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The growth of simple operators is essential for the emergence of chaotic dynamics and quantum thermaliza-
tion. Recent studies have proposed different measures, including the out-of-time-order correlator and Krylov
complexity. It is established that the out-of-time-order correlator serves as the signature of quantum many-body
chaos, while the Krylov complexity provides its upper bound. However, there exist non-chaotic systems in
which Krylov complexity grows exponentially, indicating that the Krylov complexity itself is not a witness of
many-body chaos. In this letter, we introduce the missing ingredient, named as the Krylov metric Kmn, which
probes the size of the Krylov basis. We propose that the universal criteria for fast scramblers include (i) the
exponential growth of Krylov complexity, (ii) the diagonal elements Knn ∼ nh with h ∈ (0, 1], and (iii) the negli-
gibility of off-diagonal elements Kmn with m , n. We further show that h = κ/2α is a ratio between the quantum
Lyapunov exponent κ and the Krylov exponent α. This proposal is supported by both generic arguments and
explicit examples, including solvable SYK models, Luttinger Liquids, and many-body localized systems. Our
results provide a refined understanding of how chaotic dynamics emerge from the Krylov space perspective.

Introduction.– Understanding how chaotic dynamics
emerge and drive systems toward thermal equilibrium is of vi-
tal importance in the study of quantum dynamics. It requires
encoding all local initial conditions into the entire system af-
ter sufficiently long unitary evolutions, a phenomenon known
as information scrambling [1, 2]. Inspired by gravity calcula-
tions [3–6], the out-of-time-order correlator (OTOC) is intro-
duced as a quantitative measure of quantum many-body chaos
[7–11], which provides broad implications in condensed mat-
ter physics, quantum information, and high-energy physics.
It probes the average operator size, which is a measure of
operator complexity in the local basis [11–13]. Of particu-
lar interest are chaotic systems with large local Hilbert space
dimensions, wherein the OTOC exhibits exponential devia-
tion behavior characterized by quantum Lyapunov exponent κ
[8–11, 14]. Examples include the Sachdev-Ye-Kitaev (SYK)
model [15–19], Brownian circuits [20–22], and black holes
[8, 9, 11, 23], often referred to as fast scramblers [2].

In addition to the OTOC or operator size, various mea-
sures of operator complexity have been proposed by select-
ing different bases [24–32]. The Krylov basis stands out be-
cause it provides a convenient and intrinsically defined op-
erator basis generated by the Heisenberg evolution [33–58].
In this basis, the operator dynamics are mapped to the evo-
lution of a wavepacket on a half-infinite chain with nearest-
neighbor hopping determined by the Lanczos coefficients bn.
The Krylov complexity K(t) is then defined as the center-of-
mass position at time t. In Ref. [33], it is conjectured that
Lanczos coefficients approach a linear form bn = αn + γ at
large n for chaotic systems, which gives K(t) ∝ e2αt. Fur-
thermore, the Krylov exponent provide an upper bound to the
quantum Lyapunov exponent as κ ≤ 2α [33, 50], saturated in
the large-q SYK model. However, there are instances that ex-
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FIG. 1. (a). In the Krylov basis, the Heisenberg evolution is mapped
to a tight-binding model with nearest neighbor hopping. The Krylov
complexity measures the position of the wavepacket, while the equal-
time OTOC measures a non-local operator Kmn. Here, we assumed
the operator Ô is Hermitian. (b). We summarize the results from the
SYK models, Luttinger Liquids, and many-body localized systems,
which support our criteria.

hibit significant discrepancies between the Krylov complexity
and the actual chaotic/integrable nature of the system captured
by OTOCs. The extreme examples include the Krylov com-
plexity of local operators in a free 2D conformal field theory
(CFT) [49], which grows exponentially despite the system be-
ing non-interacting.

This naturally leads to the following question: What is
the criterion for diagnosing quantum many-body chaos in the
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Krylov space? In this letter, we attempt to elucidate this issue
by explicitly representing the OTOC as a non-local observable
in the Krylov basis, denoted as a Krylov metric Kmn, which
measures the size of Krylov basis. The difference between the
Krylov complexity and OTOC is then reflected in the distinc-
tion between the position operator nδmn and Kmn for large m
and n. We provide the hypothesis for fast scramblers: (i) the
Krylov complexity grows exponentially, (ii) the diagonal ele-
ments Knn show power-law increase nh = nκ/2α, and (iii) the
off-diagonal elements of Kmn are negligible. This proposal is
supported by examples including the SYK models [15–19],
Luttinger Liquids [59], and many-body localized (MBL) sys-
tems [60–66], as summarized in FIG. 1.

OTOC in Krylov Space.– The Krylov basis is defined with
respect to a simple operator Ô and Hamiltonian Ĥ. Utiliz-
ing the operator-state mapping, we express Ô as a state |O⟩
in the doubled Hilbert space. The Heisenberg equation takes
the form d|O⟩/dt = L |O⟩, where L := i[H, ·] denotes the Li-
ouvillian superoperator [67]. The time evolution couples |O⟩
to a set of operators {Ln |O⟩} with n ∈ {0, 1, 2, ...}. Applying
the Gram-Schmidt procedure with respect to the inner product
⟨O1|O2⟩ = ⟨O

†

1O2⟩ = tr[O†1O2]/tr[1], we obtain the recursive
construction for the orthonormal Krylov basis (n ≥ 2)

|An⟩ :=L|On−1⟩ + bn−1|On−2⟩,

|On⟩ :=b−1
n |An⟩, bn := ⟨An|An⟩

1/2.
(1)

Here, initial conditions are |O0⟩ = |O⟩ and |O1⟩ = b−1
1 L |O0⟩.

