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We present a theoretical investigation of the magnetic properties exhibited by twisted bilayer
graphene systems with small twist angles, where the appearance of flat minibands strongly en-
hances electron-electron interactions effects. We consider a tight-binding Hamiltonian combined
with a Hubbard mean-field interaction term and employ a real-space recursion technique to self-
consistently calculate the system’s local density of states. The O(N ) efficiency of the recursion
method makes it possible to address superlattices of very large size by means of a full real-space
analysis. Our procedure is validated by comparison with literature momentum-space calculations
that find a magnetic phase in charge-neutral twisted bilayer graphene. We use our method to investi-
gate the properties of small-angle twisted bilayer graphene at three-quarters filling of the conduction
miniband. Our calculations indicate the emergence of a ferromagnetic phase that can be understood
in terms of the Stoner mechanism, in line with recent experimental observations.

I. INTRODUCTION

Twisting two layers of graphene by a specific angle has
led to the discovery of a wealth of unexpected phenomena
[1, 2]. Particularly intriguing is the experimental discov-
ery of insulating phases and superconducting states [3, 4]
in small-angle twisted bilayer graphene (TBG) systems
has opened new paths for the investigation of graphene
systems [5–15], playing a key role in a line of investiga-
tion called twistronics [16], and has rapidly attracted a
large and active community of researchers in condensed
matter physics and materials science [2, 17].

The origin of these remarkable phenomena in low-angle
TBG is attributed to the appearance of flat electronic
bands near the charge neutrality point (CNT) [18, 19],
as explained by the continuum model [20–23]. The cor-
responding electronic states are localized, leading to en-
hanced electron-electron interaction effects, which are be-
lieved to originate the rich properties observed in low-
angle TBG. From a theoretical point of view, the chal-
lenge is to treat a system with a unit cell that has thou-
sands of atoms with strongly interacting electrons.

The focus of our paper are the magnetic properties of
low-angle TBG systems at finite doping. The motivation
is a recent experiment [24] that observed the emergence
of a ferromagnetic phase in a TBG with a twist angle
θ ≈ 1.16◦ at 3/4 filling of the conduction miniband and
the debate about the underlying mechanism responsible
for this experimental finding [24, 25].

The onset of magnetism in graphene-based systems has
been intensively studied, both experimentally and the-
oretically [26]. The latter span a wide variety of set-
tings, such as zero-dimensional graphene nanofragments
[27–29], one-dimensional graphene nanoribbons [30–35],
defect-induced magnetism in bulk graphene [36, 37]. The
description of magnetic moments induced by edge ter-
minations and vacancies has been addressed by both
ab initio calculations and the tight-binding approxima-
tion with an on-site Hubbard electron-electron interac-
tion term. The magnetic properties of these systems are

nicely described by a mean-field theory, with the excep-
tion of vacancy-induced Kondo correlations [38–40].
In this paper, we employ a tight-binding Hamiltonian

with a mean-field Hubbard on-site interaction term to
compute the low-energy electronic and magnetic proper-
ties of low-angle TGBs. We use the Haydock-Heine-Kelly
(HHK) recursive technique [41–44] to calculate the spin-
resolved LDOS with spin σ = {↑, ↓} of TBG as a function
of the bilayer twist angle. Being an order N method,
the HHK method makes possible to compute the Green’s
functions of TBG with very large primitive unit cells.
The latter combined with a self-consistent mean-field cal-
culation allows us to investigate the electron localization
properties and the magnetization of TBGs at arbitrary
filling factors of the flat minibands. Motivated by a re-
cent experimental paper [24], our focus is the study of
emergent ferromagnetism close to 3/4-filling at the con-
duction miniband of a TBG with θ ≈ 1.16◦ [24].
The paper is organized as follows. In Sec. II we review

the geometric properties of commensurate TBG moiré
structures, present the Hamiltonian model, and the nu-
merical method developed for this study. In Sec. III
we discuss the LDOS of low-angle TBG systems. First,
we show our results for non-interacting electrons. Next,
we calculate the magnetic properties of TBGs at the
charge neutrality point (CNP). The excellent agreement
between our results and those of Ref. [45] serves to val-
idate our method. Finally, we investigate the magnetic
properties of a TBG system with θ = 1.16◦ at 3/4 filling
and find the emergence of a ferromagnetic phase, in line
with recent experiments [24]. We present our conclusion
and an outline of future research in Sec. IV.

