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The structural, dielectric, and thermodynamic
properties of the hydrogen-bonded ferroelec-
tric crystal potassium dihydrogen phosphate
(KH2PO4), KDP for short, differ significantly
from those of DKDP (KD2PO4) [1, 2]. It is
well established that deuteration affects the inter-
play of hydrogen-bond switches and heavy ion dis-
placements that underlie the emergence of macro-
scopic polarization, but a detailed microscopic
model is missing [3, 4]. Here we show that all-
atom path integral molecular dynamics simula-
tions can predict the isotope effects, revealing the
microscopic mechanism that differentiates KDP
and DKDP. Proton tunneling in the hydrogen
bonds generates phosphate configurations that do
not contribute to the polarization. These dipo-
lar defects are always present in KDP, but dis-
appear at low temperatures in DKDP, which be-
haves more classically. Quantum disorder confers
residual entropy to ferroelectric KDP, explaining
its lower spontaneous polarization and transition
entropy relative to DKDP. Tunneling should also
contribute to the anomalous heat capacity ob-
served in KDP near absolute zero [5, 6]. The
prominent role of quantum fluctuations in KDP
is related to the unusual strength of the hydrogen
bonds in this system and should be equally im-
portant in the other crystals of the KDP family,
which exhibit similar isotope effects [7].

KDP is the prototypical member of a class of iso-
morphous hydrogen-bonded molecular crystals with for-
mula unit MH2XO4 (M=K, Rb, Cs, NH4; X=P, As) [7].
The XO4 groups are held together by strong hydrogen
bonds (H-bonds) (Fig.1(a)). The H-bonds are corre-
lated with the polar distortion of the XO4 groups giving
rise to ferroelectricity when M=K, Rb, Cs, and to anti-
ferroelectricity when M=NH4. In these materials, Tc, the
paraelectric to ferroelectric (antiferroelectric) phase tran-
sition (PT) temperature, decreases with increasing pres-
sure tending to zero at some critical pressure [7]. When
hydrogen is substituted with its heavier isotopes, changes
of Tc of the order of 100K are observed [7]. At ambi-
ent pressure, KDP and DKDP have Tc equal to 123K

and 229K, respectively. The isotope effects modulate
piezoelectric, electro-optical, and nonlinear optical prop-
erties of KDP/DKDP [8, 9], leading to different appli-
cations such as electro-optic modulators, frequency con-
verters, and piezoelectric devices [10, 11]. Isotope effects
on thermodynamic properties are a manifestation of nu-
clear quantum effects (NQE) in the atomic dynamics.

Empirical observations indicate that NQE make strong
H-bonds stronger [12], an effect that should favor more
symmetric bond configurations in KDP than in DKDP.
Structural changes across the PT can be related to
two non-exclusive mechanisms: displacive and order-
disorder [13]. In a displacive transition, spontaneous
polarization emerges from an almost uniform structural
distortion combining irreversible off-centering of the H/D
ions with a polar distortion of the PO4 groups induced by
a displacement of the P ions as in Fig.1(b). In the para-
electric phase, the H-bonds are uniformly symmetrized
and the PO4 groups are non-polar. The displacive mech-
anism underlies the tunneling model [14] and its vari-
ants [3, 15], which are defined by effective Hamiltoni-
ans that treat the protons as two-level systems (TLS)
and ignore or substantially reduce the degrees of free-
dom of the heavy ions (K, P, O). These models at-
tribute the PT to the softening of a polar phonon mode
combining collective proton tunneling with a polar dis-
tortion of the PO4 groups. The displacive mechanism
was challenged by spectroscopic experiments [3, 16, 17],
which found that, in the paraelectric phase, the O-H...O
bridges are asymmetric but disordered, so that the PO4

groups are polarized in random directions with distor-
tions not substantially weaker than in the ferroelectric
phase. This scenario attributes spontaneous polariza-
tion to the establishment of long-range order, consistent
with neutron diffraction experiments that show a lack of
displacive-type structural distortions across the PT [18].
Indeed, the spatial distribution of the H/D ion relative
to the neighboring O ions shows off-centered peaks in
both ferroelectric and paraelectric phases, as illustrated
in Fig.1(c). It is of great interest to understand precisely
how NQE affect the disordering of the H-bond network.
The insight gained on KDP should help understand the
PT in the entire KDP family of crystals [7]. It may also
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elucidate the isotope shifts larger than 100K observed in
hydrogen-bonded H2O4C4 and some PbHPO4-type crys-
tals [19, 20].

FIG. 1. (a) Schematic representation [21] of the Fdd2 equi-
librium structure of KDP. The z-axis is parallel to the c crys-
tallographic axis. (b) Sketch of a ferroelectric KDP unit. K
(shared), H (shared), O, and P ions are represented by pur-
ple, light blue, red, and yellow spheres. The grey arrow shows
the direction of the molecular dipole moment d. (c) Left:
schematics of an O-H...O bridge. Colored shadows suggest the
quantum delocalization of the particles. The geometric center
of the oxygen pair is the origin of the coordinates. δxy is the
projection on the xy plane of the position vector of the pro-
ton. Right: contour plot of the probability density function
n(δxy), below and above Tc, inferred from neutron diffrac-
tion experiments [2, 18]. Darker contour lines indicate higher
probability density. ∆xy(T ), the distance of the maximum of
n(δxy) from the origin, quantifies proton off-centering. (d) 16
types of KDP units are divided into four classes with decreas-
ing energetic stability from left to right. Units in the same
class have similar energetic stability. K ions and H-bonded H
ions are not shown.