We have assumed that |O⟩ is normalized and b1 is the nor-
malization factor for |O1⟩. The set of positive numbers {bn}

are called the Lanczos coefficients [68], which only depends
on two-point functions G(t) = ⟨O|O(t)⟩. Eq. (1) indicates
that the Liouvillian superoperator is nearest-neighbour in the
Krylov basis. Introducing Ô(t) =

∑
n φn(t) Ôn, the evolution

of operator wavefunction φn(t) is mapped to a tight binding
model with dφn(t)/dt = bnφn−1(t) − bn+1φn+1(t). The Krylov
complexity is defined as the expectation of the position op-
erator K(t) :=

∑
n n |φn(t)|2, which measures how fast the

wavepacket spreads towards larger n. Ref. [33] proposed the
hypothesis that bn approaches a linear function bn = αn+ γ at
large n for chaotic systems in the thermodynamic limit, which
results in K(t) ∼ e2αt.

We are interested in the relation between Krylov complex-
ity and the OTOC. Our main focus is on its connected part:

F(t1, t2) = G(t12) ∓ ⟨Ô(t2)†Ô′(0)†Ô(t1)Ô′(0)⟩, (2)

where t12 = t1 − t2 and the positive sign is chosen when both
Ô and Ô′ are fermionic, and we assume the normalization
⟨Ô′2⟩ = 1. In chaotic systems with large local Hilbert space di-
mensions, the OTOC exhibits exponential deviation behavior
F(t1, t2) ∼ f (t12)eκT12 with T12 = (t1 + t2)/2 until the scram-
bling time. It is known that the quantum Lyapunov exponent κ
is bounded by the Krylov exponent as κ ≤ 2α. We rewrite the

OTOC by expressing O(ti) using the operator wavefunction:

F(t1, t2) =
∑
mn

Kmn φm(t1)φn(t2)∗,

Kmn = δmn ∓ ⟨Ô
†
nÔ
′(0)†ÔmÔ

′(0)⟩.
(3)

We refer to Kmn as the Krylov metric. Notice that although
we focused on the infinite temperature limit in previous dis-
cussions, the effects of finite temperature can be incorpo-
rated naturally by replacing Ô with ρ

1
4 Ôρ

1
4 [13]. Here,

ρ = e−βĤ/tr[e−βĤ] is the thermal density matrix. Under this
replacement, the two-point function matches the Wightman
Green’s function G(t) = ⟨ρ

1
2 Ô(t)ρ

1
2 Ô⟩, and the OTOC exhibits

equal imaginary-time separations.
Generic Analysis.– Eq. (3) reveals that the distinction be-

tween the OTOC and the Krylov complexity lies in how they
measure the Krylov space: The spread of the operator wave-
function depends solely on the Lanczos coefficients, which ex-
hibit an exponential behavior for bn ∼ αn. However, this be-
havior does not necessarily imply quantum many-body chaos
for a generic Kmn. The manifestation of many-body chaos
requires the ability of Kmn to measure the spreading in the
Krylov space, indicating Knn as an increasing function of n.
Physically, as the OTOC measures the growth of operator size
in time, the Krylov metric measures the size growth in the
Krylov index n. For illustration, let us consider systems that
consist of Majorana fermions χ̂ j with {χ̂ j, χ̂k} = 2δ jk. Choos-
ing Ô′ = χ̂ j, Eq. (3) becomes [12, 13]

Knn =
1

2N

∑
j

〈∣∣∣[Ôn, χ̂ j]
∣∣∣2〉 = 1

2N
Size[Ôn]. (4)

Here, we averaged Knn over different j, which is unnecessary
for SYK-like models with permutation symmetry between dif-
ferent Majorana modes. Similarly, off-diagonal components
Kmn measure the interference between Ôm and Ôn weighted
by the operator size. It is also straightforward to generalize
this relation to spin systems [69].

To further motivate the criteria for chaotic systems with ex-
ponentially growing OTOC, let’s employ a naive scaling argu-
ment. Firstly, since κ is bounded by α, a non-vanishing κ re-
quires exponential growth ofK(t). In this scenario, the Krylov
complexity suggests the identification n ∼ e2αt. Applying this
relation to the OTOC, we find F(t, t) ∼ eκt ∼ nh ∼ Knn. Addi-
tionally, the validity of this argument necessitates the Krylov
metric to be approximately diagonal, i.e., |Kmn| ≪ |Kmm| for
m ≫ n. Otherwise, the double summation in (3) leads to addi-
tional enhancement due to off-diagonal coherence. Physically,
this occurs because operators with different Krylov indices
have different typical sizes, thus their overlap is significantly
smaller than diagonal elements. This leads to our universal
fast scrambler hypothesis

1. The Lanczos coefficients approach a linear function
bn = αn, allowing the Krylov complexity to grow ex-
ponentially.
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2. The diagonal elements Knn are proportional to nh, al-
lowing it to measure the spreading in the Krylov space.

