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MEAN DIMENSION EXPLOSION OF INDUCED

HOMEOMORPHISMS

GABRIEL LACERDA AND SERGIO ROMAÑA

Abstract. Given X a compact metric space and T : X → X a continuous
map, the induced hyperspace map TK acts on the hyperspace K(X) of closed
and nonempty subsets ofX, and on the continuum hyperspace C(X) ⊂ K(X) of
connected sets. This work studies the mean dimension explosion phenomenon:
when the base system T has zero topological entropy, but the mean dimension
of the induced map TK is infinite. In particular, this phenomenon is attained
for Morse-Smale diffeomorphisms. Furthermore, for a circle homeomorphism
H, the mean dimension explosion does not occur if, and only if, H is conjugated
to a rotation. Finally, if the topological entropy of T is positive, then the metric
mean dimension of TK is infinite.

1. Introduction

The study of dynamical systems is mostly concerned with the complexity of
the orbits of a map T : X → X , where X is a compact metric space and T is
continuous. There are numerous tools to evaluate such complexity, and the mean
dimension is one of them. Proposed by M. Gromov in [Gro99], the mean dimension
is a topological invariant of dynamical systems, and it is useful to classify maps
acting on an infinite-dimensional topological space because the mean dimension of
(X,T ) is zero when the dimension of the phase space X is finite.

E. Lindenstrauss and B.Weiss later studied the mean dimension in [LW00], where
they defined the metric mean dimension. It is a simpler tool to handle compared
to the original mean dimension, as many different results have been presented in
recent literature: [Hay17; LT18; CRV20; ARA24].

This work is interested in applying the mean dimension and metric mean dimen-
sion theory to the induced hyperspace map TK acting on the hyperspace K(X) of all
closed subsets of X and on the continuum hyperspace C(X) of all closed connected
subsets of X because these hyperspaces are often infinite-dimensional topological
spaces. Therefore, studying the mean dimension of the induced hyperspace map
offers an alternative to classifying the complexity of well-known finite-dimensional
dynamical systems. Moreover, we are also interested in how the dynamics of the
base system T influence the complexity of the induced map TK, and vice versa.

In particular, we prove that a wide class of zero topological entropy dynamical
systems acting on a finite-dimensional phase space have infinite mean dimension on
the hyperspace, the phenomenon of explosion.

The study of a relation between the base system T and the induced map TK
began with W. Bauer and K. Sigmund in [BS75], where, in particular, they proved
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that if TK : K(X) → K(X) is topologically transitive, then so is T : X → X . Not
long ago, M. Lampart and P. Raith established in [LR10] a sufficient condition on
(X,T ) so that the topological entropy h(TK) is infinite, where TK acts on K(X).
So, it is a valid question if the metric mean dimension of a determined induced
map is finite or infinite. Surprisingly, a sufficient condition on T is presented here
so that the mean dimension of TK, denoted as mdim(K(X), TK), is infinite.

Theorem A. Let X be a continuum and T : X → X a homeomorphism. If the
nonwandering set Ω(T ) is a strict subset of X, then mdim(K(X), TK) = ∞.

The identity map Id on X satisfies Ω(Id) = X and mdim(K(X), IdK) = 0, hence
the nonwandering set condition in Theorem A proves to be the most suitable in
this context.

Moreover, a famous class of zero topological entropy systems satisfies the hy-
pothesis of Theorem A, the Morse-Smale diffeomorphisms. Therefore, the mean
dimension explosion occurs for the induced hyperspace map of these maps. In
[BS75, Proposition 6], the authors proved that if the topological entropy h(T ) is
positive, then h(TK) is infinite. This fact leads us to the following question:

Question. Let X be a continuum and T : X → X a continuous map. If h(T ) > 0,
then we also have mdim(K(X), TK) = ∞?

The condition to be a continuum, that is, a connected and compact metric
space, is necessary because D. Burguet and R. Shi gave in [BS22] an example of a
dynamical system (X,T ), where X is zero-dimensional, such that the topological
entropy h(T ) is positive, but mdim(K(X), TK) is zero.

The continuum hyperspace C(X) is an infinite-dimensional topological space
when X is a continuum with no free arcs, then it is valid to ask if there is an
analog of Theorem A to the continuum hyperspace. In particular, A. Arbieto and
J. Bohorquez proved in [AB23, Theorem B] that the topological entropy of the
induced continuum map FK : C(Nm) → C(Nm) is either zero or infinite where
F : Nm → Nm is a Morse-Smale diffeomorphism acting on a connect and compact
boundaryless m-dimensional manifold Nm. In this article it is proved the mean
dimension version:

Theorem B. Let F : Nm → Nm be a Morse-Smale diffeomorphism. Hence, the
following dichotomy holds:

• if m = 1, then mdim(C(Nm), FK) = 0;
• if m > 1, then mdim(C(Nm), FK) = ∞.

The hypothesis of Theorem B is weaker than the hypothesis of Theorem A
because the nonwandering set of a Morse-Smale diffeomorphism is finite. As a
consequence, Theorem B states that the mean dimension explosion also happens
for the induced continuum map, when the dimension of the phase space is greater
than one.

Another kind of dichotomy holds for the mean dimension as well. It is a stronger
version of the following fact: if H is a homeomorphism on S1, then the topological
entropy of HK : K(S1) → K(S1) is either zero or infinite. It is proved in [LR10,
Theorem 5] and based on this result we have the following statement:

Theorem C. Given H : S1 → S1 a homeomorphism, then mdim(K(S1), HK) is
either 0 or ∞.
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The ideas used in the proof of Theorem C are similar to those presented in
[LR10], where the presence of periodic orbits plays a crucial role. Furthermore,
its proof allows us to classify orientation-preserving homeomorphisms on the circle
according to the mean dimension of its induced hyperspace map. Therefore, the
mean dimension explosion is completely understood for circle homeomorphisms.

Corollary D. Let H : S1 → S1 be an orientation-preserving homeomorphism,
then mdim(K(S1), HK) = 0 if, and only if, H is conjugated to a rotation.

It is important to state that the mean dimension explosion phenomenon do not
happen for the induced system of Borel probability measures M(X) equipped with
the push-forward map T∗ : µ 7→ µ ◦ T−1, where T : X → X is a continuous map
because D. Burguet and R. Shi proved in [BS22] that h(T ) > 0 if, and only if,
mdim(M(X), T∗) = ∞.