Key aspects of the order-disorder mechanism were elu-
cidated by Slater [22] and Takagi [23, 24], who pointed
out that the local H-bond structure could be associ-
ated with the 16 phosphate configurations depicted in
Fig. 1(d), which groups the phosphates into four classes,
i.e., Ferro, Slater, Takagi, and Nonpolar units, in order
of decreasing energy stability from left to right. The
more stable Ferro and Slater units satisfy the “ice rules”,

because each phosphate has two donor and two accep-
tor H-bonds, in analogy with H2O ice. The less stable
Takagi and Nonpolar units break the “ice rules” as they
have unequal numbers of donor and acceptor bonds. At-
tributing nominal charges to the ions and taking K+ into
account, Ferro and Slater units (H2PO

−
4 ) satisfy local

charge neutrality while Takagi and Nonpolar units violate
it. Within electronic density functional theory (DFT), a
molecular dipole moment d can be assigned to each phos-
phate group sharing H and K ions with its neighbors, as
depicted in Fig. 1(b) [25]. The local dipole d is defined in
terms of the positions and charges of the ions (nuclei plus
core electrons) and the centroids of the valence electrons
(see Methods). The shared ions (K, H) carry half charge,
the non-shared ions (P, O) and electronic centroids carry
full charge. The product of polarization P and volume V
for a periodic supercell is equal to the sum of the dipoles
d contained in that supercell modulo an immaterial con-
stant that does not affect the changes of P [25, 26]. In
view of its connection with the macroscopic polarization,
the average d is a proper local order parameter for the
PT. We find that Nonpolar units have nearly vanishing
d, Takagi and Slater units have non-zero d along direc-
tions approximately orthogonal to z, while Ferro units
have non-zero d along z. For T < Tc, broken symmetry
Ferro units dominate and the other units act as dipolar
defects destabilizing the ordered phase. For T > Tc, ex-
tensive excitation of dipolar defects occurs. Early mod-
els [4] explained semi-quantitatively the PT by reducing
the degrees of freedom of each phosphate unit to the 16
discrete states of Fig. 1(d), ignoring the fluctuations that
connect distorted configurations. At low temperatures,
these fluctuations should be negligible in classical but not
in quantum ferroelectrics. Thermal and quantal fluctua-
tions, including the effects of tunneling and anharmonic-
ity [27, 28], can be simulated with controllable accuracy
with all-atom path-integral molecular dynamics (PIMD).
In this approach, N distinguishable quantum ions are
mapped onto N classical ring polymers made of an equal
number, L, of beads, subject to intra- and inter-polymer
interactions. The intra-polymer interaction is harmonic
and describes the quantum delocalization of a particle,
while the inter-polymer interaction, given by the poten-
tial energy surface of the system rescaled by L, describes
the physical interactions of the ions. For large enough
L, the equilibrium values of position-dependent observ-
ables estimated by sampling the ring polymer distribu-
tion reproduce the corresponding quantum values (see
Methods). Modeling the polarization evolution requires
knowledge of the polarization surface, which gives the
dependence of the polarization on the ion coordinates.
This is possible with ab initio PIMD [29], an approach in
which the potential energy and polarization surfaces are
computed on the fly within Kohn-Sham DFT [30]. So far
only a small periodic system of four KDP units could be
studied in this way [31], due to the computational cost of
ab initio PIMD. In these simulations, the accuracy of the
DFT approximation is crucial. Ref. [28] found that semi-
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FIG. 2. (a) The longitudinal spontaneous polarization |Pz| as a function of T . The experimental data are for pure KDP
and KD1.96H0.04PO4 [1]. (b) Predicted and experimental [18] lattice constants a and b as functions of T . (c) The joint PDFs
n(dx, 0, dz) (upper) and n(dx, dy, 0) (lower) for KDP and DKDP at the temperatures indicated in panel (a).

local functionals tend to overestimate the quantum delo-
calization of the hydrogens, destabilizing or even com-
pletely eliminating the ferroelectric phase, a difficulty
likely associated to the self-interaction or delocalization
error [32, 33] of DFT approximations. Due to the expo-
nential dependence of tunneling on the barrier height, a
small underestimation of the latter can make the system
a quantum paraelectric by removing the broken symme-
try O-H...O configurations of the ferroelectric phase.

In this work, we overcome the limitations of ab initio
PIMD and establish DFT-based models for KDP/DKDP
that agree well with experiments. Specifically, we
use neural network representations of the potential en-
ergy [34, 35] and polarization surfaces [36] (see Meth-
ods), to boost numerical efficiency and scalability. The
neural networks are trained on DFT data generated with
the Strongly Constrained and Appropriately Normed
(SCAN) functional approximation [37]. Most impor-
tantly, we correct the excessive quantum delocalization
of the H/D ions by stiffening the springs of the asso-
ciated ring polymers, while leaving the other polymers
unaffected. In practice, we multiply the spring constant
k = mL

β2ℏ2 , with m the ion mass and β the inverse tem-

perature, by a stiffening factor µ whose value is fixed by
requiring that the H/D off-centering in the xy plane, i.e.,
∆xy in Fig. 1(c), match the value estimated by neutron
diffraction experiments [18, 38–40]. This procedure leads
to µ = 2.5 and µ = 16, respectively, for H and D ions (see
Methods). This empirical fix leaves the DFT potential
energy surface unaffected, but lowers the zero point en-
ergy of H/D to compensate for the underestimation of the
double well barrier in the H-bonds, enhancing the weight
of the asymmetric O-H...O configurations. It turns out
that static position-dependent observables are predicted
with remarkable accuracy with this procedure. However,
momentum-dependent observables, like the momentum

distribution measured in deep inelastic neutron scatter-
ing experiments [41, 42] are compromised and should not
be calculated with this approach.
Using the above PIMD scheme we estimate the phase