3. The off-diagonal elements Kmn (m , n) are negligible,
allowing the scaling argument to hold.

Example 1: The SYK Model.– To support our proposal, we
first study the Krylov metric in the SYK model [15–19]. In
order to achieve a tunable quantum Lyapunov exponent, we
couple system fermions, denoted as χ̂ j ( j = 1, 2, ...,N), to a
series of bath fermions, denoted as ψ̂a (a = 1, 2, ...,M) with
M ≫ N [70, 71]. The Hamiltonian reads

H =
∑

i< j<k<l

Ji jklχ̂iχ̂ jχ̂kχ̂l +
∑

a<b<c<d

J′abcdψ̂aψ̂bψ̂cψ̂d

+
∑
i< j

∑
a<b

ui jabχ̂iχ̂ jψ̂aψ̂b.
(5)

Here, the coupling strengths Ji jkl, J′abcd, and ui jab are indepen-
dent Gaussian varibles with zero means and

J2
i jkl =

6J2

N3 , J′2abcd =
6J2

M3 u2
i jab =

2u2

NM2 . (6)

The model has been analyzed using the large-N expan-
sion in the low-energy limit with βJ ≫ 1 [70]. The (nor-
malized) two-point function for Ô ∼ χ̂1 is given by G(t) =
(cosh(αt))−2∆, with α = π/β and ∆ = 1/4. Models with
a generic ∆ can be constructed following a similar strategy.
Importantly, the two-point function remains independent of
the dimensionless system-bath coupling u/J. Therefore, the
Lanczos coefficients and the operator wavefunction match
those of the traditional SYK model, which read [33, 48]

bn = α
√

n(n + 2∆ − 1), φn(t) = Dn
tanh (αt)n

cosh (αt)2∆ , (7)

where Dn =

√
Γ(2∆+n)
Γ(n+1)Γ(2∆) . This identifies α as the Krylov ex-

ponent. The OTOC with Ô′ ∼ χ̂2 can be computed by sum-
ming up ladder diagrams [17]. The result reads

F(t1, t2) = f (t12)eκT12 = C0
e2αhT12

cosh(αt12)2∆+h , (8)

where the Lyapunov exponent κ = 2hα exhibits explicit u/J

dependence through h =
(
1 −

√
k4+4k2−k2

2

)
with k = u2/J2 [70].

Particularly, in the limit as k → ∞, the Lyapunov exponent
κ → 0, indicating the system transitions into a non-chaotic
dissipative phase [71].

We explore the origin of the discrepancy between κ and 2α
by computing the Krylov metric Kmn. Utilizing the analytical
knowledge of both the OTOC and the operator wavefunction,
we introduce the auxiliary variable yi = tanh(αti):∏

i

cosh (αti)2∆

 F(t1, t2) = C0
(1 + y1)h(1 + y2)h

(1 − y1y2)2∆+h . (9)

FIG. 2. We present the plot of the Krylov metric for (a) the SYK
model with h = 3/4, (b) the SYK model with h = 0, (c) the Luttinger
liquids with ∆ = 1, and (d) MBL systems with ξ = 1. In each
sub-figure, we also show a matrix plot of Kmn as an inset, where
yellow, red and green represent zero, negative and positive numbers,
respectively. For Luttinger liquids, the matrix plot only contains Kmn

with even indices so that they are real.

Accorcding to (3), its Taylor expansion in y1 and y2 should
be matched with

∑
mn DmDnKmnym

1 yn
2. The result can be com-

puted in closed-form. We leave the complete expression in the
supplementary material [72], where we confirmed that Kmn is
dominated by the diagonal element

Knn ∝
Γ(h + n + 2∆) 3F2(−h,−h,−n; 1,−h − n − 2∆ + 1; 1)

Γ(h + 2∆)Γ(n + 2∆)
.

(10)
Here, 3F2 represents the generalized hypergeometric func-
tion. When we expand the result in the limit of n → ∞, we
derive the following asymptotic behaviors (also see FIG. 2 (a-
b)): (i) the diagonal elements satisfy: Knn ∝ nh = nκ/(2α), no-
tice this produces a constant Knn in the dissipative limit u/J →
0, where the quantum Lyapunov exponent vanishes, while the
Krylov exponent is α = 2π/β; (ii) for generic 0 < h < 1,
the off-diagonal elements scale as: Kn+m,n−m ∝ Knnm−2h−1 for
n ≫ m ≫ 1, i.e. they exhibit power-law decay along the or-
thogonal off-diagonal direction; (iii) in the limit of either the
dissipative or maximally chaotic phase h→ {0, 1}, the Krylov
metric Kmn approaches being exactly diagonal. These behav-
iors can also be explicitly derived through a saddle-point anal-
ysis [72].