In the latter part of this work, a study for the metric mean dimension of induced
continuous maps is developed. If d is a metric on X , the upper metric mean
dimension is denoted by mdim(X, d, T ). The standard metric for both hyperspaces
is the Hausdorff metric dH . One may wonder if, at least, W. Bauer and K. Sigmund
result on the topological entropy [BS75, Proposition 6] is still valid for the metric
mean dimension. The answer is affirmative and given by:

Theorem E. Let (X, d) be a compact metric space and T : X → X a continuous
map. If h(T ) > 0, then mdim(K(X), dH , TK) = ∞.

This result promises a new path to study zero entropy continuous maps. Indeed,
X. Huang and X. Wang gave in [HW22] an example of a compact metric space (E, d)
and a continuous map σ : E → E, such that mdimM (K(E), dH , σK) = 1, where E
is a subset of [0, 1]N and σ is the shift transformation. Furthermore, Theorem E is a
stronger answer to a problem set in [HW22]. As a consequence, unlike Theorem C,
there is no dichotomy for the metric mean dimension of induced continuous maps.
This example prompts the following question:

Question. Given α > 0, there exists a compact metric space (X, d) and a contin-

uous map T : X → X such that mdim(K(X), dH , TK) = α?

Note that the converse of Theorem E is not true by the result of Theorem C,
because all circle homeomorphisms have zero topological entropy.

If the phase space is now a topological metrizable manifold, then there is a similar
result of Theorem E to the induced continuum map.

Theorem F. Consider G : Nm → Nm a continuous map, where m ≥ 2, such that
h(G) > 0, then mdim(C(Nm), dH , GK) = ∞.

Observe that Theorem F gives us a hint that if the phase space is sufficiently rich,
that is, a manifold, then the complexity of the induced dynamics on the induced
hyperspace explodes. Indeed, for differentiable dynamics, a wide set of induced
diffeomorphisms has infinite metric mean dimension.

Corollary G. Given Nm a compact and connected smooth manifold of dimension
m ≥ 2, there exists a residual set R ⊂ Diff1(Nm) such that, for all F ∈ R,

(1.1) mdim(C(Nm), dH , FK) = ∞.

It seems that the only way for an induced continuum hyperspace map to attain
zero metric mean dimension is that it is conjugated to an isometry (see Proposition
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4.5). So, if the answer to the following question is true, then the theory of the
metric mean dimension of induced maps is almost done.

Question. Given Nm a topological metrizable manifold and G : Nm → Nm a
continuous map, then mdim(C(Nm), dH , GK) is either zero or infinite? Moreover,
the metric mean dimension is zero if, and only if, G is conjugated to an isometry?

1.1. Reading guide. This work is organized as follows. In Section 2 there are
given fundamental definitions to understand the theory discussed in this paper.
Section 3 is dedicated to studying induced hyperspace maps of homeomorphisms
and their mean dimension. Precisely, in §3.1 is presented the proof of Theorem A. In
§3.2 is given the proof of Theorem B. The mean dimension explosion is completely
understood for circle homeomorphisms and §3.3 includes the proof of Theorem C
and Corollary D. Finally, the study of the metric mean dimension for the induced
(continuum) hyperspace maps of continuous maps is given in Section 4, where the
proof of Theorems E and F and its corollaries are presented.

2. Basic Definitions

From now on, (X, d) is a compact metric space, and T : X → X is a continuous
function, or simply, a map. We start with some fundamental definitions. The ω-
limit set of a point x ∈ X is defined as the set of points y ∈ X such that there is
a subsequence ni → ∞ of positive integers such that T ni(x) → y, and denoted by
ω(x). It is well known that ω(x) is nonempty, compact, and invariant. Analogously,
the α-limit set of a point x ∈ X is the set of points y ∈ X such that T−ni(x) → y,
if T is invertible. Denoted by α(x), it is nonempty, compact, and invariant.

The long-run behavior of all orbits of a dynamical system is contained in the set
L(T ) =

⋃
x∈X ω(x) ∪ α(x), called the limit set of T. It is also nonempty, compact,

and invariant. It is not hard to see that these properties are also valid for the set

L(A) :=
⋃

x∈A

ω(x) ∪ α(x),

where A ⊂ X is nonempty, the A-limit set of T . Note that L(A) ⊆ L(T ). When
X is connected, γ ⊂ X is an arc if it is homeomorphic to a closed interval in R.

An important set to study the dynamics of a system T : X → X is the nonwan-
dering set of T , denoted as Ω(T ). Given T a homeomorphism, a point x ∈ Ω(T )
if, for any neighborhood U of x in X , there is a non-zero integer n such that
T n(U) ∩ U 6= ∅. The nonwandering set is also nonempty, compact, and invariant.

2.1. Hyperspaces and induced maps. A hyperspace is a designated collection
of subsets of X . In this work, we will study the following hyperspaces:

• K(X) = {A ⊂ X ;A is closed and nonempty};
• C(X) = {A ∈ K(X);A is connected}, if X is a continuum, that is, a con-
nected compact metric space.

In this text, we designate as hyperspace and continuum hyperspace, respectively.
Always assume that a continuum is not a singleton. On both hyperspaces, we
consider the Hausdorff metric dH defined as

dH(A,B) = inf{ε > 0;A ⊂ Bε and B ⊂ Aε},

where Aε =
⋃

x∈A{y ∈ X ; d(x, y) < ε} is the generalized ball of radius ε around A.
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It is known that (K(X), dH) is a compact metric space [IJ99, Theorem 3.5] and
that (C(X), dH) is a connected and compact metric space when X is connected
[IJ99, Theorem 11.3]. Moreover, if X is a continuum with no free arcs1, then
both hyperspaces are infinite-dimensional topological spaces homeomorphic to the
Hilbert cube [0, 1]Z (cf. [CS74]).

Given (Y, ρ) a compact metric space and F : X → Y a map, the induced hy-
perspace map FK : K(X) → K(Y ) is given by FK(A) := F (A). Note that F (A) is
closed in Y , because F is continuous, hence FK is well defined. It is also well known
that FK is continuous, and a homeomorphism, only if F is a homeomorphism. The
induced continuum map is intuitively defined as the map FK restricted to C(X),
that is, FK : C(X) → C(Y ). An alternate notation is FK|C(X) : C(X) → C(Y ).

