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TOWARDS A GENERAL THEORY OF DEPENDENT SUMS

PETER BONART

Abstract. We introduce dependent adders. A dependent adder A has

for every x ∈ A a way of adding together x many elements of A. We pro-

vide examples from many disparate branches of mathematics. Examples

include the field with one element F1, the real numbers with integrals as

sums, the category of categories with oplax colimits as sums. We also

consider modules over dependent adders and provide examples.
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1. Introduction

This paper defines dependent adders and constructs examples for them. Be-

fore precisely defining them, we define them roughly and enumerate the

examples we are interested in. Defined roughly, a dependent adder consists

of a set A, an element 1 ∈ A, for every x ∈ A a set A
x
, called the set of

x-indexed families in A, and a function
x∑
i

∶ A
x
→ A called the x-dependent

sum function, satisfying nice properties, like that
x∑
i

1 = x and that every sum

of the form

x∑
i

f(i)
∑
j

g(j) can be rewritten as a sum of the form
x∑
i

f(i)∑
j

g(φ(i, j))
for some well-behaved function φ(i, j) depending only on f and not on g.

Examples of dependent adders include:

(1) The set of natural numbers N. For each x ∈ N, an x-indexed family

of natural numbers is a function f ∶ {1, . . . , x} → N, and its sum is

the usual sum
x

∑
i

f(i) ∶= x

∑
i=1

f(i)
(2) The set of non-negative real numbers R≥0. For each x ∈ R≥0, we de-

fine an x-indexed family of real numbers to be a continuous function

f ∶ [0, x] → R≥0. The sum of such a function is defined to be the

integral
x

∑
i

f(i) ∶=
x

∫
0

f(t)dt
This integral always exists, is non-negative and finite.

(3) The category of small categories Cat. Define an I-indexed family

of categories to be an isomorphism class of functors F ∶ I
op

→ Cat.

The sum of F is defined to be the lax 2-colimit of F , also known as

the Grothendieck construction

I

∑
i

F (i) ∶= colim
i∈Iop

lax
F (i) = ∫ F

Alternatively, one can define an I-indexed family of categories to

be an isomorphism class of functors F ∶ I → Cat and define its

sum to be the oplax colimit of F . We need to take isomorphism
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classes of functors instead of just taking functors, because otherwise

Cat would only satisfy our axioms up to isomorphisms, instead of

satisfying them strictly.

(4) The p-adic integers Zp. For every x ∈ Zp we define an x-indexed

family to be a continuous function f ∶ Zp → Zp. Since N is dense

in Zp we can find a sequence of natural numbers xn ∈ N such that

xn → x in Zp. We define

x

∑
i

f(i) ∶= lim
n→∞

xn

∑
i=1

f(i)
It is an easy exercise in p-adic analysis to show that this limit always

exists and is independent of the choice of sequence xn. (See Lemma

3.2 for a proof of this claim).

(5) The set of all small cardinals Card, where a κ-indexed family is a

function κ → Card, and where the sums are the usual infinite sums

of cardinals.

(6) The set of all small ordinal numbers Ord. For each ordinal α an

α-indexed family is a function of sets f ∶ α → Ord. The sum of f is

defined via transfinite recusion on α:

0

∑
x

f(x) ∶= 0
α+1

∑
x

f(x) ∶= ( α

∑
x

f(x)) + f(α)
sup
β<α

β

∑
x

f(x) ∶= sup
β<α

β

∑
x

f(x)
(7) The two element set F1 ∶= {0, 1}, which is also sometimes called

“the field with one element”[5]. We define a 0-indexed family to be

a function from the empty set ∅ → F1, i.e. there is exactly one

0-indexed family, which we call the empty family and denote ∅. We

define a 1-indexed family to be a function f ∶ {∗} → F1, i.e. there are

exactly two 1-indexed families 0 and 1 corresponding to the elements

F1. We define

0

∑
i

∅;= 0
1

∑
i

0 ∶= 0
1

∑
i

1 ∶= 1

(8) The real unit interval [0, 1]. Just as for the real numbers, for each

x ∈ [0, 1] we define an x-indexed family to be a continuous function
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f ∶ [0, x] → [0, 1], and define the sum to be the integral

x

∑
i

f(i) ∶=
x

∫
0

f(t)dt
This integral is again in [0, 1], because for every t we have f(t) ≤ 1,

so
x

∫
0

f(t)dt ≤
x

∫
0

1dt = t ≤ 1

(9) The set of integers Z. For each x ∈ Z, an x-indexed family of integers

is a function f ∶ Z → Z. For x ≥ 0 the sum of f is the usual sum.

For x < 0 we define
x

∑
i

f(i) ∶= −x

∑
i=1

− f(1− i)
(10) The set of all (possibly negative) real numbers R with integrals as

sums, where an x-indexed family is a continuous function R → R.

(11) The interval [−1, 1] with integrals as sums, where an x-indexed fam-

ily is a continuous function [−1, 1] → [−1, 1].
(12) The complex numbers C. For every z ∈ C we define a z-indexed

family to be an entire holomorphic function f ∶ C → C. We can

choose a smooth path γ ∶ [0, 1] → C that leads from 0 to z, i.e.

γ(0) = 0 and γ(1) = z. We define

z

∑
i

f(i) ∶= ∫
γ

f(t)dt =
1

∫
0

f(γ(t))γ ′(t)dt
By Cauchy’s integral theorem this is independent of the choice of γ.

(13) Every commutative Q-algebra R. For every r ∈ R we define an

r-indexed family to be a polynomial function p ∶ R → R, i.e. an

element of the polynomial ring p ∈ R[X]. For every d ∈ N we define

the d-th Faulhaber polynomial Fd ∈ R[X] by

Fd ∶=
1

d + 1

d

∑
n=0

(d + 1
n )BnX

d−n+1

where Bn is the Bernoulli number with convention B1 = +
1

2
. For

p ∈ R[X] we can write p in the form p =

n∑
i=0

piX
i
and define for
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every x ∈ R the x-dependent sum of p by

x

∑
i

p(i) ∶= n

∑
i=0

pi ⋅ Fi(x)
Then

x∑
i

p(i) is a polynomial function in x and for every m ∈ N the

m-dependent sum
m∑
i

p(i) is equal to the usual sum
m∑
i=1

p(i), because
of Faulhaber’s formula Fd(m) = m∑

i=1

i
d
. [7]

This paper tries to capture what all of these examples have in common in

a unified framework. In Section 2 we define dependent adders, and very

briefly investigate their most rudimentary properties. However we do not

develop this theory very far in this paper. The majority of this paper is of a

zoological nature and consists of definitions, examples, and proofs that the

examples fit the definition. In Section 3 we show that all the examples we

listed above are in fact dependent adders. In Section 4 and 5 we consider

right and left modules over dependent adders. Given a dependent adder

A, a right A-module M , is a place where one can form sums of the form
x∑
i

f(i) ∈ M where x ∈ A, f(i) ∈ M . F1-modules are exactly the pointed

sets. N-modules are exactly the monoids. Every Banach space with its

Bochner integrals is an R-module. Every cocomplete category is a Cat-

module. A left A-module M is a place where one can form sums of the form
m∑
i

f(i) ∈ M where m ∈ M and f(i) ∈ A. We show that the category of

topological spaces an open maps Topopen is a left module over the category

of Sets, if one defines for X ∈ Topopen an X-indexed family of sets to be a

presheaf F on X, and defines the sum of F to be the étalé space of F .

Our investigations have mostly been inspired by F1-geometry [5] and Arakelov

theory [2], and then derailed into something more general. The “field with

one element” F1 and the “complete local ring at infinity” [−1, 1] might not

have binary sums x + y, but they have all dependent sums
x∑
i

f(i).
2. Dependent Adders

Let C be a category with finite limits. We denote the terminal object of C

by ∗.
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Definition 2.1. A dependent adder in C consists of:

(1) An object A ∈ C .

(2) A morphism p ∶ F → A in C . We informally think of it as being an

A-indexed family of objects of C . For any morphism x ∶ U → A we

write JxK for the pullback of the diagram U
x
→ A

p
← F and write px

for the canonical map JxK → U .

We informally think of a morphism x ∶ U → A to be a generalized

element of A, and a morphism JxK → A to be an x-indexed family

of elements of A.

(3) A morphism 1F ∶ ∗ → F , called the unit. We also define 1A ∶ ∗ → A

by 1A ∶= p ◦ 1F .

(4) For every x ∶ U → A in C a function of sets

x

∑ ∶ HomC (JxK, A) → HomC (U,A)
called the x-dependent sum function. This map is supposed to be

natural in x ∈ Ob(C /A) in the sense that for every triangle of the

form

U
f

//

x
��
❄❄

❄❄
❄❄

❄❄
U

′

y
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

A

the following diagram commutes

HomC (JxK, A)
x∑

// HomC (U,A)

HomC (JyK, A)
y∑

//

(f×
A
idF )∗

OO

HomC (U ′
, A)

f
∗

OO

(5) For every x ∶ U → A and every f ∶ JxK → A a morphism

f
♭
∶ JfK → J

x

∑fK
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called the flattening map of f . This is supposed to be a morphism

in C /U in the sense that the following diagram commutes:

JfK

pf

��

f
♭

// J
x∑fK

p(x∑f)
��

JxK
px

// U

We now demand that the following axioms are satisfied:

(1) Right Unit axiom: For every x ∶ U → A let const1A ∶ JxK → A be

the composite function JxK → ∗
1A
→ A. We demand that

x

∑const1A = x

(2) Left Unit axiom: For every x ∶ U → A and f ∶ JxK → A, let

const1A ∶ JxK → A be the constant 1A function. We demand that

const1A

∑ f ◦ const
♭

1A
= f

(3) Sum Associativity Axiom: For every x ∶ U → A, f ∶ JxK → A and

g ∶ J
x∑fK → A we demand that

x∑f

∑g =

x

∑
f

∑g ◦ f
♭

(4) Flatten Associativity Axiom: For every x ∶ U → A, f ∶ JxK → A,

g ∶ J
x∑fK → A the following diagram commutes

Jg ◦ f
♭
K

f
♭
×
A
idF

��

(g◦f♭)♭
// J

f∑g ◦ f
♭
K

( f∑g◦f
♭)♭��

JgK
g
♭

// J
x∑ f∑g ◦ f

♭
K

Definition 2.2. A dependent adder A in C is called commutative if it

satisfies the following Fubini axiom: For every x ∶ U → A, y ∶ U → A and

f ∶ Jx◦pyK → A, we have a canonical isomorphism switch ∶ Jx◦pyK → Jy◦pxK

and demand that
y

∑
x◦py

∑ f =

x

∑
y◦px

∑ f ◦ switch

7



All the examples in the introduction, except the ordinals Ord are commu-

tative.