Example 2: Luttinger Liquids.– We now turn to the inves-
tigation of free CFTs, as an extreme example of non-chaotic
systems. We consider Luttinger liquids, which describes a
large class of gapless quantum matters in 1+1D [59]. The
Hamiltonian reads

H =
u

2π

∫
dx

[
1
K

(∇ϕ̂(x))2 + K(πΠ̂(x))2
]
. (11)

where K is the Luttinger parameter and u is the sound velocity.
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ϕ̂(x) is a scalar field with conjugate momentum Π̂(y), which
satisfies the canonical commutation relation [ϕ̂(x), Π̂(y)] =
iδ(x − y). We focus on the vertex operator Ô ∼: e−in0ϕ̂(x) :,
where : : denotes normal ordering. The two-point function is
determined by the conformal symmetry G(t) = (cosh(αt))−2∆

with scaling dimension ∆ = Kn2
0/4. Since this two-point

function takes the same form as in the SYK model, the Lanc-
zos coefficients and the operator wavefunction are still given
by (7). We then proceed to compute the OTOC. Taking
Ô′ ∼: ein0ϕ̂(x) :, the result of OTOC reads:

F(t1, t2) = G(t12)

1 − [
cosh (αt12) − i sinh (2αT12)
cosh (αt12) + i sinh (2αT12)

]2∆ .
(12)

The Krylov metric Kmn is computed using a strategy simi-
lar to that of Eq. (27). Since the conotribution from the first
term in (12) is δmn, we only focus on the second term. Un-
fortunately, we are unable to compute its expansion in closed
form. Instead, we represent it as a contour integral:

Kmn =
D−1

m D−1
n

(2πi)2

∮
C

dy1

ym+1
1

∮
C

dy2

yn+1
2

[∏
i

cosh (αti)2∆
]
F(t1, t2),

(13)
where the integrand should be viewed as functions of y1,2. The
integral contour C is along the unit circle, which encloses the
origin counterclockwise. We can extract the asymptotic form
of Kmn for n,m ≫ 1 by evaluate the contour integral (13) using
the saddle-point approximation. We find that:

Kmn ∼ (−1)
m+n

2 (mn)∆−1/2 (14)

This result reveals two important observations: (i) The di-
agonal components Knn exhibit alternating signs when n is
changed, leading to a cancellation effect among different n
values. (ii) The off-diagonal components Kmn are comparable
to the diagonal components, see FIG. 2 (c). As a result, the
summation in (3) experiences significant cancellation, distin-
guishing Luttinger liquids from the SYK model.

Example 3: MBL systems.– Finally, we consider cases that
lie in between chaotic systems and non-interacting systems. A
celebrated example is systems exhibiting many-body localiza-
tion [60–66]. We examine the effective Hamiltonian [64–66]

H =
1
2

∑
i, j

Ji jσ̂
i
zσ̂

j
z +

∑
i

hiσ̂
i
z + ... (15)

This model is believed to capture the essential features of
MBL systems. In particular, it commutes with an extensive
number of mutually commuting operators σi

z, known as local
integrals of motion (LIOM). ... denotes possible higher-order
terms, which describes multi-body interactions between LI-
OMs. For simplicity, we neglect their contributions to correla-
tion functions. We model random couplings Ji j and magnetic
field hi as independent Gaussian varibles with zero means and

J2
i j = J2e−

|i− j|
ξ , h2

i = h2. (16)

Here, ξ is known as the localization length, which characterize
the interaction range between LIOMs. We expect the physical
results do not reply on details of the distribution function.

We choose Ô = σ̂0
x that flips LIOMs. In localized systems,

the violation of thermalization renders finite temperature en-
sembles meaningless. Therefore, all calculations are per-
formed at infinite temperature. The Lanzcos coeffcients are
then fixed by the auto-correlation function, which reads G(t) =∏

j,0 cos (2J0 jt) cos (2h0t) = e−
γ2 t2

2 . Here, we averaged over
the random couplings and introduced γ2 = 4(J2 ∑

j,0 e−| j|/ξ +
h2). The result shows that the auto-correlation function de-
cays as a Gaussian function, of which the Krylov basis wave-
function and the Lanzcos coefficients are known as [48]

bn = γ
√

n φn(t) =
γntn

√
n!

e−
γ2 t2

2 , (17)

and the Krlov complexity grows quadratically K(t) = γ2t2.
We proceed to investigate the behavior of Krylov metric.
Choosing Ô = σ̂m

x and performing an average over site m,
we find

F(t1, t2) =e−
γ2 t212

2 − N−1e−2γ2T 2
12 −

∑
m,0

N−1e−8J2e
−
|m|
ξ t1t2−

γ2 t212
2 .

(18)
Here, N denotes total number of sites. Using (3), we find the
Krylov metric takes a purely diagonal form, see Figure (2):

Kmn = Knnδmn, Knn ≈
2ξ
N

ln
(

8J2n
γ2

)
. (19)

This ln n behavior is a signature of logarithmic lightcones in
the MBL system [73–78]. Although the Krylov complexity
grows quadratically, the operator size in MBL systems only
increases as ln t. The scaling analysis then suggests Knn ∼

log n, supported in FIG. 2 (d). This example demonstrates
the usefulness of the Krylov metric beyond identifying fast
scramblers, indicating its broad application in characterizing
quantum dynamics.