Remark 2.1. If R : X → Y is an isometry, then RK : K(X) → K(Y ) is also an
isometry. Indeed, since R is an isometry, then, given x1, x2 ∈ X , ρ(Rx1, Rx2) =
d(x1, x2). Given ε > 0, consider two sets A,B ⊂ X such that dH(A,B) = ε. Note
that R(A) ⊂ R(B)ε because A ⊂ Bε and R is an isometry. If ε0 ∈ (0, ε), then
R(A) 6⊂ R(B)ε0 because there is a ∈ A and b ∈ B such that d(a, b) ≥ ε0. Hence,
d(Ra,Rb) ≥ ε0. Therefore, since there is no change in the distance between two
sets, ρH(RK(A), RK(B)) = dH(A,B).

2.2. Mean dimension. Consider U = {Ui}i∈I be a finite open cover of X . The
order ord(U) is the maximum integer n ≥ 0 such that there is pairwisely distinct
i0, ..., in ∈ I satisfying Ui0 ∩ ... ∩ Uin 6= ∅. A refinement of U is an open cover
V = {Vj}j∈J of X such that for every Vj ∈ V there is Ui ∈ U with Vj ⊂ Ui. The
topological dimension of X is given by the supremum of the degree D(U), that is
the minimum order ord(V) over all refinements V of U . (See details in Definition
1.6.7, [Eng78]).

For two open covers U and V of X , the joint is given by U ∨ V = {Ui ∩ Vj i ∈
I, j ∈ J}. Since T : X → X is continuous, observe that T−1U = {T−1Ui; i ∈ I} is
also an open cover of X . Therefore, the (topological) mean dimension of (X,T ) is
given by

mdim(X,T ) = sup
U

lim
n→∞

D(U ∨ T−1U ∨ · · · ∨ T−n+1U)

n
,

where U runs over all finite open covers of X . A detailed explanation of the mean
dimension is given in [LW00].

Some useful basic properties of mean dimension are:

1. the mean dimension is a topological invariant and takes values in [0,∞];
2. if the topological entropy of the dynamical system is finite, then its mean

dimension is zero;
3. if Y is a closed T -invariant subset of X , then mdim(Y, T ) ≤ mdim(X,T );
4. if X is finite-dimensional, then mdim(X,T ) = 0;
5. for any dynamical system (X,T ), mdim(X,T n) = n ·mdim(X,T );
6. if the phase space is the Hilbert cube [0, 1]Z, and σ : [0, 1]Z → [0, 1]Z

is the shift transformation, then mdim([0, 1]Z, σ) = 1. More generally,
mdim(([0, 1]d)Z, σ) = d.

1A continuum X has no free arcs if given γ ⊂ X homeomorphic to the unit interval [0, 1] the
interior of γ is not open in X.
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2.3. Metric mean dimension. Given k ∈ N, define the dynamical distance dk as

dk(x, y) = max{d
(
T i(x), T i(y)

)
, 0 ≤ i ≤ k − 1},

where T 0 is the identity, it is well known that dk is still a distance function on X
and generates the same topology as d. For x ∈ X and ε > 0, we call B(k,ε)(x) =
{y ∈ X ; dk(x, y) < ε} the (k, ε)-dynamical ball.

Call A ⊂ X a (k, ε)-separated set if to any distinct points x, y ∈ A, dk(x, y) ≥ ε.
Denote by Sep(T, k, ε) the maximal cardinality of a (k, ε)-separated set, that is
finite by the compactness of X . We say that E ⊂ X is a (k, ε)-spanning set for X
if for any x ∈ X , there exists y ∈ E such that dk(x, y) < ε. Let Span(T, k, ε) be the
minimum cardinality of any (k, ε)-spanning set. To clarify further notations, define

h(T, ε) = lim sup
k→∞

log Sep(T, k, ε)

k
and h̃(T, ε) = lim sup

k→∞

log Span(T, k, ε)

k
.

It is well known that h(T, ε) ≥ h̃(T, ε) (cf. [KH95]). Note that if ε1 < ε2, then

h̃(T, ε1) ≥ h̃(T, ε2). The topological entropy h(T ) is the limit of both h(T, ε) and

h̃(T, ε) as ε→ 0, that is the same value. We are interested in h̃(T, ε) growth when
the topological entropy is infinite. This motivates the definition of upper and lower
metric mean dimension, given in [LW00].

The lower metric mean dimension and the upper metric mean dimension of
(X, d, T ) are defined by

(2.1) mdim(X, d, T ) = lim inf
ε→0

h(T, ε)

− log ε
and mdim(X, d, T ) = lim sup

ε→0

h(T, ε)

− log ε
,

respectively. There is no problem with replacing h(T, ε) by h̃(T, ε) in the above
limit.

An important property that relates the mean dimension, the metric mean di-
mension, and the topological entropy is that

(2.2) mdim(X,T ) ≤ mdim(X, d, T ) ≤ mdim(X, d, T ) ≤ h(T ),

whenever d is a metric compatible with the topology on X [LW00, Theorem 4.2].
Indeed, note that if h(T ) is finite, then both topological and metric mean dimension
are zero.

2.4. Morse-Smale diffeomorphisms. For Nm a m-dimensional compact and
connected smooth manifold without boundary, set Diffr(Nm) as the set of Cr dif-
feomorphisms endowed with the Cr topology, for r ≥ 1. A periodic point x ∈ Nm

of period k ≥ 1 for F ∈ Diffr(Nm) is hyperbolic if the derivative (DF k)x has its
spectrum disjoint from the unit circle in C. It is well known that in this case, we
have the existence of stable and unstable manifolds of x, denoted by W s(x) and
Wu(x).

Definition 2.2. F ∈ Diffr(Nm) is Morse-Smale if it satisfies the following condi-
tions:

(1) the set of nonwandering points, Ω(F ), have only a finite number of hyper-
bolic periodic points;

(2) the stable and unstable manifolds of the periodic points are all transversal
to each other.