transition temperature Tc from the temperature evolu-
tion of the spontaneous polarization |Pz|, reported with
the corresponding experimental data in Fig. 2(a). The es-
timated Tc is ≈ 120K for KDP, and ≈ 230K for DKDP,
with an error relative to experiments of less than 10K
in both cases. The predicted saturated polarizations, for
T < Tc − 20K, closely match their experimental coun-
terparts. Notably, the experimental observation that in
KDP |Pz| is ≈ 25% smaller than in DKDP, is reproduced
by the simulations, further supporting the validity of the
model. Due to the finite size of the simulations, which in-
clude 512 KDP/DKDP units, the observed onset of spon-
taneous polarization is smoother than in experiments. A
finite size analysis can be found in the Supplementary In-
formation (SI), where we also report the calculated tem-
perature dependence of the electric susceptibility, which
shows approximate Curie-Weiss behavior near Tc for both
KDP and DKDP.
Experimentally, the PT in KDP/DKDP is first-

order [43], structurally associated with a shear distortion
of the lattice in the ferroelectric phase. The correspond-
ing tetragonal to orthorhombic transformation is illus-
trated by the changes of the a and b lattice constants in
Fig. 2(b). The agreement of theory and experiment is
excellent. The models reproduce the measured thermal
expansion for T > Tc. For T < Tc, they slightly under-
estimate the orthorhombic distortion, while predicting a
less sharp transition than in experiments due to finite-size
effects. The shift of the a and b curves upon deuteration
is well described. In the SI, we also analyze the isotope
effects on the lattice constant c, the unit cell volume Ω,
and the H-bond length dO...H. The simulation reproduces
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the Ubbelohde effect [44, 45], i.e., the elongation of the
H-bonds following deuteration, a fine effect in the order
of the hundredths of an angstrom.

The simulation gives access to microscopic properties
that it would be difficult, if not impossible, to observe
in experiments, such as the probability density function
(PDF) of the local dipole moments d = (dx, dy, dz). The
distributions n(dx, dz) ≡ n(dx, 0, dz) and n(dx, dy) ≡
n(dx, dy, 0) at two different temperatures are displayed
in Fig. 2(c) for DKDP and KDP, respectively. In DKDP,
breaking of the z-reflection symmetry of n(dx, dz) for
T < Tc is evident in the upper c1 panel. This symmetry
is restored for T > Tc (upper c2 panel). The magnitude
of dz in the peak of the distribution in panel c1 closely
matches the dipole of the Ferro units (Fig. 1(d)). The
peak magnitude of dz does not change appreciably across
the transition (c2 panel), as expected for a PT domi-
nated by order-disorder. In the lower c1 panel, n(dx, dy)
is uniformly close to zero, reflecting the z alignment of
the dipoles in the ferroelectric phase. In the paraelectric
phase (lower c2 panel), n(dx, dy) shows eight off-center
spots with octagonal symmetry, associated to the Slater
units of Fig. 1(d). Each one of the four Slater units in
that figure contributes to two off-center spots due to the
glide reflection symmetry of the crystal. The central peak
in the lower c2 panel originates from the diffusive part
of the two dominant peaks of the upper c2 panel. The
dipole distributions of KDP are reported in panels c3
and c4. Spontaneous symmetry breaking is again evi-
dent in n(dx, dz), with a dipole magnitude that does not
change much across the transition, consistent with order-
disorder character. Relative to DKDP, the KDP distri-
butions have a more strongly diffusive nature, signaling
the presence of significantly more disorder above and be-
low Tc. This is particularly evident in the paraelectric
n(dx, dy) distribution, which, in KDP, shows roughly cir-
cular symmetry (lower c4 panel). As we will see, this is
due to the prominent role played by Takagi units gen-
erated by quantum fluctuations. While in DKDP Slater
units dominate the paraelectric phase near Tc, in KDP
Takagi and Slater units are equally important, blurring
the octagonal pattern of the lower c2 panel.

In PIMD simulations each configuration of the beads at
equal imaginary time defines a distinct replica of the sys-
tem (see Methods). Each KDP/DKDP unit in a replica
can be assigned to one of the four classes displayed in
Fig. 1(d), depending on the character of its four OH
bonds, each one of which can have donor or acceptor
H-bond character. The length and character of each OH
bond is linearly correlated, to excellent approximation,
with the length and character of the OP bond and the
position of the electronic centroid about the oxygen (see
Methods), as illustrated in Fig. 3(a). It is because of
this correlation that the dipole moment of a phosphate
unit depends on the class to which it belongs. In view
of this correlation, the two types of P-O-H(D) structure
of Fig. 3(a) can be distinguished by the length of rO→H.
In the following, we choose the value r∗ = 1.25Å for

the divider between donor and acceptor type structures
for both KDP and DKDP below and above Tc. This
choice is supported by the calculated joint PDF of α and
rO→H, i.e., n(α, rO→H), reported in Fig. 3(b) for DKDP
and KDP at T = Tc − 10K, and at T = Tc + 20K in
the insets. In all cases, n(α, rO→H) is strongly bimodal
with the peaks corresponding to typical donor and accep-
tor type P-O-H(D) structures, respectively. Moreover,
n(α, rO→H) changes little across the PT. In DKDP, the
divider r∗, indicated by the grey dashed line in the fig-
ure, separates well donor and acceptor configurations.
In KDP, quantum fluctuations make donor and acceptor
distributions overlap, but symmetric H-bond configura-
tions, in which H lies approximately in the middle of the
O-O bond, have a substantially smaller statistical weight
than asymmetric configurations, even at the lowest tem-
perature of the simulations (T = 50K), indicating that
our choice of r∗ is meaningful.