Size-resolved Metric– Given the general interpretation of
the OTOC in terms of the operator size growth, more refined
information of the Krylov metric can be revealed by resolving
it using the operator size distribution. In lattice models where
operator sizes can be explicitly defined, we can perform the
following decomposition:

Kmn =
∑
ℓ

Kmn(ℓ), Kmn(ℓ) = ℓ⟨Om|P̂(ℓ)|On⟩ (20)

where P̂(ℓ) is the projector into the operator Hilbert space
sector of fixed size ℓ. The decomposition Kmn(ℓ) can be re-
trieved by first computing and then expanding the operator-
size generating functions. The details of these computations
can be found in the supplementary material [72]. For the SYK
models, the scramblon calculations [79, 80] predict that the
resolved metric Kmn(ℓ) takes the factorized form Kmn(ℓ) =
ℓJm(ℓ)Jn(ℓ). The factorization indicates the following struc-
ture of the operator wave-function|On⟩ =

∑
ℓ Jn(ℓ) |χℓ⟩. i.e.
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the projection onto operator size ℓ is identical for all On. We
expect this as a result of the permutation symmetric Hamilto-
nians. Upon scaling the operator size as: ℓ1/κ ∝ λn, we obtain
the asymptotic behavior

Jn(ℓ) ∼ n−κ/2
[
e
√
λ(λ−4)

(
λ − 2 −

√
λ(λ − 4)

)]−n
(21)

This implies that On has typical operator size ℓ ∼ nκ. The
operator weight shows a phase transition between oscillatory
behavior for λ < 4 to exponential decay for λ > 4. For the
MBL systems, the resolved Krylov metric Kmn(ℓ) = Knn(ℓ)δmn

remains exactly diagonal. This indicates that the projections
from distinctOm,n onto any fixed operator length ℓ are orthog-
onal. Upon scaling the operator size as: ℓ ∝ λ ln n, we obtain
the asymptotic behavior

Knn(ℓ) ∼ λ e−
(λ−ξ)2

ξ ln n (22)

This implies a Gaussian distribution in the operator size ℓ with
comparable mean and variance: ⟨ℓ⟩ ∼ δ2 ∼ ξ ln n.

Discussions.– In this work, we introduced the Krylov
metric Kmn to bridge the gap between the growth of Krylov
complexity and quantum many-body chaos. Physically, the
Krylov metric measures the size growth in the Krylov space,
which captures intrinsic properties of the Krylov basis. With
a combination of the Krylov metric and Lanczos coefficients,
we are able to provide criterion for fast scramblers, which re-
quire power-law growing diagonal components with negligi-
ble off-diagonal components for Kmn, in addition to exponen-
tial growing Krylov complexity. These criteria are supported
by analytical studies in the SYK model, Luttinger liquids, and
MBL systems.

We conclude with some proposals for future investigations.
Firstly, while our criterion in terms of the Krylov metric pro-
vide sufficient conditions for fast scramblers, it is important to
understand to what extent are they also necessary. Secondly,
having decomposed the lyapunov exponent κ = 2αh into fac-
tors from the Krylov complexity α and the Krylov metric h,
we need to understand the physical roles each factor plays.
For example, how do they reflect different aspects of the un-
derlying mechanism for quantum many-body chaos? Lastly,
equipped with the perspective of the Krylov metric, we can
explore systems exhibiting novel behaviors beyond the ones
identified in this work. This will possibly shed lights on new
aspects of quantum chaos.
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Supplemental Material: Dissecting Quantum Many-body Chaos in the Krylov Space

In this suppelmentary material, we provide additional details for the calculations done in the main text.

ASYMPTOTIC BEHAVIORS OF Kmn

The connected part of the OTOCs F(t1, t2) at late times are controlled by the asymptotic behaviors of the corresponding Krylov
metric Kmn, which are related by:

F(t1, t2) =
∑
m,n

Kmn φm(t1)φn(t2)∗ (23)

The operator wave-functions φn(t) depend on the auto-correlation function. In cases where they admit simple n-dependences, it
is possible to perform the conversion explicitly. More explicitly, for φn(t) of the general form:

φn(t) = D(n)h(t)y(t)n (24)

We can extract the Krylov by expanding F(t1, t2) in powers of y(t1) and y(t2), which in turn can be written as double contour
integrals:

Kmn = D(n)−1D(m)−1
∮

dy1

yn+1
1

∮
dy2

ym+1
2

h(t1)−1h(t2)−1F(t1, t2) (25)

where the integrand can be viewed implicitly as functions of the y1,2 = y(t1,2). For the interest of large order asymptotics
m, n ≫ 1, we can use m, n as large parameters to perform saddle-point approximations for evaluating these contour integrals. In
this section, we derive the asymptotic behaviors of Kmn for the three classes of models considered in the main text.

Example 1: the SYK models

We begin with the example of the SYK models. Quoting the expressions for F(t1, t2) and φn(t) in the main text gives:

F(t1, t2) = G (t1 + t2) H (t1 − t2) , G(t) = ehαt, H(t) = cosh (αt)−2∆−h

φ(t) =
tanh (αt)n

cosh (αt)2∆D(n), D(n) =

√
Γ(2∆ + n)
Γ(n + 1)Γ(2∆)

(26)

In this case, we can obtain an exact analytic expression for Kmn by identifying y1,2 = tanh (αt1,2) and writing:

cosh (αt1)2∆ cosh (αt2)2∆F(t1, t2) ∝
(1 + y1)h(1 + y2)h

(1 − y1y2)h+2∆ =
∑
mn

DmDnKmnym
1 yn

2 (27)