Definition 2.3. A dependent adder A in C has a zero object if there exists

a morphism 0A ∶ ∗ → A such that

(1) For all x ∶ U → A let constU,0A be the composite U → ∗
0A
→ A and

let constJxK,0A be the composite JxK → ∗
0A
→ A. We demand that

x

∑constJxK,0A = constU,0A

(2) For all f ∶ J0AK → A

0A

∑f = 0A

All the examples in the introduction have a zero object.

2.1. Categorical Structure. Let A be a dependent adder in a category

with pullbacks C .

Given x ∶ U → A, f ∶ JxK → A and g ∶ J
x∑fK → A we define the composition

of f and g to be

f ⊠ g ∶=

f

∑(g ◦ f
♭)

Then the Left Unit Axiom states const1A ⊠ f = f .

The Sum Associativity Axiom states that

x∑f

∑g =

x∑f ⊠ g.

The Flatten Associativity Axiom states that the following diagram com-

mutes:

Jg ◦ f
♭
K

f
♭
×
A
idF

��

(g◦f♭)♭
// Jf ⊠ gK

(f⊠g)♭
��

JgK
g
♭

// J
x∑f ⊠ gK

The ⊠ composition is associative in the following sense:

Lemma 2.4. For every x ∶ U → A, f ∶ JxK → A, g ∶ J
x∑fK → A and

h ∶ J
x∑f ⊠ gK → A we have that

f ⊠ (g ⊠ h) = (f ⊠ g) ⊠ h
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Proof. By definition of ⊠ we have

f ⊠ (g ⊠ h) = f

∑(g ⊠ h) ◦ f
♭
=

f

∑( g

∑h ◦ g
♭) ◦ f

♭

By naturality of dependent sums we have

f

∑( g

∑h ◦ g
♭) ◦ f

♭
=

f

∑
g◦f

♭

∑ h ◦ g
♭
◦ (f♭

×
A
idF )

By the Flatten Associativity Axiom we have

f

∑
g◦f

♭

∑ h ◦ g
♭
◦ (f♭

×
A
idF ) = f

∑
g◦f

♭

∑ h ◦ (f ⊠ g)♭ ◦ (g ◦ f
♭)♭

By the Sum Associativity Axiom we have

f

∑
g◦f

♭

∑ h ◦ (f ⊠ g)♭ ◦ (g ◦ f
♭)♭ =

f∑g◦f
♭

∑ h ◦ (f ⊠ g)♭ = (f ⊠ g) ⊠ h

�

We can associate to every dependent adder A in C a associated category

Fib(A) internal to the presheaf category PSh(C ). We call this the cate-

gory of fibrations of A, because in the case A = Cat its global sections are

equivalent to the category of small categories and Grothendieck fibrations.

A category in PSh(C ) is the same thing as a presheaf of categories Fib(A) ∶
C

op
→ Cat.

For U ∈ C define a category Fib(A)(U) as follows: The objects of Fib(A)(U)
are morphisms x ∶ U → A in C . Given two objects x ∶ U → A and y ∶ U → A

we define HomF ib(A)(U)(x, y) ∶= {f ∈ HomC (JyK, A)∣ y∑f = x}. We call el-

ements of this set A-fibrations. So an A-fibration x → y is a morphism

f ∶ JyK → A whose sum is x.

For any object x ∶ U → A we define idx to be the map const1A ∶ JxK → A

that is the composite JxK → ∗
1A
→ A.

For two fibrations g ∶ x → y and f ∶ y → z we define their composition by:

f ◦ g ∶= f ⊠ g =

f

∑(g ◦ f
♭)

This makes sense because y =

z∑f , so g is a function J
z∑fK → A and then

the formula is well-defined.

9



The Sum Associativity Axiom of A implies that the domain of f ◦ g is x.

The left and right unit axioms of the dependent adder A imply the left

and right unit axioms of the category Fib(A)(U). The associativity of the

composition of Fib(A)(U) follows from Lemma 2.4.

One can now easily check that a morphism U → V in C induces a func-

tor Fib(A)(V ) → Fib(A)(U), so that Fib(A) becomes a presheaf of cate-

gories Fib(A) ∶ C
op

→ Cat. Equivalently this is also a category internal to

PSh(C ).
2.2. Binary products. Dependent sums imply binary products. For ex-

ample in the ordinal numbers Ord we have the formula

α ⋅ β =

β

∑
i=1

α

and this same formula makes sense for arbitrary dependent adders.

Given a dependent adder A in C , and two parallel maps x, y ∶ U → A in C

we have a canonical map py ∶ JyK → U and define x ⋅ y ∶ U → A by

x ⋅ y ∶=

y

∑x ◦ py

With this we get a multiplication map

µU ∶ HomC (U,A) × HomC (U,A) → HomC (U,A)
which is natural in U . By the Yoneda lemma we obtain a map µ ∶ A×A → A

in C . This map explicitly looks as follows: let π2 ∶ A × A → A be the

second projection. The first projection π2 has a dependent sum function
π2∑ ∶ HomC (Jπ2K, A) → HomC (A × A,A). Let π1 ∶ Jπ2K ≅ F ×A → A be the

first projection. The multiplication function µ ∶ A ×A → A is given by

µ =

π2

∑π1

For all the examples from the introduction, this recovers the usual binary

multiplication on the respective sets.

Lemma 2.5. A is a monoid object in C with the multiplication function

µ ∶ A × A → A and the unit 1A ∶ ∗ → A.

If A is a commutative dependent adder, then it is a commutative monoid

object.
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Proof. By the Yoneda lemma it suffices to show for every U ∈ C that

HomC (U,A) is a monoid, respectively a commutative monoid.

The right unit axiom of the dependent adder A implies the left unit axiom

of the monoid HomC (U,A), because for x ∶ U → A we have

const1A ⋅ x =

x

∑const1A = x

The Sum Associativity Axiom of the dependent adder implies the associa-

tivity of the monoid in the following way: For x, y, z ∶ U → A we have a

commutative diagram.

Jy ◦ pzK

(pz×
A
idF )

��

(y◦pz)♭
//

py◦pz

##●
●●

●●
●●

●●
Jy ⋅ zK

py⋅z

��

JyK

py

88JzK
pz

// U

Here the upper right part commutes, because flattening maps commute over

U . The lower part commutes because both maps are the projection U ×
A
F ×

A

F → U . Using this diagram and the Sum Associativity Axiom we get

x⋅(y ⋅z) =
z∑y◦pz

∑ x◦py⋅z =

z

∑
y◦pz

∑ x◦py⋅z◦(y◦pz)♭ = z

∑
y◦pz

∑ x◦py◦(pz×
A
idF ) =

=

z

∑( y

∑x ◦ py) ◦ pz = (x ⋅ y) ⋅ z
For the right unit axiom of the monoid we need to work a bit harder, because

we can only directly apply the left unit axiom of the dependent adder A if U

is of the form JwK for some w ∈ C /A. Thankfully we can use the naturality

of the dependent sums and the unit 1F ∶ ∗ → F to translate the problem

into such a situation.

Let c ∶= const1 ∶ U → A be the constant 1A map. Consider the diagram

U

s

  

//

idU

&&

*
1F

  ❅
❅❅

❅❅
❅❅

❅

JcK //

pc

��

F

p

��

U
c

// A

11



The lower right square is a pullback. The outer diragram commutes. So we

get s ∶ U → JcK with pc ◦s = idU . Let c̃ ∶= c◦pc be the constant 1A function

JcK → A. We have a commutative triangle

U

c̃◦s
��
❃❃

❃❃
❃❃

❃❃

s
// JcK

c̃
~~⑦⑦
⑦⑦
⑦⑦
⑦

A

so s is a morphism c̃ ◦ s → c̃ in C /A. The naturality of dependent sums

now implies that for every z ∶ Jc̃K → A we have

( c̃

∑z) ◦ s =

c̃◦s

∑(z ◦ (s×
A
idF ))

This in particular implies that for every y ∶ JcK → A we have

(y ⋅ c̃) ◦ s = (y ◦ s) ⋅ (c̃ ◦ s)
Now take x ∶ U → A. We want to show that x ⋅ c = x. Let y ∶= x ◦ pc.

We have y ⋅ c̃ =

c̃∑consty =

c̃∑consty ◦ c̃
♭
= y by the left unit axiom of the

dependent adder A. Then x = y ◦ s = (y ⋅ c̃) ◦ s = (y ◦ s) ⋅ (c̃ ◦ s) = x ⋅ c. So

HomC (U,A) is a monoid.

If the dependent adder is commutative, then the Fubini axiom and the left

unit axiom of the monoid imply the commutativity of the monoid.

x ⋅ y = (1A ⋅ x) ⋅ y =

y

∑
x◦py

∑ const1A =

x

∑
y◦px

∑ const1A = y ⋅ x

With the Yoneda lemma it follows that A is a monoid, respectively a com-

mutative monoid, in C . �

In every dependent adder A we always have the right distributive law

y ⋅

x

∑
i

f(i) = x

∑
i

y ⋅ f(i)
but not necessarily the left distributive law. For example in Ord we have

(1+ 1) ⋅ ω ≠ (1 ⋅ ω) + (1 ⋅ ω).
In all examples of dependent adders in the introduction, the binary mul-

tiplication here recovers the usual binary multiplication on these sets. For

example in Cat the product I ⋅J is the cartesian product of categories I×J .

12



3. Examples

3.1. Natural Numbers. Let C = Set be the category of small sets. Let

A = N be the set of natural numbers. For n ∈ N let [n] ∶= {1, . . . , n} be

a set with n elements. Let F ∶= ∐
n∈N

[n] = {(n, i)∣n, i ∈ N, 1 ≤ i ≤ n}. Let

p ∶ F → A be the map sending (n, i) to n. The fiber of p over n ∈ N is

the set [n]. Let 1F ∶ ∗ → F be the point (1, 1) ∈ F . For any function

x ∶ U → N can write JxK = U ×
A
F as a coproduct:

JxK = ∐
u∈U

[x(u)]
We define for every x ∶ U → N a natural function

x

∑ ∶ HomSet(JxK,N) → HomSet(U,N)
by sending f ∶ JxK → N to the function

x∑f ∶ U → N defined by

( x

∑f)(u) ∶= x(u)
∑
i=1

f(u, i)
In the case U = ∗ this is the map HomSet([x],N) → N that sends f to
x∑
i=1

f(i).
Next, for every x ∶ U → N and f ∶ JxK → N we define the flattening map

f
♭
∶ ∐
u∈U

∐
i∈[x(u)]

[f(u, i)] → ∐
u∈U

[x(u)∑
i=1

f(u, i)]
by

f
♭(u, i, j) ∶= (u, j + i−1

∑
k=1

f(u, k))
The Right Unit axiom

x(u)∑
i=1

1 = x(u) is obvious.

