoelectronics6, flexible 
nanoelectronics4, spintronics7, nonvolatile memory8 and especially, 2D field-effect transistor9-11 with 
small dimensions.  

Finding suitable 2D semiconductors to substitute 3D semiconductor as channel material in 
transistor is seen to be a critical step for maintaining Moore’s low. Since the 1960s, the number of 
transistors in a typical microprocess has followed a remarkable exponential growth, facilitated by 
continuously down-scaling of physical dimensions of transistors. However, when scaled down to 
nanoscale dimensions, the conventional 3D-semiconductor-based channels suffer from substantial 
performance degradation and heat dissipation due to surface roughness and dangling bonds. 
Specifically, the limiting carrier mobility of 3D semiconductor decreases with body thickness to the 
sixth power, μ ~ t6, due to strong electron scattering12,13. The atomically-thin 2D semiconductor without 
surface dangling bonds, would have intrinsic carrier mobility with little variation with thickness, and 
thus shed lights on further promising channel materials in scaled-down transistors10,11.  

However, in spite of its merits, the 2D semiconductor commonly suffered from relatively lower 
carrier mobility at room temperature. For example, MoS2, one of the most common 2D semiconductor, 



 

 

has an intrinsic electron mobility < 200 cm2V-1s-1, much lower than electron mobility of bulk silicon 
(1400 cm2V-1s-1). Although it is often in debate whether carriers at small channel length is dominated 
by ballistic transport (band structure matters) or diffusion transport (mobility matters), the simulation 
of 2D transistor with 7-nm gate11 indicates that a larger carrier mobility μ always leads to a larger drain 
current and thus a better transistor performance, and the optimal performance can be achieved by μ > 
1000 cm2V-1s-1. Therefore, the μ > 1000 cm2V-1s-1 can be considered as a long-term target for high 
mobilities in 2D transistor10. Although very recently the record of highest room temperature mobility 
of monolayer 2D semiconductor (655 cm2V-1s-1) is achieved14 in hole-doped WSe2, it is still lower 
than target mobility. As reviewed in Figure 4, the experimentally reported mobilities in 2D 
semiconductor are generally < 200 cm2V-1s-1, far below 3D semiconductor counterparts and the target 
mobility. The further analysis based on first-principles calculations shows that the generally lower 
mobility in 2D can be attributed to the dimensionality-increased “density of scattering” (see Section 5 
for details), fabrication-induced disorder scattering and/or strong electron-phonon coupling.  

Indeed, the in-depth understanding of 2D semiconductor mobility is enabled by the state-of-the-
art first-principles approaches developed these years. The state-resolved transition probability of 
electrons due to phonon, defect and boundary scattering are benefited from the development of 
algorithms and computational power. In conjunction with the Boltzmann transport equation, the first-
principles carrier mobility of semiconductor can be obtained and shows tremendous improvement of 
accuracy over conventional simplified models (e.g. deformation potential theory). In addition to 
understanding, an accurate and efficient computational approach also helps to discover new high-
mobility 2D semiconductors. Recent high-throughput calculations15,16 show that the high intrinsic 
mobility (i.e. phonon-limited mobility > 1000 cm2V-1s-1) exists in many potential 2D semiconductors. 
The common features of these high-mobility 2D semiconductors include small effective mass, 
anisotropic band edge, small Born effective charges, high LO phonon frequency, large “carrier-lattice 
distance” and/or weak electron-phonon couplings, which thus can be regarded as the high-mobility 
genomes of 2D semiconductors. The combinations of these genomes allow further discoveries of high-
mobility 2D semiconductors.  

 The article is structured as follows. In Section 2, the iterative and approximate solutions of 
Boltzmann transport equation, which connects the macroscopic carrier mobility with microscopic 
electron occupations and scattering matrices, are reviewed. In Section 3, the first-principles calculation 
approaches for electron-phonon/defect/boundary scattering matrix elements are reviewed, especially 
for 2D semiconductors. In Section 4, the electron-phonon scattering model and featured scattering rate 
are discussed for better understanding of limiting factors of 2D semiconductor mobility. In Section 5, 
both experimentally-reported and computationally-reported carrier mobility in 2D semiconductors are 
reviewed. As we can see, the generally lower mobility in 2D semiconductors can be largely attributed 
to dimensional effect, from the view of “density of scattering”. Section 6 reviews the recent works on 
high-throughput 2D semiconductors mobility screening, from which 14 2D semiconductor with 
mobility higher than bulk silicon (> 1400 cm2V-1s-1) are suggested. In addition, the common feature 
and genome of high mobilities in 2D semiconductor are summarized, which would be helpful for 
further high-mobility discovery. In section 7, we examined the common deficiency of current 
computational approaches, which might account for the disagreement between experiments and 
computations. Indeed, the development of first-principles carrier mobility is still in progress, aiming 



 

 

to simulating more effects in realistic devices, including free-carrier screening, environmental 
dielectrics, ionized defects and etc..  

 

 

2. Boltzmann transport equation: connecting microscopy and macroscopy 

 In this section and section 3, we review the first-principles calculation methods for electron-
phonon (e-ph), electron-defect (e-d) and electron-boundary (e-b) scattering, especially on special 
techniques to deal with 2D semiconductors. The computational scheme can be generally divided into 
two parts: obtaining the state-resolved transition probability due to various scatterings from first-
principles calculations, and then solving the diffusive Boltzmann transport equation (BTE) which 
connects the microscopic transition probability with macroscopic transport properties (e.g. carrier 
mobility, drift velocity). The complete workflow is shown in Figure 1. 

 

2.1 Carrier drift mobility from Boltzmann transport equation 

When a conductor/semiconductor is applied by an external electric field, the charge carriers in it 
will drift with an average velocity vd as a response to the field. At weak electric field, the vd of carrier 
grows linearly with the strength of electric field, the slope of which defines the carrier drift mobility μ 
(See Figure 2a). Therefore, the μ characterizes how fast charge in material can move with unit strength 
of electric field. There are various first-principles approaches to calculate the μ. Stochastic methods 
like Monte Carlo simulation gives drift velocity vs electric field curve, from which the μ can be directly 
obtained by fitting the linear region17-19. The more common approach relies on solving Boltzmann 
transport equation (BTE) to obtain the space/state-resolved electronic occupation function f(r,k). The 
carrier mobility is: 
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V
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where V is the volume of system, μ(r) is the space-resolved carrier mobility determined by f(r,k): 
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where α and β are direction indices, q is the charge of the carrier, Ωuc(ΩBZ) is the area of unit cell 
(Brillouin zone; BZ); vnk is the group velocity for the electronic state with band index n and wavevector 
k; nc is the carrier density which is related with Fermi distribution f0 and the electronic band structure 
through: 
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where ne and nh are the concentrations for electrons and holes respectively; and ∂βfn(r,k) in Eq. 2 is the 
linear response of occupation function f for an electron at r in real-space and k in state-space under 
electric filed E along β. So in first order: 
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where f0 is the equilibrium electronic Fermi distribution, E is the electric field. The f(r,k) satisfies the 
steady state BTE:  
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The last term in Eq. 5 is the collision term due to the e-ph/e-d scattering, which can be written as: 

 , ,
coll

( ( .( , ) , )[1 ( , )] , )[1 ( , )]n
n n n n n n n nf ff T f T f

t ′ ′ ′ ′ ′ ′
′

∂ ′ ′− − −
∂

= −∑ k k k k
k

r k r k r k r k r k  (6) 

The T is the transition probability of electronic state from nk to n’k’ in an e-ph/e-d scattering event. 
Here we focus on e-ph scattering first. The relevant equations for e-d scattering can be found in Eq. 
11. The T for e-ph scattering is: 
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where Nk is the number of k grid used in the BZ sampling, q=k’-k is the wavevector for involved 
phonon, ν is its mode index, n is the Bose distribution of the phonon and g is the electron-phonon 
coupling (EPC) matrix element (see Section 3.1 for details). Combining Eqs. 4-7, the steady state BTE 
of ∂f(r,k) can be obtained by taking derivatives of the electric field for Eq. 5: 
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where 0
nτ k  is self-energy relaxation time for electronic state nk: 0
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By inserting the explicit form of equilibrium distribution of electrons (f0) and phonons (n), the ,T T  
can be written in more used forms: 
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For e-d scattering, the ,,T T T  are much simpler as e-d scattering does not change the electronic state 
energy: 
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where nat is the number of atoms in the unit cell, Cd is the defect concentration and M is the electron-
defect-interaction (EDI) matrix element which will be discussed in Section 3.2.  

 The linearized BTE for carriers in steady state in Eq. 8 is the key equation for solving the carrier 
perturbation distribution ∂f(r,k). With ∂f(r,k) and Eq. 4, the carrier occupation function f(r,k) can be 
obtained which will give macroscopic transport properties we concern. However, solving ∂f(r,k) in Eq. 
8 requires intensive efforts as it has both spatial and momentum degrees of freedom. Here we focus on 
two kinds of approaches for solving BTE in Eq. 8: one is iteration method which requires the 
information of matrix element (g or M) and one with higher hierarchy only requires state-resolved 
relaxation time (e.g. τ0 in Eq. 8) at the expanse of more assumptions and lower accuracy.  

 

2.2. Iterative solution for BTE 

The steady-state BTE in Eq. 8 properly separates the spatial and state dependence into the left-
hand and the right-hand side. Therefore, it is convenient to solve the BTE in spatial and momentum 
space recursively and iteratively20,21 via Eq. 8. The ∂f(r,k) can be expressed as a summation: 
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where different order of ∂f(r,k) can be obtained by solving: 

 

0
0 0 0

0 0
,

1

,[

.

( )] ( , ) ,

] (1 , )[ ( , )

1

i i

n
n n n n n

n

n n n n n n n
n

fqf

f T f

vα α

α α

τ τ
ε

τ τ −
′ ′

′ ′

∂
⋅ ∆ ∂ = −

∂

⋅∆ ∂ = ∂

+

+ ∑

k k r k k
k

k k r k k k
k

kv r k

v r k r k





 (13) 

By inserting Eqs. 12 and 13 into Eq. 8, it can be proved that the ∂f(r,k) from Eq. 12 satisfies the 
linearized BTE in Eq. 8 and consequently, the corresponding f(r,k) (Eq. 4) is indeed the solution of 
BTE. For an infinite system without boundaries, the electron occupation function f(k) is independent 
of spatial coordinates and thus the linear response is ∂f(k) can be solved by: 
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The solution of ∂f(k) in Eq. 14 involves repeated multiplication of scattering matrix T  and the state-
resolved ∂f(k), which is equivalent to solution in Ref. 22. When spatial dependence is considered, the 
iteration in Eq. 13 requires solving a differential equation in real space: 
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where z is selected as the direction of vnk, gi-1(z) represents the functions on the right sides of Eq. 13 
and the state index nk is omitted for simplicity. The ∂fi in Eq. 15 can be solved on real-space grids: 
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By using the T  from Eq. 10 (e-ph) or from Eq. 11 (e-d), the combination of Eq. 12, 13, 16 gives the 
final solution of ∂f(r,k) due to e-ph or e-d scattering and then the corresponding macroscopic carrier 
mobility can be obtained from Eqs. 1 and 2. The e-b scattering affects the mobility by posing boundary 
effect on ∂f(r,k) at boundaries: 
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where rb is the position of boundaries in system, P is the transition probability for an electron scattered 
from initial state nk to final state n’k’ due to boundaries, which would be discussed in Section 3.3.  

 

2.3. Relaxation time approximation in BTE 

Although the iteration approach solves the BTE accurately, it requires the storage and 
multiplication of large state-to-state transition matrix (see T  in Eqs. 13 and 14), which is usually 
computationally intensive. An BTE solution in balance of efficiency and accuracy is desirable. In 
practice, two relaxation time approximations (RTA) for solving the steady state BTE, which do not 
require the knowledge of T  or iteration, are widely used. Here we illustrate how to apply these two 
RTAs in infinite system or finite film with parallel boundaries (or ribbon for 2D systems). In finite 
films and ribbons, the electron occupation function is independent of spatial coordinates parallel to 
boundaries due to the translation symmetry. Therefore, the f(r,k) and ∂f(r,k) can be written as f(z,k) 
and ∂f(z,k) where z is the norm of the boundary. Within RTAs, the ∂f(z,k) is assumed to have such 
format: 
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where Fn(k) is state-resolved function to be determined by e-b scattering boundary conditions23 in Eq. 
17, τ is an unknown relaxation time specific to electronic state. The specific format of τ and the solidity 
of relaxation time assumption in Eq. 18 can be verified by inserting Eq. 18 back to BTE in Eq. 8. With 
the help of identity: 
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and the detailed balance condition: 
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another format of BTE from Eq. 4, 5 and 6 can be obtained under the RTAs in Eq. 18: 
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Two approximations can be made based on the different processing of the square bracket in Eq. 

21. By assuming the whole term in square bracket as 1, then we have ,1 / n n nn
Tτ ′ ′′ ′

= ∑k k kk
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consequently the τ is equal to self-energy relaxation time τ0, which is call self-energy relaxation time 
approximation (SERTA). A better choice is to assume that ( , ) ( , )n n n nZ z Z zτ τ ′ ′ ′ ′≈k kk k  and to preserve 
the angle term related to v: 
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where a more symmetric angle term, ,(1 cos )n nθ ′ ′− k k , is used to ensure the τm is always positive. The 

scattering rate in Eq. 22 reduces the scattering contribution from forward-scattering (by 1-cosθ=0, 
which does not change the momentum) and increases the weight of back-scattering (by 1-cosθ=2, 
which reverses the momentum), thus characterizing the scattering rate of momentum in materials. 
Therefore, the Eq. 22 is called momentum relaxation time approximation (MRTA) and τm is momentum 
relaxation time, which usually give more accurate results than SERTA, especially for materials with 
strong small-angle scattering. In a study over 54 different 3D semiconductors, the mean-absolute-
percentage-error of MRTA mobility is 18% and is 48% for SERTA, when compared to more accurate 
iterative mobility24. In 2D semiconductors, the mobility difference from MRTA and iteration methods 
is 0.5% in MoS2 and 5% in InSe monolayer, smaller than that from SERTA (12% in MoS2 and 50% in 
InSe)25. The MRTA also gives close results to iteration method when spatial-dependence in f(z,k) is 
considered. In copper film with (111) and (110) surfaces, the film resistivity difference between MRTA 
and iterative method is less than 3% when film thickness ranges from 4 nm to 400 nm. Therefore, the 
MRTA can be viewed as a reliable and efficient solution to BTE, which gives the mobility of film as: 
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where A is the thickness of film, τm is the momentum relaxation time (Eq. 22) due to e-ph scattering 
(Eq. 10) or e-d scattering (Eq. 11), and F is determined by boundary conditions due to e-b scattering 
(Eq. 17). For an infinite material without e-b scattering, the MRTA mobility μm becomes: 
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Figure 1 Computation flowchart of first-principles carrier mobility.  

 

 

3. First-principles calculations on transition matrix 

In this section we review the first-principles approaches of calculating scattering matrix elements 
for e-ph (EPC g matrix), e-d (EDI M matrix) and e-b (transition probability P) scattering, especially 
with the focus on techniques developed for 2D semiconductor.  

 

3.1. Electron-phonon scattering 



 

 

 The key quantities for the transition matrix T  in e-ph scattering is EPC matrix element g (see Eq. 
10), which is defined as: 
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where ψnk, ψn’k+q are the initial electronic state and final state respectively and Vνq is the perturbation 
potential induced by the phonon νq. The Vνq has a more specific expression: 
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where M0 is a reference mass (usually selected as the proton mass in Refs. 26,27 but chose as the mass 
of unit cell in this article), Mκ is the mass of atom κ in unit cell, uκα(q) is the periodic displacement of 
atom κ in α direction, eκα,ν(q) is the corresponding eigenvector in phonon νq and lνq is the zero-point 
vibration amplitude: 
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displacement directly calculated from DFPT and then the Vνq and then g can be calculated with 
eigenvector (e) and frequency (ω), which usually accumulates computational errors. Therefore, the 
EPC strength D: 
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is a more reliable quantity in EPC calculations and is more used for comparison in literatures.  

There are various approaches to calculate the EPC matrix element from first-principles 
calculations, including finite-difference method28 (usually referred as “frozen-phonon” method or 
“supercell” method), dielectric method29,30 and density functional perturbation theory (DFPT) 
method31-33. The DFPT calculation can be performed within the unit cell which is more efficient than 
the frozen-phonon method and the EPC calculations for phonons with different q are decoupled, which 
expedites the band-edge transport calculations where only partial q grids are involved. Meanwhile, the 
self-consistent approach based on Sternheimer equation in DFPT31,33 enables it to be performed on 
occupied electronic states, which avoids the band convergence problem and reduces the computational 
cost. In the following, we focus on DFPT approach, especially the special techniques developed for 
2D semiconductors.  