II. THEORY AND METHODS

A. TBG geometric and symmetry properties

The stacking geometry of TBGs is characterized, as
standard [20, 46, 47], by the twist of one graphene layer
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with respect to the other around a given site starting
from the AA-stacked bilayer, forming a moiré pattern.
We describe a TBG system by twisting the upper layer
at an angle θ as described in Ref. [20, 21]. The primitive

lattice vectors of the bottom layer are ab1 =
√
3a0êx and

ab2 =
√
3a0/2

(
êx +

√
3êy

)
with the carbon-carbon bond

length a0 = 1.42 Å, and those of top layer as ati = R(θ)abi ,
where R(θ) is the rotation matrix. In this study, we take
the spacing between graphene layers as d0 = 3.35 Å [19]
and do not consider lattice relaxation effects.

The lattice structure of a TBG system is periodic if
the periods of the two graphene layers match, giving a
finite unit cell. Hence, the periodicity condition requires
the lattice translation vector mab1 + nab2 of the bottom
(unrotated) layer and nat1 + mat2 in the top (rotated)
layer, with m and n integers, to coincide. Hence, the
twist angle for a commensurate structure is related to
(m,n) by [48–50]

θ(m,n) = arccos

(
1

2

m2 + n2 + 4mn

m2 + n2 +mn

)
, (1)

with a lattice constant

L = a0
√
3(m2 + n2 +mn) =

|m− n|
√
3a0

2 sin θ/2
. (2)

The commensurate unit cell contains N = 4(m2 + n2 +
mn) atoms.
Due to the symmetry of the honeycomb lattice, when

the translation vector of the top layer is fixed to δt = 0,
a twist at an angle θ = 120◦ transforms the AA-stacked
bilayer into itself. In turn, a twist by θ = 60◦ trans-
forms the bilayer from AA- to AB-stacking. TBGs with
θ and −θ are mirror images that share equivalent band
structures [48].

Each graphene layer is constituted by two sublattices,
Ab(or t) and Bb(or t). The commensurate structures oc-
cur in two different forms distinguished by their sub-
lattice parities [49, 50]. Figure 1(a) shows an example
of an even commensurate structure under sublattice ex-
change. It is characterized by having 3 three-fold sym-
metric positions that correspond to the stacking of the
AbAt and BbBt sites and by hexagonal centers that over-
lap, HbHt. In contrast, Fig. 1(b) shows an odd commen-
surate structure. Here, the top and bottom coinciding
sites correspond to AbAt at the origin, and the two re-
maining three-fold symmetric positions are occupied by
Bb(or Bt)-sublattice sites of one layer aligned with the
hexagon centers Ht(or Hb) of its neighbor layer. There-
fore, the angles 60◦ − θ and −θ followed by a relative
translation of the upper layer by δt = (at1 + at2)/3 form
commensurate partners with unit cells of equal areas but
opposite sublattice parities.

A TBG with θ = 30◦ is a special case, since its crys-
tal structure is its own commensurate partner and cor-
responds to an elementary two-dimensional quasicrys-
talline lattice [51, 52].

49

AbAt

BbBt

HbHt

AbAt

BbHt

HbBt

Even Odd

60° − 𝜃 −𝜃 + 𝛅𝑡(a) (b)

𝜃 ≈ 21.8° 𝑚, 𝑛 = 1,2

FIG. 1. Commensurate structure partners with θ ≈ 21.8◦

that corresponds (1, 2). Purple (orange) circles indicate the
carbon sites of the top (bottom) layer. The black lines indi-
cate the primitive unit cell. The 3 blue disks correspond to
the three-fold symmetry positions. (a) The twist angle 60◦−θ
corresponds to an even symmetry under sublattice exchange
at three-fold symmetric positions. (b) The twist angle −θ
followed by δt translation represents an odd symmetry under
sublattice exchange. The green disks indicate the equivalent
points. The green dashed line corresponds to the two-fold ro-
tation axis.

Here, we work with odd commensurate structures. In
Fig. 1(b), the carbon atom sites, indicated by the green
disks, are equivalent due to the three-fold symmetric po-
sitions and two-fold rotation axis (green dashed line).
These symmetry properties allow us to reduce the nu-
merical computation by identifying the equivalent sites
within the primitive unit cell.