The Left Unit axiom follows from the following calculation:

(const1 ⊠ f)(u, i) = 1

∑
j=1

f(u, j + i−1

∑
k=1

1) = f(u, 1+ i − 1) = f(u, i)
The Sum Associativity Axiom

x(u)∑
i=1

f(u,i)
∑
j=1

g(u, j) = x(u)
∑
i=1

f(u,i)
∑
j=1

g(u, j + i−1

∑
k=1

f(u, k))

13



is easily verified by induction over n.

For the Flatten Associativity Axiom we need to show that the following

diagram commutes

∐
u∈U

∐
i∈[x(u)] ∐

j∈[f(u,i)][g(f
♭(u, i, j))] (g◦f♭)♭

//

f
♭
×
A
idF

��

∐
u∈U

∐
i∈[x(u)][

f(u,i)∑
j=1

g(f♭(u, i, j))]
(f⊠g)♭
��

∐
u∈U

∐
k∈[x(u)∑

i=1

f(u,i)]
[g(u, k)] g

♭

// ∐
u∈U

[x(u)∑
i=1

f(u,i)∑
j=1

g(f♭(u, i, j))]

The commutativity follows by the following calculation:

g
♭((f♭

×
A
idF )(u, i, j, k)) = g

♭(f♭(u, i, j), k) = g
♭(u, j + i−1

∑
a=1

f(u, a), k) =

= (u, k +

j−1+
i−1∑
a=1

f(u,a)
∑
b=1

g(u, b)) =

= (u, k + (j−1∑
b=1

g(u, b + i−1

∑
a=1

f(u, a)))+ i−1

∑
a=1

f(u,a)
∑
b=1

g(u, b + a−1

∑
c=1

f(u, c))) =

= (u, k + (j−1∑
b=1

g(f♭(u, i, b))) + i−1

∑
a=1

(f ⊠ g)(u, a)) =

= (f ⊠ g)♭(u, i, k +

j−1

∑
b=1

g(f♭(i, b))) = (f ⊠ g)♭((g ◦ f
♭)♭(u, i, j, k))

which means the Flatten Associativity Axiom is satisfied and N is a depen-

dent adder. The dependent adder is commutative because the Fubini axiom
x(u)∑
i=1

y(u)∑
j=1

f(u, i, j) = y(u)∑
j=1

x(u)∑
i=1

f(u, i, j) is obviously satisfied.

In the category of sets C = Set the entire u variable is kind of unnecessary,

and it is enough to define dependent sums, flattening maps and prove the

axioms for U = ∗. The u variable is however important in some other

categories C .

Let FinSet be the full subcategory of Set on sets of the form [n] for n ∈ N.

The presheaves of categories Fib(N) ∶ Set
op

→ Cat is representable, and

14



it is represented by the category FinSet. By this we mean that for every

S ∈ Set we have a strict isomorphism of categories

Fib(N)(S) ≅ FinSet
S

which is natural in S.

More precisely there is a bijection

Φ ∶ HomF inSet([n], [m]) → HomF ib(N)(∗)(n,m)
sending f ∶ [n] → [m] to the function Φ(f) ∶ [m] → N that sends x ∈ [m]
to the cardinality of the fiber of f over x.

Φ(f)(x) ∶= ∣f−1({x})∣
It preserves composition in the sense that Φ(g ◦ f) = Φ(g) ⊠ Φ(f).
3.2. Non-negative real numbers. Let C = Topmtr be the category of

metrizable topological spaces and continuous maps between them. The cat-

egory C has pullbacks which agree with the usual pullbacks of topological

spaces.

Let A ∶= R≥0 be the space of non-negative real numbers with euclidean

topology.

Let F ∶= {(x, y) ∈ R
2∣0 ≤ x, 0 ≤ y ≤ x} be equipped with the subspace

topology from R
2
. Define p ∶ F → R≥0, p(x, y) ∶= x. The fiber of p over x

is the interval [0, x].
We let 1F ∶ ∗ → F be the point (1, 1) ∈ F .

For x ∶ U → R≥0 there is a homeomorphism

JxK ≅ {(u, a) ∈ U × R≥0∣0 ≤ a ≤ x(u)}
and from now on we redefine JxK to mean the topological space {(u, a) ∈

U ×R≥0∣0 ≤ a ≤ x(u)}.
For x ∶ U → R≥0 define

x∑ ∶ HomTopmtr
(JxK,R≥0) → HomTopmtr

(U,R≥0) on

f ∶ JxK → R≥0 by

( x

∑f)(u) ∶=
x(u)
∫
0

f(u, t)dt
This integral always exists and is finite, because f is continuous and for

every u ∈ U the interval [0, x(u)] is compact. The map is easily seen to be
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natural in x, but we have to show that
x∑f is actually a continuous function.

For this we will need to use the fact that U is metrizable.

Lemma 3.1. The function g ∶=

x∑f ∶ U → R≥0 is continuous.

Proof. Choose a metric d on U , and put on JxK = U ×
R≥0

F the metric that

is the sum of the metric d and the Manhattan distance on F . Take u ∈ U

and ǫ1 > 0. We want to show that the set V ∶= g
−1(Bǫ1(g(u))) is open

in U . Since U is metrizable, U is also a compactly generated topological

space. So to show that V is open, it suffices to show for every compact

subset K ⊆ U that K ∩ V is open in K. So take an arbitrary compact

subset K ⊆ U , and some v ∈ K ∩ V . We need to show there exists δ > 0

such that K ∩ Bδ(v) ⊆ K ∩ V . Let ǫ2 ∶= ǫ1 − ∣g(v) − g(u)∣. We have

ǫ2 > 0 and Bǫ2(g(v)) ⊆ Bǫ1(g(u)). Choose θ1 > 0 with θ1 ⋅ x(v) ≤
ǫ2
2
.

The set K ×
R≥0

F is a compact subset of JxK. Therefore the restricted map

f ∶ K ×
R≥0

F → R≥0 is uniformly continuous. So there exists a δ1 > 0 such

that for all x, y ∈ K ×
R≥0

F , if d(x, y) < δ1 then d(f(x), f(y)) < θ1. Let M

be the maximum of f ∶ K ×
R≥0

F → R≥0. Choose θ2 > 0 such that θ2 ⋅M ≤
ǫ2
2

and θ2 ≤ δ1. Since x ∶ U → R≥0 is continuous, there exists δ2 > 0 such

that x(Bδ2(v)) ⊆ Bθ2(x(v)). Let δ be the minimum of δ1 and δ2. Take

w ∈ K ∩Bδ(v). We claim that w ∈ V . This means that g(w) ∈ Bǫ1(g(u)).
To show that it suffices to show g(w) ∈ Bǫ2(v). We have

g(w) =
x(w)
∫
0

f(w, t)dt =
x(w)
∫
x(v)

f(w, t)dt +
x(v)
∫
0

f(w, t)dt
Let’s look at the first term of this sum:

∣
x(w)
∫
x(v)

f(w, t)dt∣ ≤ ∣x(w) − x(v)∣ ⋅M ≤ θ2 ⋅M ≤
ǫ2
2

With this we get

∣g(w) − g(v)∣ ≤ ǫ2
2

+ ∣
x(v)
∫
0

f(w, t) − f(v, t)dt∣ ≤
≤

ǫ2
2

+ x(v) ⋅ θ1 ≤ ǫ2
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so g =

x∑f is continuous. �

Given x ∶ U → R≥0 and f ∶ JxK → R≥0 the flattening map is defined by

f
♭
∶ ∐
u∈U

∐
a∈[0,x(u)]

[0, f(u, a)] → ∐
u∈U

[0,
x(u)
∫
0

f(u, t)dt]

f
♭(u, a, b) ∶= (u,

a

∫
0

f(u, t)dt)
Here the ∐ coproducts that we have written domain and codomain of f

♭

are not literally coproducts of topological spaces, but they are coproducts of

sets equipped with the subspace topology from U ×R≥0 ×R≥0, respectively

U ×R≥0. Also note that f
♭(u, a, b) does not depend on b at all, so if we have

continuous functions x ∶ U → R≥0, f ∶ JxK → R≥0 and g ∶ J
x∑fK → R≥0, then

(f ⊠ g)(u, a) =
f(u,a)
∫
0

g(f♭(u, a, t))dt = f(u, a) ⋅ g(
a

∫
0

f(u, s)ds)
We now verify that R≥0 satisfies the axioms of a commutative dependent

adder.

The Right Unit axiom follows from the fact that

x

∫
0

1dt = x

The Left Unit axiom follows from

(const1A ⊠ f)(u, a) = 1 ⋅ f(u,
a

∫ 1

0

) = f(u, a)
For the Sum Associativity Axiom we need to show that for every continuous

function f ∶ JxK → R≥0 and g ∶ J
x∑fK → R≥0 we have

x∫
0

f(u,t)dt
∫
0

g(u, s)ds =

x

∫
0

f(u, t) ⋅ g(u,
t

∫
0

f(u, z)dz)dt
This follows through “integration by substitution” with an antiderivative

of f . Let h ∶ JxK → R≥0, h(u, t) ∶=

t∫
0

f(u, s)ds. Then h is continuously

17



differentiable in the t variable with d

dt
h(u, t) = f(u, t), and we get

x∫
0

f(u,t)dt
∫
0

g(u, s)ds =

h(u,x)
∫

h(u,0)
g(u, s)ds =

x

∫
0

f(u, t) ⋅ g(u, h(u, t))dt
The Flatten Associativity Axiom follows from

g
♭((f♭

×
A
idF )(u, a, b, c)) = g

♭(u,
a

∫
0

f(u, t)dt, c) =
a∫
0

f(u,t)dt
∫
0

g(u, t)dt =

=

a

∫
0

(f⊠g)(u, t)dt = (f⊠g)♭(u, a,
b

∫
0

g(f♭(i, t))dt) = (f⊠g)♭((g◦f♭)♭(u, a, b, c))
so R≥0 is a dependent adder.

It is a commutative dependent adder because of Fubini’s theorem

x

∫
0

y

∫
0

f(u, s, t)dsdt =
y

∫
0

x

∫
0

f(u, s, t)dtds
3.3. P-Adic integers. Like in Section 3.2, we take C = Topmtr the cate-

gory of metrizable spaces.

Let q be a prime number. Let A ∶= Zq. Let F ∶= Zq × Zq. Let p ∶ F → A

be the second projection Zq × Zq → Zq. The fiber of p over x ∈ Zq is Zq.

Let 1F ∶ ∗ → F be the point (1, 1) ∈ Zq × Zq. For x ∶ U → Zq there is a

homeomorphism JxK ≅ U × Zq, so by JxK we will from now on simply mean

U × Zq.

To define the dependent sums we use the following lemma

Lemma 3.2. If f ∶ Zq → Zq is a continuous function, and g ∶ N → Zq is

the function g(n) ∶= n∑
i=1

f(i) then g is continuous with respect to the q-adic

topology on N.

Proof. Take N ∈ N. We need to show that there exists M ∈ N such that for

all x, y ∈ N with x − y divisible by q
M

we have that g(x) − g(y) is divisble

by q
N
.