The method using DFPT to directly compute all necessary EPC g matrix for transport properties 
is called “direct method” in the article. In 3D system. the “direct method” is limited by the q grid 
sampling since individual DFPT calculation is required for each g with different phonon wavevector 



 

 

q. In bulk GaAs, 106 q points and thus the same number of individual DFPT calculations are required 
for converged relaxation time34, which makes the direct method prohibited for bulk systems. However, 
in 2D systems with lower dimensionality, by taking full use of crystal symmetries and nonuniform q 
grid sampling, the number of DFPT calculations for carrier mobility can be reduced to ~ 200, making 
the direct method a competitive approach for 2D materials35.  

A necessary modification in DFPT for 2D semiconductor is the Coulomb cutoff along the 
nonperiodic direction. In many first-principles tools, the 2D systems are simulated in periodic 
boundary conditions, which leads to fictitious interlayer interaction. Especially in DFPT calculations, 
the longitudinal optical (LO) phonon electrizes the polar 2D semiconductors with periodic positive 
and negative charges and results in an electrostatic perturbation potential V (and the corresponding g) 
scaling as 1/|q| when |q|→0. Note that the diverged g (~ 1/|q|) cannot be avoided by merely increasing 
the interlayer distance in simulations, and thus the truncation of Coulomb interaction (i.e. 2D Coulomb 
cutoff) along the norm direction is essential for DFPT calculations for 2D semiconductor36.  

 The efficiency of calculation of first-principles g can be further improved by various interpolation 
approaches, including Fourier interpolation37,38 of perturbation potential V and Wannier interpolation39 
of EPC g matrix. In semiconductors, the singularity of V and g at q=0 makes the interpolation nontrivial 
and thus requires special treatments. The basic idea is to separate the part with singularity in V and g, 
which is called long-range (LR) part and has explicit expressions based on physical models, and to use 
reciprocal/real-space transform (i.e. Fourier transform for V and Wannier transform for g) to interpolate 
the remaining short-range (SR) part. As shown in flowchart in Fig. 1, the gLR with singularity can be 
explicitly computed at fine grids while the gSR is calculated by Wannier interpolation, the summation 
of which gives the full g at interpolated fine k/q grids.  

 Therefore, the explicit expression of LR part of V and g is crucial for successful interpolation and 
accurate carrier mobility. According to the order of multiple expansion used in physical model, the LR 
scattering can be divided into dipolar, quadrupolar and higher order scattering. The missing of dipolar 
or quadrupolar scattering in interpolation would lead to several times or 20-50% mobility difference 
for both 3D40 and 2D semiconductors41. The dipolar and quadrupolar scattering in 3D semiconductors 
are implemented in 201542 and 202037,38,43,44, respectively, while the quadrupolar scattering in 2D 
semiconductors is tackled very recently41,45. By appropriately separating the LR electrostatic 
interaction starting from Coulomb kernel46, the gLR(k,q) in 2D semiconductor can be approximated by: 
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where Ωuc is the unit cell care, κ is the index of the atom in the unit cell, M is the atomic mass, eν(q) is 
the eigenvector of phonon νq, τ is the atomic position, ϵ|| is the macroscopic in-plane dielectric function 
and ψnk, ψn’k+q are the initial and final electronic state respectively. The f(q)=1-tanh(qL/2) is range 
separation function and L is range separation length, which can be optimized from interatomic force 
constants46. The Zκ(q) is a key matrix describing charge response to nuclear displacement and can be 
expanded around q=0 as: 
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Here α, β, γ are direction indices that go through x, y and z (x and y are parallel to the basal plane of 

the 2D crystal, while z is perpendicular), and Ẑ  and Q̂  are Born charges and quadrupoles for 2D 

system46. If Q̂  in Equation Eq. 30 is set as zero, then the gLR will only contain dipolar scattering. It 

should be noted that the electric field term, the Berry connection term and the out-of-plane EPC are 
neglected in Eq. 29, due to their relatively small contribution45 to the gLR.  

 In spite of approximations mentioned above, the interpolated g in 2D semiconductor, combined 
from Wannier interpolated gSR and explicitly calculated gLR from Eq. 29, shows good consistency with 

direct DFPT calculations. In Figure 2, the EPC strength D (recall that ) ( ,, )( /n n n nD g lν ν ν′ ′= qk q k q  is 

more convenient for EPC comparison) interpolated with (solid lines) and without quadrupoles (dashed 
lines) are compared with that from direct DFPT calculations (dots) for selected phonon modes in 
intrinsic MoS2 and InSe25. For both materials, the initial state is selected to be 30 meV above the CBM 
along the Γ-M direction, and the final states are located at the iso-energy circle of the same valley. 
Here impact of quadrupoles scattering is focused since it is less examined. As shown in Figure 2, the 
interpolated D without quadrupoles (dashed lines) significantly deviates from the DFPT calculated 
ones (dots), especially for TA mode for MoS2 (Figure 2c), LA and TA modes for InSe (Figure 2e), and 
ZO1 and ZO2 modes for InSe (Figure 2f). After incorporation of quadrupoles, the interpolated D (solid 
lines) become more consistent with the DFPT calculated ones, indicating the importance of quadrupole 
scattering in various phonon modes. In addition, the room temperature electron mobility for MoS2 and 
InSe calculated by three approaches: without dipole or quadrupoles (denoted as “wo. D/Q”), only with 
dipoles (denoted by “D”) and with dipoles and quadrupoles (“D+Q”), are compared in Figure 2b. For 
MoS2, the mobilities from different approaches range from 189 to 136 cm2V-1s-1, with a variation of 
50 %. While for InSe, the mobility decreases from 414 to 103 cm2V-1s-1 after the incorporation of 
dipoles and then slightly increases to 117 cm2V-1s-1 when both dipoles and quadrupoles are considered. 
It suggests that the dipoles are essential for accurate EPC interpolation in polar 2D semiconductor and 
quadrupoles also play a non-negligible role in mobility.  

 

3.2. Electron-defect scattering 

 The EPC g matrix counterpart in e-d scattering is the electron-defect interaction (EDI) matrix 
element M, which is defined as: 

 d-p( ) |, ,|nn n nM Vψ ψ′ ′ ′′ 〈 ∆ 〉= k kk k  (31) 

where ψnk, ψn’k’ are the initial electronic state and final state respectively and ΔVd-p is the perturbation 
potential due to the defect. The ΔVd-p can be calculated from first-principles calculations by: 



 

 

 (d) (p)
d-p KS KS ,VV V= −∆  (32) 

where (d) (p)
KS KS,V V  are KS potential of a system containing defect and a pristine one without defect. In 

practice, the (p)
KSV  and ψnk can be obtained from the density functional theory (DFT) calculation on 

unit cell due to the periodicity of pristine crystal and the (d)
KSV  is calculated from a supercell. The 

flowchart of EDI matrix element calculation is illustrated in Figure 1.  

 Early studies on EDI M matrix used “all-supercell” method, which calculates all the necessary 
quantities (VKS and ψ) via supercell47-49. The “all-supercell” method is limited by the efficiency and 
thus prohibited for transport calculations involving numerous M (~108/104 in 3D/2D  
semiconductors). In 2019, great speedup is demonstrated in bulk silicon by adopting most of 
calculation in unit cell50 and the efficiency can be further enhanced by Wannier interpolation of M from 
coarse kc grid to fine kf grid51 (see diagram in Fig. 1). However, for 2D semiconductors, the EDI 
computation for carrier transport is only available very recently [defect xx]. In Ref. [defect xx], the 
EDI M matrix due to X vacancy in MX2 (denoted as VX; sulfur vacancy for MoS2 and WS2, selenium 
vacancy for MoSe2 and WSe2) are calculated and the corresponding defect-limited mobility is 
compared with the phonon-limited mobility.  

 As we can see in Figure 2g, the EDI M matrix of VX in MX2 generally shows a decreasing trend 
with increase of scattering wavevector length for intravalley scattering, with initial and final states 
located at the iso-energy circle of the same valley 25 meV above CBM. The K/K’ intervalley e-d 
scattering for VX defects is prohibited in MX2 due to the spin-locking and 3-fold rotation symmetry48 
and thus leading to negligible contributions to the mobility. Across different MX2, the MoSe2 has the 
largest EDI strength, followed by WSe2, WS2 and MoS2, and accordingly, the MoSe2 has the smallest 
momentum relaxation time (MoSe2<WSe2<WS2<MoS2; see relaxation time in Figure 2h). In Figure 
2i, the VX-limited mobility (μ(d)) of MX2 are compared with the phonon-limited mobility (μ(ph)), at a 
represented defect concentration nv=1012 cm-2. It is worth noting, most of μ(d) are comparable to μ(ph), 
indicating significant contributions from e-d scattering in MX2 experimentally-reported mobilities as 
defect concentration usually52,53 > 1012 cm-2. For WSe2 and WS2 holes, μ(ph) is 5 times of μ(d), which 
means the limiting factor of room temperature mobility is more likely to be e-d scattering instead of e-
ph scattering. The study on VX limited mobility highlights the e-d scattering in 2D semiconductors and 
inspires further studies on this unexplored field in 2D semiconductors having various types of defect 
and defect concentrations.  

 

3.3. Electron-boundary scattering 

Although the carrier transport in 2D semiconductors is protected by its atomically flat surfaces 
and free of dangling bonds on surfaces, the electrons are still likely to be scattered by the lateral 
boundaries, including line defect, grain boundary and surface. The electron-boundary (e-b) scattering 
leads to observable hydrodynamic electron flow and in-plane resistivity anisotropy in 2D materials54-

57 like Graphene, WTe2 and PdCoO2, however, remains elusive for conducting 2D semiconductors. In 
addition, there is a lack of calculation approach to appropriately incorporate e-b scattering with the e-
ph/e-d scattering: atomistic simulations based on Green’s function or other quantum transport 



 

 

approaches is limited by the scaling of the number of atoms simulated and is mainly focused on 
ballistic transport without e-ph/e-d scattering58-61; the approaches based on BTE containing first-
principles e-ph/e-d scattering rates usually applied diffusive e-b scattering21,62, which assumes the 
carrier are scattered into different final states with equal possibilities and the information of initial state 
or boundary detail is totally lost.  

 A more reasonable BTE-based approach for e-b scattering takes explicit boundary scattering 
transition probability Pnn’(k,k’) into account. The Pnn’(k,k’) quantifies the transition probability for an 
electron from bulk initial state nk being scattered by boundary to bulk final state n’k’. The classical 
Fuchs-Sondheimer (FS) model for electron-surface scattering widely used in 3D metal films assumes 

that p percentage of carriers have specular scattering (i.e. (( , , ),( , , ))x y z x y zP k k k k k k p− = , z is the norm 

of film surface) and the other 1-p carriers have diffusive surface scattering. The empirical parameter p 
in FS model is called surface scattering specularity and is mostly extracted from experiments. The 
similar empirical parameter (reflection coefficient R) exists in classical Mayadas-Shatzkes model for 

grain boundary scattering (i.e. (( , , ),( , , ))x y z x y zP k k k k k k R− = , z is norm of grain boundary). However, 

the computational approach to evaluate p and R is still unclear. Here we stress the possibility of 
introducing accurate e-b scattering into the linearized BTE as boundary conditions (demonstrated in 
Section 2), once the e-b transition probability Pnn’(k,k’) is known.  

 



 

 

 

Figure 2 (a) Phonon-limited electron drift velocity in MoS2 and MoSe2 under external electric field. 
(b) Phonon-limited electron mobility of MoS2 and InSe, calculated without dipoles or quadrupoles 
(denoted as “wo. D/Q”), only with dipoles (“D”) and with dipoles and quadrupoles (“D+Q”). (c)-(f) 
Comparison of the DFPT-calculated EPC strengths (dots) and the Wannier-interpolated ones (dashed 
lines: without quadrupoles; solid lines: with quadrupoles), for selected phonon modes of MoS2 and 
InSe. The vibration patterns are shown in the insets. (g) Electron-defect (S/Se vacancy) interaction 
matrix elements for electrons in MoS2, MoSe2, WS2 and WSe2. For all materials in (c)-(g), the initial 
states are selected to be 30(25) meV above the CBM along the Γ-M direction, and the final states are 
located at the isoenergy circle of the same valley. (h) Electron relaxation time in MoS2, MoSe2, WS2 
and WSe2 containing S/Se vacancy due to electron-defect scattering. (i) Defect-limited mobility (y axis) 
vs. phonon-limited mobility (y axis) for electron and hole in MoS2, MoSe2, WS2 and WSe2, with S/Se 
vacancy. The defect concentrations in (h) and (i) are 1012 cm-2. The data in Figure 2 are from Ref. 
[defect xx, xx].  

 

 

4. Electron scattering models 



 

 

In this section, we briefly demonstrate the established e-ph scattering models in 2D 
semiconductors. Although these over-simplified models are not reliable for accurate mobility 
prediction, they provide fundamental understanding on e-ph scattering mechanisms and convenient 
estimation methods for mobility screening (see Section 6). In addition, the various q-dependence of 
EPC g matrix, and the corresponding energy-dependence of scattering rates are discussed and 
compared (see Figure 3 and Table 1), which is helpful to determine the dominant scattering from 
scattering rates in 2D semiconductors.  

The e-ph scattering models can be classified according to perturbation potential and involved 
phonons. Around zone center (i.e. q=0), the phonon perturbation potential V can be roughly 
decomposed to a macroscopic long-range potential VLR, which is electrostatic Coulomb potential 
generated by polarization due to phonon vibration and is uniform across the unit cell, and a short-range 
contribution VSR, which has large variation in the unit cell but is spatially periodic over unit cells. 
According to the type of perturbation potential (VLR or VSR) and involved phonons (acoustic or optical 
phonons), e-ph scattering at long wavelength limit can be classified into four types: acoustic 
deformation potential scattering (VSR induced by acoustic phonons), optical deformation potential 
scattering (VSR induced by optical phonons), piezoelectric scattering (VLR from acoustic phonons) and 
Fröhlich scattering (VLR from optical phonons).  

Before discussion on specific models, first we decompose the zero-order and first-order 
components in EPC strength D, which determines different q-dependence of D in different scattering 
models. As shown in Appendix A, the D can be written as: 
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 is the KS potential perturbation due to atom κ in p-th unit cell moving in α direction, 

Rp is the spatial coordinates of p-th unit cell, ,eκα ν  is the atomic displacement in phonon νq defined 

as , , 0) ( )( /M Me eκα ν κα ν κ=q q = and eκα,ν is the eigenvector of dynamical matrix. The )( pieν
⋅q Re q  

describes how each atom moves in the crystal. At zone center, 1pi
pe i⋅ ≈ ⋅+q R q R  within first order of 

|q|, and thus the phonon vibration at long-wavelength limit can be approximated by a periodic atomic 

displacement in each unit cell ( )(νe q ) and a lattice dilation term ( )( pν ⋅e q q R ). By assuming initial state 

and final state are close enough, the EPC strength (Eq. 28) can be written as: 

 (0) (1)
, , ,| ,( ˆ| )n n nD D i Dν ν ν= +k k kq q  (34) 

where zero-order D(0) and first-order D(1) are: 
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4.1. Acoustic deformation potential (ADP) scattering 

The ADP scattering is one of the most common e-ph scatterings in carrier transport. For 
longitudinal acoustic (LA) phonons, the atoms in unit cell move in the same direction with same 
amplitudes ( ˆ)(ν =e q q =). Therefore, the crystal undergoes a translation for zero-order D(0) while a 

unform dilation along direction of q ( ~ ˆ p⋅q R ) for first-order D(1). The D(0) for acoustic phonons is zero, 

as the translation of materials does not lead to potential perturbation for electrons in adiabatic 
approximation. Thus, the leading term of EPC strength for LA phonons is the first-order term which is 
proportional to the |q| (see Eq. 34). By selecting nk as the band edge electronic state (CBM or VBM) 
and focusing on isotropic semiconductors, the EPC strength for LA mode can be written as: 

 (1)
LA LA| ( | |) | ,DD =q q  (36) 

where (1)
LAD  is the LA deformation potential constant. From Eq. 35, the (1)

LAD  can be interpreted as the 
electronic state energy shift due to the lattice dilation, and thus can be directly calculated from regular 
DFT calculations on unit cell: 
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where Δεc,y is the shift of CBM or VBM electronic state energy and Δl0/l0 is the relative deformation 
of lattice constant along transport direction.  

 Combining (1)
LAD , LA sound velocity vLA and effective mass m*, the ADP scattering rate 1/τADP is63: 
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where ρ is the area density and kBT is the temperature, which is assumed to be much larger than 
involved acoustic phonon energy (i.e. Bk T ω  ). The τADP is independent of initial state electronic 
energy, diagramed in Figure 3a. As shown in Figure 3b, the 2D semiconductor ZrI2 shows a dominant 
ADP scattering, which is indeed nearly a constant to energy. The energy-dependence of τADP can be 
understood from q-dependence of transition probability T (see Eq. 10 for definition). From Eq. 10, T 
in intrinsic semiconductor (i.e. ( ) 1nf k  ) is proportional to product of phonon occupation n, square 
of vibration amplitude l2 and square of EPC strength D2. For acoustic phonon, the phonon dispersion 
ω(q) is linear with |q| and thus the n at room temperature can be approximated by B / ( )k T ω  for small 
ω and |q|. Considering n ~ 1/|q|, l2 ~ 1/|q| and D2

LA(q) ~ |q|2, the T of ADP scattering is a constant 
function of |q|. From definition of MRTA scattering rate in Eq. 22, the 1/τADP is thus proportional to 



 

 

density of state, which is indeed a constant to energy for 2D semiconductor with a parabolic band 
structure.  