The Morse-Smale diffeomorphisms have the following properties:
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• every Morse-Smale diffeomorphism has an attractor periodic point and a
repeller periodic point, that is, the stable (unstable) manifold of the at-
tractor (repeller) periodic point is an immersed submanifold of dimension
m;

• if p is an attractor periodic point, then there is q a repeller periodic point
such that the stable manifold of p intersects transversely the unstable man-
ifold of q and W s(p) ∩Wu(q) 6= ∅;

• The topological entropy of a Morse-Smale diffeomorphism is always zero.

Further information on Morse-Smale diffeomorphisms can be found at [AB23].

3. Mean dimension of induced homeomorphisms

This section is devoted to the study of the topological mean dimension of induced
hyperspace maps for homeomorphisms defined in a compact and connected phase
space.

3.1. Proof of Theorem A. The following lemma is fundamental to understanding
a sufficient condition on why the topological mean dimension of an induced map is
unbounded. Precisely, if there is a wandering arc for a homeomorphism, then the
mean dimension of its induced map is infinite.

Lemma 3.1. Let X be a compact and connected topological space and T : X → X
be a homeomorphism. If there is an arc γ such that T n1(γ) ∩ T n2(γ) = ∅, for
n1 6= n2 ∈ Z, then mdim(K(X), TK) = ∞.

Proof. Given ϕ : [0, 1] → γ a homeomorphism and k ∈ N, choose k disjoint closed
intervals Ji in [0, 1]. For each Ji, 1 ≤ i ≤ k, consider a homeomorphism ψi : [0, 1] →
Ji. If x = (x1, ..., xk) is a point in [0, 1]k, then ϕ({ψi(xi), 1 ≤ i ≤ k}) ∈ K(X).
Set ψ(x) = {ψi(xi), 1 ≤ i ≤ k}, hence ϕ ◦ ψ(x) is an element of K(X). Denote
γi = ϕ(Ji) a subset of γ.

Define a map Φ : ([0, 1]k)Z → K(X), for ξ = (..., ξ−1, ξ0, ξ1, ...) ∈ ([0, 1]k)Z, as

Φ(ξ) = Φ(..., ξ−1, ξ0, ξ1, ...) =
⋃

n∈Z

T n ◦ ϕ ◦ ψ(ξn).

Notice that T n ◦ ϕ ◦ ψ(ξn) ⊂ T n(γ), for each n ∈ Z, hence

⋃

n∈Z

T n ◦ ϕ ◦ ψ(ξn) =
⋃

n∈Z

{T n ◦ ϕ ◦ ψi(ξn,i), 1 ≤ i ≤ k} ∪
k⋃

i=1

L(γi),

where ξn,i ∈ [0, 1], and T n1 ◦ ϕ ◦ ψ(ξn1
) 6= T n2 ◦ ϕ ◦ ψ(ξn2

), because T n1(γ) and
T n2(γ) are disjoint. Given that TK(L(γi)) = L(γi), for each 1 ≤ i ≤ k, we also have

(3.1) TK ◦ Φ(ξ) =
⋃

n∈Z

T n+1 ◦ ϕ ◦ ψ(ξn) =
⋃

n∈Z

T n ◦ ϕ ◦ ψ(ξn−1) = Φ ◦ σ−1(ξ),

where σ : ([0, 1]k)Z → ([0, 1]k)Z is the shift transformation. Lindenstrauss & Weiss
proved in [LW00] that mdim(([0, 1]k)Z, σ) = k. Since the mean dimension is a
topological invariant, the rest of this proof is dedicated to proving that Φ is injective
and continuous. Note that equation (3.1) also shows that Φ

(
([0, 1]k)Z

)
is invariant

by TK.
It is not hard to prove that Φ is injective because if ξ 6= η ∈ ([0, 1]k)Z, then there

is ℓ ∈ Z such that ξℓ 6= ηℓ. That is, there is i ∈ {1, ..., k} such that ξℓ,i 6= ηℓ,i. Then,
ψi(ξℓ,i) 6= ψi(ηℓ,i). Therefore, by construction, Φ(ξ) 6= Φ(η).
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To prove continuity, consider ξ ∈ ([0, 1]k)Z and (ξ(j))j∈N a convergent sequence

to ξ in the product topology of ([0, 1]k)Z. Particularly, for each n ∈ Z, ξ
(j)
n converges

to ξn in [0, 1]k. Then, for all i ∈ {1, ..., k}, T n ◦ ϕ ◦ ψi(ξ
(j)
n,i) → T n ◦ ϕ ◦ ψi(ξn,i) as

j → ∞. Since such convergence is valid for all n ∈ Z, then Φ(ξ(j)) → Φ(ξ).
Finally, Φ is a homeomorphism of ([0, 1]k)Z onto it is image. Hence

mdim(K(X), TK) ≥ mdim(Φ(([0, 1]k)Z), TK) = k.

Since k ∈ N is arbitrary, then mdim(K(X), TK) = ∞. �

It is not hard to see that Theorem A is an easy consequence of the prior lemma.

Proof of Theorem A. Remember that the nonwandering set is compact, hence X \
Ω(T ) is an open set. Given x ∈ X \ Ω(T ), there is Ux a neighborhood of x such
that T n(Ux) ∩ Ux = ∅, where n is an non-zero integer, because T is a homeo-
morphism. As a consequence, T n1(Ux) ∩ T n2(Ux) = ∅, for n1 6= n2 in Z. Let
γx be an arc contained in Ux, then it satisfy the hypothesis of Lemma 3.1, hence
mdim(K(X), TK) = ∞. �

For each x ∈ X \ Ω(T ), it is not hard to prove that limn→∞ fn(x) ∈ Ω(T ), in a
general way, it is well known that L(T ) ⊆ Ω(T ). Whenever the nonwandering set
is finite, the topological entropy of T is zero [LR10, Proposition 1 & 2]. Therefore,
Theorem A proves that for homeomorphisms with finite nonwandering set occurs
the explosion phenomenon. The most common examples of these systems are the
Morse-Smale diffeomorphisms, defined in §2.4. The following result is trivial if one
recalls inequality (2.2).

Corollary 3.2. Let X be a continuum and T : X → X a homeomorphism. If the
nonwandering set Ω(T ) is a strict subset of X, then mdim(K(X), ρ, TK) = ∞, when
ρ is any metric compatible with the topology of K(X).