Since Zq is compact, f is uniformly continuous. So there exists a K ∈ N,

such that for all x, y ∈ Zq if x − y ∈ q
K
Zq then f(x) − f(y) ∈ q

N
Zq. Let
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M ∶= K +N . Take x, y ∈ N with x − y = q
M

⋅ z for some z ∈ N. Without

loss of generality assume x ≥ y. Then we have

g(x)−g(y) = x

∑
i=y+1

f(i) = x−y

∑
i=1

f(i+y) = q
M

z

∑
i=1

f(i+y) = q
N

∑
i=1

q
K
z

∑
j=1

f(j+y+(i−1)qKz)
Now for all i, j there exists wi,j such that f(j+ y+ (i− 1)qKz) = f(j+ y)+
q
N
wi,j, and then

q
N

∑
i=1

q
K
z

∑
j=1

f(j + y + (i − 1)qKz) = q
N(q

K
z

∑
j=1

f(j + y)) + q
N(q

N

∑
i=1

q
K
z

∑
j=1

wi,j)
This is divisible by q

N
so g is continuous. �

In the above lemma, since Zq is Cauchy-complete, the map g ∶ N → Zq

induces a map from the Cauchy completion of N to Zq. Since the Cauchy

completion of N with respect to the q-adic topology is Zq, we thus get a

continuous map g̃ ∶ Zq → Zq, g̃(x) = lim
xn→x
xn∈N

g(x). We write
x∑
i=1

f(i) for g̃(x).
x

∑
i=1

f(i) ∶= lim
xn→x
xn∈N

xn

∑
i=1

f(i)
We can now define the dependent sum function of Zq. For any continuous

function x ∶ U → Zq define

x

∑ ∶ HomTopmtr
(U × Zq,Zq) → HomTopmtr

(U,Zq)
by

( x

∑f)(u) ∶= x(u)
∑
i=1

f(u, i)
The continuity of this function can be proven using an argument very similar

to the one from Lemma 3.1.

For any f ∶ U × Zq → Zq we define the flattening function of f by

f
♭
∶ U × Zq × Zq → Zq, f

♭(u, i, j) ∶= j +

i−1

∑
k=1

f(u, k)
The right and left unit axiom, both Associativity Axioms and Fubini axiom

follow exactly like for the natural numbers N from Section 3.1.
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3.4. Small Categories. We first explicitly construct oplax colimits of cat-

egories. We then show that Cat is a dependent adder with oplax colimits as

dependent sums. We then show that Cat
op

is a dependent adder with lax

colimits / Grothendieck constructions as dependent sums.

3.4.1. Explicit construction of oplax colimits. For any functor f ∶ I → Cat

define its oplax colimit colim
oplax

i∈I
f(i) to be the following category:

(1) The objects are pairs (i, j) with i ∈ I, j ∈ f(i).
(2) The morphism (i, j) → (i′, j′) are pairs of morphisms (α, β) where

α ∶ i → i
′
in I and β ∶ f(α)(j) → j

′
in f(i′).

The universal property of this particular oplax colimit construction is as

follows: For any i ∈ I we have a functor ιi ∶ f(i) → colim
oplax

j∈I
f(j). For

every α ∶ i → i
′
in I we have a natural transformation ια ∶ ιi → ιi′ ◦ f(α),

such that ιidi = idιi and ιβ◦α = (ιβ ∗ f(α)) ◦ ια.

Whenever we have another object X together with for every i ∈ I a functor

ωi ∶ f(i) → X, and for every α ∶ i → i
′
in I a natural transformation

ωα ∶ ωi → ωi′ ◦ f(α) such that ωidi = idωi
and ωβ◦α = (ωβ ∗ f(α)) ◦ωα then

there is a unique functor ω ∶ colim
oplax

j∈I
f(j) → X, such that ωi = ω ◦ ιi and

ωα = ω ∗ ια.

Usually the universal property of oplax colimits requires the functor ω to not

be unique, but only be unique up to isomorphism. However the particular

category we constructed above satisfies the stricter universal property where

ω is unique up to equality. See [1, Section 2] for the usual theory of lax and

oplax limits.

3.4.2. Oplax colimits as sums. We postulate two strongly inaccessible cardi-

nals κ0 < κ1. A category is called small if it is smaller than κ0. A category

is called moderately small if it is smaller than κ1.

The 1-category of small categories is denoted Cat. The 1-category of mod-

erately small categories is denoted CAT .

For all moderately small categories I, J let HomhCAT (I, J) be a skeleton of

the category of functors HomCAT (I, J). So for every functor F ∶ I → J

there exists exactly one functor Ho(F ) ∶ I → J such that F ≅ Ho(F ) and

Ho(F ) ∈ HomhCAT (I, J).
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Let hCAT be the category whose objects are moderately small categories,

and whose morphism sets are given by HomhCAT (I, J). Given two functors

Ho(F ) ∶ I → J and Ho(G) ∶ J → K their composition is defined by taking

sk of their composition in CAT :

Ho(F ) ◦
hCAT

Ho(G) ∶= Ho(Ho(F ) ◦
CAT

Ho(G))
With this composition hCAT is a category.

Then hCAT is in fact equivalent to the homotopy category of CAT , if we

put on CAT the canonical model structure constructed in [8], in which

weak equivalences are categorical equivalences and fibrations are Joyal isofi-

brations. We just prefer to present the morphisms of hCAT as particular

chosen functors instead of presenting them as isomorphism classes of func-

tors.

The category hCAT has finite limits. In general pullbacks in hCAT do not

need to coincide with pullbacks in CAT . However if we take a pullback

of a Grothendieck fibration or opfibration in CAT , then it will also be a

pullback in hCAT , because Grothendieck fibrations and opfibrations are

Joyal isofibrations, and in any right proper model category a strict pullback

of a fibration is a homotopy pullback.

Let C ∶= hCAT be the homotopy category of moderately small categories.

Let A ∶= Cat be the 1-category of small categories.

Consider the inclusion functor ι ∶ A → CAT , ι(I) ∶= I. This functor

corresponds to a Grothendieck op-fibration p
♡

∶ F → A. We define p ∶=

Ho(p♡). So we now have a morphism p ∶ F → A in C . The fiber of p over

some I ∈ A is isomorphic to I ∈ CAT . Define 1
♡

F ∶ 1 → F as the map

that picks out the terminal category 1 ∈ A and the unique object in that

category ∗ ∈ 1. Define the unit 1F by 1F ∶= Ho(1♡F ).
Since pullbacks of Grothendieck op-fibrations are Grothendieck op-fibrations,

we have for any functor x ∶ U → A in hCAT an isomorphism

JxK ≅ colim
oplax

u∈U
x(u)

For every x ∶ U → A we define the dependent sum function

x

∑ ∶ HomC (JxK, A) → HomC (U,A)
on a functor f ∶ JxK → A as follows:
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We define a functor
x∑(f)♡ ∶ U → A that is defined on objects by

x

∑(f)♡(u) ∶= colim
oplax

i∈x(u) f(u, i)
Given an arrow α ∶ u → v in U we need to define an arrow

x∑(f)♡(α) ∶
x∑(f)♡(u) →

x∑(f)♡(v) in A, by using the universal property of the oplax

colimit in the codomain. For all i ∈ x(u) we then have an arrow (α, idx(α)(i)) ∶(u, i) → (v, x(α)(i)) in colim
oplax

u∈U
x(u) ≅ JxK. We then get a composite

functor f(u, i) f(α,idx(α)(i))
→ f(v, x(α)(i)) → colim

oplax

k∈x(v) f(v, k). For every mor-

phism β ∶ i → j in x(u) we have a diagram

f(u, i) f(α,idx(α)(i))
//

f(idu,β)
��

f(v, x(α)(i))
f(idv ,x(α)(β))

�� ((P
PP

PP
PP

PP
PP

PP

f(u, j)
f(α,idx(α)(j)) // f(v, x(α)(j)) // colim

oplax

k∈x(v) f(v, k)��

where the left square commutes, and in the right triangle there is a canonical

natural transformation.

By the universal property of the oplax colimit
x∑(f)♡(u) = colim

oplax

i∈x(u) f(u, i)
we get a morphism

x∑(f)♡(α) ∶

x∑(f)♡(u) →

x∑(f)♡(v). Then
x∑(f)♡ ∶

U → A is a functor. We define
x∑(f) ∶= Ho( x∑(f)♡).

Next we need to define the flattening map

f
♭
∶ JfK → J

x

∑(f)K
We have canonical isomorphisms

JfK ≅ colim
oplax

(u,i)∈JxK
f(u, i) ≅ colim

oplax

(u,i)∈colimoplax

u∈U
x(u)f(u, i)

J
x

∑fK ≅ colim
oplax

u∈U
colim

oplax

i∈x(u) f(u, i)
and using the universal property of oplax colimits one can construct a nat-

ural isomorphism of categories

colim
oplax

(u,i)∈colimoplax

u∈U
x(u)f(u, i)

∼

→ colim
oplax

u∈U
colim

oplax

i∈x(u) f(u, i)
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So there is a canonical isomorphism f
♭,♡

∶ JfK → J
x∑fK and we define

f
♭
∶= Ho(f♭,♡).

We now verify that A satisfies all the axioms of a dependent adder.

For any category I we have a natural isomorphism

colim
oplax

i∈I
1 ≅ I

and this implies that for any map x ∶ U → Cat in hCAT we have a strict

equality
x∑const1A = x of morphisms in hCAT , so it satisfies the Right Unit

Axiom.

The Left Unit Axiom follows from the fact that if I is a small category and

FI ∶ 1 → Cat is the functor sending the unique object ∗ from the terminal

category 1 to I ∈ Cat, then I is the oplax colimit of FI .

colim
oplax

i∈1
FI(i) ≅ FI(∗) = I

The Sum Associativity Axiom follows from the fact that for any category

I, functor F ∶ I → Cat and G ∶ colim
oplax

i∈I
F (i) → Cat there is a natural

isomoprhism

colim
oplax

(i,j)∈colimoplax

i∈I
F (i)G(i, j) → colim

oplax

i∈I
colim

oplax

j∈F (i) G(i, j)
For the Flatten Associativity Axiom one needs to verify for every x ∶ U →

Cat, f ∶ colim
oplax

u∈U
x(u) → Cat and g ∶ colim

oplax

u∈U
colim

oplax

i∈x(u) f(u, i) → Cat

that the following diagram commutes up to natural isomorphism

colim
oplax

(u,i,j)∈ colimoplax

(u,i)∈colimoplax

u∈U
x(u)f(u,i)

g(u, i, j)

��

// colim
oplax

(u,i)∈colimoplax

u∈U
x(u)colim

oplax

j∈f(u,i) g(u, i, j)

��

colim
oplax

(u,i,j)∈colimoplax

u∈U
colimoplax

i∈x(u) f(u,i)g(u, i, j) // colim
oplax

u∈U
colim

oplax

i∈x(u) colim
oplax

j∈f(u,i) g(u, i, j)

where all maps are constructed canonically using the universal properties of

the oplax colimits. If this diagram commutes up to isomorphism in CAT

then the corresponding diagram in hCAT commutes strictly, and then Cat

satisfies the Flatten Associativity Axiom.