With constant τADP, the corresponding ADP mobility μADP can be obtained from Takagi formula64,65: 
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The necessary quantities in Eq. 39 can be easily calculated and thus are available in many 2D materials 
database, so the μADP can be used as a feasible indicator in high-mobility 2D semiconductor screening. 
The ADP scattering is universal for most materials and dominate e-ph scattering in both 3D 
semiconductor like Si and 2D semiconductor like MoS2.  

 

4.2. Optical deformation potential (ODP) scattering 

 In contrast to acoustic phonons, the optical phonon has nonzero zero-order EPC strength as its 
opposite atom movement in the unit cell leads to finite perturbation potential at q=0. Therefore, the 
optical deformation potential (0)

OPD  (zero-order deformation potential constant) relates to EPC strength 
as: 

 (0)
OP OP| ( ) | .D D=q  (40) 

The optical deformation potential scattering rate is66: 
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where ρ is the area density, nOP is the Bose occupation of the optical phonon with frequency ωOP and 
Θ(x) denotes the Heavyside step function. It should be noted that the first term in square bracket of Eq. 
41 represents the phonon absorption, and the latter one is for phonon-emission process, which is only 
possible for electron with energy larger than ℏωOP above CBM. For each branch, the τODP(ε) is 
independent of energy, which can be explained by T. For optical phonons, ω is a constant with respect 
to |q|. Therefore, phonon occupation n, square of vibration amplitude l2 and square of EPC strength D2 

are constant functions of |q|, resulting to constant τODP(ε) determined by density of states at energy ε. 
The most obvious feature of ODP scattering is a step-like scattering rate at ε=ℏωOP, as diagramed in 
Figure 3a. Figure 3b shows an example of MoS2 which has significant ODP scattering at 50 meV above 
CBM.  

 

4.3. Fröhlich scattering 

 The Fröhlich scattering corresponds to the zero-order EPC strength D(0) which originates from the 
long-range dipolar potentials generated by polarization from optical phonons. It is the dominant 
scattering in many 2D polar semiconductors67 with an explicit expression of EPC g matrix in Eq. 28 
(assume the quadrupoles in Z is zero). The corresponding Fröhlich EPC strength DF in isotropic 
materials can be written as: 
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where q̂  is the unit vector of q, Ωuc is the area of unit cell, κ is the index of atom in the unit cell, Mκ 

is the atomic mass; j is the index of the optical phonon mode, , jκe  is the atomic displacement in 

phonon νq defined as , , 0() )( /j j M Mκ κ κ=e q e q   and eκ,j is the eigenvector of dynamical matrix; Z  is 

the Born effective charge, and α2D is the in-plane polarizability of the 2D crystal. Several 
approximations have been applied to derive the DF in Eq. 42: (1) The in-plane 2D dielectric function 
is approximated by 1+2πα2D|q|, which is commonly used in 2D semiconductors68,69. (2) The 
wavefunction dependence has be neglected since the Fröhlich scattering is the intravalley scattering 
and the involved |q| is small. In addition, the q dependence of ωjq is neglected and the dispersion-less 
ωj can be approximated by16,70: 
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 With dispersion-less ωj, the q-dependence of transition probability T for Fröhlich scattering is 
totally determined by DF. As shown in Eq. 42, the DF is proportional to 1/(1+a|q|) where a is constant 
2π α2D. Given that T ~ n l2 D2 and n, l are determined by ωj, the T is thus proportional to 21 / (1 | |)a+ q , 
which shows strong q-dependence in contrast to the T in ADP or ODP scattering. The decreasing T 
with respect to increasing |q| leads to decreasing Fröhlich scattering rate 1/τF(ε) with increasing energy 
ε, for both phonon-absorption and emission branches, as diagramed in Figure 3a. This is due to: for an 
initial state close to band extreme, the average T is relatively larger owing to the smaller |q| between 
initial and final states on iso-energy circle, which leads to a larger 1/τF(ε); while for an initial state with 
higher energy above CBM (or with lower energy below VBM), the larger |q| leads to a relatively 
smaller T and 1/τF(ε). In Figure 3b, the InSe shows typical Fröhlich scattering rate, which has two 
peaks at ε=0 and ε=ℏωj both with decreasing trend with ε.  

Combining DF in Eq. 42 and ω Eq. 43, the corresponding EPC g matrix (see Eq. 28) can be 
obtained by: 
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With the gF in hand, we can calculate the scattering rates via Eq. 22, and the Fröhlich mobility μF via 
Eq. 24 under MRTA. The numerical calculation can be facilitated by the assumptions of a parabolic 
electronic band (with effective mass m*) and multiple dispersion-less phonon modes (with frequency 
ωj). The necessary physical quantities in μF can be easily calculated and are available in 2D materials 
database, which makes μF easy to evaluate.  

 



 

 

4.4. Piezoelectric scattering 

In semiconductor lacking an inversion center, the acoustic phonon also generates macroscopic 
polarization and thus long-range perturbation potential (VLR) similar to Fröhlich scattering, which is 
usually called piezoelectric (PZ) scattering. The piezoelectric EPC strength DPZ can be obtained from 

Eq. 29 by keeping quadrupoles Q̂ = and removing Born effective charge Ẑ = in Z(q) (Eq. 30). In 

contrast to Fröhlich scattering, the DPZ is proportional to |q|/(1+a|q|) as Q̂  is the first-order term in 

Z(q) around zone center. For acoustic phonon, the phonon dispersion ω(q) increases linearly with |q| 
and thus the n is approximated by B / ( )k T ω  at room temperature. Given that n ~ 1/|q|, l2 ~ 1/|q| and 
DPZ(q) ~ |q|/(1+a|q|), the transition probability T of PZ scattering is proportional to 21 / (1 | |)a+ q , with 
the same q-dependence as Fröhlich scattering. Consequently, the PZ scattering rate also shows a 
decreasing trend with increasing electronic energy, as shown in diagram in Figure 3a. The realistic 
examples include MoS2, which shows obvious PZ scattering feature (see peak around band edge) in 
Figure 3b.  

 

 

Figure 3 (a) Model scattering rates in 2D semiconductors with parabolic band, including acoustic 
deformation potential scattering (ADP), optical deformation potential scattering (ODP), Fröhlich 
scattering (Fröhlich) and piezoelectric scattering (PZ). (b) Examples of scattering rates in realistic 2D 
semiconductors showing different dominant phonon scatterings.  
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Table 1 Summary of q-dependence of phonon occupation n, squared zero-point vibration amplitude 
l2, squared EPC strength D2 and transition probability T for different e-ph scattering models in 2D 
semiconductors.  

 

 

5. Dimensional effect in mobility: a prospective from “density of scattering” 

 One of the grand challenges for electronic materials research is to find an alternative to silicon 
with a suitable band gap, high carrier mobility at room temperature, and ambient stability, when 
thinning down to atomic thickness. Since the discovery of graphene in 2004, various of 2D materials 
have been synthesized and proposed as candidate materials in 2D transistors but none of them is 
satisfactory. For example, although graphene has very high carrier mobility, it does not have band gap. 
Some 2D semiconductors, including MoS2, MoSe2, WS2, WSe2, have moderate band gap but generally 
suffer from low carrier mobility at room temperature. Although it is reported that high carrier mobility 
(~ 1000 cm2V-1s-1) can be achieved in 2D semiconductors like phosphorus71, InSe72, the thickness of 
measured channel materials is around 10 nm, which violates the purpose of transistor scaling-down.  

 Indeed, despite extensive research on monolayer semiconductors, their mobilities are currently  
far below Si (~ 1400 cm2V-1s-1) due to strong e-ph and/or e-d scattering. In Figure 4 and Table 2 in 
Appendix D, we review the experimentally reported mobilities of existing monolayer semiconductors 
(bright colors). WSe2 holes have the highest mobility (500-655 cm2V-1s-1) as reported in a very recent 
study14, while all the others have mobility < 200 cm2V-1s-1. The data of multilayer semiconductors with 
thickness from several to tens of nanometers is also included in Figure 4 and Table 2 for comparison. 
It can be found that increasing the thickness indeed increases the mobility, such as InSe and black 
phosphorus multilayers.  

 



 

 

 

Figure 4 Review of experimental (filled symbols) and computational (open symbols) works on carrier 
mobility of 2D semiconductors. The monolayers are shown in bright colors while the multilayers 
(ranging from several to tens of nanometers) are shown in grey. Electrons are marked by circles while 
holes are by squares. The MoS2 electrons, WS2 electrons and WSe2 holes repeatedly reported in 
different papers over the years are connected with lines. The experimental data are from Refs. 14,52,71-

104 and computational date are from Refs. 18,25,35,105-122 (also see Appendix D for values).  

 

 The universally lower carrier mobility in 2D semiconductors is believed to originate from the 
dimensional effect113,115: for a parabolic electronic band structure, reducing the dimension will increase 
the density of states near the band edge; similarly, for a linear phonon band, reducing the dimension 
will also increase the density of low-energy phonons; therefore, 2D semiconductors tend to have a 
higher density of scatterings and thus a lower mobility. In the following, we use MoS2 and bulk silicon 
(Si) as two representative semiconductors for 2D and 3D to further demonstrate the dimensional effect 
in carrier mobility.  

First, the carrier mobility of MoS2 and Si are decomposed into their corresponding “Drude 
effective mass” ( *m ) and “Drude scattering rate” (1/τ ), which are defined by re-writing the mobility 
μ (defined in Eq. 24) in a form similar to the Drude model: 
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Nd is the dimensions of MoS2 and Si. The *m  is fully determined by the electronic structure and its 
occupation, while the information about e-ph/e-d scattering are wrapped in 1/τ =. The scalar μ is 

reduced from mobility tensor in Eq. 24 by taking the average of diagonal term ααα
µ µ=∑ , as MoS2 

(α runs in x and y) and Si (α runs in x, y and z) both are isotropic materials. In intrinsic semiconductors, 
it can be found that the *m  would be very close to band edge effective mass by noticing that: 
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= is the state-resolved inverse effective mass tensor. The μ, *m = and 1/τ = of 

MoS2 and Si are compared in Figure 5a. Here we report the Si electron mobility as 1401 cm2V-1s-1 
calculated on an equal footing with the MoS2 (i.e. the electron-phonon coupling (EPC) matrix elements 
are obtained from DFPT + interpolation with quadrupole scattering), which is consistent with 
experiments123 and other first-principles calculations22,124. The electron mobility of MoS2 is 134 cm2V-

1s-1, which is only tenth of that in Si. The large mobility difference cannot be accounted by the 50% 
difference in *m  (0.43 me in MoS2 and 0.29 me in Si) but is largely determined by their difference in 
1/τ  (30 ps-1 in MoS2 vs. 4.4 ps-1 in Si).  

 In order to fully understand the 1/ τ = difference, we further calculate EPC g matrix for 
representative EPCs and the mode-resolved “density of scatterings” DS, which has a form very similar 
to the scattering rate defined in Eq. 22: 
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except that the EPC g matrix is not contained and the phonon modes are not summed. The DS can be 
interpreted as the density of scattering events for an initial state under energy and momentum 
conservation, which is fully determined by the “match” between electron and phonon band structures 



 

 

as well as their occupations. A higher sound velocity would reduce the phonon populations, and thus 
lower the DS, thereby resulting in a lower scattering rate and hence a higher carrier mobility. Similarly, 
a smaller effective mass would reduce the density of electronic states, which leads to a lower DS.  

 In Figures 5c-e, the LA energy-resolved scattering rate, DS and representative |g|2 for MoS2 and Si 
are compared. For 2D MoS2, we consider the |g|2 between the initial state located at 30 meV above the 
CBM along Γ-M direction, and the final states at the iso-energy circle of the same valley. For 3D Si, 
as there are 6 equivalent CBMs, so we select one initial state 30 meV above CBM and 100 final states 
evenly distributed on the iso-energy surface in the same valley assuming an anisotropic parabolic band 
(see Figure 5b for their distribution in the BZ). The |g|2 between these initial and final states for MoS2 
and Si are shown in Figure 5e. As we can see, Si has larger LA |g|2 than MoS2, due to the larger ADP 
constant in Si (8.21 eV for Si124 and 6.86 eV for MoS2

125) and larger available scattering wavevector 
length |q|. However, in spite of the larger |g|2, the Si has much lower scattering rate than MoS2, due to 
its negligible DS (see Figure 5d). The remarkably lower DS in bulk Si cannot be explained by the 
difference of LA sound velocity (8.5 km/s in Si and 6.6 km/s in MoS2) or effective mass (0.29 me in Si 
an 0.43 me in MoS2), and thus is attributed to the dimensional difference of the BZ integrated in Eq. 
48.  

 The larger acoustic phonon DS, leading to larger scattering rate and lower mobility, is believed to 
be universal for all 2D semiconductors113. Indeed, the LA DS of more 2D semiconductors are shown 
in Figure 8e and all of them are significantly above that of Si. Since the acoustic phonon universally 
exists in materials, the phonon-limited mobility degradation in 2D semiconductors due to dimensional 
effect in DS seems inevitable. For e-d scattering, the mobility degradation is also expected to exist, 
where the DS is defined as: 
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The definition of e-d scattering DS in Eq. 49 resembles that of density of states, which is independent 
of energy ε in 2D semiconductor while proportional to ε  in 3D semiconductor. Therefore, at band 
edge, the DS of e-d scattering in 2D semiconductor is supposed to be larger, leading to a lower defect-
limited mobility if other factors are fixed.  

 



 

 

 
Figure 5 (a) Comparison of bulk silicon and 2D MoS2 monolayer, for electron mobility, Drude 
scattering rate and Drude effective mass. (b) Diagram of six conduction band valleys in bulk silicon. 
(c)-(e) LA-phonon-mode-resolved scattering rates (c), density of scatterings (d) and representative 
(squared) EPC g matrix (e) for silicon and MoS2 electrons. For both materials, the initial states are 
selected to be 30 meV above the CBM, and the final states are located at the iso-energy circle (iso-
surface for silicon; diagramed in b) of the same valley.  

 

 

6. High-mobility 2D semiconductor screening 

 As reviewed in Section 3, the first-principles methods developed for e-ph scattering facilitate the 
accurate calculation of phonon-limited mobility for 2D semiconductors. Although the dimensional 
effect of DS leads to mobility degradation in 2D semiconductors, there are still several high first-
principles mobilities (> 1000 cm2V-1s-1) reported in recent years. In Figure 4, we reviewed the 
computationally reported phonon-limited mobilities based on first-principles EPC g matrix for 2D 
semiconductors. The room temperature hole mobility of Sb2 and electron mobility of Ge2H2 are 
predicted to be 1330 and 2380 cm2V-1s-1 respectively109,117, revealing the possibility of high mobility 
in 2D semiconductors. However, the previous studies focused on case materials, which only explored 
small percentage of all 2D semiconductors. Thorough and systematical study covering more materials 
is desirable for fully discovering and better understandings of high mobilities in 2D semiconductors. 
In the following, we focus on two recent high-throughput computation on 2D semiconductor phonon-
limited mobility, which screened 14 high mobilities (>1400 cm2V-1s-1) in total (also see Figure 7 for 
full results)15,16.  



 

 

 The basic idea of high-throughput carrier mobility calculation is to benefit from well-established 
materials database, select a series of 2D semiconductor with desirable properties for applications (e.g., 
moderate bandgap, stability, effective mass) and accurately calculate the carrier mobility using the 
BTE in conjunction with DFPT. The calculation results provide not only the lists of high-mobility 2D 
semiconductors candidates, but also the large number of examples for in-depth analysis and 
understanding. By connecting the basic physical properties with the calculated carrier mobility, the 
dominant factors in e-ph scattering and “genome” of high mobilities can be determined, which 
facilitates further high-mobility 2D semiconductor discovering.  