The temperature variation of the population of phos-
phate units, classified using r∗, is plotted in Fig. 3(c).
For T < Tc, broken symmetry Ferro units dominate both
DKDP and KDP. Long-range order is lost in the paraelec-
tric phase where the Ferro units, while still present, are
not dominant and the majority of the units are Slater
and/or Takagi. In this phase, the frequent intercon-
versions of Ferro, Slater and Takagi units, restore the
z → −z symmetry of the Ferro units. The population
of Nonpolar units is negligible at all temperatures. The
most important message of Fig. 3(c) is that Slater and
Takagi populations are markedly different in DKDP and
KDP. In DKDP, when T < 150K almost all units are
Ferro. Dipolar defects, mostly associated with Slater
units, appear only for T > 150K, causing a gradual re-
duction of the spontaneous polarization. By contrast, in
KDP, a substantial fraction of Takagi, rather than the
more stable Slater units, persists down to T = 50K,
whereby Ferro units only account for ≈ 75% of the phos-
phates. On the time scale of the PIMD simulations,
the Takagi units are dynamic and fluctuate with H-bond
switches every several picoseconds. By contrast, H-bond
switches require tens of picoseconds at low temperatures
in DKDP. Given that the molecular dipole of an ideal
Ferro unit is only marginally affected by deuteration,
the roughly 25% smaller polarization of KDP relative to
DKDP can only originate from the dipolar defects present
in KDP, and is mostly absent in DKDP at low tempera-
tures. Dipolar disorder also explains why in experiments
the excess transition entropy is ≈ 30% smaller in KDP
than in DKDP [46].

The Takagi defects are spatially correlated as shown
by their radial distribution function (RDF) in KDP at
T = 50K in Fig. 3(d). Due to averaging over the repli-
cas in imaginary time, this RDF is already well con-
verged in a single PIMD snapshot. The first peak cor-
responds to pairs of adjacent defects created mostly by
switches of the H-bonds between neighboring Ferro units.
The weak temperature dependence of the Takagi frac-
tion in Fig. 3(c) suggests that the effect should originate
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FIG. 3. (a) Schematic representation of the rules for the classification of each KDP/DKDP replica. Each P-O-H (yellow-red-
blue) structure can be donor (left) or acceptor (right) type. The grey sphere indicates the location of the electronic centroid.
(b) The joint probability distribution of α and rO→H for KDP and DKDP, respectively, in the ferroelectric (T = Tc − 10K) and
the paraelectric phase (insets, T = Tc + 20K). The vertical grey dashed line shows r∗ = 1.25Å. (c) Percent population of the
different classes of KDP/DKDP units vs temperature. The vertical grey dashed line shows Tc. (d) RDF of the Takagi defects
in KDP at 50K. The distance r between the defects is the spatial separation of the respective P ions.

from the quantum tunneling of the protons observed in
deep inelastic neutron scattering [41]. Interestingly, the
same experiments do not provide tunneling evidence in
DKDP [42]. The prominent second peak of the RDF in-
dicates that an additional defect is likely to reside near a
defect pair, while the non-monotonic decay of the RDF
with the Euclidean distance reflects a monotonic decay
with the graph distance defined as the minimal number
of O-H...O bridges connecting pairs of Takagi defects.
The defects are also dynamically correlated as suggested
by analyses of their joint PDF reported in the SI. Re-
combination and migration to a neighboring site are two
sources of dynamical correlation. The Takagi defects are
nominally charged and correlation acts to reduce local
charge fluctuations.

Because of quantum disorder, the ferroelectric state of
KDP is fundamentally different from that of DKDP. Lin-
ear extrapolation in Fig. 3(c) suggests that a substantial
fraction (≈ 15%) of fluctuating Takagi defects should be
present near absolute zero, providing a possible realiza-
tion of the TLS that explains the anomalous heat ca-
pacity of insulating glasses near T = 0K [47, 48]. This
speculation is supported by the experimental findings of
an anomalous heat capacity varying approximately lin-
early with T near absolute zero in KDP [5, 6, 49]. The
TLS in KDP should be an intrinsic equilibrium property
rather than the outcome of quenched glassy disorder, but
it would be difficult to test this hypothesis as it is hard to
control the various sources of extrinsic disorder present

in the experimental samples [49].
The huge effect of quantum fluctuations in KDP re-

quires a fine balance between the tunneling barrier and
the zero point energy. This balance, which is broken
by deuteration with the ensuing large isotope effects, is
realized in the KDP family of crystals due to the pres-
ence of unusually strong H-bonds. H-bonds can be made
stronger by pressure. In water ice, where the H-bonds
at ambient conditions are relatively strong but signifi-
cantly weaker than in KDP, isotope effects are relatively
small, but they become large at pressures in the hun-
dreds of kbar range [50]. In KDP, experiments show that
the temperature of the ferroelectric transition is reduced
with increasing pressure, until, at pressure in excess of
17kbar the PT disappears and the system becomes a
quantum paraelectric [51, 52]. We understand this phe-
nomenology as the result of an increasing Takagi popu-
lation following increasing H-bond symmetrization with
pressure. We speculate that the phase point at which the
PT disappears (T = 0K, P = 17kbar) may be associated
to quantum criticality [53, 54], an hypothesis consistent
with the large dielectric susceptibility measured in the
vicinity of this point [52]. In future studies, it would be
of interest to look for possible non-classical temperature
dependence of the inverse dielectric susceptibility at very
low temperature [54].
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METHODS

Density functional theory and atomistic models

We adopt SCAN, the strongly constrained and appro-
priately normed functional approximation for exchange
and correlation of Ref. [37]. It has been reported that
SCAN outperforms PBE and LDA in modeling the struc-
tural properties of KDP [55]. We perform electronic
structure calculations with Quantum Espresso [56], using
norm-conserving pseudopotentials [57] that include in the
valence the 2s and 2p states of O, the 3s and 3p states
of P, and the 3s, 3p, and 4s states of K. We find a stable
classical ferroelectric structure of space group Fdd2 at
T = 0K (Fig.1(a)), with lattice constants a = 10.62Å,
b = 10.67Å, and c = 6.86Å. The length of the O-H cova-
lent bond is 1.042Å, that of the O...H H-bond is 1.438Å,
and the H off-centering is equal to ∆Fdd2

xy = 0.198Å. The
above results agree well with Ref. [55] with minor differ-
ences due to the different pseudopotentials and numerical
methods adopted in the two calculations.