3.2. Proof of Theorem B. The core of its proof relies on the same idea of Theo-
rem A: We connect the wandering arcs through its points to form a connected set.
Each connected set will be an element of the continuum hyperspace.

If Nm is a one-dimensional connect and compact boundaryless manifold, that
is, a manifold homeomorphic to the circle S1, then the topological entropy h(FK)
restricted to C(Nm) is zero for any homeomorphism F [LR10, Theorem 1 & 4]. In

this case, mdimM (C(Nm), dH , FK) = 0. Therefore, mdim(C(Nm), FK) = 0.
From now on, suppose that Nm is a compact manifold, for m > 1. Since F

is a Morse-Smale diffeomorphism, then there is, up to an iterate of F , p and q
hyperbolic fixed points such that W s(p) ∩ Wu(q) 6= ∅. Just as in the proof of
Theorem A, consider γ ⊂ W s(p) ∩Wu(q) an arc such that Fn1(γ) ∩ Fn2(γ) = ∅,
for n1 6= n2 in Z.

By the Hartman-Grobman Theorem, consider V a neighborhood of p such that
there is a homeomorphism ψ : V → ψ(V ) ⊂ Rm where 0 ∈ ψ(V ) and (DF )p ◦ ψ =
ψ ◦ F . Note that we can shrink V so that F (V ) ⊂ V and ψ(V ) be a convex set.
Let K ∈ N be such that FK(γ) ⊂ V , hence ψ ◦ FK(γ) is a curve in Rm. Observe
that ψ ◦ FK+1(γ) is also a curve in ψ(V ).

Given z ∈ ψ ◦ FK(γ) and w ∈ ψ ◦ FK+1(γ), set β(z, w, t) as the straight line
connecting z to w, where β(z, w, 0) = z and β(z, w, 1) = w. Therefore, β(z, w, t)
is, in particular, a continuous function on the first two coordinates. Define the
curve κ(x, y, t) = F−K ◦ ψ−1(β(z, w, t)) that connects a point x in γ to y in F (γ),
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then Γ : γ × F (γ) → C(Nm) set as Γ(x, y) = {κ(x, y, t), t ∈ [0, 1]} is a continuous
function on both coordinates.

Let k ∈ N and consider γj ⊂ γ connected and closed sets, for 1 ≤ j ≤ k.
Since each γj is also a curve, there is τj : [0, 1] → γj a homeomorphism. Given
ξ ∈ ([0, 1]k)Z, define Φ : ([0, 1]k)Z → C(Nm) as

Φ(..., ξ−1, ξ0, ξ1, ...) =
k⋃

j=1

⋃

i∈Z

F i(Γ(τj(ξi,j), F ◦ τj(ξi+1,j))),

where ξi = (ξi,1, ..., ξi,k) and ξi,j ∈ [0, 1]. The point Φ(ξ) ∈ K(Nm) is indeed a
connected set of Nm because, for all i ∈ Z,

F i(Γ(τj(ξi,j), F◦τj(ξi+1,j)))∩F
i+1(Γ(τj(ξi+1,j), F◦τj(ξi+2,j))) = {F i+1◦τj(ξi+1,j)},

and also limi→∞ F i+1 ◦ τj(ξi+1,j) → p, and limi→−∞ F i+1 ◦ τj(ξi+1,j) → q, since
F i+1 ◦ τj(ξi+1,j) ∈ F i+1(γ). Therefore, Φ(ξ) is a finite union of connected sets with
a common point in both p and q, hence a connected set.

To illustrate, for each j ∈ {1, ..., k}, the curve
⋃
i∈Z

F i(κ(τj(ξi,j), F ◦ τj(ξi+1,j)))

connect q to p and pass through the sequence (F i◦τj(ξi,j))i∈N inNm, as represented
in Figure 1.

γ1

γ2

F (γ1)

F (γ2)

F−1(γ1)

F−1(γ2)

τ1(ξ0,1)

τ2(ξ0,2)

q p

Figure 1. The connected set in blue is an example of Φ(ξ) for k = 2.

Observe that

FK

(
⋃

i∈Z

F i(κ(τj(ξi,j), F ◦ τj(ξi+1,j)))

)
=
⋃

i∈Z

F i+1(κ(τj(ξi,j), F ◦ τj(ξi+1,j))).

Thus, FK ◦ Φ(ξ) = Φ ◦ σ−1(ξ).
If Φ is a homeomorphism between ([0, 1]k)Z and its image, then, since the mean

dimension is a topological invariant, mdim(C(Nm), FK) ≥ mdim(Φ(([0, 1]k)Z), FK) ≥
k, because mdim(([0, 1]k)Z, σ) = k. Therefore, mdim(C(Nm), FK) = ∞, because
k ∈ N is arbitrary. Thus, our task is reduced to prove that Φ is continuous and
injective.

To prove that Φ is injective, consider ξ 6= η in ([0, 1]k)Z, hence, there is i ∈ Z

such that ξi 6= ηi. Specifically, there is j ∈ {1, ..., k} such that ξi,j 6= ηi,j . There-
fore, Γ(τj(ξi,j), F ◦ τj(ξi+1,j)) 6= Γ(τj(ηi,j), F ◦ τj(ηi+1,j)) as elements in C(Nm).
Since F is, in particular, a homeomorphism, then F i(Γ(τj(ξi,j), F ◦ τj(ξi+1,j))) 6=
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F i(Γ(τj(ηi,j), F◦τj(ηi+1,j))). Therefore, the curves
⋃
i∈Z

F i(Γ(τj(ξi,j), F ◦ τj(ξi+1,j)))

and
⋃
i∈Z

F i(Γ(τj(ηi,j), F ◦ τj(ηi+1,j))) are different elements of C(Nm). Thus, Φ(ξ) 6=

Φ(η).
To prove the continuity of Φ, consider (ξ(n))n∈N converging to ξ in ([0, 1]k)Z

with the product topology, that is, for each i ∈ Z and j ∈ {1, ..., k}, ξ
(n)
i,j →

ξi,j . The continuity of Γ and τj guarantees that Γ(τj(ξ
(n)
i,j ), F ◦ τj(ξ

(n)
i+1,j)) con-

verges to Γ(τj(ξi,j), F ◦ τj(ξi+1,j)) as n → ∞ and for each j ∈ {1, ..., k}. Then,

F i(Γ(τj(ξ
(n)
i,j ), F ◦ τj(ξ

(n)
i+1,j))) goes to F i(Γ(τj(ξi,j), F ◦ τj(ξi+1,j))) for all i ∈ Z.