B. Model Hamiltonian

We model the electronic properties of low-angle TBG
systems using a tight-binding Hamiltonian with a Hub-
bard interaction term [26, 53], namely

H = HTB +HU, (3)

where HTB stands for the TBG tight-binding Hamilto-
nian and HU for a Hubbard on-site electron-electron in-
teraction term.
The tight-binding Hamiltonian that describes the low-

energy electronic structure of TBG reads

HTB =
∑
i,jσ

(
tijc

†
iσcjσ +H.c

)
, (4)

where the operators ciσ and c†iσ annihilate and create an
electron with spin σ = {↑, ↓} at site i, respectively. tij
is the transfer integral between the Wannier electronic
orbitals centered at the carbon sites i and j. The transfer
integral tij depends on the interatomic distance and the
relative orientation between pz orbitals at each site and
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is usually parameterized as [19, 48, 54]

tij = Vppπ

[
1−

(
d0
d

)2
]
+ Vppσ

(
d0
d

)2

, (5)

with

Vppπ = V 0
ppπe

−(d−a0)/δ, Vppσ = V 0
ppσe

−(d−a0)/δ, (6)

where d = |ri − rj |1/2. Here, V 0
ppπ = −2.7 eV is the

transfer integral between the nearest-neighbor atoms in
the monolayer graphene, V 0

ppσ = 0.48 eV is the interlayer
transfer integral between vertically located atoms, and
δ = 0.319a0 is the decay length of the transfer integral
[19, 54]. The transfer integral for d > 5 Å is exponentially
small and can be safely neglected. The intra- and inter-
layer hopping matrix elements tij have been determined
by fitting the dispersion relations of graphene monolayer
and graphene AB-stacked bilayer obtained from ab initio
calculations [19].

The Hubbard term reads

HU = U
∑
i

ni↑ni↓, (7)

where niσ = c†iσciσ is the spin-resolved electron number
operator at site i. The parameter U > 0 gives the mag-
nitude of the on-site Coulomb repulsion [26, 53]. The
magnitude of U in graphene systems is has been exten-
sively discussed [55, 56] with estimates that vary from
0.5 · · · 2.0V 0

ppπ. In this study we consider, unless other-

wise stated, U = V 0
ppπ.

We solve the TBG Hamiltonian for a given filling factor
in the mean-field approximation. As standard, we write
niσ ≡ ⟨niσ⟩ + δniσ and neglect the quadratic terms in
δniσ that are responsible for electronic correlations. The
mean field Hubbard Hamiltonian reads

HMF
U = U

∑
i

[
ni↑⟨ni↓⟩+ ni↓⟨ni↑⟩ − ⟨ni↑⟩⟨ni↓⟩

]
. (8)

The last term is a constant for a given local magnetic
configuration and can be absorbed in the chemical po-
tential.

C. Numerical method

Here, we describe how we calculate the ground state
charge density and magnetic properties of TBG systems
modeled by the Hamiltonian H = HTB +HMF

U .
Due to the large number of atoms in a low-angle TBG

primitive cell, even mean-field calculations can be com-
putationally very costly. Several effective Hamiltonian
models have been developed to reduce the numerical ef-
fort [45, 57–59]. Here, we perform a full real-space cal-
culation using the HHK recursive method, which is very

efficient to compute the single-particle LDOS of large sys-
tems. The HHK method [41–44] puts forward a very effi-
cient Lanczos-like O(N ) recursive procedure that trans-
forms an arbitrary sparse Hamiltonian matrix in a tridi-
agonal one. Next, it evaluates the diagonal Green’s func-
tion in real space by a continued fraction expansion,
which is much more numerically amenable than a full
diagonalization.