We use DeePMD-Kit [35] to train a DP model [34]
for the potential energy surface within SCAN-DFT. The
typical error of the model relative to DFT is less than
1meV/atom. Training details and error distributions
are reported in the SI. In addition, we train a Deep
Wannier (DW) model [36] for the polarization surface
in terms of the Wannier decomposition of the valence
electronic structure [26]. Maximally localized Wannier
functions are computed with Wannier90 [58] for a subset
of the atomic configurations in the DP training set (see
SI). Each Wannier distribution accommodates two spin-
degenerate electrons. In all the atomic configurations
four Wannier centers are uniquely associated to each O
and four others to each K atom, forming approximate
atom-centered tetrahedral structures. The Wannier cen-
troids (WCs), i.e., the geometric centers of the four Wan-
nier centers associated to O or K atoms provide all the
necessary information to compute the polarization [36].
The DW model gives the environmental dependence of
the WCs. While the oxygen WCs depend crucially on
the chemical environment, as illustrated in Fig. 3(a), the
potassium WCs, associated with the 3s and 3p semi-core
states, are essentially independent of the environment
and their contribution to polarization changes is negli-
gible. We do not include them in the DW model, i.e., to
calculate the polarization we treat the semi-core states
as frozen core electrons of the K+ ion. The training of
the DW model is done with DeePMD-Kit. The details
are reported in the SI.

Following the theory of polarization [25, 26], we as-
sign to each elementary KDP/DKDP unit ( Fig. 1(b)) a

molecular dipole d given by:

d =
2∑

i=1

qK(r
(i)
K − rP) +

4∑

i=1

qO(r
(i)
O − rP)

+

4∑

i=1

qH(r
(i)
H − rP) +

4∑

i=1

qWC(r
(i)
WC − rP).

(1)

Here, r
(i)
K , r

(i)
O , r

(i)
H , and rP are the position vectors of

the K, O, H/D, and P ions belonging to the elementary
unit, and qK = 0.5e, qO = 6e, and qH = 0.5e are the
charges carried by the K, O, and H/D ions, respectively.
Since the K and H/D ions are shared with a neighbor-
ing unit, they carry half charge. The P ion, carrying
a charge of 5e, is taken as the local reference and does

not contribute to the dipole. Finally, r
(i)
WC are the posi-

tion vectors of the WCs associated with the O ions and
qWC = −8e are their charges. When all the ionic and
electronic charges are taken into account, each elemen-
tary unit is electrically neutral. The positions of the ions
and of the WCs corresponding to each atomic configu-
ration R = {r1, · · · , rN} visited by PIMD in a periodic
simulation box of volume V and N physical particles are
provided by the DP and DW models. The global dipole
of the configuration R is D(R) =

∑
j dj , where the sum

extends to all the local molecular dipoles dj contained in
the simulation box. The polarization surface P(R), i.e.,
the polarization of the configuration R, is given, modulo
an immaterial constant, by P(R) = D(R)/V [26].

Path integral molecular dynamics

Within Feynman’s path integral formulation of quan-
tum statistical mechanics [59], the canonical partition
function of N distinguishable quantum particles can be
approximated with a Trotter factorization in imaginary
time:

ZL ≈
∫

DRe−βHeff
L , (2)

where

DR ≡
N∏

i=1

(
miL

2πβℏ2

) 3L
2

dr
(1)
i · · · dr(L)

i . (3)

The effective Hamiltonian Heff
L is

Heff
L =

L∑

s=1

(
N∑

i=1

ki
2

(
r
(s)
i − r

(s+1)
i

)2
+

1

L
U(R(s))

)
, (4)

where ki =
miL
β2ℏ2 and R(s) = {r(s)1 , · · · , r(s)N }. The index

s labels imaginary times, the positive integer L is the
total number of imaginary time slices, and the condition
L + 1 = 1 applies in the argument of the sum over the
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beads so that r
(L+1)
i = r

(1)
i . Thus, a discretized Feynman

path in imaginary time, {r(1)i , · · · , r(L)
i }, is equivalent to

a ring polymer. U is the potential energy surface pro-
vided by the DP model. ZL recovers the exact quantum
partition function in the limit L → ∞. For finite L,
Eq. (2) can be seen as the configurational partition func-
tion of a classical system ofN ring polymers each made of
L beads and described by the effective Hamiltonian Heff

L ,
in which the constant ki defines the spring that links
neighboring beads in imaginary time, and 1

LU(R(s)) is
the potential of interaction between different ring poly-
mers at equal imaginary time. The ensemble of all the
beads at equal imaginary time constitutes a replica of the
system. PIMD [60] is a molecular dynamics scheme for
sampling the configurations of the ring polymers with

Boltzmann weights proportional to e−βHeff
L . Then, a

canonical average of a position-dependent observable of
the quantum system is estimated from a classical canoni-
cal average of the ring-polymer system. For example, the
average macroscopic polarization is calculated as follows:

P =
1

L

〈
L∑

s=1

P(R(s))

〉

ZL

=

∫
DR

∑L
s=1 P(R(s))e−βHeff

L

L
∫
DRe−βHeff

L

,

(5)

where P(R(s)), the polarization of the s-th replica, is
provided by the DW model.