 The first step in high-throughput mobility calculation is to screen the potential candidates for 
accurate EPC calculations from 2D materials database. The well-established 2D materials databases 
include the Computational 2D materials Database (C2DB)126,127 and the Materials Cloud 2D crystals 
database (MC2D)128, which contains 4000 and 3000 2D materials respectively. The numerous amounts 
of 2D semiconductor in database and the large computational cost for EPC calculation make the 
accurate mobility calculations for all semiconductors prohibited. Different screening approaches are 
used in Refs 15 and 16. In Ref. 15, a heuristic approach is used to narrow down the computation 
candidates. Inspired by InSe and P4, single-valley 2D semiconductors (band gap < 2.5 eV) with large 
Fermi velocity (maximum Fermi velocity vmax > 6 ARU), and those with decent Fermi velocity (vmax > 
2 ARU) but high velocity ratio (vmax > 1.7 vmin) are screened out from the MC2D for accurate 
calculations, generating 11 2D semiconductors with potential high mobilities. In Ref. 16, several 
descriptors with physical knowledge of scattering are used in screening, including “combined effective 
mass” M, acoustic deformation potential mobility μADP and Fröhlich mobility μF. The μADP and μF are 
introduced in Sections 4.1 and 4.3. The M is defined as: 

 * *
t ,dM m m=  (50) 

where mt
* is the effective mass along carrier transport direction, and md

* is the density of state effective 

mass that can be approximated by * *
x yN m m  (here N is the degeneracy of conduction/valence band 

extremes, and x and y are the two directions defined in the database). The M include the information 
of both md

* and mt
* because: (1) A lower md

* indicates a lower density of electronic states and thus less 
states available for carriers to be scattered to, which can increase the mobility as exemplified117,129 by 
Sb2 and WS2. (2) When the scattering is fixed, decreasing mt

* can further improve the mobility 
according to the Drude model.  

 



 

 

 

Figure 6 (a) Screening procedures to discover 2D semiconductors with potential high carrier mobility 
in Ref. 16. (b) Crystal structures for representative 2D semiconductors with mobilities over 1400 cm2 
V-1 s-1 in both Refs 15 and 16.  

 

 The screening steps in Ref. 16 are illustrated in Figure 6a. First, the 2d materials with PBE band 
gap within 0.2-2 eV are extracted from the C2DB and then those with “high dynamical stability” are 
reserved for further screening. The dynamical stability in C2DB is judged from two conditions: all 
phonon modes having positive frequencies and elastic stiffness tensor having positive eigenvalues, 
which together indicates the unstressed 2D crystal is stable with no external loads in the harmonic 
approximation127,130. Then the remaining 541 out of 4000 2D materials are screened by M<1, referring 
to M=0.85 in MoS2. Since the M has different value for conduction/valence band, the M criterion gives 
149/179 materials for electron/hole transport. Then two more quantitative descriptors μADP and μF 
calculated from scattering models (see Sections 4.1 and 4.3) are used. The upper limit mobility 

(denoted as μup) is obtained following the Matthiessen’s rule: 1 1 1
up F ADPµ µ µ− − −= + =, which gives an 

estimation of upper limit of real mobility. By taking μup > 180 cm2V-1s-1 as a criterion and excluding 
those with more than 8 atoms in the unit cell, eventually 47 electron and 51 hole mobilities are 
calculated with first-principles calculations in Ref. 16.  

 The overall results with Refs. 15 and 16 are concluded in Figure 7. In particular, 14 materials with 
mobility larger than bulk Si electron (1400 cm2V-1s-1) are found, all having hexagonal lattice and 
isotropic mobilities, with 5 kinds of crystal structures as shown in Figure 6b: (1) III-V materials: BSb 
(e: 5167; h: 6935; ‘e’ for electron and ‘h’ for hole; in the unit of cm2V-1s-1), AlBi (e: 2835; h: 3446), 
GaSb (e: 1809), BAs (e: 1524; h: 2439), InN (e: 2106) and BP (h: 1921). They all have an atomically 



 

 

flat structure like graphene. (2) ZrI2 (h: 5138), HfI2 (h: 4782) and WSe2 (h: 1962). Their structures are 
similar to that of 2H phase MoS2 with the metal layer in the middle. (3) H functionalized IV materials: 
Sn2H2 (e: 3227; h: 2063) and Ge2H2 (e: 2791). (4) Group V materials: Sb2 (h: 2044). (5) Ga2Ge2Te2 (e: 
1996) and Al2Ge2Te2 (e: 2023). They have unique sextuple layered structure with atomic layers in 
order of Te-Ga(Al)-Ge-Ge-Ga(Al)-Te. Particularly, BSb, AlBi, Sn2H2 and BAs are predicted to have 
both high electron mobility and hole mobility, as characterized by the ambipolar mobility μa (defined 
by μa = 2μeμh/(μe+μh) where μe and μh are electron and hole mobility respectively): 5922 for BSb, 3111 
for AlBi, 2517 for Sn2H2 and 1876 for BAs. These excellent properties make them especially promising 
for electronic devices.  

 The first-principle mobilities μ in Figure 7 not only provides a list of high-mobility 2D 
semiconductors, but also data to examine the quality of screening steps in Figure 6a, especially for μup 
step. In Figure 8a, the μ and μup of those calculated 2D semiconductor in Ref. 16 are compared, with a 
solid line indicating μ=μup and a dashed line for μ=1.38μup. Indeed, the most of materials fall below 
the solid line, meaning μ<μup. By enlarging the tolerance, 98% materials in Figure 8a have μ<1.38μup. 
Combining the μup>180 cm2V-1s-1 criterion used in screening step, the comparison in Figure 8a 
indicates that the rest of 2D materials filtered out are most likely to have a real μ < 180×1.38=250 
cm2V-1s-1.  

 It can be noticed that there is large discrepancy between the reported mobility from Ref. 15 and 
Ref. 16 for the same material. For example, WSe2 hole mobility in Ref. 15 is 1962 cm2V-1s-1 while is 
578 cm2V-1s-1 in Ref. 16. This can be mainly attributed to different carrier concentrations nc considered 
in Refs. 15 and 16. The Ref. 16 calculated 2D semiconductors at a low nc limit. In contrast, for Ref. 
15, a high carrier concentration (nc = 1013 cm-2) is considered within gated DFPT setup36, which 
changed the Fermi level position and more importantly, affected EPC g matrix. The most significant 
consequence of free carrier doping is the screening of piezoelectric and Fröhlich scattering, leading to 
the larger WSe2 hole mobility calculated at high nc. The free carrier doping effect on EPC g matrix is 
actually not limited to the long-range scattering (e.g. piezoelectric and Fröhlich scattering) and its 
further influence on EPC will be discussed in detail in Section 7. In addition to nc, the other differences 
in Refs. 15 and 16 include: (1) Materials exfoliation: The 2D materials from Ref. 15 are selected from 
those with layered 3D counterparts and low binding energy which can be extracted from MC2D. While 
Ref. 16 is based on C2BD which includes all potential 2D materials based on crystal structures of 
existing 2D prototype and thus not all materials in Ref. 16 are exfoliable monolayers, demanding other 
synthesis methods for high-mobility monolayers. (2). Spin-orbit coupling: The spin-orbit coupling is 
included in first-principles calculations of Ref. 16 but not considered in Ref. 15 except WSe2. (3). 
Solution of BTE: Iterative solution of BTE is used in Ref. 15 but MRTA is applied in Ref. 16, which 
might lead to mobility deviations by tens of percentage24,25.  

 



 

 

 

Figure 7 Phonon-limited mobility vs. band gap (HSE) for 2D semiconductors from high-throughput 
calculations15,16. For comparison, the electron mobilities for MoS2 and bulk Si are marked. The closed 
symbols indicate intrinsic 2D semiconductor and opened ones consider 2D semiconductor 
electrostatically doped at carrier concentration 1013 cm-2.  

 

 The next step is to understand what contributes to the high mobility found in Refs. 15 and 16. In 
Ref. 15, two contributions to carrier mobility are focused: relaxation time τ and group velocity 
projection on electric field direction v cosθu (θu is the angle between velocity and electric field). The 
relaxation time τ is mainly limited by the EPC strengths, which is attributed to the specific materials 
properties. The optimal v cosθu can benefit from two types of band structures. The first one is an 
isotropic steep and deep valley, which enables extremely large v at Fermi surface with high doping 
(nc=1013 cm-2). However, in isotropic valleys, there are partial carriers moving in the perpendicular 
direction to electric field and thus leading to little contribution to transport (i.e. cosθu=0). The second 
type of optimal band structure has a highly anisotropic band edge (vmax > 1.7 vmin), leading to more 
electronic states moving in field direction (cosθu ~1; suppose vmax is in direction of electric field) and 
thus larger v cosθu. The Bi2SeTe2 and P4 are representatives of two optimal band structures, having 719 
cm2V-1s-1 (electron) and 1386 cm2V-1s-1 (hole) mobility respectively.  



 

 

 In Ref. 16, the mobility is decomposed into 3 factors for understandings: Drude effective mass 
*m =, density of scattering DS and EPC g matrix (see Section 5 for respective definitions). Further 

comparisons of *m , DS and g reveal that the higher mobilities found in Ref. 16 than that of MoS2 and 
bulk Si can be attributed to small *m  and/or small g. In Figure 8b, the Drude effective mass *m  and 
Drude scattering rate 1/τ  for high-mobility 2D semiconductors in Ref. 16 as well as those for MoS2 
and Si are shown. The *m  is fully determined by the electronic structure and its occupation, while the 
information about DS and EPCs are wrapped in 1/τ . Most of high-mobility 2D semiconductors benefit 
from their low *m , compared to Si and MoS2. For example, the Ga2Ge2Te2 has a relatively large 1/τ  
(15 vs 30 ps-1 in MoS2 and 4.4 ps-1 in Si) but a small *m  (0.058 vs 0.43 me in MoS2 and 0.29 me in 
Si), leading to a high mobility (1996 vs 136 cm2V-1s-1 in MoS2 and 1400 cm2V-1s-1 in Si). However, 
exceptions include HfI2 and ZrI2, which have relatively large *m  (HfI2: 0.32 me; ZrI2: 0.40 me) but 
extremely small 1/τ  (HfI2: 1,1 ps-1; ZrI2: 0.85 ps-1). BSb has both a small *m  (0.09 me for hole and 
electron) and a low 1/τ  (2.8 ps-1 for hole and 3.6 ps-1 for electron), which together make it the highest 
mobility material.  

The effects of DS and EPC g matrix on carrier mobility is further displayed in Figures 8d-i, 
focusing on 4 representative materials: 3 high-mobility 2D semiconductor BSb, ZrI2 and Ga2Ge2Te2, 
and 1 common 2D semiconductor MoS2 with low mobility. The mode-resolved scattering rates τ-1 and 
DS for LO and LA modes are compared across materials in Figure 8e and h and the representative |g|2 
between the initial state (located at 30 meV above/below the CBM/VBM along Γ-M direction) and the 
final states (at the iso-energy circle of the same valley) are shown in Figure 8f and i. Although 
Ga2Ge2Te2 has a lower DS than MoS2 for the LO mode due to its smaller effective mass (0.05 vs. 0.5 
me), it has larger |g|2, leading to the stronger LO scattering. The larger LO |g|2 in Ga2Ge2Te2 can be 
explained by its larger ratio of the Born charge to the in-plane polarizability: RB/P=0.23 (RB/P=0.07 in 
MoS2) and consequently larger Fröhlich scattering (see Eq. 42). For LA mode, the DS of Ga2Ge2Te2 is 
comparable to that of MoS2, while the |g|2 is smaller, resulting in the weaker LA scattering. In contrast 
to Ga2Ge2Te2, ZrI2 has a larger DS than MoS2 for LO mode resulting from its smaller LO frequency 
(15 vs. 47 meV in MoS2), however, its |g|2 is smaller owing to the vanishing RB/P (1.7×10-4, which is 
mainly caused by the smaller Born charge: 0.0012 vs. 0.5 in MoS2), causing its nearly vanishing 
Fröhlich scattering. The |g|2 of LA mode in ZrI2 is also smaller than that in MoS2, giving rise to its 
smaller LA scattering. For BSb, although it has the largest LO |g|2 because of its largest RB/P (0.51) 
among the 4 materials compared here, its LO DS is extremely small due to the highest LO phonon 
frequency (88 meV), and thus it has a weak LO scattering. BSb also has a lower DS for LA mode than 
MoS2 because of its relatively large longitudinal sound velocity, which together with the smaller |g|2 
lead to its weaker LA scattering.  

 



 

 

 

Figure 8 (a) First-principles calculated mobility vs. upper limited mobility in Ref. 16. (b) Drude 
scattering rate and Drude effective mass for high-mobility (> 1400 cm2 V-1 s-1) 2D semiconductors 
from high-throughput calculation. The lines show the iso-mobility contours. (c) Scattering rates of 
three representative high-mobility materials. For comparison, MoS2 and Si data are also shown. (d)-(i) 
Phonon-mode-resolved scattering rates (d and g), density of scatterings (e and h), and representative 
(squared) EPC g matrix (f and i) for BSb hole, ZrI2 hole, and Ga2Ge2Te2 electron, in comparison with 
MoS2 electron. For above materials, the initial states are selected to be 30 meV above the CBM along 
the Γ-M direction, and the final states are located at the isoenergy circle of the same valley.  

 

 The above analysis shows that the scattering rates can be correlated with basic physical features 
via DS and |g|2. For example, the large RB/P leads to large LO |g|2 and large LO scattering for Ga2Ge2Te2 
and a negligible RB/P in ZrI2 leads to small LO |g|2 and small LO scattering. In spite of BSb having the 
largest RB/P, it has highest LO frequency (ωLO), leading to small DS and thus weak LO scattering. For 
LA mode, Ga2Ge2Te2, BSb and ZrI2 all have weak LA |g|2, resulting in their weak LA scatterings 
compared to MoS2. BSb has a highest sound velocity (vLA) and hence lowest DS in 4 materials, which 



 

 

also contributes to its weak LA scattering. The direct correlation between mobility vs. these physical 
features M, RB/P, vLA and ωLO are shown in Figure 9. Additionally, a new feature carrier-lattice distance 
dc-l is proposed16 and correlated with mobility in Figure 9c, which is defined as: 

 2
c-l CBM/VBM

uc

( ) ( min {CBM/VBM | || |) }d d α αψ −= ∫ r r r R  (51) 

where the CBM/VBM indicates the electronic state at conduction band minimum or valence band 
maximum, the ψ is the corresponding wavefunction, Rα is the position of nucleus α, and uc denotes 
the unit cell. This new feature dc-l quantifies the distance between the carrier (represented by the 
CBM/VBM) and the lattice, as illustrated in Fig. 9f. Since the perturbation induced by lattice 
displacement is generally weaker in the region farther from the nuclei, it is intuitive to expect that a 
larger dc-l will result in a smaller |g|2. Indeed, as shown in Figure 9e, the high-mobility 2D 
semiconductors all have a dc-l > 1.11 Å.  

 Therefore, combining Ref. 15 and Ref. 16, the general genome of high-mobility 2D 
semiconductors include small M, small RB/P, large vLA, large ωLO, small dc-l and anisotropic band edge. 
The former 5 features are quantified in Ref. 16: high-mobility 2D semiconductor (μ>1400 cm2V-1s-1) 
have M < 0.474, nLO R2

B/P < 0.066 Å-1 (nLO is the number of LO phonons), dc-l > 1.11 Å and ωLO > 15 
meV and the anisotropic band edge feature can be quantified by the velocity (vmax > 1.7vmin) as 
suggested in Ref. 15. The combination of these genome could create more high-mobility 2D 
semiconductor, particularly including those are not included in Ref. 15 and Ref. 16.  

 

 

Figure 9 Phonon-limited mobility vs. various basic physical features: combined effective mass (a), 
ratio of Born charge to in-plane polarizability (b), longitudinal sound velocity (c), and LO phonon 
frequency (d), and carrier-lattice distance (e; see text for definition and f for illustration) from Ref. 16. 



 

 

The high-mobility (> 1400 cm2 V-1 s-1) 2D semiconductors are highlighted by red (for electron) and 
blue (for hole).  

 

 

7. Computational approaches in progress 

Although the computational approaches of carrier mobility have developed rapidly, they are still 
not perfect. In Figure 10, we compared the experimentally reported mobility and computational 
phonon-limited mobility for several well-studied 2D semiconductors, including MoS2 electron80, WSe2 
hole14, MoS2 hole131 and WS2 electron52. It can be seen that there is still discrepancy between the 
experimental mobility and the computational one. For example, the experimental mobility of MoS2 
hole and WS2 electron is lower than predicted phonon-limited mobility, which could be attributed to 
other extrinsic scattering. However, for MoS2 electron and WSe2 hole, the experimental mobility is 
larger than the phonon-limited mobility, implying the underestimation of phonon-limited mobility. 
Indeed, in realistic devices, there are more effects which might differ the mobility but not well 
incorporated in current computational regime, including free carrier screening for e-ph/e-d scattering, 
environmental dielectric screening, substrate effect on band structure, … etc. In this section, we review 
the recent development of computational approaches for first-principles mobility, which aim to 
accurately simulate the carrier transport in realistic devices.  

 

 
Figure 10 Room temperature mobility comparison between computations (blue) and experimental 
works (red) for several well-studied 2D semiconductor monolayers, including MoS2 (electron)80, WSe2 
(hole)14, MoS2 (hole)131 and WS2 (electron)52. The error bar indicates the highest and lowest mobility 
reported in the literature.  