Here we fixed the normalization condition K00 = 1. The Krylove metric Kmn can be obtained by expanding each factor in the
RHS of (27) in terms of y1,2:

(1 + y)h =

∞∑
n=0

Γ(h + 1)
Γ(n + 1)Γ(h + 1 − n)

yn,
1

(1 − y1y2)D =

∞∑
n=0

Γ(n + D)
Γ(n + 1)Γ(D)

yn
1yn

2. (28)

Since Kmn is symmetric in m and n, we assume m ≥ n. This gives:

Kmn =

√
Γ(n + 1)Γ(2∆)
Γ(2∆ + n)

√
Γ(m + 1)Γ(2∆)
Γ(2∆ + m)

n∑
k=0

Γ(h + 1)
Γ(n − k + 1)Γ(h + 1 − n + k)

×
Γ(h + 1)

Γ(m − k + 1)Γ(h + 1 − m + k)
Γ(h + k + 2∆)
Γ(k + 1)Γ(h + 2∆)

=

√
Γ(2∆)

Γ(n + 1)Γ(2∆ + n)

√
Γ(2∆)

Γ(m + 1)Γ(2∆ + m)
Γ(h + 1)2

×
3F2(−m,−n, h + 2∆; h − m + 1, h − n + 1; 1)

Γ(h − m + 1)Γ(h − n + 1)

(29)
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Here 3F2 is the generalized hypergeometric function. In particular, for m = n, the result reduces to

Knn =
Γ(2∆)Γ(h + n + 2∆) 3F2(−h,−h,−n; 1,−h − n − 2∆ + 1; 1)

Γ(h + 2∆)Γ(n + 2∆)
. (30)

Given the exact result (30) for Kmn, we are more interested in its asymptotic behaviors. This can be more readily obtained via
the contour integrals representation of Kmn about y1 = y2 = 0 and performing the suggested saddle-point analysis. We proceed
by parameterizing both by their the phase variables y1,2 = eθ1,2 . The contour integral can thus be written as:

Kmn = D(m)−1D(n)−1
∫

dθ1dθ2 e−S (θ1,θ2) (31)

where the effective action S is given by:

S (θ1, θ2) = mθ1 + nθ2 + (2∆ + h) ln
(
1 − eθ1+θ2

)
− h ln

(
1 + eθ1

)
− h ln (1 + eθ2 ) (32)

Treating m, n ≫ 1 as the large parameters, the saddle-point equations becomes:

m =
heθ1

1 + eθ1
+

(2∆ + h)eθ1+θ2

1 − eθ1+θ2
, n =

heθ1

1 + eθ2
+

(2∆ + h)eθ1+θ2

1 − eθ1+θ2
(33)

The solution takes the form:

eθ
∗
1 = −

h2 + 2(n − m)(m + ∆) ±
√

h4 + 4(n − m)2∆2 + 4h2 (mn + (m + n)∆)
2(h + n − m)(m + 2∆)

eθ
∗
2 = −

h2 + 2(m − n)(n + ∆) ±
√

h4 + 4(n − m)2∆2 + 4h2 (mn + (m + n)∆)
2(h + m − n)(n + 2∆)

We analyze the properties of the saddle in different limits of M,N ≫ 1.

• n = L(1 + λ), m = L(1− λ), 0 < λ < 1:
In this limit, the entry is away from the diagonal by the same order as m, n, and the parameter λ denotes the orthogonal
distance to the diagonal. The dominant saddle point admits an expansion in large L:

θ∗1 = iπ −
2∆λ + h(1 − λ) −

√
h2(1 − λ2) + 4∆λ2

2Lλ(1 − λ)
+ ...

θ∗2 = iπ −
2∆λ − h(1 + λ) +

√
h2(1 − λ2) + 4∆λ2

2Lλ(1 + λ)
+ ... (34)

Plugging this back to the effective action gives, we can estimate the large order behavior of the Krylov kernel:

Kmn ∼ L−h+1λ−2h × (fluctuation) (35)

where we have kept only the leading order dependence on finite but small λ, The fluctuation part comes from the integral
about the saddle point. Expanding near the (θ∗1, θ

∗
2), it can be checked that the effective action takes the form:

S (θ1, θ2) = S ∗ + A+L2δθ2
+ + A−L2λ2δθ2

− +
∑

p+q≥3

S pq δθ
p
+ δθ

q
−, S pq ∼ Lp+qλq

where A± are O(1) constants and δθ± are eigen-modes of the Hessian matrix. At the leading order in L ≫ 1 they simply
correspond to:

δθ+ = δθ1 + δθ2, δθ+ = δθ1 − δθ2, δθ1,2 = θ1,2 − θ
∗
1,2 (36)

We can therefore extract an additional factor of L−2λ−1 from the fluctuation by rescaling the integration variables δθ+ =
δθ̃+/L, δθ− = δθ̃−/(Lλ), and leaving the remaining integral as an order 1 factor:∫ π

−π

dδθ+

∫ π

−π

dδθ− e−
∑

p,q S pq δθ
p
+δθ

q
− =

1
L2λ

(∫ ∞

−∞

dδθ̃+

∫ ∞

−∞

dδθ̃− e−
∑

p,q S̃ pq δθ̃
p
+δθ̃

q
−

)
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FIG. 3. We present the asymptotic behaviors of the orthogonal off-diagonal Krylov metric Kmn with m = L(1 − λ), n = L(1 + λ) for: (a) the
SYK model with h = 3/4, (b) the Luttinger liquids with ∆ = 1. In both cases, we have chosen L = 300.