Cat also satisfies the Fubini axiom because oplax colimits commute, so it is

a commutative dependent adder.
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3.4.3. Lax colimits as sums. One can also make the category of small cate-

gories Cat into a dependent adder with lax colimits instead of oplax colimits.

For a functor F ∶ I → CAT we can define the lax limit colim
lax

i∈I
F (i) of F as

the opposite of the oplax colimit of the composite I
F
→ CAT

op
→ CAT .

colim
lax

i∈I
F (i) ∶= (colimoplax

i∈I
F (i)op)op

This is also known as the Grothendieck construction ∫ F .

We have a functor ι ∶ Cat → CAT defined by ι(I) ∶= I
op
. It corresponds to

a Grothendieck op-fibration p ∶ F → Cat, whose fiber over some I ∈ Cat is

isomorphic to I
op
.

Given a functor F ∶ I
op

→ Cat we define the sum of F to be its lax colimit

/ Grothendieck construction.

I

∑F ∶= colim
lax

i∈Iop
F (i) = ∫ F

We then have natural isomorphisms

colim
lax

i∈Iop
1 ≅ I

colim
lax

(i,j)∈(colimlax

i∈Iop
F (i))opG(i, j) ≅ colim

lax

i∈Iop
colim

lax

j∈F (i)op G(i, j)
which make Cat into a dependent adder in hCAT .

3.5. Commutative Q-algebras. Let R be a commutative Q-algebra. Let

C ∶= Sch/R be the category of schemes over Spec(R). Let A ∶= A
1
R be the

affine line. We define F ∶= A
2
R and let p ∶ F → A

1
R be the projection to the

second variable. For every x ∶ U → A
1
R we have JxK ≅ A

1
U . Let S ∶= Γ(U,OU)

be the ring of global sections of U . Then morphisms x ∶ U → A
1
R correspond

to elements x ∈ S, and morphisms p ∶ A
1
U → A

1
R corresponds to elements

p ∈ S[X]. So for every x ∈ S and every p ∈ S[X] we need to define a sum
x∑p ∈ S. For this we will use Faulhaber’s formula [7]. For any d ∈ N define

the d-th Faulhaber polynomial Fd ∈ S[X] by

Fd ∶=
1

d + 1

d

∑
n=0

(d + 1
n )BnX

d−n+1

where (d+1
n
) is the binomial coefficient and Bn is the Bernoulli number with

the convention B1 = +
1

2
. Faulhaber’s formula states that for any d, n ∈ N

n

∑
k=1

k
d
= Fd(n)
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For any polynomial p ∈ S[X] we can write p as a sum of monomials p =
n∑
i=0

pi ⋅X
i
and then define ∑(p) ∈ S[X] by

∑(p) ∶= n

∑
i=0

pi ⋅ Fi

Then ∑(p) is a polynomial satisfying ∑(p)(m) = m∑
i=1

p(i) for all m ∈ N.

We define for all x ∈ S and p ∈ S[X] that
x∑(p) ∶= ∑(p)(x).

With this we have defined the dependent sum function of the dependent

adder A
1
R.

Next, for every p ∈ S[X] we need to define a flattening function p
♭
∶ A

2
U →

A
1
U over U . Such a morphism corresponds to an element in S[X,Y ]. We

define p
♭
∈ S[X,Y ] by p

♭
∶= Y +

X−1∑ (p).
We now need to verify the axioms of a dependent adder. The Left Unit

Axiom is true because
x∑1 = F0(x) = x. The Right Unit Axiom is true

because
const1∑ (p ⋅ const♭1) = p(1 + X−1∑ 1) = p(X) = p.

For the Sum Associativity Axiom we need to show for all R-algebras S and

all x ∈ S, f, g ∈ S[X], that
x∑(f)
∑ (g) = x∑( f∑g ◦ f

♭) in S. To show it we will

use the following lemma:

Lemma 3.3. Let B be a commutative Q-algebra. If for two polynomials

p, q ∈ B[X] we have p(n) = q(n) for all n ∈ N, then p = q in B[X].
Proof. We claim that for all f ∈ B[X], if f(n) = 0 for all n ∈ N, then f = 0

in B[X]. Once we have shown this claim the lemma follows with f ∶= p− q.

We show this claim by induction over the degree d of f .

Suppose that for all polynomials g of degree d, if g(n) = 0 for all n ∈ N,

then g = 0.

Let f ∈ B[X] be a polynomial of degree d + 1 such that f(n) = 0 for all

n ∈ N. Write f =

d+1∑
i=0

fiX
i
. Then 0 = f(0) = f0. So f = X ⋅ (d+1∑

i=1

fiX
i−1).

Let g ∶=

d+1∑
i=1

fiX
i−1

. For all n ∈ N with n ≠ 0 we have g(n) =
f(n)
n

= 0. So

g(X + 1) = d+1∑
i=1

fi(X + 1)i−1 is a polynomial of degree d that vanishes on all

of N. By inductive hypothesis g(X + 1) = 0 in B[X]. This then implies

g = 0 and then f = 0. �
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For p ∈ S[T ] and n ∈ N we know that
n+1∑ (p) = p(n + 1) + n∑(p). With

Lemma 3.3 it follows that for all x ∈ S we have
x+1∑ (p) = p(x + 1) + x∑(p).

We can then show inductively for all n ∈ N, x ∈ S and p ∈ S[T ] that
x+n∑ (p) = x∑(p)+ n∑(p(T +x)). By Lemma 3.3 it follows that for all x, y ∈ S

and p ∈ S[T ] that
x+y∑ (p) = x∑(p) + y∑(p(T + x)). We can then inductively

show for all n ∈ N, and f, g ∈ S[T ] that
n∑(f)
∑ (g) =

n∑
i=1

f(i)
∑
j=1

g(j) = n

∑
i=1

f(i)
∑
j=1

g(j + i−1

∑
k=1

f(k)) = n

∑( f

∑(g ◦ f
♭))

From Lemma 3.3 we then get the Sum Associativity Axiom for all x ∈ S

and all f, g ∈ S[T ].
As soon as one has the Sum Associativity Axiom, one can prove the Flatten

Associativity Axiom exactly like we did for the natural numbers in Section

3.1.

We also claim that A
1
R satisfies the Fubini axiom. This can be shown as

follows. Firstly we have for all n ∈ N and p, q ∈ S[T ] that
n∑(p + q) =

n∑(p) + n∑(q). So Lemma 3.3 implies for all p, q ∈ S[T ] and x ∈ S that
x∑(p+ q) = x∑(p)+ x∑(q). One can then show inductively that for all n ∈ N,

x ∈ S and p ∈ S[T1][T2] that
x∑( n∑(p)) = n∑( x∑(switch(p)) where switch ∶

S[T1][T2] → S[T1][T2] is isomorphism exchanging T1 and T2, and then the

Fubini axiom follows from Lemma 3.3.

3.6. All the other examples.

(1) The set of small ordinals Ord is a dependent adder in the category

of moderately small sets SET . We take the function p ∶ F → Ord

whose fiber p
−1({α}) at some α ∈ Ord is the underlying set of α.

For every α we define the α-dependent sum function

α

∑ ∶ HomSET (α,Ord) → Ord

by transfinite induction over α.
0∑ is defined by

0∑f ∶= 0.
α+1∑ is

defined by
α+1∑ f ∶= ( α∑(f ∣α))+f(α). Here f ∣α means the restriction

of f to α ⊆ α + 1. Also, it is important here to put the f(α) on the

right of the sum, and not on the left. If α = ∪
β<α

β is a limit ordinal,
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then we define
α∑f ∶= sup

β<α

β∑f . These α-dependent sum functions

then assemble together for every x ∶ U → Ord into an x-dependent

sum function

x

∑ ∶ HomSET (JxK, Ord) → HomSET (U,Ord)
Note that the indexing conventions here are slightly shifted com-

pared to those from Section 3.1, because here
α∑f refers to the sum

of f(i) for all 0 ≤ i < α, while in Section 3.1 the sum
n∑f referred to

the sum of f(i) for all 1 ≤ i ≤ n.

For f ∶ JxK → Ord the flattening function f
♭
∶ ∐
u∈U

∐
α∈x(u)f(α) →

∐
u∈U

x(u)∑ (f) is defined by f
♭(u, i, j) ∶= (u, ( i∑(f))+j). It is important

that j is here on the right side of the sum.

One can then easily verify all the axioms of dependent adders by

using a lot of transfinite induction.

(2) The “set of all small cardinals” Card is a dependent adder in the

category of moderately small sets SET . It works exactly like the

ordinal numbers Ord.

(3) The “field with one element” F1 = {0, 1} works exactly like the

natural numbers N. See Section 3.1.

(4) The unit interval [0, 1] works exactly like the real numbers R≥0. See

Section 3.2.

(5) The integers Z are a dependent adder in Set. We define p ∶ F → Z

to be the function whose fibers are Z everywhere. So p is the second

product projection p ∶ Z × Z → Z. Given some x ∶ U → Z and a

function f ∶ U × Z → Z we define its sum by

x

∑(f)(u) ∶=
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x(u)∑
i=1

f(u, i) , x(u) ≥ 0

−x(u)∑
i=1

− f(u, 1− i) , x(u) < 0

The flattening function f
♭
∶ U×Z×Z → U×Z is given by f

♭(u, i, j) ∶=
(u, j + i−1∑

k=1

f(u, k)). This makes Z into a dependent adder.

Just as a remark: The reason we don’t take for p the function

whose fiber over n is {1, . . . , ∣n∣}, is because then the usual flattening
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map f
♭
∶ ∐

u∈U

∐
i∈{1,...,∣x(u)∣}{1, . . . . , ∣f(i)∣} → ∐

u∈U

{1, . . . , x(u)∑
i=1

f(u, i)}
would be impossible to define, because if f takes on some negative

values, then j +
i−1∑
k=1

f(u, k) might not lie in {1, . . . , x(u)∑
i=1

f(u, i)}. If a

dependent adder contains negative numbers, one has to add some

redundant information in the fibers of p.

(6) The reals R work exactly like the non-negative reals R≥0 from Section

3.2, except like for the integers Z we let p ∶ F → R be the second

product projection R× R → R.

(7) The “complete local ring at infinity” [−1, 1] works exactly like R

above.

(8) For the complex numbers C we choose as background category C

the category of complex analytic spaces from [3]. This category has

pullbacks by [3, Corollary 0.32]. In this category a morphism C → C

is an entire holomorphic function C → C. Making C into a dependent

adder in this category works very similar to the real numbers R.