 

 

7.1. Free carrier screening in EPC 



 

 

 Due to the atomical thickness, the carrier concentration nc in 2D semiconductors can be efficiently 
tuned by electrostatic gate, especially as channels in transistors. The study on free carrier screening 
effect on EPC is of significance because: (1) the nc in the channel of transistor varies from intrinsic 
limit at off-state to as high as 2×1013 cm-2 at on-state. (2) the free carrier doping would effectively 
suppress the long-range scattering like Fröhlich scattering, which is the dominant scattering in many 
polar 2D semiconductors67, and thus is able to strongly affect the phonon-limited mobility in 2D 
semiconductors. As mentioned in Section 6, the phonon-limited hole mobility in intrinsic WSe2 is 
calculated as 578 cm2V-1s-1 while is 1962 cm2V-1s-1 when high nc (1013 cm-2) is considered15,16.  

 There are several computational approaches to include the free carrier screening in e-ph scattering. 
Here we review their efficiency and accuracy, and try to classify them into different levels of 
approximation. Starting from Fermi’s golden rule, the EPC g matrix in a doped semiconductor is: 

 c c c c, , , , , , ,( ) ( ) | ( ) | ( )n n n nng T n T n TV n Tν νψ ψ′ ′ + 〉= 〈 k q q kk q  (52) 

where we explicitly write down the carrier concentration nc and temperature T dependence in 
wavefunction ψ and perturbation potential V. The V can be decomposed into long-range perturbation 
potential VLR and short-range perturbation potential VSR: 

 LR SR
c c c( , ) ( , ) ( , ),V T V n nV Tn Tν ν ν= +q q q  (53) 

by decomposing the bare Coulomb kernel v into long-range part vLR and short-range part vSR: 

 LR SR .v v v= +  (54) 

The common choice of vSR is: 
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in 3D material where G is reciprocal-space Bravais lattice and q is the wave vector in the Brillouin 
zone, and is: 

 SR
, 2 2 [1 ( 1) ],4( )

| |n
n

nv
G

π
+

− −=
+G q

q G



 (56) 

for 2D material in supercell context, where G|| is reciprocal lattice in the material plane and Gn = nπ/L 
along out-of-plane direction and L is range separation length (2L is supercell length). The selection of 
vSR in Eq. 55 and Eq. 56 facilities the explicit approximation expression of VLR (and gLR) for intrinsic 
3D38,43 and 2D semiconductors25,45 while leaves the VSR (gSR) to be determined by first-principles 
calculations. The free carrier screening effect can be treated in different approaches for VLR (gLR) and 
VSR (gSR). In the following, we classify the different computational approaches of free carrier screening 
effect on EPC into three types based on what approximations are used in ψ, VLR and VSR.  

 

(1) Full free carrier screening effect 



 

 

 The free carrier screening effects on ψ, VLR, VSR and thus EPC g matrix can be fully considered in 
a gated DFPT calculation, where additional free carriers in 2D semiconductors are explicitly simulated 
at first-principles level. The compensating charge (which is required by the convergence of 
computation) is confined at the virtual gate, below and/or above the 2D layer. It is found that larger nc 
effectively suppresses Fröhlich scattering from LO phonons in GaSe132 while counter-intuitively leads 
to larger EPC g matrix in multivalley materials like transition metal dichalcogenides (TMDs)133,134. 
The rich phenomena indicate that the free carrier screening effects on EPC is non-trivial. This approach 
explicitly considers the free carriers, brings least approximations but also heavy computational loads. 
This is because: (1) Finer k grid is required for sampling smaller Fermi surface at lower nc, in both 
DFT and DFPT calculations. Usually large nc (≥ 1013 cm-2) is adapted to maintain a reasonable 
computational cost. (2) Individual first-principles calculations are required for simulating 
semiconductors at different nc. (3) The interpolation of EPC g matrix (or interpolation of V) is not 
available, leading to more DFPT calculations involved. Recently, the non-uniform k grid sampling is 
applied to gated DFPT calculations, with more k points sampled around the Fermi surface, which is 
hopeful to speed up the calculations at low-doping regime while keep accuracy134.  

 

(2) First-order approximation: exact VLR 

 In a recent study on doped 3D semiconductor SiC135, the EPC is approximated by neglecting the 
carrier and temperature dependence for ψ, VSR: 
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while keeping the VLR to be exact: VLR=VLR(nc, T). In such a way, the VSR, which is the major cost of 
computations, can be extracted from single calculation on intrinsic semiconductor and repeatedly used 
for mobility calculations at different nc. And the easy-to-evaluate VLR gives free-carrier-screened gLR 
at various nc, which can be added back to gSR (calculated from VSR in intrinsic system) to recover full 
g in doped semiconductor. The similar procedure can be applied to 2D doped semiconductor, as shown 
in Ref. 136. The Ref. 136 found that free carriers significantly change the quadrupolar components in 
VLR via “local-field” components of response function while have little effects on dipoles. With the 
accurate VLR (determined by screened effective mass Z in Ref. 136) obtained from first-principles 
(DFPT) calculations, the EPC g matrix and thus relaxation time with free carrier screening can be 
calculated.  

 

(3) Zero-order approximation: neglecting “local-field” components 

 The calculations on EPC g matrix with free carrier doping can be further simplified by 
approximating VLR via an explicit expression. In addition to assumptions on ψ, VSR (Eq. 57), the VLR 
can be further approximated by25: 
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where ϵM is macroscopic dielectric function in 3D or 2D (ϵ|| in Eq. 29 for 2D). As VLR(nc=0,T=0) can 
be evaluated by explicit expression (see Eq. 29 for 2D and Refs. 38,43 for 3D) and ϵM can be easily  
calculated under random phase approximation (RPA), the VLR(nc,T) and thus gLR(nc,T) can be directly 
calculated by Eq. 58 and Eq. 29 for doped 2D semiconductors with specific nc and T. The above 
approximation in Eq. 58 is referred to “local-field” approximation since it can be related with a “local-
field” approximation in free-carrier-induced independent-particle polarizability Δχ0: 
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 (60) 

for 2D. The Eqs. 59 and 60 imply that the free carrier effect on χ0 is wrapped in an additive Δχ0, which 
can be modeled by free electron gas (see Appendix C for justifications and details). Write Eqs. 59 and 
60 in a uniform form, we have: 

 0 0 0
c c c, 0, 0 ( , ).( , ) ( , ) ,n n nT T Tχ χ χ= + ∆= =q q q  (61) 

Combining the concrete definitions of vSR in Eqs. 55 (for 3D) and 56 (for 2D) and the expressions of 
Δχ0 in Eqs. 59 (for 3D) and 60 (for 2D), it can be seen vSR Δχ0=0, which means the vSR χ0 is invariant 
to carrier concentration nc and temperature T: 

 SR 0 SR 0
c c) , , ) ) , 0, 0).( ( ( (v n v nT Tχ χ= = =q q q q  (62) 

Eq. 62 brings many desirable properties on VSR and VLR. As shown in Appendix B, the VSR is 
determined by (ϵSR)-1 and ϵSR=1-vSRχ0. Therefore, we have ϵSR(nc,T)=ϵSR(nc=0,T=0) and consequently 
VSR(nc,T)=VSR(nc=0,T=0), which means the ϵSR and VSR are both independent of nc and T. The free-
carrier independent ϵSR also occurs in VLR and the only nc-dependent term in VLR is the screened long-
range interaction WLR (see Eq. 78 for definition). The WLR is proportional to 1/ϵM(nc,T) (1/ϵ||(nc,T) for 
2D; see Appendix C for details): 
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and thus for VLR we have similar identity shown in Eq. 58. In conclusion, the “local-field” 

approximation on free-carrier-induced Δχ0 (Eqs. 59 and 60) leads to SR SR
c c( ) ( 0 ), , 0V n V nT T= ==  and 

explicit calculation equation of VLR(nc,T) (Eq. 58), and thus facilitates the evaluation of overall 
perturbation potential V(nc,T). It should be noted that the “local-field” approximation is also adopted 
in Ref. 135 in a different format: c c( , , ) ( , 0, 0)Z Tn nZ T≈ = =q q .  

 Another advantage of the “local-field” approximation depicted above is that it can be efficiently 
incorporated with interpolation approaches. The gSR can be evaluated and interpolated from intrinsic 
2D semiconductors as the VSR is independent of nc. While the gLR(nc,T) can be calculated from gLR(nc=0, 
T=0) and ϵM(nc,T) by explicit expressions (see Eq. 29 and 58) at different nc. The EPC g matrix is 
recovered by combining gSR and gLR, which then gives relaxation time and carrier mobility. In spite of 



 

 

most approximations, the “local-field” approximation captures the most significant free carrier 
screening effect in Fröhlich and piezoelectric scattering and the correct trend of mobility change with 
increasing nc. The gated DFPT calculations considering full free carrier screening effect give 473 
cm2V-1s-1 electron mobility in InSe and 1962 cm2V-1s-1 hole mobility in WSe2 both at nc=1013 cm-2. In 
comparison, the “local-field” approximation gives 444 cm2V-1s-1 and 1556 cm2V-1s-1, which are about 
10-20% lower than that from gated DFPT approach. The mobility difference can be attributed to 
screening effect in local fields not included in the “local-field” approach. Despite the differences, the 
large mobility increase is captured by the “local-field” approach, considering the intrinsic mobilities 
of InSe and WSe2 are 117 and 578 cm2V-1s-1.  

 

7.2. Charged defect and free carrier screening 

 In semiconductors with shallow defects (i.e. defect level is close to CBM or VBM) at room 
temperature, the carrier in defect band would be thermalized and charge the defects, leading to charged 
defect with strong Coulomb potential. The scattering between the carrier and the charged defect 
(denoted as ‘e-cd’ scattering hereafter) is more complicated than the neutral defect (e-d) scattering 
introduced in Section 3.2. First, simulating charged defect in a supercell geometry, especially in 2D 
semiconductor, is still an open challenge. In contrast to simulation of neutral defect, the extra charge 
localized around charged defect has fictitious images due to repetition of the supercell and leads to 
divergence of the Coulomb energy. The commonly used solution for 3D semiconductor like jellium 
compensating charge would lead to artificial bound states in the vacuum for 2D charged defect, 
resulting in erroneous formation energy and band structures137. Secondly, the extrinsic free carrier 
screening plays an essential role in e-cd scattering, as the charged defect has a long-tail Coulomb 
potential which can be efficiently screened by carriers. How these free carriers will interact with 
charged defect and whether via a localized screening (forming charge trapped states or “mobility edge” 
in literatures)138-140 or delocalized screening regime are still elusive.  

 Therefore, a fully accurate calculation of e-cd scattering with free carrier screening effect is still 
not available. The difficulty can be circumvented by substituting the charged defect perturbation 
potential with model potentials. In Ref. 141, the perturbation potential in 3D semiconductor is 
approximated by a point charge Coulomb potential screened by a model dielectric function which takes 
free carriers into account via Lindhard dielectric model. In Ref. [defect xx], a more delicate dielectric 
function, including intrinsic screening from GW method and free carrier screening from Lindhard 
model, is used for charged S/Se vacancy in 2D TMDs. A better approximation involves separating the 
VLR and VSR to better deal with free carrier screening. In Ref. 142, charged defect in 3D Si is simulated 
in supercell without extrinsic free carriers, then a long-range Coulomb potential (denoted as VLR here) 
is extracted and screened by additional free carriers while the remaining short-range potential VSR is 
kept intact. Then the screened VLR and original VSR are combined to give full perturbation potential V 
and thus EDI M matrix. The procedure in Ref. 142 resembles the zero-order approximation for free 
carrier screening in EPC (see section 7.1). However, the charged defect simulation in this approach 
relies on jellium compensating charge which, as mentioned above, is not reliable for 2D semiconductor. 
So its generalization to charged defect in doped 2D semiconductor is still unavailable.  

 



 

 

7.3. Environmental dielectric screening 

 Besides the free carrier screening, the dielectric environment also provides an effective approach 
to screen long-range e-p and e-cd scattering. As shown in Ref. 111, the InSe phonon-limited mobility 
can be improved from 120 to 525 cm2V-1s-1 by tuning environmental dielectric constant and 
suppressing the Fröhlich scattering in InSe. In Ref. 132, a highly doped graphene is proposed as a 
long-range EPC screening layer when separated by a BN monolayer from channel layer GaSe. In such 
heterostructure Graphene/BN/GaSe, the monolayer GaSe phonon-limited mobility is predicted to 
improve from 174 to 500-600 cm2V-1s-1 even with low nc (1011 cm-2). A more prominent example of 
environmental dielectric screening is for e-cd scattering. In experiments, high dielectric constant 
insulators are usually applied to suppress the charged defect scattering and improve carrier mobility in 
2D transistor97,143-145. However, the theoretical studies usually apply model charged defect potential 
146,147. A first-principles calculation of charged defect scattering accurately considering environmental 
dielectric screening is highly in demand, especially for transistor applications.  

 

7.4. Substrate effect on band structure 

 In addition to screening, another factor that leads to the discrepancy between experimentally 
reported carrier mobility and those from computations is the substrate-induced band structure change. 
In calculations, the 2D semiconductor is usually simulated as a free-standing monolayer. However, in 
realistic devices, the 2D semiconductor is usually placed on substrate or encapsulated by other vdW 
2D layers, which introduces variation of band structures. In multivalley semiconductors like TMDs, 
the small band structure variation, especially the energy separation between K and Q valleys (ΔEKQ) 
would significantly change the carrier mobility. In Ref. 148, the 0.4% increase of layer thickness of 
WS2 would result in 36 meV decrease of ΔEKQ and thus 50% decrease of electron mobility. A more 
thorough study134 found that small ΔEKQ has a detrimental effect on phonon-limited mobility for all 
TMDs, not only due to it facilitating intervalley scattering but also strengthening the EPC of intervalley 
scattering.  

However, the calculation of accurate quasi-particle band structure is still a challenge. Ref. 149 
shows that the calculated ΔEKQ depends on the selection of pseudopotential and exchange-correlation 
functional. Higher level of computational methods like G0W0 calculation with full geometry 
relaxation150 or self-consistent GW calculation151,152 are required to reproduce the positive ΔEKQ 
(which means direct bandgap) found in experiments. Moreover, it is found that existence of substrate 
(SiO2 and hBN) will change the screened Coulomb interaction in 2D MoS2 and thus the band structure, 
especially leading to modification of band gap153,154. The ΔEKQ with different substrates is predicted 
to change nearly 100 meV150 for MoS2 while reported to be small154 in experiment on WS2. In general, 
the accurate transport calculation in TMDs with fully considering the correct band structure is still not 
available, which might account for the difference between experiments and computations.  

 

 

Appendix A: Explicit definition of EPC strength D 



 

 

 From the definitions of EPC g matrix and perturbation potential V in Eqs. 25 and 26, the g can be 
written as: 
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Recall that the EPC strength , ) , ) /( (n n n nD g lν ν ν′ ′= qk q k q , therefore the D is: 
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The 
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 is the derivative of Kohn-Sham (KS) potential due to periodic atom displacement, which 

is defined as: 
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where 
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 is the KS potential perturbation due to atom κ in p-th unit cell moving in α direction 

and Rp is the spatial coordinates of p-th unit cell. Combining Eqs. 63 and 64, the D can be written as: 
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which is exactly Eq. 33.  

 

Appendix B: Range separation in EPC perturbation potential V 

 Before considering the range-separation of V, first we briefly review the case without range-
separation. In linear response theory, the screened potential V in materials under static external 
potential Uext is: 

 1 ext
c c, , ) , , , ) ) ,( ( (V n T n T U d− ′ ′ ′= ∫r r r r r  (68) 

where ϵ-1 is inverse dielectric function with explicit dependence to carrier concentration nc and 
temperature T. Written as operators, we have: 

 1 ext .V U−=   (69) 

The ϵ-1 is directly related to the reducible polarizability χ by: 



 

 

 1 ,1 vχ− = +  (70) 

where v is the Coulomb kernel. The ϵ-1 describes the screened potential V under static external potential 
Uext, and χ linearly relates the (induced) charge response ρind with the Uext. The ϵ-1 and χ can be 
calculated by independent-particle polarizability χ0 (Eq. 82) by: 

 0 ,1 vχ= −  (71) 

and a Dyson equation: 

 0 0 .vχ χ χ χ+=  (72) 

The Eqs. 68, 69 and 70 are key equations for linear-response approach for EPC perturbation potential 
V, where Uext can be interpreted as the bare potential induced by nuclei movement in phonons.  