By a suitable choice of the chemical potential, our ap-
proach allows us to consider charge neutral as well as
systems with a finite doping, namely, ndop = Ne/APUC,
where Ne is the number of electrons in excess to the CNP
and APUC = 3

√
3a20/8 sin

2(θ/2) is the area of the TBG
moiré cell with N atoms.
We implement the self-consistent mean-field calcula-

tion as standard:
(i) We start with an initial set of occupation numbers

⟨niσ⟩, with the constraint
∑

iσ⟨niσ⟩ = N + Ne, where
the sum runs over all sites of the moiré unit cell, set by
the considered doping. The occupations can be chosen
randomly or respecting some given symmetry condition.
(ii) Using the HHK recursion technique [41–44], we

compute the LDOS of the electronic system defined by
the Hamiltonian, Eq. (3). The spin-resolved LDOS at a
given site i can be written as

νj(ϵ) = − 1

π
lim

η→0+
Im Gjj(ϵ+ iη). (9)

In practice, the regularization parameter η is considered
as finite and its magnitude can be attributed the self-
energy correction due to disorder, that is ubiquitous in
graphene systems. The HHK method enables us to com-
pute the LDOS with O(N ) operations and the DOS with
O(N 2). Hence, it is much more efficient that a direct di-
agonalization, which demands O(N 3) operations.
(iii) Next, we determine ⟨niσ⟩, the average electron

occupation number with spin σ at the site i. In general,
at a given temperature T , ⟨niσ⟩ reads

⟨niσ⟩ =
∫ ∞

−∞
dϵfµ(ϵ)νiσ(ϵ), (10)

with fµ(ϵ) = {exp [β(ϵ− µ)] + 1}−1
, where β = 1/kBT ,

kB is Boltzmann constant, and µ is chemical potential.
At zero absolute temperature, µ is equal to the Fermi
energy εF and the Fermi distribution becomes a step
function. For simplicity, here we consider T = 0. As
standard, the Fermi energy εF (or the chemical potential
µ) is determined by the doping.
(iv) We examine whether the output occupation num-

bers ⟨niσ⟩ coincide with the input ones, within a tol-
erance of 10−6. If the answer is positive, we end the
self-consistent loop. If not, we return to (ii). The com-
putation of the updated spin densities is then repeated
iteratively until all values of ⟨niσ⟩ are converged.
The self-consistent solution provides the spin polariza-

tion at the ith site,

pz,i =
⟨ni↑⟩ − ⟨ni↓⟩

2
. (11)
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The pz,i is translated in a local magnetization mz,i =
−gµBpz,i, where µB is the Bohr magneton and the elec-
tron g-factor is g = 2. Hence, the total magnetization
per moiré cell reads

MPUC =

N∑
i=1

mz,i. (12)

We study two cases: (i) Ne = 0, corresponding to
the CNP, and (ii) Ne = 3 corresponding to 3/4-filling of
the conduction miniband [24]. For the CNP case, a pre-
vious theoretical study working in reciprocal space has
predicted that low-angle TBG systems have an antiferro-
magnetic ground state [45]. In this case, we find compu-
tationally convenient to start the self-consistent loop with
the configuration: ⟨nA

i↑⟩ = 1/2+∆nA, ⟨nA
i↓⟩ = 1/2−∆nA,

⟨nB
i↑⟩ = 1/2+∆nB and ⟨nB

i↓⟩ = 1/2−∆nB , where ∆nB =

−∆nA. For the 3/4-filling case, we start with a random
set of ⟨niσ⟩ with the constraint

∑
iσ⟨niσ⟩ = N + Ne,

where Ne = 3.

III. RESULTS

We begin this section by presenting a study of the
single-particle LDOS of TBG systems with a focus on
the formation of low-energy minibands at small twist an-
gles θ. Next, we use the obtained LDOS to calculate the
magnetization of low-angle TBG systems using the self-
consistent procedure outlined in Sec. II C. We address
on two cases: (i) TBGs at the CNP and (ii) TBGs at
3/4-filling of the conduction band.

A. Non-interacting electronic densities

We compute the local electronic properties of TBGs
using the HHK recursion method [41–44]. Being a real
space approach, the HHK calculations take advantage of
the symmetry properties of the odd commensurate TBG
structures discussed above. We have numerically veri-
fied that the predicted equivalent sites indeed display the
same LDOS. This is used to reduce the numerical effort
by a factor of 6.

The regularization factor is set to be at most η ≈
25 meV, a value that can be attributed to a small disorder
concentration. We return to this point later on.