where we now have S̃ pq ∼ O(1) and the integration range of δθ̃± has been set to ±∞ after the rescaling. We remark that this
is slightly different from the usual scenario in performing the saddle-point analysis, in the sense that the fluctuations are
not weakly coupled as Gaussians, yet whose contribution one can extract as a scaling factor comparable to S ∗. Combining
these we arrive at the estimates:

Kmn ∼ L−h−1λ−2h−1 (37)

• n = m = L:
They correspond to matrix elements are lie exactly along the diagonal. The dominant saddle point now admits the expan-
sion in large L:

θ∗1 = θ
∗
2 = −

h + 2∆
2L

+ ... (38)

Similar to before, this saddle-point evaluates to the following estimate:

Knn ∼ nh+1 × (fluctuation) (39)

In this case, the fluctation analysis proceeds slightly differently. The expansion of the effective action now takes the form:

S (y1, y2) = S ∗ +
∑
p,q

S pqδθ
p
+δθ

q
−, S pq ∼ Lp (40)

We see that in contrary to the previous case, the expansion coefficients scale with only one of the modes, i.e. δθ+. By the
same logic as before, we can rescale dθ+ = dθ̃+/L, and after doing this we should extract an additional factor of L−1 from
the fluctuation factor. As a result the diagonal Krylov kernel now exhibits the expected scaling behavior:

Knn ∼ nh (41)

Combining both limits, we summarize the asymptotic behaviors of Kmn as follows. The diagonal elements are given by:

Knn ∼ nh (42)

while the off-diagonal elements satisfy:

Kmn ∼ KLL|m − n|−2h−1, L =
m + n

2
(43)

We also verify this off-diagonal result by doing numerical calculation directly, see FIG. 3 (a). In other words, the off-diagonal
elements decay along the orthogonal off-diagonal direction as a power law with power (−2h − 1). This is sufficient for the
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dominance of the diagonal contribution for general h. In addition, it is also observed that the relative decay becomes singular for
the immediate off-diagonal matrix elements as h→ {0, 1}:

Kn,n+1

Knn
∼ h(1 − h),

Kn,m

Kn,m−1
∼ O(1), for (m − n) ≥ 2 (44)

Therefore, in the either the dissipative limit h → 0 or the maximally chaotic limit h → 1, the Krylov metric approaches being
exactly diagonal. Capturing such phenomena however is beyond the scope of saddle-point approximations.

Example 2: Luttinger liquids

We begin the example of luttinger liquids by writing down the Hamiltonian as:

H =
u

2π

∫
dx

[
1
K

(∇ϕ(x))2 + K (πΠ(x))2
]

=
u

2π

∫
dx

[
1
K

(∇ϕ(x))2 + K (∇θ(x))2
] (45)

where ∇θ(x)/π = Π(x) is the canonically conjugate momentum of ϕ(x), and the commutation relation can be written as:[
ϕ (x) ,

1
π
∇θ(x′)

]
= iδ

(
x − x′

)
(46)

One can then derive the following finite temperature correlation functions between general vertex operators [59]

I =
〈∏

j

eiA jϕ(r j)
〉
β

= e
1
2
∑

i< j[(AiA jK)F(ri−r j)]

F(r) =
1
2

log
[
sinh2

(
πx
βu

)
+ sin2

(
πτ

β

)]
(47)

Consider the vertex operator of scaling dimension ∆ = Kn2/4:

Vn(x, t) =: exp(inϕ(x, t)) : (48)

Let us compute the thermally regulated OTOC of this operator:

C(t1, t2) = ⟨V−n(t1 − i3β/4)Vn(−iβ/2)Vn(t2 − iβ/4)V−n(0)⟩β (49)

Applying the general formula (47) to this computation then corresponds to setting the following non-zero parameters:

A1 = −n, A2 = n, A3 = n, A4 = −n (50)

and the corresponding coordinates are only separated in the time direction:

r1 = (0,−iu(t1 − i3β/4)) , r2 = (0,−iu(−iβ/2)) , r3 = (0,−iu(t2 − iβ/4)) , r4 = (0, 0) (51)

The normalized OTOC is then given by:

C(t1, t2) = e
K
2

∑
i< j(AiA jF1(ri−r j)) = exp

(
Kn2

2
W(t1, t2)

)
,

W(t1, t2) = −F(r1 − r2) − F(r1 − r3) + F(r1 − r4) + F(r2 − r3) − F(r2 − r4) − F(r3 − r4)

=
1
2

log

 sinh2
(
π
β
(t1 − i3β/4)

)
sinh2

(
π
β
(t2 + iβ/4)

)
sinh2

(
π
β
(t1 − iβ/4)

)
sinh2

(
π
β
(t1 − t2 − iβ/2)

)
(−i)2 sinh2

(
π
β
(t2 − iβ/4)

) 
In the end, we obtain the following explicit form:

C(t1, t2) =

 cosh
(
π
β
(t1 − t2)

)
− i sinh

(
π
β
(t1 + t2)

)
(
cosh

(
π
β
(t1 − t2)