 Ref. 46 shows that if the bare Coulomb kernel v is separated into a short-range (SR) and a long-
range (LR) part: 

 LR SRv v v= +  (73) 

then the perturbation potential V can be correspondingly separated into two parts: 

 LR SR .V V V= +  (74) 

The VSR is: 

 SR SR 1 SR ext( )V v ρ−=   (75) 

where ρext is the “external” charge perturbation potential determined by Uext, and ϵSR is the short-range 
dielectric function: 
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Since the VSR has a similar expression to 1 extV vρ−=   except only partial of v (i.e. vSR) is considered 

in VSR, the VSR can be interpreted as the screened perturbation potential when electron interaction in 
system is vSR. The remaining long-range perturbation potential LR SRV V V= −  can be proved to be (see 
Appendix A in Ref. 46): 

 LR SR 1 LR SR 1 † ext( ) [( ) ] .V W ρ− −=    (77) 

where WLR is long-range screened Coulomb interaction: 

 LR LR SR 1 LR LR LR(1 ) (1 )W v v v vχ χ−= − = +  (78) 



 

 

 In the following, we show that the WLR can be directly related to macroscopic dielectric function 
ϵM(q) (in 3D) and ϵ||(q) (in 2D). In 3D system, by applying range-separation shown in Eq. 55 (i.e. 
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Recall that 1 1 vχ− = + , the WLR in Eq. 77 thus is: 
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where ϵM is the macroscopic dielectric function, defined as the inverse of head term of ϵ-1: 
1

00) 1 /( [ ]M
−=q  =. The ϵM can be obtained by experiments, RPA dielectric function155 or a model 

dielectric function135,142. Ref. 46 shows that in 2D system, the mirror-even component of WLR can be 
approximated by: 
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where ϵ|| is the (macroscopic) in-plane dielectric function for 2D semiconductor46, f(q)=1-tanh(qL/2) 
is range separation function and L is range separation length. From Eqs. 78 and 79, we can see that the 
WLR for 2D and 3D are both determined by macroscopic dielectric function.  

 

Appendix C: Linear response in doped semiconductor and “local-field” approximation 

 In random-phase approximation, the independent-particle polarizability χ0 is given by the Adler-
Wiser equation: 
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where ψnk(ψn’k+q) is electronic state with wavevector k(k+q) and band index n(n’), f0 is Fermi 
distribution, ε is electronic energy. In an intrinsic semiconductor (i.e. carrier concentration nc and 
temperature T are assumed to be low enough), the fermi level is located between the band gap and the 
occupation of state is either 1 (valance band) or 0 (conduction band). Therefore, the χ0 is totally 
contributed by interband components, where n=v, n’=c (n is from valance band and n’ is from 
conduction band) or n=c, n’=v (n from conduction and n’ from valence band). The χ0 is: 
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 In a doped semiconductor, the Fermi level is shifted closer to CBM or VBM, leading to partial 
occupation of electrons (holes) in conduction (valence) bands. Intraband components occur in χ0 as 



 

 

0 0 0( ) )(n nf f ′− + ≠k k q  for certain k and q. By applying “rigid-band model”, we assume the doping is 

small and insufficient to change ψnk and εnk: 

 c

c

| ( , ) |
( , ) .

,n n

n n

n T
n T

ψ ψ
ε ε

〉 = 〉
=

k k

k k

 (84) 

So the χ0 for a doped semiconductor can be written as: 

 0 0 0 0
inter intra( , , ) ( , , 0) ( , , ) ( , , ),0c c c cn T n T n T n Tχ χ χ χ= = + ∆ += ∆q q q q  (85) 

where 0
interχ∆  indicates the change of interband components due to the change of nc and T and 0

intraχ∆  

is the additional intraband components introduced by nc and T. Usually 0
inter 0χ =∆  is assumed since 

the change of f0 occurs in a small region (around CBM or VBM) in whole BZ, which leads to small 

change of interband χ0 integrating over whole BZ. However, the 0
interχ∆  leads to a remarkable change 

of χ0, especially at zone center, which is due to the vanishing denominator (εnk-εn’k+q) as q→0. As 

discussed in Ref. 29, the 0
interχ∆  would change the q-dependence of head and wings term in χ0. In 

intrinsic semiconductor, the head of χ0 scales with |q|2 and wings are linear with |q|. While in doped 
semiconductor or metal, the matrix elements of χ0 have finite limit at q=0.  

 In “local-field” approximation of free-carrier screening in χ0, the head term of 0
interχ∆ = is only 

considered and can be further simplified by dielectric models. The 0
interχ∆  (written as Δχ0 hereafter) 

can be calculated as: 
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where subscript ‘3D/2D’ indicates dimensions of the system. In practical calculations, the macroscopic 
dielectric function ϵM(q) (and ϵ||(q)) for intrinsic 3D (2D) semiconductor is usually approximated by: 
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where 3D
∞  is dielectric constant for 3D semiconductor, 2D 2Dˆ ˆ)( ˆα = ⋅ ⋅q q α q  is q-direction dependent 

2D polarizability and α2D is 2×2 polarizability tensor for 2D semiconductor. Using the identity 



 

 

01 vχ= − = and neglecting the local field (i.e. 1
c c, , ) 1 / , , )( (n T n T− ≈q q  =), we have approximate 

equations to evaluate ϵM(q) (and ϵ||(q)) for doped semiconductor: 
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The 0
3D/2D c( , ),n Tχ∆ q  can be calculated by real band structures135 via Eq. 86 or from parabolic band 

structure156 with effective mass m*.  

 

Appendix D: Mobilities of 2D semiconductors 

Materials (e for electrons and h 
for holes) 

Measured mobility (in unit of 
cm2V-1s-1; thickness is 

indicated in bracket, otherwise 
monolayer is implied; 

mobilities are listed in order of 
published date, from latest to 

earliest) 

Calculated mobility (in unit of 
cm2V-1s-1; carrier concentration 
is indicated in bracket in unit 
of 1013 cm-2, otherwise low 
carrier concentration limit is 

implied; mobilities considering 
dipolar and quadrupolar 
scattering are boldened; 

mobilities are listed in order of 
reported date, from latest to 

earliest) 

MoS2 (e)        

107±16 (bilayer)[0], 80±20[0], 
55[0], 167±20[6], 260 

(18.5nm)[4], 125[3], 51[2], 
36±22[1], 470 (50nm)[7] 

136 [77], 172(1)[78], 136[78], 
168[7], 145[10], 183[6], 

144(5)[5], 400[4], 150[3], 
130[2], 400[1] 

MoS2 (h)        25±15[5], 480 (50nm)[7] 69 [77], 270[9] 
MoSe2 (e)       50[15] 101[10], 88[6], 25[9] 
MoSe2 (h)       N.A. 147 [77], 90[9] 

WS2 (e)         
130±70[1], 105±45[10], 

83±10[6], 54±29[9], 50±10[8] 
197 [77], 215[10], 246[6], 

60(5)[8], 320[9] 
WS2 (h)         N.A. 919 [77], 540[9] 
WSe2 (e)        14±2[0], 30[13] 46[10], 53[6], 25(5)[8], 30[9] 

WSe2 (h)        
578±78[11], 150[12], 140[14], 

180[13] 
578 [77], 1962(1)[16], 270[9] 

In2Se2 (e)      30[22], 1000 (5.4nm)[21] 
444(1)[78], 117[78], 

473(1)[16], 18[6], 118[14], 
110[12], 314[11], 120[13] 



 

 

P4 (h)          
984 (10nm)[18], 243±43 

(5nm)[17] 
480 [77], 1386(1)[16] 

P4 (e)          N.A. 248 [77], 303[6] 
AsP (e)         83 (37nm)[20] N.A. 

Bi2O2Se (e)     300±150 (9.8nm)[29] N.A. 
HfSe2 (e)       3 (2nm)[32] 2[6] 
In2Se3 (e)      400±88 (79nm)[26] N.A. 
MoTe2 (e)       40 (28nm)[16] 50[10], 41[6] 
PdSe2 (e)       158 (12nm)[25] 104 [77], 82[6] 
PtSe2 (e)       210 (11nm)[24] 39[6] 
ReS2 (e)        16 (4.5nm)[31], 1±1[30] N.A. 
ReSe2 (e)       6 (7nm)[31] N.A. 
SnSe (e)        254 (10nm)[23] N.A. 
As4 (h)         48±3[19] 219 [77] 
AsP (h)         79 (37nm)[20] N.A. 

MoTe2 (h)       56 (28nm)[16] 81 [77] 
Nb2SiTe4 (h)    98 (7.5nm)[27] N.A. 

ReSe2 (h)       5 (7nm)[31] N.A. 
Te (h)          535±125 (16nm)[30] N.A. 

Ag2Te2 (e)      N.A. 50 [77] 
Al2Ge2Se2 (e)   N.A. 421 [77] 
Al2Ge2Te2 (e)   N.A. 2023 [77] 
Al2MgSe= (e)    N.A. 217 [77] 

AlBi (e)        N.A. 2835 [77] 
AlLiTe2 (e)     N.A. 425(1)[16] 

As2 (e)         N.A. 56 [77] 
As4 (e)         N.A. 71 [77] 

Au2Te2 (e)      N.A. 51 [77] 
B4C (e)         N.A. 2140[21], 2370[21] 
BAs (e)         N.A. 1524 [77] 
BBi (e)         N.A. 523 [77] 
BP (e)          N.A. 1151 [77] 

BSb (e)         N.A. 5167 [77] 
Bi2Se3 (e)      N.A. 345(1)[16] 

Bi2SeTe2 (e)    N.A. 1100(1)[16] 
BiClTe (e)      N.A. 384(1)[16] 
Cd2S2 (e)       N.A. 138 [77] 
Cd2Te2 (e)      N.A. 248 [77] 
F2Si2 (e)       N.A. 760 [77] 

Ga2Ge2Te2 (e)   N.A. 1996 [77] 
Ga2O2 (e)       N.A. 176 [77] 



 

 

Ga2S2 (e)       N.A. 7[6] 

Ga2Se2 (e)      N.A. 
172 [77], 199 [77], 594(1)[16], 

39[6] 
Ga2Si2S2 (e)    N.A. 178 [77] 
Ga2Si2Se2 (e)   N.A. 260 [77] 

Ga2Te2 (e)      N.A. 20[6] 
GaAs (e)        N.A. 812 [77] 
GaN (e)         N.A. 510 [77] 
GaP (e)         N.A. 408 [77] 

GaSb (e)        N.A. 1809 [77] 
Ge2H2 (e)       N.A. 2791 [77], 2380[18] 
Ge2Te2 (e)      N.A. 47 [77] 
HfS2 (e)        N.A. 1[6] 
In2O2 (e)       N.A. 188 [77] 
In2S2 (e)       N.A. 10[6] 
In2Te2 (e)      N.A. 183 [77], 194 [77], 28[6] 
InAs (e)        N.A. 1001 [77] 
InN (e)         N.A. 2106 [77] 
InP (e)         N.A. 542 [77] 

Mo2Cl6 (e)      N.A. 74 [77] 
MoO2 (e)        N.A. 200 [77] 

MoSi2N4 (e)     N.A. 87[17] 
Os2S4 (e)       N.A. 150 [77] 

P2 (e)          N.A. 51[6] 
Pb2Te2 (e)      N.A. 170 [77] 
PbTe (e)        N.A. 147 [77] 
PtS2 (e)        N.A. 24[6] 
PtTe2 (e)       N.A. 31[6] 
S2Si (e)        N.A. 67 [77] 
Sb2 (e)         N.A. 49 [77] 

Sb2Se3 (e)      N.A. 88 [77] 
Sb2SeTe2 (e)    N.A. 252 [77], 719(1)[16] 
Sb2Te3 (e)      N.A. 212 [77] 
Se2Si (e)       N.A. 55 [77] 
Se2Si2 (e)      N.A. 33 [77] 
Si2Br2 (e)      N.A. 164 [77] 
Si2Cl2 (e)      N.A. 198 [77] 
Si2H2 (e)       N.A. 24[20] 
Sn2H2 (e)       N.A. 3227 [77] 
Sn2Se2 (e)      N.A. 70[19] 
Sn2Te2 (e)      N.A. 120 [77] 



 

 

SnS2 (e)        N.A. 50[22], 6[6] 
SnSe2 (e)       N.A. 8[6] 
Tl2Te2 (e)      N.A. 413 [77], 494 [77] 
WO2 (e)         N.A. 232 [77] 

WSi2N4 (e)      N.A. 119[17] 
WTe2 (e)        N.A. 139 [77] 

Zn2Se2 (e)      N.A. 170 [77] 
Zn2Te2 (e)      N.A. 308 [77] 
Zr2Te2 (e)      N.A. 137 [77] 
ZrS2 (e)        N.A. 1[6] 
ZrSe2 (e)       N.A. 1[6] 
Al2O2 (h)       N.A. 258 [77] 
AlBi (h)        N.A. 3446 [77] 
As2 (h)         N.A. 1216 [77], 790[15] 

Au2I2 (h)       N.A. 326(1)[16] 
Au2Te2 (h)      N.A. 248 [77] 

BAs (h)         N.A. 2439 [77] 
BBi (h)         N.A. 548 [77] 
BP (h)          N.A. 1921 [77] 

BSb (h)         N.A. 6935 [77] 
Cl2Ga2Te2 (h)   N.A. 327(1)[16] 

F2Si2 (h)       N.A. 76 [77] 
GaAs (h)        N.A. 16 [77] 
GaSb (h)        N.A. 1080 [77] 
Ge2H2 (h)       N.A. 995 [77] 
Ge2Te2 (h)      N.A. 234 [77] 
GeTe (h)        N.A. 172 [77] 

Hf2CO2 (h)      N.A. 190 [77] 
HfBr2 (h)       N.A. 588 [77] 

HfBrCl (h)      N.A. 240 [77] 
HfBrI (h)       N.A. 805 [77] 
HfCl2 (h)       N.A. 277 [77] 
HfClI (h)       N.A. 482 [77] 
HfI2 (h)        N.A. 4782 [77] 
InAs (h)        N.A. 372 [77] 

Ir2Br2O2 (h)    N.A. 309 [77] 
Ir2Br2S2 (h)    N.A. 488 [77] 
Ir2Cl2O2 (h)    N.A. 250 [77] 
Ir2Cl2S2 (h)    N.A. 401 [77] 
Ir2I2S2 (h)     N.A. 578 [77] 
Mo2Cl6 (h)      N.A. 78 [77] 



 

 

Pb2Te2 (h)      N.A. 161 [77] 
PtTe2 (h)       N.A. 337 [77] 
S2Si (h)        N.A. 31 [77] 
Sb2 (h)         N.A. 2044 [77], 1330[15] 

Se2Si (h)       N.A. 55 [77] 
Si2Cl2 (h)      N.A. 406 [77] 
Si2H2 (h)       N.A. 101[20] 
Sn2H2 (h)       N.A. 2063 [77] 
Sn2Te2 (h)      N.A. 238 [77] 

Ti2Br2N2 (h)    N.A. 156 [77] 
Ti2CO2 (h)      N.A. 347 [77] 
TiBr2 (h)       N.A. 753 [77] 
TiBrI (h)       N.A. 451 [77] 
TiI2 (h)        N.A. 884 [77] 

WSSe (h)        N.A. 515 [77] 
WSeTe (h)       N.A. 211 [77] 
WTe2 (h)        N.A. 349 [77] 

Zr2CO2 (h)      N.A. 118 [77] 
ZrBr2 (h)       N.A. 766 [77] 

ZrBrCl (h)      N.A. 476 [77] 
ZrBrI (h)       N.A. 904 [77] 
ZrCl2 (h)       N.A. 370 [77] 
ZrClI (h)       N.A. 337 [77] 
ZrI2 (h)        N.A. 5138 [77] 

 

 

 

 

 

 

 

 
1 Shengwei Jiang, Lizhong Li, Zefang Wang, Kin Fai Mak, and Jie Shan,  Nature 

Nanotech 13 (7), 549 (2018). 
2 Ying Wang, Jun Xiao, Hanyu Zhu, Yao Li, Yousif Alsaid, King Yan Fong, Yao Zhou, 

Siqi Wang, Wu Shi, Yuan Wang, Alex Zettl, Evan J. Reed, and Xiang Zhang,  Nature 550 
(7677), 487 (2017). 

3 Shaoliang Yu, Xiaoqin Wu, Yipei Wang, Xin Guo, and Limin Tong,  Adv. Mater. 29 
(14), 1606128 (2017). 



 

 

4 Deji Akinwande, Nicholas Petrone, and James Hone,  Nat Commun 5 (1), 5678 
(2014). 

5 Gwan-Hyoung Lee, Young-Jun Yu, Xu Cui, Nicholas Petrone, Chul-Ho Lee, Min 
Sup Choi, Dae-Yeong Lee, Changgu Lee, Won Jong Yoo, Kenji Watanabe, Takashi Taniguchi, 
Colin Nuckolls, Philip Kim, and James Hone,  ACS Nano 7 (9), 7931 (2013). 

6 Sojung Kang, Donghun Lee, Jonghun Kim, Andrea Capasso, Hee Seong Kang, Jin-
Woo Park, Chul-Ho Lee, and Gwan-Hyoung Lee,  2D Mater. 7 (2), 022003 (2020). 

7 John R. Schaibley, Hongyi Yu, Genevieve Clark, Pasqual Rivera, Jason S. Ross, Kyle 
L. Seyler, Wang Yao, and Xiaodong Xu,  Nature Reviews Materials 1 (11), 1 (2016). 