To highlight the sites with the most prominent en-
hancement of the LDOS in TBGs, we consider the moiré
region where the AA stacking is placed at the center
of the TBG primitive unit cell. Figure 2(a) shows the
LDOS for a moiré unit cell with (m,n) = (22, 23) cor-
responding to a twist angle θ ≈ 1.47◦ and containing
6076 carbon atoms. The AB- (or BA-) stacking region
is zoomed in the inset. Close to the CNP, well-localized
states are found in the AA-stacking region, leading to an
enhanced LDOS on atoms around the AA stacking, with

much smaller LDOS at AB- and BA-stacking regions, in
agreement with previous studies [6, 19].
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FIG. 2. Non-interacting electronic densities: (a) LDOS at the
CNP, νi(CNP) (in arbitrary units), for the (m,n) = (22, 23)
commensurate lattice, that corresponds to θ ≈ 1.47◦ and 6076
atoms within the moiré unit cell (black line). The areas of the
purple disks are proportional to νi(CNP). (b) LDOS at the
AA dimer sites, νAA, as a function of the energy (in electron
volts) for odd commensurate n − m = 1 TBG systems with
θ ≈ 1.61◦, 1.02◦ and 0.82◦. (c) νAA at the CNP as a function
of θ (in degrees) corresponding to odd commensurate moiré
structures with n−m = 1.

Figure 2(b) shows the LDOS at the AA dimer site as
a function of the energy ε around the CNP Fermi en-
ergy for θ ≈ 1.16◦, 1.02◦ and 0.82◦, that belong to the
family of odd commensurate lattices with n − m = 1.
The appearance of the central peak can be interpreted in
terms of the continuum model [21], which associates the
enhancement of the LDOS at the vicinity of the magic
angle to the formation of a flat band at the CNP. Figure
2(c) displays the evolution of the AA dimer site LDOS at
the CNP as a function of the small twist angles θ for the
n−m = 1 family of odd commensurate lattice structures.

Figures 2(b) and (c) show that when the twist angle
decreases, the LDOS of the AA-stacking region increases
significantly at the CNP. The maximum of the peak ap-
pears at the twist angle of θ ≈ 1.16◦ corresponding to
(m,n) = (28, 29) with 9748 carbon atoms within the
moiré cell. For the n−m = 1 structures considered here,
this twist angle is the closest to the magic angle θ ≈ 1.1◦

predicted by the continuum model [21, 23].
As the twist angle decreases (θ < 1.16◦), the height of

the central DOS peak becomes smaller, but the satellite
peaks around the main one, both in the valence and con-
duction bands, see Fig. 2(b), become increasingly intense,
and move closer to the CNP. Eventually, these peaks be-
gin to overlap, showing another peak maximum at the
twist angle close to 0.53◦, see Fig. 2(c), corresponding
to (m,n) = (62, 63) with 46876 carbon atoms within the
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moiré cell. This behavior is in good agreement with the-
oretical predictions based on the continuum model [21].

We note that in Fig. 2(c) we compute νi(ϵ) using η =
5 meV. This choice guarantees that η is smaller than
the flat-band broadening in a magic angle twisted bilayer
graphene (MATBG) that is about 10 meV [4, 21] and
helps to accurately determine the peak maxima at the
CNP as a function of the twist angle θ. In contrast, in
Figs. 2(a)-(b) we use η = 25 meV. For this parameter
choice, the flat-band broadening is greater than 10 meV,
but we stress that this does not change the possibility of
filling just the flat band with 4 electrons per primitive
unit cell [3–5, 7], since the satellite peaks are separated
from the central one by gaps of approximately 0.17 eV.
Considering that the physical origin of a finite η can be
attributed to disorder, the latter can be the reason for the
lack of experimental observations of magic angles θn =
1.1◦/n with n > 1.

Let us now depart from the CNP and discuss finite
doping. Figure 3(a) shows the DOS of the single-particle
miniband of a TBG with θ ≈ 1.47◦. Anticipating the
appearance of a gap at the CNP when the interaction is
switched on, we define a valence and a conduction mini-
band separated at the CNP. The red area represents the
half-band filling of a TBG system where the Fermi en-
ergy is at the CNP. This filling corresponds to 4 elec-
trons per moiré cell in the valence miniband. The green
area represents the electron doping at the 3/4 filling of
the conduction miniband. This doping corresponds to 3
electrons per moiré cell in excess of the CNP at a Fermi
energy εF = 872 meV.