Therefore, Φ(ξ(n)) → Φ(ξ).

3.3. Explosion on the circle. The explosion of the mean dimension for the in-
duced hyperspace map is better understood for homeomorphisms defined in one-
dimensional topological manifolds because they all have zero topological entropy.
Precisely, there is a dichotomy for such homeomorphisms: the mean dimension of
its induced hyperspace map is zero or infinite. The following lemma states this
dichotomy for interval homeomorphisms and is crucial to prove the analog state for
circle homeomorphisms.

Lemma 3.3. Let T : [0, 1] → [0, 1] be a homeomorphism such that T 2 is not the
identity, then mdim(K([0, 1]), TK) = ∞.

Proof. The first step is to prove that T 2 is increasing. Indeed, since T is a homeo-
morphism, T is a strictly increasing or decreasing function. If T is increasing, then
it is obvious. If T is decreasing, then T (a) < T (b), when a > b in [0, 1]. Therefore,
T 2(a) > T 2(b).

Since T 2 is not the identity, then T 2(x) < x or T 2(x) > x, for some x ∈ [0, 1].
Suppose, without loss of generality, that T 2(x) < x, hence T 2n2(x) < T 2n1(x) for
n2 > n1 in Z.

Notice that (T 2n(x))n≥0 is a decreasing sequence, then T 2n(x) converges to
a fixed point of T 2. The similar happens to (T 2k(x))k≤0, because T 2k(x) is a
increasing sequence. Remember that T 2 has at least two fixed points because T 2

is increasing.
The second step is to choose a closed interval J contained in the interval (T 2(x), x),

hence T 2n2(J)∩T 2n1(J) = ∅ for n2 > n1 in Z, and limn→±∞ T 2n(J) is a fixed point
of T 2. Since J satisfies the condition of the Lemma 3.1, then mdim(K([0, 1]), T 2

K) =
mdim(K([0, 1]), TK) = ∞. �

Remark 3.4. If T 2 : [0, 1] → [0, 1] is the identity, then mdim(K([0, 1]), T 2
K) =

mdim(K([0, 1]), TK) = 0. This proves the dichotomy for homeomorphisms defined
on the unit interval [0, 1].

To prove the explosion phenomenon on the circle S1 we will recur to the con-
sequences of the rotation number theory of circle homeomorphisms. A great ex-
position of this subject is given at [FG22]. Recall that two dynamical systems
T : X → X and F : Y → Y are topologically conjugated or simply conjugated if
there is a homeomorphism ψ : X → Y such that ψ ◦ F = T ◦ ψ.

Proof of Theorem C. Suppose that H is a circle homeomorphism with a periodic
point, then there is x ∈ S1 and q ∈ N such that Hq(x) = x. Every z ∈ S1 can be
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written as z = x ·e2πit for t ∈ [0, 1]. The function ψ : S1 → [0, 1] defined as ψ(z) = t
conjugates Hq to a homeomorphism T on [0, 1] given by T = ψ ◦Hq ◦ ψ−1. If T 2

is the identity, then H2q is the identity. Thus, mdim(K(S1), HK) = 0. Otherwise,
by Lemma 3.3, there is J ⊂ [0, 1] wandering interval for T 2, then ψ−1(J) is a
wandering interval for H2q. Therefore, by Theorem A, mdim(K(S1), HK) = ∞.

The last step is to consider that H has no periodic points. If H is conjugated
to an irrational rotation Rθ by the homeomorphism φ, then it is not hard to show
that HK is conjugated to (Rθ)K by the homeomorphism φK. Since (Rθ)K is an
isometry, by Remark 2.1, and the topological entropy is preserved by conjugation,
then the entropy of HK is zero. Therefore, mdim(K(S1), HK) = 0. Otherwise, the
non-wandering set ofH , Ω(H), is a Cantor set [FG22, Proposition 2.5]. In this case,
by the proof of Theorem A, it is well known that there is a closed wandering interval
J ⊂ S1\Ω(H), that is, its images by H are pairwise disjoint, such that |Hn(J)| → 0
and Hn(J) → Ω(H) when |n| → ∞. Then, mdim(K(S1), HK) = ∞. �

Given H : S1 → S1 an orientation-preserving homeomorphism, if H is conju-
gated to a rotation, then H is an isometry to some metric compatible with the usual
topology on S1. Therefore, the metric mean dimension of its induced hyperspace
map is zero. Conversely, if mdim(K(S1), HK) = 0, we have two cases:

• if H has no periodic points, then H is conjugated to an irrational rotation,
by Theorem C;

• if H has a periodic point of period q ∈ N, then all periodic orbits of H has
period q [FG22, Proposition 2.4]. Suppose that Hq is not the identity, then
T := ψ ◦Hq ◦ ψ−1, as in the proof of Theorem C, is not the identity. By
the hypothesis, T 2 is the identity, hence H2q is the identity. Contradiction
with the period of its periodic orbits. Thus, Hq is the identity. In this case,
it is well known that H is topologically conjugated to a rational rotation
[CK94].

As a consequence, this discussion proves Corollary D.

Remark 3.5. The orientation-preserving condition on Corollary D is necessary be-
cause if H is a reflection, then mdim(K(S1), HK) = 0 because H2 is the identity.
But, H has two fixed points and is not conjugated to the identity. Therefore, H is
not conjugated to a rotation.

4. Metric mean dimension of induced continuous maps

For the systems that are yet not possible to calculate the mean dimension of its
induced hyperspace map, i.e., continuous maps T : X → X such that h(T ) > 0,
the alternative is to calculate the metric mean dimension. It is easier to com-
pute because it relies on the separation of points in the phase space by the acting
dynamics.