8 Chuanshou Wang, Lu You, David Cobden, and Junling Wang,  Nature Materials, 1 
(2023). 

9 Manish Chhowalla, Debdeep Jena, and Hua Zhang,  Nature Reviews Materials 1 
(11), 16052 (2016). 

10 Yuan Liu, Xidong Duan, Hyeon-Jin Shin, Seongjun Park, Yu Huang, and Xiangfeng 
Duan,  Nature 591 (7848), 43 (2021). 

11 Sheng-Kai Su, Chih-Piao Chuu, Ming-Yang Li, Chao-Ching Cheng, H. S. Philip 
Wong, and Lain-Jong Li,  Small Structures, 2000103 (2021). 

12 Mirko Poljak, Vladimir Jovanovic, Dalibor Grgec, and Tomislav Suligoj,  IEEE 
Trans. Electron Devices 59 (6), 1636 (2012). 

13 H Sakaki, T Noda, K Hirakawa, M Tanaka, and T Matsusue,  Appl. Phys. Lett. 51 
(23), 1934 (1987). 

14 Yang Liu, Song Liu, Zhiying Wang, Baichang Li, Kenji Watanabe, Takashi Taniguchi, 
Won Jong Yoo, and James Hone,  Nature Electronics 5 (9), 579 (2022). 

15 Thibault Sohier, Marco Gibertini, and Nicola Marzari,  arXiv:2007.16110 [cond-
mat] (2020). 

16 Chenmu Zhang, Ruoyu Wang, Himani Mishra, and Yuanyue Liu,  (2022), p. 
arXiv:2208.10663. 

17 Gautam Gaddemane, William G. Vandenberghe, Maarten L. Van de Put, Edward 
Chen, and Massimo V. Fischetti,  Journal of Applied Physics 124 (4), 044306 (2018). 

18 Sanjay Gopalan, Gautam Gaddemane, Maarten L. Van de Put, and Massimo V. 
Fischetti,  Materials 12 (24), 4210 (2019). 

19 Chenmu Zhang, Long Cheng, and Yuanyue Liu,  Phys. Rev. B 102 (11), 115405 
(2020). 

20 Adam S. Jermyn, Giulia Tagliabue, Harry A. Atwater, William A. Goddard, Prineha 
Narang, and Ravishankar Sundararaman,  Phys. Rev. Materials 3 (7), 075201 (2019). 

21 Georgios Varnavides, Adam S. Jermyn, Polina Anikeeva, and Prineha Narang,  
Phys. Rev. B 100 (11), 115402 (2019). 

22 Samuel Poncé, Elena R. Margine, and Feliciano Giustino,  Phys. Rev. B 97 (12), 
121201 (2018). 

23 MSP Lucas,  Journal of Applied Physics 36 (5), 1632 (1965). 
24 Romain Claes, Guillaume Brunin, Matteo Giantomassi, Gian-Marco Rignanese, and 

Geoffroy Hautier,  Phys. Rev. B 106 (9), 094302 (2022). 



 

 

25 Chenmu Zhang and Yuanyue Liu,  Phys. Rev. B 106 (11) (2022). 
26 Feliciano Giustino,  Rev. Mod. Phys. 89 (1), 015003 (2017). 
27 Marios Zacharias and Feliciano Giustino,  Phys. Rev. Research 2 (1), 013357 

(2020). 
28 Bartomeu Monserrat,  J. Phys.: Condens. Matter 30 (8), 083001 (2018). 
29 Robert M. Pick, Morrel H. Cohen, and Richard M. Martin,  Phys. Rev. B 1 (2), 910 

(1970). 
30 Andrew A. Quong and Barry M. Klein,  Phys. Rev. B 46 (17), 10734 (1992). 
31 P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni,  Phys Rev B Condens 

Matter 43 (9), 7231 (1991). 
32 Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso, and Paolo Giannozzi,  Rev. 

Mod. Phys. 73 (2), 515 (2001). 
33 Xavier Gonze,  Phys. Rev. A 52 (2), 1096 (1995). 
34 Jin-Jian Zhou and Marco Bernardi,  Phys. Rev. B 94 (20), 201201 (2016). 
35 Thibault Sohier, Davide Campi, Nicola Marzari, and Marco Gibertini,  Phys. Rev. 

Materials 2 (11), 114010 (2018). 
36 Thibault Sohier, Matteo Calandra, and Francesco Mauri,  Phys. Rev. B 96 (7) 

(2017). 
37 Guillaume Brunin, Henrique Pereira Coutada Miranda, Matteo Giantomassi, Miquel 

Royo, Massimiliano Stengel, Matthieu J. Verstraete, Xavier Gonze, Gian-Marco Rignanese, 
and Geoffroy Hautier,  Phys. Rev. B 102 (9), 094308 (2020). 

38 Guillaume Brunin, Henrique Pereira Coutada Miranda, Matteo Giantomassi, Miquel 
Royo, Massimiliano Stengel, Matthieu J. Verstraete, Xavier Gonze, Gian-Marco Rignanese, 
and Geoffroy Hautier,  Phys. Rev. Lett. 125 (13), 136601 (2020). 

39 Feliciano Giustino, Marvin L. Cohen, and Steven G. Louie,  Phys. Rev. B 76 (16), 
165108 (2007). 

40 Samuel Poncé, Francesco Macheda, Elena Roxana Margine, Nicola Marzari, Nicola 
Bonini, and Feliciano Giustino,  Phys. Rev. Research 3 (4), 043022 (2021). 

41 Chenmu Zhang and Yuanyue Liu,  (arXiv, 2022). 
42 Carla Verdi and Feliciano Giustino,  Phys. Rev. Lett. 115 (17), 176401 (2015). 
43 Jinsoo Park, Jin-Jian Zhou, Vatsal A. Jhalani, Cyrus E. Dreyer, and Marco Bernardi,  

Phys. Rev. B 102 (12), 125203 (2020). 
44 Vatsal A. Jhalani, Jin-Jian Zhou, Jinsoo Park, Cyrus E. Dreyer, and Marco Bernardi,  

Phys. Rev. Lett. 125 (13), 136602 (2020). 
45 Samuel Poncé, Miquel Royo, Marco Gibertini, Nicola Marzari, and Massimiliano 

Stengel, Report No. arXiv:2207.10187, 2022. 
46 Miquel Royo and Massimiliano Stengel,  Phys. Rev. X 11 (4), 041027 (2021). 
47 Matthew H Evans, X-G Zhang, JD Joannopoulos, and Sokrates T Pantelides,  Phys. 

Rev. Lett. 95 (10), 106802 (2005). 
48 Kristen Kaasbjerg, Johannes H. J. Martiny, Tony Low, and Antti-Pekka Jauho,  Phys. 

Rev. B 96 (24), 241411 (2017). 



 

 

49 Vincenzo Lordi, Paul Erhart, and Daniel Åberg,  Phys. Rev. B 81 (23), 235204 
(2010). 

50 I. Te Lu, Jin-Jian Zhou, and Marco Bernardi,  Phys. Rev. Materials 3 (3), 033804 
(2019). 

51 I. Te Lu, Jinsoo Park, Jin-Jian Zhou, and Marco Bernardi,  npj Comput Mater 6 (1), 
17 (2020). 

52 Yi Wan, En Li, Zhihao Yu, Jing-Kai Huang, Ming-Yang Li, Ang-Sheng Chou, Yi-Te 
Lee, Chien-Ju Lee, Hung-Chang Hsu, Qin Zhan, Areej Aljarb, Jui-Han Fu, Shao-Pin Chiu, 
Xinran Wang, Juhn-Jong Lin, Ya-Ping Chiu, Wen-Hao Chang, Han Wang, Yumeng Shi, Nian 
Lin, Yingchun Cheng, Vincent Tung, and Lain-Jong Li,  Nat Commun 13 (1), 4149 (2022). 

53 Daniel Rhodes, Sang Hoon Chae, Rebeca Ribeiro-Palau, and James Hone,  Nature 
Materials 18 (6), 541 (2019). 

54 Uri Vool, Assaf Hamo, Georgios Varnavides, Yaxian Wang, Tony X. Zhou, Nitesh 
Kumar, Yuliya Dovzhenko, Ziwei Qiu, Christina A. C. Garcia, Andrew T. Pierce, Johannes 
Gooth, Polina Anikeeva, Claudia Felser, Prineha Narang, and Amir Yacoby,  Nature Physics 
17 (11), 1216 (2021). 

55 Philip J. W. Moll, Pallavi Kushwaha, Nabhanila Nandi, Burkhard Schmidt, and 
Andrew P. Mackenzie,  Science 351 (6277), 1061 (2016). 

56 Jesse Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, Achim Harzheim, Andrew 
Lucas, Subir Sachdev, Philip Kim, Takashi Taniguchi, Kenji Watanabe, Thomas A. Ohki, and 
Kin Chung Fong,  Science 351 (6277), 1058 (2016). 

57 Georgios Varnavides, Yaxian Wang, Philip J. W. Moll, Polina Anikeeva, and Prineha 
Narang,  Phys. Rev. Materials 6 (4), 045002 (2022). 

58 R. S. Nair and P. J. Kelly,  Phys. Rev. B 103 (19), 195406 (2021). 
59 V. Timoshevskii, Youqi Ke, Hong Guo, and D. Gall,  Journal of Applied Physics 

103 (11), 113705 (2008). 
60 Ferdows Zahid, Youqi Ke, Daniel Gall, and Hong Guo,  Phys. Rev. B 81 (4), 045406 

(2010). 
61 K. Xia, M. Zwierzycki, M. Talanana, P. J. Kelly, and G. E. W. Bauer,  Phys. Rev. B 

73 (6), 064420 (2006). 
62 Sushant Kumar, Christian Multunas, Benjamin Defay, Daniel Gall, and Ravishankar 

Sundararaman,  Phys. Rev. Materials 6 (8), 085002 (2022). 
63 Kristen Kaasbjerg, Kristian S. Thygesen, and Antti-Pekka Jauho,  Phys. Rev. B 87 

(23), 235312 (2013). 
64 Shin-ichi Takagi, Akira Toriumi, Masao Iwase, and Hiroyuki Tango,  IEEE Trans. 

Electron Devices 41 (12), 2357 (1994). 
65 Shin-ichi Takagi, Akira Toriumi, Masao Iwase, and Hiroyuki Tango,  IEEE Trans. 

Electron Devices 41 (12), 2363 (1994). 
66 Kristen Kaasbjerg, Kristian S. Thygesen, and Karsten W. Jacobsen,  Phys. Rev. B 

85 (11) (2012). 
67 Long Cheng and Yuanyue Liu,  J. Am. Chem. Soc. 140 (51), 17895 (2018). 



 

 

68 Pierluigi Cudazzo, Ilya V. Tokatly, and Angel Rubio,  Phys. Rev. B 84 (8), 085406 
(2011). 

69 Tian Tian, Declan Scullion, Dale Hughes, Lu Hua Li, Chih-Jen Shih, Jonathan 
Coleman, Manish Chhowalla, and Elton J. G. Santos,  Nano Lett. 20 (2), 841 (2020). 

70 Thibault Sohier, Marco Gibertini, Matteo Calandra, Francesco Mauri, and Nicola 
Marzari,  Nano Lett. 17 (6), 3758 (2017). 

71 Likai Li, Yijun Yu, Guo Jun Ye, Qingqin Ge, Xuedong Ou, Hua Wu, Donglai Feng, 
Xian Hui Chen, and Yuanbo Zhang,  Nature Nanotech 9 (5), 372 (2014). 

72 Denis A. Bandurin, Anastasia V. Tyurnina, Geliang L. Yu, Artem Mishchenko, Viktor 
Zólyomi, Sergey V. Morozov, Roshan Krishna Kumar, Roman V. Gorbachev, Zakhar R. 
Kudrynskyi, Sergio Pezzini, Zakhar D. Kovalyuk, Uli Zeitler, Konstantin S. Novoselov, Amalia 
Patanè, Laurence Eaves, Irina V. Grigorieva, Vladimir I. Fal'ko, Andre K. Geim, and Yang Cao,  
Nature Nanotech 12 (3), 223 (2017). 

73 Yan Wang, Jong Chan Kim, Yang Li, Kyung Yeol Ma, Seokmo Hong, Minsu Kim, 
Hyeon Suk Shin, Hu Young Jeong, and Manish Chhowalla,  Nature (2022). 

74 Lei Liu, Taotao Li, Liang Ma, Weisheng Li, Si Gao, Wenjie Sun, Ruikang Dong, Xilu 
Zou, Dongxu Fan, Liangwei Shao, Chenyi Gu, Ningxuan Dai, Zhihao Yu, Xiaoqing Chen, 
Xuecou Tu, Yuefeng Nie, Peng Wang, Jinlan Wang, Yi Shi, and Xinran Wang,  Nature 605 
(7908), 69 (2022). 

75 Y. Wang, T. Sohier, K. Watanabe, T. Taniguchi, M. J. Verstraete, and E. Tutuc,  Appl. 
Phys. Lett. 118 (10), 102105 (2021). 

76 Pin-Chun Shen, Cong Su, Yuxuan Lin, Ang-Sheng Chou, Chao-Ching Cheng, Ji-
Hoon Park, Ming-Hui Chiu, Ang-Yu Lu, Hao-Ling Tang, Mohammad Mahdi Tavakoli, 
Gregory Pitner, Xiang Ji, Zhengyang Cai, Nannan Mao, Jiangtao Wang, Vincent Tung, Ju Li, 
Jeffrey Bokor, Alex Zettl, Chih- I. Wu, Tomás Palacios, Lain-Jong Li, and Jing Kong,  Nature 
593 (7858), 211 (2021). 

77 Taotao Li, Wei Guo, Liang Ma, Weisheng Li, Zhihao Yu, Zhen Han, Si Gao, Lei Liu, 
Dongxu Fan, Zixuan Wang, Yang Yang, Weiyi Lin, Zhongzhong Luo, Xiaoqing Chen, 
Ningxuan Dai, Xuecou Tu, Danfeng Pan, Yagang Yao, Peng Wang, Yuefeng Nie, Jinlan Wang, 
Yi Shi, and Xinran Wang,  Nature Nanotech 16 (11), 1201 (2021). 

78 Mingxing Zhao, Wei Xia, Yang Wang, Man Luo, Zhen Tian, Yanfeng Guo, Weida 
Hu, and Jiamin Xue,  ACS Nano 13 (9), 10705 (2019). 

79 Enxiu Wu, Yuan Xie, Jing Zhang, Hao Zhang, Xiaodong Hu, Jing Liu, Chongwu 
Zhou, and Daihua Zhang,  Science Advances 5 (5), eaav3430 (2019). 

80 Y. Wang, J. C. Kim, R. J. Wu, J. Martinez, X. Song, J. Yang, F. Zhao, A. Mkhoyan, 
H. Y. Jeong, and M. Chhowalla,  Nature 568 (7750), 70 (2019). 

81 Marc-Antoine Stoeckel, Marco Gobbi, Tim Leydecker, Ye Wang, Matilde Eredia, 
Sara Bonacchi, Roberto Verucchi, Melanie Timpel, Marco Vittorio Nardi, Emanuele Orgiu, and 
Paolo Samorì,  ACS Nano 13 (10), 11613 (2019). 

82 Mengwei Si, Atanu K. Saha, Shengjie Gao, Gang Qiu, Jingkai Qin, Yuqin Duan, Jie 
Jian, Chang Niu, Haiyan Wang, Wenzhuo Wu, Sumeet K. Gupta, and Peide D. Ye,  Nature 
Electronics 2 (12), 580 (2019). 



 

 

83 Mianzeng Zhong, Qinglin Xia, Longfei Pan, Yuqing Liu, Yabin Chen, Hui-Xiong 
Deng, Jingbo Li, and Zhongming Wei,  Advanced Functional Materials 28 (43), 1802581 
(2018). 

84 Shaofan Yuan, Chenfei Shen, Bingchen Deng, Xiaolong Chen, Qiushi Guo, Yuqiang 
Ma, Ahmad Abbas, Bilu Liu, Ralf Haiges, Claudia Ott, Tom Nilges, Kenji Watanabe, Takashi 
Taniguchi, Ofer Sinai, Doron Naveh, Chongwu Zhou, and Fengnian Xia,  Nano Lett. 18 (5), 
3172 (2018). 

85 Shengxue Yang, Yuan Liu, Minghui Wu, Li-Dong Zhao, Zhaoyang Lin, Hung-chieh 
Cheng, Yiliu Wang, Chengbao Jiang, Su-Huai Wei, Li Huang, Yu Huang, and Xiangfeng Duan,  
Nano Res. 11 (1), 554 (2018). 

86 Yixiu Wang, Gang Qiu, Ruoxing Wang, Shouyuan Huang, Qingxiao Wang, Yuanyue 
Liu, Yuchen Du, William A. Goddard, Moon J. Kim, Xianfan Xu, Peide D. Ye, and Wenzhuo 
Wu,  Nature Electronics 1 (4), 228 (2018). 