0 . 7 5 0 . 8 0 0 . 8 5 0 . 9 0

DO
S [
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1 . 5
0 . 9
0 . 1

�  ≈ 1 . 4 7 °

× 1 0 - 3  [ a r b .  u n i t s ]

FIG. 3. Electron doping of the conduction miniband: (a)
DOS (in arbitrary units) of the flat miniband as a function of
the energy (in electron volts). The CNP corresponds to the
DOS peak. The green area represents 3/4-filling of the con-
duction miniband. (b) Carrier distribution within the moiré
cell (black line) in real space for θ ≈ 1.47◦. The areas of the
green disks are proportional to ∆ni, the occupation in excess
to the CNP filling.

Figure 3(b) shows the carrier distribution ∆ni in ex-
cess to the CNP distribution within the moiré unit cell
for θ ≈ 1.47◦. The areas of the green disks are propor-
tional to the carrier occupation number at the atomic site
i, ∆ni. Owing to the localized LDOS, see Fig. 2, the car-
rier distribution is also concentrated at the AA-stacking
region.

B. Magnetism at the CNP

Using the mean-field Hubbard Hamiltonian, we imple-
ment the self-consistent scheme described in Sec. II C to
study the emergence of antiferromagnetic states in low
twist angle TBGs at the CNP.
Figure 4(a) displays the local spin polarization, pz,i,

within the moiré unit cell for a (m,n) = (22, 23) lat-
tice corresponding to a rotation angle θ ≈ 1.47◦ with
U/V 0

ppπ = 1. The regions with the largest local mag-
netic moments correspond to those of enhanced LDOS,
see Fig. 2, strongly suggesting that the emergence of mag-
netism can be attributed to the Stoner mechanism [53].
In the AA stacking region, the imbalance between ⟨ni↑⟩
and ⟨ni↓⟩ leads to the emergence of an antiferromagnetic
ground state at the CNP, as can be seen in the zoom. We
note in passing that the converged solution is the same if
the we start the self-consistent loop with a distribution
of random or antiferromagnetic occupations ⟨niσ⟩.
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+ 0 . 4+ 0 . 2
− 0 . 2
− 0 . 4
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U / V  0p p �  =  1 . 5
U / V  0p p �  =  1 . 4
U / V  0p p �  =  1 . 2

+ -
× 1 0 - 4

FIG. 4. Antiferromagnetic phase at the CNP: (a) Local spin
polarization pz,i within the moiré cell (black line) for a TBG
with θ ≈ 1.47◦ and U/V 0

ppπ = 1. The disk areas are propor-
tional to |pz,i|, where the red and blue disks correspond to
positive and negative spin polarizations, respectively. (b) Lo-
cal spin polarization pz,i as a function of the radial distance
with respect to the AA dimer site (or AB non-dimer site) for
U/V 0

ppπ = 1.2, 1.4 and 1.5 with θ ≈ 1.47◦.

Figure 4(b) shows the local spin polarization for a TBG
system with θ ≈ 1.47◦ for different values of the on-site
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Coulomb interaction, U/V 0
ppπ = 1.2, 1.4 and 1.5, as a

function of the radial distance to the AA dimer site.
Here, the distance between the AA dimer site and the
AB nondimer one is D = 55.3 Å. In line with Fig. 4(a),
one observes that the spin polarization shows a maxi-
mum at the AA-stacking region, and gradually decreases
and eventually vanishes for the sites that are closer to
the AB stacking. The magnitude of local spin polariza-
tion becomes increasingly larger with increasing on-site
Coulomb interaction U , and the overall dependence with
the radial distance to the AA dimer site is similar for all
U values considered. Note that since the ground state is
antiferromagnetic, the total spin polarization per moiré
cell is zero for all values of U . Figure 4 shows excellent
agreement with the reciprocal space calculation reported
in Ref. [45].

Figure 5 displays the LDOS of the flat miniband cal-
culated for AA dimer site, namely, LDOS(AA, ϵ) =
νAA,↑(ϵ) + νAA,↓(ϵ) for a twist angle of θ ≈ 1.47◦ with
U/V 0

ppπ = 1. Due to the electron-electron interaction,
the LDOS of the flat miniband in the AA dimer site is
split into two peaks almost symmetric around the Fermi
energy, here set to ϵF = 0, and a small gap is opened.
The separation between the two LDOS peaks is approxi-
mately 0.031 eV. Note that since the charge density in not
homogeneous, one expects LDOS(AA, ϵ) to differ from
the DOS(ε). However, since the two low-energy LDOS
peaks are absent in the atomic sites at the AB-stacking
region, the LDOS(AA, ϵ) captures the main features of
DOS(ϵ) at low energies.