PIMD simulations

We use I-PI [61], LAMMPS [62], and DeePMD-Kit to
perform NPT-PIMD simulations on a supercell with 512
KDP/DKDP units in the temperature range [50, 300]K.
The temperature is controlled with the PILE thermostat
[63] and the pressure is maintained with an anisotropic
barostat [64]. The spring constants ki (Eq. (4)) associ-
ated with K, P, and O ions take their physical values,
but the ki associated with H is multiplied by a stiffen-
ing factor µ = 2.5, while the one corresponding to D is
multiplied by µ = 16. These values are chosen to fit the
experimental neutron data on the off-center displacement
of H/D, as explained in the next section.

To control convergence with L, we use the estimator
KL of the thermodynamic quantum kinetic energy per
particle suggested in Ref. [65]:

KL =
3

2β
+

1

2LN

〈
L∑

s=1

N∑

i=1

(
r
(s)
i − ri

)
· ∂U

∂r
(s)
i

〉

ZL

. (6)

Here, ri is the centroid of all the beads of particle i.
In the classical limit, L = 1 and KL = 3kBT/2, the
classical kinetic energy per particle. By monitoring the
convergence of KL with L (see SI) we estimate |KL −
K∞| at different temperatures. In the production runs

we adopt L values for which |KL −K∞| is smaller than
1meV/atom, which is also the approximate error of the
DP representation. A study of the effect of finite N is
impractical with PIMD simulations as L can be as large
as 128. For that reason, we only report in the SI a study
of the effect of N on the corresponding classical system
(L = 1).

FIG. 4. (Upper) The relation between Tc and H/D off-
centering. The black stars mark the experimental measure-
ments of Tc and ∆̃EXP

xy for KDP and DKDP at different ex-
ternal pressures [18, 38–40]. Blue spheres mark the numerical
Tc and ∆xy(T → T+

c ) obtained with PIMD with different
m∗ at atmospheric pressure. The error bar of Tc is ±10K,
reflecting the T spacing adopted in the calculations of the or-
der parameter near Tc. The error bar of ∆xy(T → T+

c ) is
±0.005Å, reflecting the space resolution of the histogram rep-
resenting n(δxy) from which we extract ∆xy(T → T+

c ). Blue
shadows are a guide for the eye, suggesting an almost linear
Tc-∆xy(T → T+

c ) relation. (Lower) The heatmap of n(δxy)
computed at T > Tc. The left figure is for m∗ = 2.5Da and
T = 150K. The right figure is for m∗ = 32Da and T = 250K.

The spring stiffening factor µ for H and D ions

In KDP, SCAN-DFT predicts a ferroelectrically or-
dered classical ground state [66], but this structure is
destabilized by NQE. Absence of ferroelectricity was also
found in ab initio PIMD simulations of KDP with the
PBE-DFT functional [31]. This occurs because common
functionals tend to underestimate the double-well poten-
tial energy barrier in the H-bonds, wiping out the classi-
cal ferroelectric ground state [28].
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In the presence of NQE, a correct description of the fer-
roelectric phase requires a delicate balance of tunneling
barrier and zero-point energy of the protons, which are
both strongly correlated with the geometric distortion of
the phosphate groups, as shown in numerous experimen-
tal [18, 19, 38–40] and theoretical [27, 67, 68] studies.

Experiments find that, in KDP and DKDP, Tc at dif-
ferent pressure conditions is to very good approximation
linearly correlated with ∆̃EXP

xy , the off-center displace-
ment of the H/D ions in the paraelectric phase just above
the PT [18, 38–40]. This correlation, shown in Fig. 4,
strongly supports the notion that H/D off-centering is
the key geometric parameter controlling Tc, and hints at
a possible way of improving the experimental agreement
of DFT-based PIMD simulations by fixing the predicted
H/D off-centering. In KDP, SCAN-based PIMD always
yields unimodal proton distributions with ∆xy(T ) = 0,
but the excessive quantum delocalization of H/D, respon-
sible for the effect, can be reduced as desired by multiply-
ing the H/D spring constant k = mL

β2ℏ2 by a stiffening fac-

tor µ greater than 1, a procedure equivalent to assigning
an effective mass m∗ = µm to H/D. The displacements
∆xy(T → T+

c ) and the corresponding Tc calculated with
PIMD for three different values ofm∗ at ambient pressure
(AP) are reported in Fig. 4, showing a linear behavior of
∆xy with Tc that closely mimics the experimental one.
For m∗ = 2.5Da, i.e. µ = 2.5, and for m∗ = 32Da, i.e.,
µ = 16, ∆xy(T → T+

c ) and Tc match the experimental
displacements and transition temperatures of KDP and
DKDP, respectively. This is the choice of µ that we adopt

in our PIMD simulations of KDP and DKDP.
The displacement ∆xy(T → T+

c ) is estimated from
thermal averages at T ≈ Tc + 20K to reduce the large
impact of the fluctuations near Tc. The probability dis-
tribution functions n(δxy) for H and D are also reported
in Fig. 4, showing a bimodal character in qualitative
agreement with neutron diffraction experiments [2]. Rel-
ative to KDP, DKDP has a more localized n(δxy) and a
larger ∆xy, consistent with the more classical behavior
of the deuterated H-bonds. In fact, in the classical limit,
when all the atoms in PIMD have infinite mass, Tc is ap-
proximately equal to 250K, slightly above the predicted
transition temperature of DKDP, consistent with a pre-
dominantly classical character of the transition in that
system.
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Supplementary Information

I. DETAILS OF THE DEEP POTENTIAL AND DEEP WANNIER MODELS

We used the active learning agent DPGEN [1] to collect DFT data in the temperature range [50, 300]K and the
pressure range [−20, 100]kbar. The active-learning exploration of atomic configurations is performed for 23 iterations.
The final training dataset contains 5800 atomic configurations. The performance of the DP model on the training set
is shown in Fig. 1. The test set is collected from PIMD simulations at T = 100K and T = 150K. The prediction error
is smaller than 1meV/atom in the potential energy and smaller than 0.25eV/Å in the Cartesian components of the
forces. The error levels in the training and test sets are similar.