To simplify further notation, denote the Hausdorff distance dH by D. Given k ∈
N and for A,B ∈ K(X), the dynamical Hausdorff distance for TK : K(X) → K(X)
is set as

Dk(A,B) = max{D(T i
K(A), T

i
K(B)), 0 ≤ i ≤ k − 1}

and, for ε > 0, the Hausdorff (k, ε)-dynamical ball around A ∈ K(X) is defined as
BH

(k,ε)(A) = {B ∈ K(X);Dk(A,B) < ε}.



12 GABRIEL LACERDA AND SERGIO ROMAÑA

Observe that, given x ∈ X , BH
(k,ε)({x}) = {C ∈ K(X);C ⊂ B(k,ε)(x)}. In-

deed, if C ⊂ B(k,ε)(x), then, for all i ∈ {0, ..., k − 1}, T i
K(C) ⊂ T i

K({x})ε. More-

over, clearly, T i
K({x}) ⊂ T i

K(C)ε. On the other way, if C ∈ BH
(k,ε)({x}), then

D(T i
K(C), T

i
K({x})) < ε for all i ∈ {0, ..., k − 1}. That is, T i(C) ⊂ Bε(T

i(x)).
Therefore, C ⊂ B(k,ε)(x).

The following lemma compares the size of the separated and spanning sets for
the base and the induced system, respectively, and states that the spanning set
for the induced system is exponentially bigger than the separated set for the base
system. It is the main tool to prove Theorem E.

Lemma 4.1. Let (X, d) be a compact metric space and T : X → X a continuous
map. For all ε > 0 and k ∈ N,

(4.1) Span(TK, k, ε/2) ≥ 2Sep(T,k,ε) − 1.

Proof. Let {p1, ..., pN} be a (k, ε)-separated set of maximal cardinality for T : X →
X . Observe that, for i 6= j, B(k,ε/2)(pi)∩B(k,ε/2)(pj) = ∅; otherwise, dk(pi, pj) < ε.
For A1, A2 nonempty distinct subsets of {p1, ..., pN},

BH
(k,ε/2)(Aℓ) =

{
C ∈ K(X);C ⊂

⋃

x∈Aℓ

B(k,ε/2)(x) and C ∩B(k,ε/2)(x) 6= ∅, ∀x ∈ Aℓ

}
.

The above first condition guarantees that, for any z ∈ C and any s ∈ {0, ..., k−1},
there is w ∈ T s

K(Aℓ) such that d(T s(z), w) < ε/2. Therefore, T s
K(C) ⊂ T s

K(Aℓ)ε/2.
The second condition states that, given x ∈ Aℓ and s ∈ {0, ..., k − 1}, there is
z ∈ C such that d(T s(z), T s(x)) < ε/2. Thus, T s

K(Aℓ) ⊂ T s
K(C)ε/2. Conversely, if

C ∈ BH
(k,ε/2)(Aℓ), then D(T s

K(C), T
s
K(Aℓ)) < ε/2, for all s ∈ {0, ..., k − 1}. That

is, T s
K(C) ⊂ T s

K(Aℓ)ε/2 and T s
K(Aℓ) ⊂ T s

K(C)ε/2. It is not hard to see that these

conditions imply this alternative definition of BH
(k,ε/2)(Aℓ).

Consider pj ∈ A1 such that pj /∈ A2. Given F ∈ BH
(k,ε/2)(A1), we have that

F ∩B(k,ε/2)(pj) 6= ∅, that is, there is y ∈ F such that y /∈ B(k,ε/2)(x), for all x ∈ A2,

because B(k,ε/2)(pj) ∩ B(k,ε/2)(x) = ∅. Thus, BH
(k,ε/2)(A1) ∩ BH

(k,ε/2)(A2) = ∅.

Therefore, all nonempty subsets of {p1, ..., pN} are elements of a (k, ε/2)-spanning
set of minimum cardinality for K(X) and this proves inequality (4.1). �

The next discussion proves that, if the base system has a sufficient growth of
separated orbits, that is, h(T ) > 0, then, by the light of Lemma 4.1, its induced
hyperspace map has superexponential growth of separated orbits.

Proof of Theorem E. It is a proof by contrapositive. Let L ∈ R be such that
mdim(K(X), D, TK) ≤ L. By definition, there is ε0 > 0 such that for all ε ∈ (0, ε0),

h̃(TK, ε/2)

− log(ε/2)
≤ L.

That is,

(− log ε+ log 2) · L ≥ h̃(TK, ε/2) = lim sup
k→∞

log Span(TK, k, ε/2)

k
.

Thus, there is N0 ∈ N such that for all k ≥ N0,

(− log ε+ log 2) · L ≥
log Span(TK, k, ε/2)

k
.
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Inequality (4.1) implies that

(− log ε+ log 2) · L · k ≥ log Span(TK, k, ε/2) ≥ log(2Sep(T,k,ε) − 1).

From now on we will suppose that Sep(T, k, ε) > 1. Otherwise, h(T ) is always
zero. Then,

(− log ε+log 2)·L·k ≥ log(2Sep(T,k,ε)−1) ≥ log(2Sep(T,k,ε)−1) = (Sep(T, k, ε)−1)·log 2.

Again, apply the inequality t− 1 ≥ t/2, when t ≥ 2, to obtain

(− log ε+ log 2) · L · k ≥ Sep(T, k, ε) ·
log 2

2
.

Taking the log function on both sides and dividing by k, we get

log(− log ε+ log 2)

k
+

log k

k
+

logL

k
≥

log Sep(T, k, ε)

k
+

log( log 2
2 )

k
.

Passing the limit when k → ∞, we finally obtain 0 ≥ h(T, ε), for all ε ∈ (0, ε0).
Therefore, h(T ) = 0. �

Remark 4.2. A trivial consequence is that if mdim(K(X), D, TK) is bounded, then
the topological entropy h(T ) of the base system is zero.

For the following result, Nm is a m-dimensional compact and connected metriz-
able manifold without boundary. The distance function in Nm is set as d. Observe
that, when m ≥ 2, Nm has no free arcs, then C(Nm) is an infinite-dimensional
topological space.

Let ε > 0 and k ∈ N, the continuum Hausdorff (k, ε)-dynamical ball around
γ ∈ C(Nm), when γ is an arc, is given by

BH
(k,ε)(γ) = {F ∈ C(Nm);F ⊂

⋃

x∈γ

B(k,ε)(x) and F ∩B(k,ε)(x) 6= ∅, ∀x ∈ γ}.