[a
rb

. 
u
n
it

s]

FIG. 5. LDOS at the AA dimer site, νAA,↑ + νAA,↓ (in
arbitrary units) as a function of energy ε (in eV) for θ ≈ 1.47◦

with U/V 0
ppπ = 1. For convenience, the Fermi energy at the

CNP is set to zero.

Figure 6(a) shows the maximum spin polarization that
corresponds to the AA dimer site, pz,AA, as a function of
the on-site Coulomb repulsion U/V 0

ppπ for different twist
angles θ ≈ 1.47◦, 1.30◦ and 1.08◦. We observe that the
local spin polarization at the AA dimer site increases
monotonically with increasing U . Furthermore, pz,AA

versus U/V 0
ppπ shows a similar (almost linear) slope for

θ ≈ 1.08◦ and θ ≈ 1.30◦, while for θ ≈ 1.47◦ both pz,AA

and its slope with respect to U/V 0
ppπ are much smaller.

This suggests that θ ≈ 1.47◦ is close to a critical angle
where the magnetic phase ceases to exist. A study of
the critical values of Uc/V

0
ppπ for the zero temperature

normal antiferromagnetic transition of TBG systems at
the CNP can be found in Ref. [45], which estimates the
critical values of Uc/V

0
ppπ.

1 . 0 1 . 2 1 . 4
0
1
2
3
4

1 . 1 1 . 2 1 . 3 1 . 4 1 . 5
0
1
2
3
4

p z,A
A [

×1
0-3 ]

U / V  0p p �

 �  ≈ 1 . 4 7 °
 �  ≈ 1 . 3 0 °
 �  ≈ 1 . 0 8 °

( a )

p z,A
A [

×1
0-3 ]

�  [ ° ]
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 U / V  0p p �  =  1 . 5

( b )

FIG. 6. (a) Local spin polarization at the AA dimer site
versus U/V 0

ppπ for θ ≈ 1.47◦, 1.30◦ and 1.08◦. (b) Local spin
polarization at the AA dimer site as a function of the twist
angle θ (in degrees) for U/V 0

ppπ = 1.0 and 1.5.

Figure 6(b) shows the maximum spin polarization,
pz,AA, as a function of the magic angle θ for U/V 0

ppπ = 1.0
and 1.5. We note that pz,AA shows a maximum close to
θ = 1.30◦ for different values of U/V 0

ppπ, consistent with
Fig. 6(a). This value of θ is slightly shifted with respect
to the magic angle, θMA ≈ 1.1◦, which can be attributed
to small differences in the corresponding single-particle
model Hamiltonian parameterizations.

C. Magnetism at 3/4-filling of the conduction
miniband

Let us now examine the ferromagnetic phase in a TBG
system with a twist angle θ ≈ 1.16◦ at 3/4-filling of the
conduction miniband whose origin has been the subject
of discussion in the literature.
We consider an odd commensurate lattice with

(m,n) = (28, 29) corresponding to 9748 carbon atoms.
Our results are obtained by following the self-consistent
procedure described in Sec. II C for a finite doping. Here,
we set U/V 0

ppπ = 1.
Figure 7(a) displays the local spin polarization, pz,i,

within a circular area with a radius of 21 Å centered at
the AA dimer site. These results show that the ground
state is ferromagnetic as characterized by the imbalance
between ⟨ni↑⟩ and ⟨ni↓⟩ in the AA stacking region. Since
the spin polarization is largest at the regions of enhanced
LDOS, we attribute the emergence of ferromagnetism to
the Stoner instability mechanism.
Figure 7(b) shows the local spin polarization, pz,i, as

a function of the distance D from the AA dimer site.
Similarly to the CNP case, the spin polarization is largest
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FIG. 7. Ferromagnetic phase at 3/4-filling of the conduction
miniband: (a) Local spin polarization of a TBG with θ ≈
1.16◦ and U/V 0

ppπ = 1 within the AA-stacking region. The
areas of the red disks are proportional to the spin polarization
pz,i. (b) Local spin polarization pz,i versus the distance D
from the ith site to the AA dimer site up to the AB nondimer
site.

at the AA dimer site and becomes smaller, as D increases
and eventually vanishes as the ith site approaches the AB
nondimer position. On the other hand, in distinction to
the previous case, since the ground state is ferromagnetic,
the total magnetization is not zero. We find that the total
spin polarization per moiré cell is ∼ 0.19 and MPUC =
−0.22 eV · T−1.