FIG. 1. Comparison of energies and forces predicted by the DP model with the reference SCAN-DFT results in the training
dataset. The insets show the error distribution.

Then, from the atomic configurations generated through the first 10 iterations of active-learning exploration, we
randomly collect 100 atomic configurations from each iteration. The 1000 collected configurations form a reduced
dataset for the DW model. The reduction of the dataset is due to the high computational cost of generating training
labels for the DW model, and the fact that the full dataset generated by active learning is typically redundant. The
maximally localized Wannier functions corresponding to these atomic configurations are calculated with Wannier90 [2].
The training labels for the DW model are the displacement vectors from the oxygens of the associated Wannier
centroids. As shown in Fig. 2, the standard error of the DW model is 0.002Å for the Cartesian components of the
displacement vectors, much smaller than the typical distance from the oxygen of the associated Wannier centroid.

FIG. 2. Comparison of the displacement vectors of the Wannier centroids from their associated O atom predicted using the
DW model with the reference DFT results in the training dataset. The insets show the error distribution.

II. CONVERGENCE OF PIMD WITH THE NUMBER OF BEADS

To fix L, the number of beads needed for good convergence of quantum statistical averages, we study the convergence
with L of the thermodynamic quantum kinetic energy KL. We perform PIMD simulations of systems with 512
KDP/DKDP units at different temperatures (T = 50, 100, 150, 200, 250, 300K) with the adopted stiffening factor for
H and D ions, respectively. The calculated KL as a function of L is shown in the upper panel of Fig.3. KL converges
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more slowly at lower temperatures. About 128 beads are necessary at T = 50K, the lowest temperature probed in
our simulations. To estimate the error of a finite L calculation, we estimate K∞ = limL→∞ KL, by fitting the KL

data with the function KL = K∞ − h/L2 suggested by the L dependence of the Trotter factorization error for a path
of length L. We employ a non-linear least square curve fitting using the Python package SciPy [3], treating K∞ and
h as parameters. At T = 50K, KL data with L ≥ 32 are used for fitting. At all the other temperatures, KL data with
L ≥ 16 are used. The fitted curves for KL −K∞ are displayed in the lower panel of Fig.3. We consider a calculation
converged with L when the error is less then 1meV/atom, which is close to the typical error of our DP model. With
this criterion we find that in KDP at T ≥ 150K one needs L = 32. When 150K> T ≥ 100 K, L is set to 64, while for
100K> T ≥ 50K, L is set to 128. In DKDP, when T > 200K we set L ≥ 16, and we set L to L = 64 when T ≤ 200K.

FIG. 3. (Upper) The quantum kinetic energy KL as a function of the number of beads. (Lower) KL − K∞ as a function of
the number of beads. The diamonds are the numerical results from PIMD. The solid lines are the curves from optimal fitting.
The two horizontal dotted guiding lines are at KL −K∞ = 0 and KL −K∞ = −1meV, respectively.

III. CLASSICAL FINITE SIZE EFFECTS

We study finite size effects on the ferroelectric PT of KDP with classical MD, i.e., by setting L = 1 in PIMD.
Calling N the number of KDP units in the simulation supercell, we compute 500ps long classical NPT trajectories for
N = 64, 512, and 1728 at different temperatures and standard pressure conditions. The finite size effect on the PT is
illustrated by the temperature dependence of the polarization in Fig.4(a) and by the temperature dependence of the
average nearest neighbor O-O distance in Fig.4(b). The figure suggests that the size effect is small when N ≥ 512. A
minor sharpening of the transition onset can be seen as N increases from 512 to 1728, suggesting that significantly
larger sizes would be needed to reproduce more closely the sharp onset observed in experiment. From the transition
onset in Fig.4 we estimate that Tc should be in the range [245, 255]K. The estimated change of lOO upon the phase
transition is approximately 0.005Å, close to experimental findings. We expect that similar size effects should affect
the PIMD simulations with L ≥ 16 reported in the manuscript.

IV. GEOMETRIC AND DIELECTRIC ISOTOPE EFFECTS

The effects of phase transition and deuteration on the lattice constant c, the unit cell volume Ω, and the H-bond
length dO...H are illustrated in Fig. 5, showing good agreement of theory and experiment. The Ubbelohde effect on
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FIG. 4. (a) |Pz| as a function of temperature from classical MD. (b) Average lOO as a function of temperature from classical
MD.

dO...H [4], i.e., the elongation of the H-bonds upon deuteration, a rather small effect of the order of some hundredths
of an angstrom, is well reproduced. The Ubbelohde effect indicates that quantum fluctuations strengthen the H-bonds
when DKDP is replaced by KDP. The fine details of the plots in Fig. ??(c) are interesting. The small positive slope of
dO...H with T , observed in the simulations of DKDP above and below Tc and only above Tc in KDP, is a manifestation
of thermal expansion and indicates that thermal fluctuations weaken the H-bonds, albeit to a rather small extent.
The effect can be clearly seen also in the experiments on KDP for T > Tc. Interestingly, the effect is absent in the
KDP simulations below Tc, suggesting that in the ferroelectric phase of this system, quantum fluctuations dominate
over thermal fluctuations.

FIG. 5. (a) Predicted and experimental [5] lattice constant c as a function of T . (b) Predicted and experimental [5] unit cell
volume Ω = abc as a function of T . (c) Predicted and experimental [5] H-bond length as a function of T .