Finally a class of degenerate examples not mentioned in the introduction: If

C is a category with pullbacks and M is a monoid in C , then A ∶= M can be

made into a dependent adder in C . We define F ∶= M , p ∶= idM ∶ F → M .

Then for every x ∶ U → M we have JxK ≅ U .We define a natural function

HomC (U,M) → HomC (U,M) by sending y ∶ U → M to the multiplication

y ⋅ x ∶ U → M . For every f ∶ JxK = U → M we define f
♭
∶= idU ∶ JfK = U →

U = J
x∑fK. With this M becomes a dependent adder.

4. Right Modules over Dependent Adders

Let C be a category with pullbacks and A a dependent adder in C .

Definition 4.1. A dependent right A-module consists of

(1) An object M in C

(2) For every x ∶ U → A a dependent sum function

x

∑ ∶ HomC (JxK,M) → HomC (U,M)
natural in x ∈ C /A.
For x ∶ U → A, f ∶ JxK → A and g ∶ J

x∑fK → M we define f ⊠ g ∶=
f∑g ◦ f

♭
.

satisfying the following axioms
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(1) Unit axiom: For x ∶ U → A and f ∶ JxK → M

const1

∑ f ◦ const
♭

1 = f

(2) Sum associativity axiom: For x ∶ U → A, f ∶ JxK → A and g ∶

J
x∑fK → M

x∑f

∑g =

x

∑
f

∑g ◦ f
♭

While we are at the present moment still hesitant to provide a definition of

morphisms of dependent adders, we do not hesitate to define morphisms of

dependent right modules.

Definition 4.2. Given two dependent right A-modules M and N , an A-

linear map M → N consists of a morphism φ ∶ M → N in C , such that for

every x ∶ U → A in C and f ∶ JxK → M we have

φ ◦ ( x

∑(f)) = x

∑(φ ◦ f)
We now provide a few examples of right modules over dependent adders,

and the linear maps between them.

4.1. F1-modules and pointed sets. An F1-dependent right module M is

a pointed set. The basepoint is given by the 0-dependent sum of the unique

function ∅ → M .

An F1-linear map is a basepoint-preserving function.

4.2. N-modules and monoids.

Theorem 4.1. A dependent right N-module M is the same thing as a

monoid.

Proof. Given any monoidM we obtain an N-dependent module in the follow-

ing way: We write the binary operation of M by +. For any n ∈ N and func-

tion f ∶ {1, . . . , n} → M we write
n∑
i=1

f(i) for the sum f(1)+f(2)+⋅ ⋅ ⋅+f(n).
For every x ∶ U → N in Set we define

x∑ ∶ HomSet(JxK,M) → HomSet(U,M)
by

x

∑(f)(u) ∶= x(u)
∑
i=1

f(u, i)
With these dependent sums M is a dependent right N-module.
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Conversely, if M is a dependent right N-module, then we can make M

into a monoid. In the following we will use list notation for functions f ∶{1, . . . , n} → S going from {1, . . . , n} into some set S. Given n ∈ N and n

elements s1, . . . , sn ∈ S we write ⟨s1, . . . , sn⟩ for the function {1, . . . , n} → S

sending i to si

So for example ⟨0⟩ is the function 0 ∶ {1} → N sending 1 to 0. We can form

the set J⟨0⟩K = ∅, and have a dependent sum function
⟨0⟩∑ ∶ HomSet(∅,M) →

HomSet({1},M). We have a unique function ⟨⟩ ∶ ∅ → M . and define the

unit 0M ∈ M by defining

⟨0M⟩ ∶= ⟨0⟩
∑⟨⟩

This a priori just defines a function ⟨0M⟩ ∶ {1} → M , but by 0M we of

course just mean the unique element of M in the range of that function.

For two elements a, b ∈ M we define a + b ∈ M by

⟨a + b⟩ ∶= ⟨2⟩
∑⟨a, b⟩

We now need to show that this satisfies the unit axioms and associativity

axiom of a monoid. Take some element a ∈ M and show 0M + a = a. In N

we have ⟨1⟩ = ⟨0+ 1⟩ = ⟨2⟩∑⟨0, 1⟩. So we get

⟨a⟩ = ⟨1⟩
∑⟨a⟩ =

⟨2⟩∑⟨0,1⟩
∑ ⟨a⟩ = ⟨2⟩

∑
⟨0,1⟩
∑ ⟨a⟩ ◦ ⟨0, 1⟩♭

Let ι1 ∶ {1} → {1, 2} be the function sending 1 to 1, and let ι2 ∶ {1} → {1, 2}
be the function sending 1 to 2. The naturality of dependent sums implies

that (⟨0,1⟩∑ ⟨a⟩ ◦ ⟨0, 1⟩♭) ◦ ι1 =

⟨0,1⟩◦ι1∑ ⟨a⟩ ◦ ⟨0, 1⟩♭ ◦ (ι1 ×
A
idF ) =

⟨0⟩∑⟨⟩ = ⟨0M⟩
and (⟨0,1⟩∑ ⟨a⟩ ◦ ⟨0, 1⟩♭) ◦ ι2 =

⟨0,1⟩◦ι2∑ ⟨a⟩ ◦ ⟨0, 1⟩♭ ◦ (ι2 ×
A
idF ) = ⟨1⟩∑⟨a⟩ = ⟨a⟩ so

in total we get

⟨a⟩ = ⟨2⟩
∑

⟨0,1⟩
∑ ⟨a⟩ ◦ ⟨0, 1⟩♭ =

⟨2⟩
∑⟨0M , a⟩ = ⟨0M + a⟩

so M satisfies the left unit axiom. By a similar argument it also satisfies the

right unit axiom a + 0M = a. For associativity we calculate

⟨3⟩
∑⟨a, b, c⟩ =

⟨2⟩∑⟨2,1⟩
∑ ⟨a, b, c⟩ = ⟨2⟩

∑
⟨2,1⟩
∑ ⟨a, b, c⟩ ◦ ⟨2, 1⟩♭ = ⟨(a+ b) + c⟩
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⟨3⟩
∑⟨a, b, c⟩ =

⟨2⟩∑⟨1,2⟩
∑ ⟨a, b, c⟩ = ⟨2⟩

∑
⟨1,2⟩
∑ ⟨a, b, c⟩ ◦ ⟨1, 2⟩♭ = ⟨a + (b + c)⟩

so + is associative and M is a monoid. �

Theorem 4.2. A N-linear map between dependent N-modules is the same

thing as a monoid homomorphism.

Proof. Given a N-linear map φ ∶ M → N we have for every a, b ∈ M that

φ(0M) = φ(⟨0⟩∑⟨⟩) = ⟨0⟩
∑⟨⟩ = 0N

and

φ(a + b) = φ(⟨2⟩∑⟨a, b⟩) = ⟨2⟩
∑⟨φ(a), φ(b)⟩ = φ(a) + φ(b)

so φ is a monoid homomorphism. Conversely, if φ ∶ M → N is a monoid

homomorphism, then we can show by induction that φ( x∑
i=1

f(i)) = x∑
i=1

φ(f(i))
and then φ is a N-linear map. �

4.3. R-modules and Banach spaces. Let R be the dependent adder of

all (possibly negative) real numbers.

Lemma 4.3. Giving a dependent right R-module is equivalent to the fol-

lowing data: We have a metrizable space M , and for every x ∈ R and

continuous function f ∶ R → M an element
x∫
0

f(t)dt in M , such that

(1) (Continuity): For every metrizable space U , continuous function

x ∶ U → R and continuous function f ∶ U × R → M the function
x(u)
∫
0

f(u, t)dt is continuous in u.

(2) (Unit): For every m ∈ M , if constm ∶ R → M denotes the constant

m function then we have

1

∫
0

constm(t)dt = m

(3) (Substitution): For every x ∈ R, continuous function f ∶ R → M

and continuously differentiable function h ∶ R → R with h(0) = 0 we

have that
h(x)
∫
0

f(t)dt =
x

∫
0

f(h(t)) ⋅ h′(t)dt
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Proof. If the Continuity Axiom is satisfied, then the function sending x ∶

U → R and f ∶ R → M to
x(u)
∫
0

f(u, t)dt serves as a natural dependent

sum function
x∑f for the dependent right R-module M . Also every function

x∑ ∶ HomTopmtr
(JxK,M) → HomTopmtr

(U,M) that is natural in x ∶ U → R

is necessarily of the above form, because for any u ∈ U we have a map

⟨u⟩ ∶ 1 → U , and then naturality tells us that ( x∑f)◦⟨u⟩ = x◦⟨u⟩∑ f◦(⟨u⟩×
A
idF ),

and this implies that the dependent sum functions for all maps of the form

U → R are determined by dependent sum functions for maps of the form

1 → R

The Unit Axiom we stated above is easily seen to be equivalent to the unit

axiom of dependent right R-modules. The Substitution Axiom stated above

is equivalent to the Sum Associativity Axiom of dependent right R-modules,

because of the Fundamental Theorem of Calculus. �

So in summary, a dependent right R-module is a space in which one can

continuously form integrals of functions, and where one has a “integration

by substitution” rule.

If one wants to study dependent right R-modules, it is probably a good idea

to only look at modules that have a zero element 0M ∈ M satisfying
0∫
0

f(t)dt =
0M for all f ∶ R → M . Without such a zero element, dependent right R-

modules can be empty or disconnected, while with a zero element they are

always path-connected.

For example, every Banach space is a dependent right R-module, with

Bochner integrals as dependent sums.

Theorem 4.3. Let X be a Banach space. For every continuous function

x ∶ U → R and continuous function f ∶ U × R → X define
x∑(f) ∶ U → X

by using the Bochner integral

x

∑(f)(u) ∶=
x(u)
∫
0

f(u, t)dt =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫[0,x(u)]f(u, t)dt , x(u) ≥ 0

− ∫[x(u),0]f(u, t)dt , x(u) < 0

Then X is a right R-module.

Proof. Take x ∶ U → R, f ∶ JxK → X and u ∈ U . Assume without loss

of generality x(u) ≥ 0. We need to show that the integral ∫[0,x(u)]f(u, t)dt
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exists. Since f(u,−) ∶ [0, x(u)] → X is a continuous function, it is Bochner-

measurable. The composite function [0, x(u)] f(u,−)
→ X

∣∣.∣∣X
→ R is Lebesgue-

integrable, because it is continuous and [0, x(u)] is compact. Therefore

by Bochner’s criterium, the function f(u,−) ∶ [0, x(u)] → X is Bochner-

integrable, and the integral ∫[0,x(u)]f(u, t)dt exists in X.

The Continuity Axiom can be shown exactly like in Lemma 3.1.

The Unit Axiom ∫[0,1]xdt = x is obvious, because the constant x function is

a simple function.