Figure 8(a) presents the LDOS calculated at the AA
dimer site, LDOS(AA, ϵ), within an energy window that
contains the flat minibands near the Fermi energy (set
to εF = 0 for clarity). Similar to the previous case, we
argue that the LDOS(AA,ε) reproduces the behavior of
DOS(ε) in the vicinity of εF . The separation of the two
LDOS peaks around the Fermi energy is approximately
0.029 eV. The existence of two LDOS peaks in the valence
miniband suggests the existence of two minibands that
overlap in the CNP, as indicated in Ref. [3].

Figure 8(b) depicts the spin up and spin down LDOS
at the AA dimer site, denoted as νAA,↑(ϵ) and νAA,↓(ϵ),
respectively. A clear spin-imbalance is evident between
the spin-up and spin-down occupation numbers in the
filled miniband (fmb). Quantitatively, the occupation
numbers are ⟨nfmb

AA,↑⟩ = 9.7 × 10−4 and ⟨nfmb
AA,↓⟩ = 6.1 ×

10−4. This imbalance translates to a spin polarization
pz,AA = 1.8× 10−4 at the AA dimer site, corresponding
to a local magnetic moment mz,AA = −0.21 meV · T−1.

IV. CONCLUSIONS

In this work, we investigate the emergence of mag-
netism in low-angle TBG systems using a numerical real-
space approach. We have considered a tight-binding
Hamiltonian with a mean-field Hubbard term and ob-
tained the ground state of TBG systems by a self-
consistent iteration procedure. Notably, owing to the
HHK recursive technique [41–44], our approach allows
calculations to be efficiently performed for very large
moiré cells.
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FIG. 8. (a) LDOS in the AA dimer site, νAA,↑ + νAA,↓ (in
arbitrary units) as a function of the energy (in eV). (b) LDOS
for spin up νAA,↓ (red line) and spin down νAA,↑ (blue line)
at the AA dimer site (in arbitrary units) as a function of the
energy (in eV). Both (a) and (b) correspond to θ ≈ 1.16◦ with
U/V 0

ppπ = 1. For convenience, the Fermi energy at 3/4-filling
of the conduction miniband is set to zero.

To validate our method, we compare our results for
low-angle TBGs at the CNP with those previously re-
ported in the literature [45]. Specifically, we have found
the emergence of an antiferromagnetic phase for low-
angle TBGs with a maximum local spin polarization pz,i
near the magic angle. For all computed twist angles θ,
the agreement of pz,i with Ref. [45] is excellent, demon-
strating the accuracy of our computational procedure.

The main finding of this study is the emergence of a
ferromagnetic phase in low-angle TBGs at 3/4-filling of
the conduction miniband. Motivated by recent experi-
ments [24, 60] we have investigated the DOS, the local
and total magnetization of TBGs with θ ≈ 1.16◦. Our
calculations for the case of 3/4-filling of the conduction
miniband (3 electrons in excess to the CNP per moiré
cell) show that the system ground state is a ferromag-
netic insulator with a gap of ∆ ≈ 0.029 eV, in agreement
with the experimental findings [24]. We attribute this be-
havior to the large LDOS at the AA-stacking region, as
predicted by the continuum model [21, 23], that causes a
strong enhancement of the electron-electron interaction,
a key element for the Stoner mechanism. Our results
provide an alternative scenario to the substrate-induced
gap proposed in Ref. [25].

We expect our methodology to be useful for the study
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of interaction effects of other moiré 2D systems with
large primitive unit cells. For instance, with modest
adaptations, our approach can be used in the analysis
of anisotropic ferromagnetism dominated by the orbital
magnetic moment in 3/4-filling at the conduction mini-
band of MATBG systems [60]. By combining our calcula-
tions with with a molecular dynamics procedure, we plan
to analyze lattice relaxation effects as a function of twist
angle. In addition, the presence of an external magnetic
field, that typically requires the use of large supercells in
standard approaches, in our method is trivial to account.
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