Proof of Theorem F. Let {p1, ..., pM} be a (k, ε)-separated set of maximal cardi-
nality for G : Nm → Nm, as in the proof of Lemma 4.1. Recall that, for i 6= j,
B(k,ε/2)(pi) ∩B(k,ε/2)(pj) = ∅.

Suppose that 1 ≤ i < j ≤ M , then define by [i, j] the arc with pi and pj as
endpoints such that for all ℓ ∈ {1, 2, ...,M} different from i and j the intersection
[i, j] ∩B(k,ε/2)(pℓ) = ∅. This is possible because Nm has topological dimension of
at least two. Given P ⊂ {p1, ..., pM}, define Γ(P ) = [i1, i2] ∪ ... ∪ [it−1, it], when
P = {pi1 , pi2 , ..., pit}. If P = {pi}, then Γ(P ) := P . Note that Γ(P ) is also an arc
when P has at least two points. Therefore, we have an injective function from the
nonempty subsets of {p1, ..., pM} to C(Nm).

Consider P 6= Q nonempty subsets of {p1, ..., pM}, and suppose, without loss

of generality, that there is pj ∈ P such that pj /∈ Q. Let F ∈ BH
(k,ε/4)(Γ(P )). If

F is an element of BH
(k,ε/4)(Γ(Q)), then there is y ∈ F and x ∈ Γ(Q) such that

dk(y, x) ≤ ε/4. Hence, dk(pj , x) ≤ dk(pj , y) + dk(y, x) ≤ ε/2. Contradiction,
because Γ(Q) ∩B(k,ε/2)(pj) = ∅, by construction.

Therefore, each Γ(P ), for nonempty P ⊂ {p1, ..., pM}, is an element of the
same (k, ε/4)-spanning set of minimum cardinality for C(Nm). This proves that
Span(GK|C(Nm), k, ε/4) ≥ 2Sep(G,k,ε) − 1. Finally, proceeding similarly as in the

proof of Theorem E, if mdim(C(Nm), D,GK) is bounded, then h(G) = 0. �
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Remark 4.3. If N1 is the interval [0, 1] or the circle S1, then both continuum
hyperspaces are homeomorphic to a bi-dimensional manifold with boundary [IJ99,
Example 5.1 & 5.2]. It is not hard to construct a continuous map G : N1 → N1

such that h(G) > 0, but we always have mdim(C(N1), dH , GK) ≤ 2 [VV17, Remark
4]. Therefore, Theorem F is not valid for one-dimensional manifolds.

Denote by C0(Nm) the set of continuous maps of Nm to itself. It is a complete
metric space when endowed with the distance d0(F,G) := maxx∈Nm d(F (x), G(x)).
In the same way, the set of homeomorphisms of Nm, denoted by Homeo(Nm), is
also a complete metric space with the metric D0(F,G) = d0(F,G) + d0(F

−1, G−1).
K. Yano proved in [Yan80] that there are open and dense sets E0 ⊂ C0(Nm) and
E ⊂ Homeo(Nm), when m ≥ 2, such that any element of E0 or E has positive
topological entropy. Therefore, this leaves us with the following result.

Corollary 4.4. Given Nm a compact and connected topological metrizable manifold
of dimension m bigger than 1, there are open and dense sets E0 ⊂ C0(Nm) and
E ⊂ Homeo(Nm) such that for any G ∈ E or G ∈ E0,

mdim(K(Nm), D,GK) = mdim(C(Nm), D,GK) = ∞.

So, in the continuous world, it remains to classify maps with zero topological
entropy according to the metric mean dimension of its induced map. In the differ-
entiable world, consider Nm a compact and connected smooth manifold endowed
with the Riemannian distance. It is well known that Diff1(Nm) is a complete met-
ric space with the Whitney C1 topology. S. Covisier proved in [Cro10, Theorems
A & B] that there is a residual set, that is, an enumerable intersection of open

and dense sets, R ⊂ Diff1(Nm) such that, given F ∈ R either F is a Morse-Smale
diffeomorphism or F has a horseshoe. In the case that F possesses a horseshoe,
then the topological entropy of F is positive [BW95, Lemma 1.3]. Therefore, if
F ∈ R is a Morse-Smale diffeomorphism, then, by Theorem B, equality (1.1) holds.
If F ∈ R and is not a Morse-Smale diffeomorphism, then, by Theorem F, equality
(1.1) also holds. Hence, Corollary G is proved.

Recall that Morse-Smale diffeomorphisms have zero topological entropy. Another
class of zero entropy systems is those that conjugate to an isometry. Consider
T : X → X a continuous injective map such that T is conjugated by ψ to an
isometry R of (X, d). Since RK is an isometry on K(X), by Remark 2.1, then the
entropy of TK is zero, because it is conjugated to RK by ψK. Therefore, by the
inequality (2.2), the following statement is true.

Proposition 4.5. Let (X, d) be a compact metric space and T : X → X a map
that is topologically conjugated to an isometry. Then, mdim(K(X), D, TK) = 0.

5. Final Remarks

The mean dimension explosion phenomenon hints that the induced hyperspace
map has too many different orbits, hence its complexity is overwhelmed by the slight
separation of points in the base system. Future research may be directed toward
classifying zero topological entropy systems with finite (metric) mean dimension of
their induced maps.



REFERENCES 15

References

[CS74] D. W. Curtis and R. M. Schori. “2X and C(X) are homeomorphic to the
Hilbert cube”. In: Bulletin of the American Mathematical Society 80.5
(1974), pp. 927–931.

[BS75] W. Bauer and K. Sigmund. “Topological Dynamics of Transformations
Induced on the Space of Probability Measures”. In: Monatshefte für
Mathematik 79 (1975), pp. 81–92.

[Eng78] R. Engelking. Dimension Theory. Polish Scientific Publishers PWN,
1978.

[Yan80] K. Yano. “A remark on the topological entropy of homeomorphisms”.
In: Inventiones mathematicae 59 (1980), pp. 215–220.

[CK94] A. Constantin and B. Kolev. “The theorem of Kerekjarto on periodic
homeomorphisms of the disc and the sphere”. In: Fondation L’Enseignement
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