87 Yuan Liu, Jian Guo, Enbo Zhu, Lei Liao, Sung-Joon Lee, Mengning Ding, Imran 
Shakir, Vincent Gambin, Yu Huang, and Xiangfeng Duan,  Nature 557 (7707), 696 (2018). 

88 Han-Ching Chang, Chien-Liang Tu, Kuang- I. Lin, Jiang Pu, Taishi Takenobu, 
Chien-Nan Hsiao, and Chang-Hsiao Chen,  Small 14 (39), 1802351 (2018). 

89 Yuda Zhao, Jingsi Qiao, Zhihao Yu, Peng Yu, Kang Xu, Shu Ping Lau, Wu Zhou, 
Zheng Liu, Xinran Wang, Wei Ji, and Yang Chai,  Adv. Mater. 29 (5), 1604230 (2017). 

90 Jinxiong Wu, Hongtao Yuan, Mengmeng Meng, Cheng Chen, Yan Sun, Zhuoyu Chen, 
Wenhui Dang, Congwei Tan, Yujing Liu, Jianbo Yin, Yubing Zhou, Shaoyun Huang, H. Q. Xu, 
Yi Cui, Harold Y. Hwang, Zhongfan Liu, Yulin Chen, Binghai Yan, and Hailin Peng,  Nature 
Nanotech 12 (6), 530 (2017). 

91 Akinola D. Oyedele, Shize Yang, Liangbo Liang, Alexander A. Puretzky, Kai Wang, 
Jingjie Zhang, Peng Yu, Pushpa R. Pudasaini, Avik W. Ghosh, Zheng Liu, Christopher M. 
Rouleau, Bobby G. Sumpter, Matthew F. Chisholm, Wu Zhou, Philip D. Rack, David B. 
Geohegan, and Kai Xiao,  J. Am. Chem. Soc. 139 (40), 14090 (2017). 

92 Michal J. Mleczko, Chaofan Zhang, Hye Ryoung Lee, Hsueh-Hui Kuo, Blanka 
Magyari-Köpe, Robert G. Moore, Zhi-Xun Shen, Ian R. Fisher, Yoshio Nishi, and Eric Pop,  
Science Advances 3 (8), e1700481 (2017). 

93 Enze Zhang, Peng Wang, Zhe Li, Haifeng Wang, Chaoyu Song, Ce Huang, Zhi-Gang 
Chen, Lei Yang, Kaitai Zhang, Shiheng Lu, Weiyi Wang, Shanshan Liu, Hehai Fang, Xiaohao 
Zhou, Hugen Yan, Jin Zou, Xiangang Wan, Peng Zhou, Weida Hu, and Faxian Xiu,  ACS 
Nano 10 (8), 8067 (2016). 

94 Zhihao Yu, Zhun-Yong Ong, Yiming Pan, Yang Cui, Run Xin, Yi Shi, Baigeng Wang, 
Yun Wu, Tangsheng Chen, Yong-Wei Zhang, Gang Zhang, and Xinran Wang,  Adv. Mater. 28 
(3), 547 (2016). 

95 Hema C. P. Movva, Amritesh Rai, Sangwoo Kang, Kyounghwan Kim, Babak 
Fallahazad, Takashi Taniguchi, Kenji Watanabe, Emanuel Tutuc, and Sanjay K. Banerjee,  
ACS Nano 9 (10), 10402 (2015). 

96 Erfu Liu, Yajun Fu, Yaojia Wang, Yanqing Feng, Huimei Liu, Xiangang Wan, Wei 
Zhou, Baigeng Wang, Lubin Shao, Ching-Hwa Ho, Ying-Sheng Huang, Zhengyi Cao, Laiguo 



 

 

Wang, Aidong Li, Junwen Zeng, Fengqi Song, Xinran Wang, Yi Shi, Hongtao Yuan, Harold Y. 
Hwang, Yi Cui, Feng Miao, and Dingyu Xing,  Nat Commun 6 (1), 6991 (2015). 

97 Yang Cui, Run Xin, Zhihao Yu, Yiming Pan, Zhun-Yong Ong, Xiaoxu Wei, Junzhuan 
Wang, Haiyan Nan, Zhenhua Ni, Yun Wu, Tangsheng Chen, Yi Shi, Baigeng Wang, Gang 
Zhang, Yong-Wei Zhang, and Xinran Wang,  Adv. Mater. 27 (35), 5230 (2015). 

98 Xu Cui, Gwan-Hyoung Lee, Young Duck Kim, Ghidewon Arefe, Pinshane Y. Huang, 
Chul-Ho Lee, Daniel A. Chenet, Xian Zhang, Lei Wang, Fan Ye, Filippo Pizzocchero, Bjarke 
S. Jessen, Kenji Watanabe, Takashi Taniguchi, David A. Muller, Tony Low, Philip Kim, and 
James Hone,  Nature Nanotech 10 (6), 534 (2015). 

99 Xingli Wang, Yongji Gong, Gang Shi, Wai Leong Chow, Kunttal Keyshar, Gonglan 
Ye, Robert Vajtai, Jun Lou, Zheng Liu, Emilie Ringe, Beng Kang Tay, and Pulickel M. Ajayan,  
ACS Nano 8 (5), 5125 (2014). 

100 Dmitry Ovchinnikov, Adrien Allain, Ying-Sheng Huang, Dumitru Dumcenco, and 
Andras Kis,  ACS Nano 8 (8), 8174 (2014). 

101 Han Liu, Adam T. Neal, Zhen Zhu, Zhe Luo, Xianfan Xu, David Tománek, and Peide 
D. Ye,  ACS Nano 8 (4), 4033 (2014). 

102 Adrien Allain and Andras Kis,  ACS Nano 8 (7), 7180 (2014). 
103 Branimir Radisavljevic and Andras Kis,  Nature Materials 12 (9), 815 (2013). 
104 Wenzhong Bao, Xinghan Cai, Dohun Kim, Karthik Sridhara, and Michael S Fuhrer,  

Appl. Phys. Lett. 102 (4), 042104 (2013). 
105 Yu Wu, Junbo He, Ying Chen, Mingran Kong, Yiming Zhang, Xiaobing Hu, Jianwei 

Lian, Hao Zhang, and Rongjun Zhang,  Nanoscale 14 (14), 5462 (2022). 
106 Jun Li, Qi An, and Lisheng Liu,  J. Phys. Chem. C 126 (13), 6036 (2022). 
107 Chunhui Li and Long Cheng,  Journal of Applied Physics 132 (7), 075111 (2022). 
108 Jin-Jian Zhou, Jinsoo Park, I-Te Lu, Ivan Maliyov, Xiao Tong, and Marco Bernardi,  

Computer Physics Communications 264, 107970 (2021). 
109 Mohammad Mahdi Khatami, Maarten L. Van de Put, and William G. Vandenberghe,  

Phys. Rev. B 104 (23), 235424 (2021). 
110 M. V. Fischetti, M. L. Van de Put, G. Gaddemane, S. Chen, W. G. Vandenberghe, and 

S. Gopalan, presented at the 2021 International Symposium on VLSI Technology, Systems and 
Applications (VLSI-TSA), 2021 (unpublished). 

111 Jinlong Ma, Dongwei Xu, Run Hu, and Xiaobing Luo,  Journal of Applied Physics 
128 (3), 035107 (2020). 

112 Sanjay Gopalan, Gautam Gaddemane, Maarten L. Van de Put, and Massimo V. 
Fischetti, presented at the 2020 International Conference on Simulation of Semiconductor 
Processes and Devices (SISPAD), 2020 (unpublished). 

113 Long Cheng, Chenmu Zhang, and Yuanyue Liu,  Phys. Rev. Lett. 125 (17), 177701 
(2020). 

114 Li-Bin Shi, Shuo Cao, Mei Yang, Qi You, Kai-Cheng Zhang, Yu Bao, Ya-Jing Zhang, 
Ying-Yu Niu, and Ping Qian,  J. Phys.: Condens. Matter 32 (6), 065306 (2019). 

115 Wenbin Li, Samuel Poncé, and Feliciano Giustino,  Nano Lett. 19 (3), 1774 (2019). 



 

 

116 Mohammad Mahdi Khatami, Gautam Gaddemane, Maarten L Van de Put, Massimo 
V Fischetti, Mohammad Kazem Moravvej-Farshi, Mahdi Pourfath, and William G 
Vandenberghe,  Materials 12 (18), 2935 (2019). 

117 Long Cheng, Chenmu Zhang, and Yuanyue Liu,  J. Am. Chem. Soc. 141 (41), 
16296 (2019). 

118 Tue Gunst, Troels Markussen, Kurt Stokbro, and Mads Brandbyge,  Phys. Rev. B 
93 (3), 035414 (2016). 

119 Wu Li,  Phys. Rev. B 92 (7), 075405 (2015). 
120 Zhenghe Jin, Xiaodong Li, Jeffrey T. Mullen, and Ki Wook Kim,  Phys. Rev. B 90 

(4), 045422 (2014). 
121 Xiaodong Li, Jeffrey T. Mullen, Zhenghe Jin, Kostyantyn M. Borysenko, M. 

Buongiorno Nardelli, and Ki Wook Kim,  Phys. Rev. B 87 (11), 115418 (2013). 
122 Kristen Kaasbjerg, Kristian S. Thygesen, and Karsten W. Jacobsen,  Phys. Rev. B 

85 (11), 115317 (2012). 
123 G. W. Ludwig and R. L. Watters,  Physical Review 101 (6), 1699 (1956). 
124 Zhen Li, Patrizio Graziosi, and Neophytos Neophytou,  Phys. Rev. B 104 (19) 

(2021). 
125 Julia Wiktor and Alfredo Pasquarello,  Phys. Rev. B 94 (24) (2016). 
126 Sten Haastrup, Mikkel Strange, Mohnish Pandey, Thorsten Deilmann, Per S. Schmidt, 

Nicki F. Hinsche, Morten N. Gjerding, Daniele Torelli, Peter M. Larsen, Anders C. Riis-Jensen, 
Jakob Gath, Karsten W. Jacobsen, Jens Jørgen Mortensen, Thomas Olsen, and Kristian S. 
Thygesen,  2D Mater. 5 (4), 042002 (2018). 

127 Morten Niklas Gjerding, Alireza Taghizadeh, Asbjørn Rasmussen, Sajid Ali, Fabian 
Bertoldo, Thorsten Deilmann, Nikolaj Rørbæk Knøsgaard, Mads Kruse, Ask Hjorth Larsen, 
Simone Manti, Thomas Garm Pedersen, Urko Petralanda, Thorbjørn Skovhus, Mark Kamper 
Svendsen, Jens Jørgen Mortensen, Thomas Olsen, and Kristian Sommer Thygesen,  2D Mater. 
8 (4), 044002 (2021). 

128 Nicolas Mounet, Marco Gibertini, Philippe Schwaller, Davide Campi, Andrius 
Merkys, Antimo Marrazzo, Thibault Sohier, Ivano Eligio Castelli, Andrea Cepellotti, and 
Giovanni Pizzi,  Nature Nanotech 13 (3), 246 (2018). 

129 Christopher J. Ciccarino, Thomas Christensen, Ravishankar Sundararaman, and 
Prineha Narang,  Nano Lett. 18 (9), 5709 (2018). 

130 Marcin Maździarz,  2D Mater. 6 (4), 048001 (2019). 
131 Y. Wang, J. C. Kim, Y. Li, K. Y. Ma, S. Hong, M. Kim, H. S. Shin, H. Y. Jeong, and 

M. Chhowalla,  Nature 610 (7930), 61 (2022). 
132 Thibault Sohier, Marco Gibertini, and Matthieu J. Verstraete,  Phys. Rev. Materials 

5 (2), 024004 (2021). 
133 Thibault Sohier, Evgeniy Ponomarev, Marco Gibertini, Helmuth Berger, Nicola 

Marzari, Nicolas Ubrig, and Alberto F. Morpurgo,  Phys. Rev. X 9 (3), 031019 (2019). 
134 Thibault Sohier, Pedro M. M. C. de Melo, Matthieu Jean Verstraete, and Zeila Zanolli,  

2D Mater. (2023). 



 

 

135 Francesco Macheda, Paolo Barone, and Francesco Mauri,  Phys. Rev. Lett. 129 (18), 
185902 (2022). 

136 Francesco Macheda, Thibault Sohier, Paolo Barone, and Francesco Mauri, Report 
No. arXiv:2212.12237, 2022. 

137 Mauricio Chagas da Silva, Michael Lorke, Bálint Aradi, Meisam Farzalipour Tabriz, 
Thomas Frauenheim, Angel Rubio, Dario Rocca, and Peter Deák,  Phys. Rev. Lett. 126 (7), 
076401 (2021). 

138 Tsuneya Ando, Alan B. Fowler, and Frank Stern,  Rev. Mod. Phys. 54 (2), 437 
(1982). 

139 Zhihao Yu, Yiming Pan, Yuting Shen, Zilu Wang, Zhun-Yong Ong, Tao Xu, Run Xin, 
Lijia Pan, Baigeng Wang, Litao Sun, Jinlan Wang, Gang Zhang, Yong Wei Zhang, Yi Shi, and 
Xinran Wang,  Nat Commun 5 (1), 5290 (2014). 

140 Wenjuan Zhu, Tony Low, Yi-Hsien Lee, Han Wang, Damon B Farmer, Jing Kong, 
Fengnian Xia, and Phaedon Avouris,  Nat Commun 5 (1), 3087 (2014). 

141 Joshua Leveillee, Xiao Zhang, Emmanouil Kioupakis, and Feliciano Giustino, 
Report No. arXiv:2301.02323, 2023. 

142 I. Te Lu, Jin-Jian Zhou, Jinsoo Park, and Marco Bernardi,  Phys. Rev. Materials 6 
(1), L010801 (2022). 

143 Weisheng Li, Jian Zhou, Songhua Cai, Zhihao Yu, Jialin Zhang, Nan Fang, Taotao 
Li, Yun Wu, Tangsheng Chen, Xiaoyu Xie, Haibo Ma, Ke Yan, Ningxuan Dai, Xiangjin Wu, 
Huijuan Zhao, Zixuan Wang, Daowei He, Lijia Pan, Yi Shi, Peng Wang, Wei Chen, Kosuke 
Nagashio, Xiangfeng Duan, and Xinran Wang,  Nature Electronics 2 (12), 563 (2019). 

144 Tianran Li,   3, 6 (2020). 
145 Yury Yu Illarionov, Alexander G. Banshchikov, Dmitry K. Polyushkin, Stefan 

Wachter, Theresia Knobloch, Mischa Thesberg, Lukas Mennel, Matthias Paur, Michael Stöger-
Pollach, Andreas Steiger-Thirsfeld, Mikhail I. Vexler, Michael Waltl, Nikolai S. Sokolov, 
Thomas Mueller, and Tibor Grasser,  Nature Electronics 2 (6), 230 (2019). 

146 Nan Ma and Debdeep Jena,  Phys. Rev. X 4 (1), 011043 (2014). 
147 Zhun-Yong Ong and Massimo V. Fischetti,  Phys. Rev. B 86 (12), 121409 (2012). 
148 Y. Wang, T. Sohier, K. Watanabe, T. Taniguchi, M. J. Verstraete, and E. Tutuc,  Appl. 

Phys. Lett. 118 (10) (2021). 
149 Gautam Gaddemane, Sanjay Gopalan, Maarten L Van de Put, and Massimo V 

Fischetti,  J Comput Electron 20, 49 (2021). 
150 Nourdine Zibouche, Martin Schlipf, and Feliciano Giustino,  Phys. Rev. B 103 (12), 

125401 (2021). 
151 Hongliang Shi, Hui Pan, Yong-Wei Zhang, and Boris I. Yakobson,  Phys. Rev. B 87 

(15), 155304 (2013). 
152 Tawinan Cheiwchanchamnangij and Walter R. L. Lambrecht,  Phys. Rev. B 85 (20), 

205302 (2012). 
153 Yuxuan Lin, Xi Ling, Lili Yu, Shengxi Huang, Allen L. Hsu, Yi-Hsien Lee, Jing Kong, 

Mildred S. Dresselhaus, and Tomás Palacios,  Nano Lett. 14 (10), 5569 (2014). 



 

 

154 Lutz Waldecker, Archana Raja, Malte Rösner, Christina Steinke, Aaron Bostwick, 
Roland J. Koch, Chris Jozwiak, Takashi Taniguchi, Kenji Watanabe, Eli Rotenberg, Tim O. 
Wehling, and Tony F. Heinz,  Phys. Rev. Lett. 123 (20), 206403 (2019). 

155 Mark S. Hybertsen and Steven G. Louie,  Phys. Rev. B 35 (11), 5585 (1987). 
156 M. N. Gjerding, L. S. R. Cavalcante, Andrey Chaves, and K. S. Thygesen,  J. Phys. 

Chem. C 124 (21), 11609 (2020). 

 