FIG. 6. (a) Predicted susceptibility as a function of T . Solid red and green lines are calculated from the inverse susceptibility
fitted to the Curie-Weiss law. The vertical thick grey line gives a rough estimate of Tc with uncertainty attributed to finite-size
effects. (b) Predicted inverse susceptibility as a function of T . Solid lines indicate optimal Curie-Weiss fitting.

In Fig. 6(a), we report the temperature dependence of the longitudinal dielectric susceptibility χz of KDP and
DKDP, respectively. χz is found to be in good qualitative agreement with experimental measurements [6]. In addition,
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for both KDP and DKDP, χz displays a discontinuity at Tc as expected for a first-order phase transition. Fig. 6(b)
plots the inverse susceptibility χ−1

z as a function of T, which exhibits a typical Curie-Weiss behavior χ−1
z ∝ T − Tc

near the phase transition. The optimal linear fitting to Curie-Weiss law is plotted in Fig. 6 for T below and above
Tc, respectively.

V. DYNAMIC CORRELATION IN PROTON/DEUTERON HOPPING IN THE FERROELECTRIC
PHASE

To analyze in more detail dynamic correlation effects in the hopping of protons or deuterons in the ferroelectric
phase, we consider the shortest closed loop of H-bonds connecting adjacent phosphate groups. In KDP/DKDP this
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FIG. 7. (a) Schematic representation of the shortest loop of phosphate groups mutually connected by O-H..O bonds. A pair
of neighboring hydrogen atoms in the circuit are boxed. The purple wavy line indicates correlation. (b-c) n(r1, r2) of KDP and
DKDP at different temperatures. The four blocks are divided by r1 = r∗ and r2 = r∗, as shown by the grey dashed lines. p is
the fractional probability of a quadrant, taking correlation in the proton jumps into account, while the red value in parentheses
gives the corresponding probability in absence of correlation (see text).

is a 6-fold bond ring, like the one shown in Fig. 7(a) with the bonds indicated by the light blue ellipses. In the
classical ground state, half of the bonds in this ring are oriented clockwise and half anticlockwise, as required for
a broken symmetry Ferro environment. A fully ordered ring, clockwise or anticlockwise, would contribute zero to
the polarization. Thus, half-ordering of the 6-fold rings can be viewed as the manifestation, in the bond picture,
of the spontaneously broken symmetry of the phosphate groups in the ferroelectric phase. Topologically equivalent
6-member ring structures are found in other H-bonded crystals, such as ferroelectric ice XI [7] or antiferroelectric
ice VIII [8]. To quantify correlation, we consider the two adjacent bonds having length r1 and r2, respectively, in
Fig. 7(a). After averaging over all the pairs of bonds in the simulation box equivalent by translational symmetry to
r1 and r2, we compute the normalized joint distribution n(r1, r2) and its marginal distributions n(r1) and n(r2) from
the configurations of the ring polymers. Plots of n(r1, r2) at T = Tc − 10K for KDP and DKDP, respectively, are
reported in Fig. 7(b) and (c). Six different pairs of adjacent bonds can be selected in a 6-fold ring like the one of
Fig. 7(a), but their joint distributions are statistically equivalent to n(r1, r2). In Fig. 7(b) and (c) the characteristic
length r∗, distinguishing donor and acceptor H-bond types, is used to draw the vertical and horizontal dashed grey
lines. These lines divide each figure into four quadrants, corresponding to configurations with r1 > r∗ and r2 < r∗

(quadrant Q1), r1 < r∗ and r2 < r∗ (quadrant Q2), r1 > r∗ and r2 > r∗ (quadrant Q4), r1 < r∗ and r2 > r∗

(quadrant Q3), respectively. The integral of n(r1, r2), extended to each quadrant, gives that quadrant’s population
p, expressed as the percentage typed in black in the figure. The integral of n(r1)n(r2), extended to each quadrant,
gives the quadrant’s population in the absence of correlation, reported in the red parenthesis in the figure. For both
n(r1, r2) and n(r1)n(r2), the fraction of unswitched bond pairs, associated to Q1, is larger in DKDP than in KDP, as
expected due to the more prominent role of quantum tunneling in KDP. Meanwhile, the population of Q2 is always
larger than, instead of being equal to, Q4, as one would have expected if only asymmetric H-bond structures were
present. It is the presence of symmetric H-bond structures that changes the balance, with double donor structures
O-H-O much more likely than their double acceptor counterparts O...H...O. Correlation accounts for the difference
of black and red populations p in the figure. The effect of the correlation is qualitatively similar, albeit slightly more
pronounced, in DKDP than in KDP. Single switches of r1 or r2 convert two adjacent Ferro units into two adjacent
Takagi units, but correlation reduces the fraction of single switches of r1 (Q2) and r2 (Q4), reducing local charge
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fluctuations. The reduction of Q2 and Q4 is compensated by the increase of Q1 and Q3, which may be attributed to
return switches and double switches, respectively. The population of Q3 is related to the population of Slater defects,
because simultaneous switches of r1 and r2 converts a pair of Ferro units to one Slater and one Takagi unit. In
DKDP at temperature just below Tc, the Q3 population is almost four times larger than its uncorrelated counterpart,
suggesting that correlated proton jumps contribute significantly to the population of Slater defects. The effect is
weaker in KDP where the Q3 population is merely doubled by correlation at temperature just below Tc.

In the above treatment, we have only considered switches of one or two protons belonging to a pair of adjacent
H-bonds. We have not considered the correlated multi-switch processes in ordered H-bond loops that were studied
in Ref. [9], because the latter require ordered loops that do not contribute to the polarization and, thus, occur very
rarely in the ferroelectric phase. They should be present, however, in the paraelectric phase.
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L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza,
A. A. Mostofi, and J. R. Yates, Wannier90 as a community code: new features and applications, J. Condens. Matter Phys.
32, 165902 (2020).

[3] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,
J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
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