Let us now prove the Substitution Axiom. For any differentiable function

f ∶ [0, x] → [0, y] between real intervals and every differentiable function

g ∶ [0, y] → X going into a Banach space X, we have the chain rule (g ◦

f)′(t) = g
′(f(t)) ⋅ f ′(t).

Also for any continuously differentiable function f ∶ [0, x] → X going into

a Banach space X we have a Fundamental Theorem of Calculus, stating

f(x)− f(0) = x∫
0

f
′(t)dt. This is proven in [4, Proposition A.2.3].

By combining the chain rule with the Fundamental Theorem of Calculus we

obtain the substitution rule. �

Theorem 4.4. Let X,Y be Banach spaces. Then a continuous linear op-

erator T ∶ X → Y is the same thing as an R-linear map T ∶ X → Y in the

dependent module sense between the corresponding dependent R-modules.

Proof. If T ∶ X → Y is a continuous linear operator between Banach spaces,

then for every x ∈ R and continuous function f ∶ R → X we have that

T

x

∫
0

f(t)dt =
x

∫
0

Tf(t)dt

because every Bochner integral is a limit of integrals of simple function, and

continuous functions commute with limits, and linear operators commute

with integrals of simple functions. This implies that T is a R-linear map

in the dependent module sense. Conversely, take an R-linear map in the

dependent module sense T ∶ X → Y . By definition T is a morphism in

Topmtr, so T is continuous. We need to show that for all x, y ∈ X that

T (x+ y) = T (x)+ T (y). Define φx,y ∶ [0, 1] → X, φ(t) ∶= t ⋅ y + (1− t) ⋅ x.
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For every ǫ > 0 with ǫ < 1 define γǫ ∶ [0, 2] → X by

γǫ(t) ∶=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x , t < 1 − ǫ

y , t > 1 + ǫ

φx,y( t−1+ǫ2ǫ
) , 1 − ǫ ≤ t ≤ 1+ ǫ

Then each γǫ is continuous and

T (x + y) = T (lim
ǫ→0

2

∫
0

γǫ(t)dt) = lim
ǫ→0

2

∫
0

T (γǫ(t))dt = T (x) + T (y)
so T is a linear operator in the usual Banach space sense. �

4.4. Cat-modules and cocomplete categories. If M is a cocomplete

category, then M is a Cat-module in the following way:

For every x ∶ U → Cat we define a function

x

∑ ∶ HomhCAT (JxK,M) → HomhCAT (U,M)
in the following way: For every f ∶ JxK → M and we define a functor
x∑(f)♡ ∶ U → M by sending u ∈ U to

x

∑(f)♡(u) ∶= colim
i∈x(u)f(u, i)

and sending a morphism α ∶ u → v in U to the canonical map

colim
i∈x(u)f(u, i) → colim

i∈x(v)f(v, i)
in M . We define

x∑(f) ∶= Ho( x∑(f)♡). Then M satisfies the Unit Axiom,

because if we have an object m ∈ M and consider the diagram f ∶ 1 → M

sending the unique object of 1 to m, then the colimit of f is isomorphic to

m again. M satisfies the Sum Associativity axiom because for every functor

F ∶ I → Cat and G ∶ colim
oplax

i∈I
F (i) → M we have a canonical isomorphism

colim(i,j)∈colimoplax

i∈I
F (i)G(i, j) ≅ colim

i∈I
colim
j∈F (i)G(i, j)

in M . So M is a right Cat-module.

If M is a complete category, then M is also a Cat-module, because in any

such category we have a canonical isomorphism

lim(i,j)∈colimoplax

i∈I
F (i)G(i, j) ≅ lim

i∈I
lim

j∈F (i)G(i, j)
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Theorem 4.5. Let C, D be cocomplete categories, and regard C, D as

Cat-modules with colimits as dependent sums. Then a functor F ∶ C → D

is a Cat-linear map if and only if F preserves small colimits, in the usual

sense of sending small colimit cocones to small colimit cocones.

Proof. Let F ∶ C → D be a Cat-linear map. LetG ∶ I → C be a functor. It is

immediately clear that F (colim
i∈I

G(i)) ≅ colim
i∈I

F (G(i)). But for F to preserve

colimits it does not just need to send colimit objects to colimit objects, but it

needs to preserve colimit cocones. Let U = (⋅ → ⋅) be the category with two

objects and one morphism between them. Let x ∶ U → Cat be the constant

functor sending everything to I ∈ Cat. Then JxK ≅ I × U . To define a

functor g ∶ I × U → Cat we need to define two functors g0, g1 ∶ I → Cat

and a natural transformation τ ∶ g0 → g1. Let g0 ∶= G. Let g1 be the

constant functor sending every i ∈ I to colim
j∈I

G(j). Let τ ∶ g0 → g1 be the

colimiting cocone of G. So for every i ∈ I the map τi ∶ G(i) → colim
j∈I

G(j) is

the canonical colimit inclusion map.

Since F is a Cat-linear map we have

F ◦

x

∑g =

x

∑F ◦ g

This means we have a commutative diagram

F (colim
i∈I

G(i))
��

∼
// colim

i∈I
F (G(i))
��

F (colim
i∈I

g1(i)) // colim
i∈I

F (g1(i))
Now g1 is a constant functor, so colim

i∈I
g1(i) = colim

i∈I
G(i) and colim

i∈I
F (g1(i)) =

F (colim
i∈I

G(i)). The above diagram then implies that F preserves not just

the colimit object but the whole colimiting cocone. �

Similarly, if C, D are complete categories regarded as Cat-modules with

limits as dependent sums, then a functor F ∶ C → D is a Cat-linear map if

F preserves small limits.

5. Left Modules over Dependent Adders

Definition 5.1. Given a category with pullbacks C and a dependent adder

A, an A-dependent left module consists of

(1) An object M ∈ C
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(2) A morphism p ∶ FM → M in C . For every m ∶ U → M we write

JmKM for the pullback U ×
M

FM .

(3) For every m ∶ U → M a function of sets

m

∑ ∶ HomC (JmKM , A) → HomC (U,M)
natural in m ∈ C /M .

(4) For every m ∶ U → M and f ∶ JmKM → A a flattening function

f
M,♭

∶ JfK → J
m

∑fKM

over U . For m ∶ U → M , f ∶ JmKM → A and g ∶ J
m∑fKM → A we

define f ⊠ g ∶=

f∑g ◦ f
M,♭

.

such that the following axioms are satisfied

(1) Unit Axiom: For m ∶ U → M and const1 ∶ JmKM → A the constant

1A function, we demand

m

∑const1 = m

(2) Sum Associativity Axiom: For m ∶ U → M , f ∶ JmKM → A and

g ∶ J
m∑fKM → A we demand that

m∑f

∑g =

m

∑
f

∑g ◦ f
M,♭

(3) Flatten Associativity Axiom For m ∶ U → M , f ∶ JmKM → A and

g ∶ J
m∑fKM → A the following diagram commutes

Jg ◦ f
M,♭

K

f
M,♭

×
A
idF

��

(g◦fM,♭)♭
// Jf ⊠ gK

(f⊠g)M,♭

��

JgK
g
M,♭

// J
x∑f ⊠ gK

The interval [0, n] has both a right and a left [0, 1]-dependent module struc-

ture. The right module structure comes from the fact that for any x ∈ [0, 1]
and continuous map f ∶ [0, x] → [0, n] we have

x∫
0

f(t)dt ∈ [0, n]. The left

module structure comes from the fact that for any x ∈ [0, n] and continuous

map f ∶ [0, x] → [0, 1] we have
x∫
0

f(t)dt ∈ [0, n].
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5.1. Topopen as a left Set-module using étalé spaces of presheaves.

The category of topological spaces and open maps Topopen has, up to iso-

morphism, the structure of a left Set-dependent module. For any topological

space X ∈ Topopen we define an X-indexed family of sets to be a presheaf

F on X, and define the sum of such a sheaf to be its étalé space Et(F).
Let C = hCAT be the homotopy category of small categories from Section

3.4. Let A ∶= Set be the category of very small sets, Set is a dependent

adder in hCAT , quite similarly to how Cat is a dependent adder in hCAT .

For any x ∶ U → Set we have JxK ≅ colim
oplax

u∈U
x(u), where x(u) is regarded as

a discrete category. The dependent sums of Set are the coproducts: Given

f ∶ JxK → Set we define
x∑f ∶= Ho(λu. ∐

t∈x(u)f(u, t)). The flattening map of

f
♭
of f is given by taking Ho of the natural isomorphism

colim
oplax

(u,t)∈colimoplax

u∈U
x(u)f(u, t) → colim

oplax

u∈U
∐

t∈x(u)
f(u, t)

where one needs to note that ∐
t∈x(u)f(u, t) is in fact the same thing as

colim
oplax

t∈x(u) f(u, t), because oplax colimits over discrete categories are just

coproducts. With this Set is a dependent adder in hCAT .

Now let M ∶= Topopen the category of very small topological spaces with

open maps.

We quickly recall the construction of the étalé space Et(F) of a presheaf

F on a topological space X. See [6, Section II.6] for a reference. For each

x ∈ X let Fx be the stalk of F at x. The underlying set of Et(F) is the

coproduct of all the stalks of F .

Et(F) = ∐
x∈X

Fx

For every open subset U ⊆ X and section s ∈ F(U), we have for every x ∈ U

an element sx ∈ Fx and can define the set ǫF (U, s) ∶= {(x, sx)∣x ∈ U} ⊆

Et(F). We put on Et(F) the topology generated by the sets ǫF (U, s) for

all open U ⊆ X and s ∈ F(U). The notation ǫF (U, s) will be used below a

few times.

Étalé spaces are functorial: If F ,G are presheaves on X and τ ∶ F →

G is a morphism of presheaves, then for every x ∈ X we get a map on

stalks τx ∶ Fx → Gx, and these assemble together into a map on étalé

spaces Et(τ) ∶ Et(F) → Et(G ). This map is always an open map, because

Et(τ)(ǫF (U, s)) = ǫG (U, τU(s)). With this construction Et ∶ Psh(X) →
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Topopen is a functor from the category of presheaves on X to the category

of topological spaces with open maps.

For any open map f ∶ X → Y in Topopen and every presheaf F on Y define a

presheaf f
∗(F) on X by sending U ∈ Ouv(X) to f

∗(F)(U) ∶= F(f(U)).
Lemma 5.2. For every open map f ∶ X → Y in Topopen and every presheaf

F on Y there is a natural open map

Etf ∶ Et(f∗(F)) → Et(F)
in Topopen

Proof. For every x ∈ X we have a map on stalks

f
∗(F)x = colim

x∈U∈Ouv(X)F(f(U)) → colim
x∈V ∈Ouv(Y )F(V ) = Ff(x)

because for every open neighborhodd U of x in X, f(U) is an open neigh-

borhood of f(x) in Y . These maps assemble together into a map

Etf ∶ Et(f∗(F)) = ∐
x∈X

f
∗(F)x → ∐

y∈Y

Fy = Et(F)
which is open because Etf (ǫf∗(F)(U, s)) = ǫF (f(U), s). �

Let us now explain how étalé spaces make Topopen into a left Set-module.

Consider the functor Ouv ∶ Topopen → CAT , sending X ∈ Top to the

poset Ouv(X)op of open subsets of X with reverse inclusions as morphisms,

and sending an open map f ∶ X → Y to the image functor Ouv(f) ∶

Ouv(X)op → Ouv(Y )op. The functor Ouv gives rise to a Grothendieck op-

fibration p
♡
∶ colim

oplax

X∈Topopen
Ouv(X)op → Topopen.

Define FM ∶= colim
oplax

X∈Topopen
Ouv(X)op and pM ∶= Ho(p♡).

For any X ∈ Topopen the fiber of pM over X is Ouv(X)op, and a morphism

Ouv(X)op → Set in hCAT is an isomorphism class of presheaves on X.

More generally, for any functor x ∶ U → Topopen in hCAT we have

JxKM ≅ colim
oplax

u∈U
Ouv(x(u))op

For any functor x ∶ U → Topopen in hCAT we need to define a map

x

∑ ∶ HomhCAT (JxKM , Set) → HomhCAT (U, Topopen)
For every f ∶ JxKM → Set in hCAT we define a functor ( x∑f)♡ ∶ U →

Topopen the following way: For any object u ∈ U we have an inclusion

functor ιu ∶ Ouv(x(u))op → colim
oplax

v∈U
Ouv(x(v))op ≅ JxKM . Then f ◦ ιu ∶
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Ouv(x(u))op → Set is a presheaf on x(u). We define
x∑(f)♡(u) to be the

étalé space of this presheaf.

x

∑(f)♡(u) ∶= Et(f ◦ ιu)
Given a morphism α ∶ u → v in U we get a natural transformation ιu ⇒

ιv ◦ Ouv(x(α)), where x(α) ∶ Ouv(x(u))op → Ouv(x(v))op is the image

functor associated to the open map x(α). This then induces a morphism of

presheaves τα ∶ f ◦ιu → f ◦ιv ◦Ouv(x(α)), which then induces an open map

on étalé spaces Et(τα) ∶ Et(f ◦ ιu) → Et(f ◦ ιv ◦ Ouv(x(α))). By Lemma

5.2 we have a canonical open map Et(f ◦ ιv ◦Ouv(x(α))) → Et(f ◦ ιv). So
in total we obtain an open map

x

∑(f)♡(u) = Et(f ◦ ιu) → Et(f ◦ ιv) = x

∑(f)(v)
so

x∑(f)♡ ∶ U → Topopen is a functor.

Now define
x∑(f) ∶= Ho( x∑(f)♡). Then x∑ is a natural function

x

∑ ∶ HomhCAT (JxKM , Set) → HomhCAT (U, Topopen)
Next we need to define for any small category D, functor x ∶ D → Topopen

and functor f ∶ JxKM → Set the flattening map

f
M,♭

∶ colim
oplax

d∈D
colim

oplax

U∈Ouv(x(d))opf(d, U) → colim
oplax

d∈D
Ouv(Et(f ◦ ιd))op

where the f(d, U) are regarded as discrete categories. Just to make the

notation a bit more intuitive, define for every d ∈ D that Xd ∶= x(d) and

Fd ∶= f ◦ ιd. Then Xd is a topological space and Fd is a presheaf on Xd,

and we have to define a map

f
M,♭

∶ colim
oplax

d∈D
colim

oplax

U∈Ouv(Xd)opFd(U) → colim
oplax

d∈D
Ouv(Et(Fd))op

We have for every d ∈ D a map ǫFd
∶ colim

oplax

U∈Ouv(Xd)opFd(U) → Ouv(Et(Fd))op
sending an open subset U ⊆ Xd and a section s ∈ Fd(U) to the open

subset ǫFd
(U, s) = {(x, sx)∣x ∈ Xd} of the étalé space Et(Fd). If we have a

morphism α ∶ (U, s) → (V, t) in colim
oplax

U∈Ouv(Xd)opFd(U) then we have an inclusion

U ⊇ V of open subsets and a morphism s∣V → t in the discrete category

Fd(V ). So we have in fact an identity s∣V = t. This implies an inclusion

of subsets ǫFd
(U, s) ⊇ ǫFd

(V, t) in Et(Fd). So ǫFd
∶ colim

oplax

U∈Ouv(Xd)opFd(U) →

Ouv(Et(Fd))op is in fact a functor. One can now check that this functor
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is natural in d. This naturality claim comes down to the assertion that for

any morphism α ∶ d → e in D and U ∈ Ouv(Xd)op and s ∈ Fd(U) we have
x

∑(f)♡(α)(ǫFd
(U, s)) = ǫFe

(x(α)(U), f(α, idU )(s))
and this assertion is in fact true. With this naturality, we can then use the

universal property of the oplax colimit to get a functor f
M,♭,♡

that satisfies

f
M,♭,♡

◦ ιd = ǫFd
. We can then define f

M,♭
∶= Ho(fM,♭,♡) and then have a

flattening function for our left Set-module Topopen.

We now need to verify the axioms of a left Set-module.

Unit Axiom: Let X be a topological space, and F the constant 1 presheaf

F(U) = 1. Then for every x ∈ X we also have Fx ≅ 1, and using this we

obtain a homeomorphism Et(F) ≅ X in Topopen. Since this homeomor-

phism is natural in X, this implies the Unit Axiom for the left Set-module

Topopen.

Sum Associativity Axiom: Take a topological space X, a presheaf F on X

and a presheaf G on Et(F).
To show the Sum Associativity Axiom we need to show that there is a

homeomorphism
X∑F

∑G ≅

X

∑
F

∑G ◦ F
M,♭

natural in X, F and G .

The space

X∑F

∑ G is homeomorphic the étalé space Et(G ) of G .

The map F
M,♭

is the functor ǫF ∶ colim
oplax

V ∈Ouv(X)opF(V ) → Ouv(Et(F))op
sending (V, s) to ǫF (V, s) = {(x, sx)∣x ∈ V }.
Let F ⊠G ∶=

F∑G ◦F
M,♭

. Then F ⊠G is isomorphic to the presheaf on X

that sends an open subset V ⊆ X to ∐
s∈F(V )G (ǫF (V, s)).

(F ⊠ G )(V ) ≅ ∐
s∈F(V )

G (ǫF (V, s))
To prove the Sum Associativity Axiom we now need to show that there is a

natural homeomorphism

Et(G ) ≅ Et(F ⊠ G )
Lemma 5.3. For every x ∈ X there is a natural isomorphism

(F ⊠ G )x ≅ ∐
s∈Fx

G(x,s)
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where G(x,s) means the stalk of G at (x, s) ∈ ∐
x∈X

Fx = Et(F).
Proof. We have (F ⊠ G )x ≅ colim

x∈U∈Ouv(X) ∐
s∈F(U)G (ǫF (U, s)). Now for every

open neighborhood U of x and every s ∈ F(U) we have a map F(U) → Fx,

and we know that ǫF (U, s) is an open neighborhood of (x, s) ∈ Et(F) so

we have a map G (ǫF (U, s)) → G(x,s). These maps assemble together into

a map (F ⊠ G )x → ∐
s∈Fx

G(x,s). We claim that this map is surjective: If

we have (s, t) ∈ ∐
s∈Fx

G(x,s), then there exists an open neighborhood V of

(x, s) in Et(F) and a section t̃ ∈ G (V ) such that t = t̃(x,s). Since the

topology of Et(F) is generated by open sets of the form ǫF (W, s̃), we

know there exists an open set W ⊆ X and some s̃ ∈ F(W ) such that(x, s) ∈ ǫF (W, s̃) ⊆ V . Then (s̃, t∣ǫF (W,s̃)) lies in ∐
y∈F(W )G (ǫF (W,y)) ≅

(F ⊠ G )(W ) and (s̃, t∣ǫF (W,s̃))x = (s, t). One can similarly check that the

above map is injective, and then it is an isomorphism of sets. �

With this lemma we get a natural bijective map Φ ∶ Et(G ) → Et(F ⊠ G )
defined by

Et(G ) = ∐
y∈Et(F)

Gy = ∐
(x,s)∈ ∐

x∈X

Fx

G(x,s) ≅ ∐
x∈X

∐
s∈Fx

G(x,s) ≅ ∐
x∈X

(F ⊠ G )x = Et(F ⊠ G )

We now just need to show that this map is open and continuous.

Lemma 5.4. For all open U ⊆ X, s ∈ F(U) and t ∈ G (ǫF (U, s)) we have

ǫF⊠G (U, (s, t)) = Φ(ǫG (ǫF (U, s), t))
where Φ is the natural bijective map Φ ∶ Et(G ) → Et(F ⊠ G ).
Proof.

Φ(ǫG (ǫF (U, s), t)) = Φ({(y, ty)∣y ∈ ǫF (U, s)}) =
= Φ({(y, ty)∣y = (x, sx), x ∈ U}) = {(x, (s, t)x)∣x ∈ U} = ǫF⊠G (U, (s, t))

�

This lemma then shows that our map Et(G ) → Et(F ⊠ G ) is a homeo-

morphism. This homeomorphism is natural in X , F and G and this then

proves the Sum Associativity Axiom of Topopen.

Flatten Associativity Axiom: Take functors x ∶ D → Topopen, f ∶ JxKM →

Set and g ∶ J
x∑fK → Set.
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Write Xd ∶= x(d), Fd ∶= f(d,−), Gd ∶= g(d,−). We need to show that the
following diagram commutes:

colim
oplax

d∈D
colim

oplax

(U,s)∈ colimoplax

U∈Ouv(Xd)opFd(U)Gd(ǫFd
(U, s)) //

��

colim
oplax

d∈D
colim

oplax

U∈Ouv(Xd)op(Fd ⊠ Gd)(U)

��

colim
oplax

d∈D
colim

oplax

V ∈Ouv(Et(Fd))opGd(V ) // colim
oplax

d∈D
Ouv(Et(Gd))op

Since Ouv(Et(Gd))op is a pre-order, any two morphisms with the same do-

main and codomain coincide in it. For this reason the commutativity of the

above diagram can be “checked on objects”, in the sense that it commutes

if and only if for every object d ∈ D the following diagram commutes

colim
oplax

(U,s)∈ colimoplax

U∈Ouv(Xd)opFd(U)Gd(ǫFd
(U, s)) //

ǫFd
×
A
idF

��

colim
oplax

U∈Ouv(Xd)op(Fd ⊠ Gd)(U)
ǫFd⊠Gd

��

colim
oplax

V ∈Ouv(Et(Fd))opGd(V ) ǫGd
// Ouv(Et(Gd))op

And this follows from Lemma 5.4. So Topopen is a left Set-module.
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