)
+ i sinh

(
π
β
(t1 + t2)

))
cosh

(
π
β
(t1 − t2)

) 
2∆
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Based on these, we can now work out the corresponding Krylov metric. Being a CFT, the finite temperature auto-correlation
function of the Luttinger liquids takes the same form as that of the SYK models. As a result, the operator wavefunction in the
Krylov basis is identical to (23), and we have that:∑

m,n

φm(t1)φn(t2)Kmn = F(t1, t2) = cosh (αt12)−2∆

1 − [
cosh (αt12) − i sinh (2αT12)
cosh (αt12) + i sinh (2αT12)

]2∆ . (52)

where we have defined α = π/β, t12 = t1− t2,T12 = t1+ t2. The Krylov metric can therefore be computed by performing a similar
double contour integral:

Kmn = δmn − D(m)−1D(n)−1
∮

dy1

ym+1
1

∮
dy2

yn+1
2

[
(1 − iy1)(1 − iy2)

(1 + iy1)(1 + iy2)(1 − y1y2)

]2∆

= δmn − D(m)−1D(n)−1
∫

dθ1dθ2 e−S (θ1,θ2)

The effective action and saddle-point equation is given by:

S (θ1, θ2) = mθ1 + nθ2 − 2∆ log


(
1 − ieθ1

) (
1 − ieθ2

)(
1 + ieθ1

) (
1 + ieθ2

) (
1 − eθ1+θ2

) 
m +

2i∆
cosh θ1

+
2∆

1 − e−(θ1+θ2) = 0, n +
2i∆

cosh θ2
+

2∆
1 − e−(θ1+θ2) = 0 (53)

These are high degree polynomial equations of y1,2 = eθ1,2 . In the limit of:

m = L(1 − λ), n = L(1 + λ), L ≫ 1 (54)

The dominant saddle-point can be obtained in series expansion of L−1:

θ∗1 = −
πi
2
+

2i∆
1 − λ

L−1 + O(L−2)

θ∗2 = −
πi
2
+

2i∆
1 + λ

L−1 + O(L−2) (55)

Plugging this into the effective action, and neglecting the subdominant δmn term in Kmn then gives:

Kmn ∼ (−1)LL2∆+1(1 − λ2)∆+1/2 × (fluctuation) (56)

Again, this result is matched well with the numerical result, for the diagonal part one can see the figures in maintext, for the off-
diagonal, see FIG 3 (b). The alternating sign factor (−1)L comes from the imaginary leading order terms of θ∗1,2. The fluctuation
part of the integral produces an additional factor L−2(1 − λ2)−1, which can be revealed by a similar analysis as before. We omit
the details. Combining these factors we obtain that:

Kmn ∼ (−1)LL2∆−1(1 − λ2)∆−1/2 = (−1)
m+n

2 (mn)∆−1/2 (57)

Example 3: MBL systems

The effective Hamiltonian for MBL systems takes the form:

H =
1
2

∑
i, j

Ji jσ
i
zσ

j
z +

∑
i

hiσ
i
z, i, j ∈ [−N/2 + 1,N/2], with N → ∞ (58)

where the coefficients {Ji j, hi} are independent Gaussian random variables with:

⟨Ji j⟩ = 0, ⟨J2
i j⟩ = J2 exp

(
|i − j|
ξ

)
, ⟨hi⟩ = 0, ⟨h2

i ⟩ = h2 (59)

We study the time evolution of the following operator localized at site i = 0:

σ0
x(t) = eiHt σ0

x e−iHt (60)
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and construct the Krylov basis using the infinite temperature operator norm:

⟨A, B⟩ = Tr
(
A†B

)
(61)

The lanzcos coeffcients are then fixed by the infintie temperature auto-correlation function, which we now compute.

C(t) = ⟨σ0
x(t), σ0

x(0)⟩ = Tr
(
eiHtσ0

xe−iHtσ0
x

)
= Tr

exp

2it
∑
j,0

J0 jσ
0
zσ

j
z + 2ith0σ

0
z




where we have used that:

σ0
xσ

j
zσ

0
x = −δ j0 σ

j
z → σ0

x e−iHt σ0
x = e−iHt × exp

2it
∑
j,0

J0 jσ
0
zσ

j
z + 2ith0σ

0
z

 (62)

Applying the identity eiJσz = cos (J) + i sin (J)σz, the trace can be easily evaluated:

C(t) = Tr
∏
j,0

(
cos (2J0 jt) + i sin (2J0 jt)σ0

zσ
j
z

) (
cos (2h0t) + i sin (2h0t)σ0

z

)
=

∏
j,0

cos (2J0 jt) cos (2h0t) (63)

A more explicitly expression can be obtained by taking the statistical average:

C(t) =
∏
j,0

cos (2J0 jt) cos (2h0t) = e−
γ2

2 t2
, γ2 = 4J2

∑
j,0

e−| j|/ξ + 4h2 (64)

We see that the auto-correlation function decays like a Gaussian, which happens to also be the case where the krylov basis
wave-function and the Lanzcos coefficients are known explicitly: [48]:

C(t) = e−
γ2 t2

2 → φn(t) = e−
γ2 t2

2
γntn

√
n!
, bn = γ

√
n (65)

In particular, for MBL systems the Lanzcos coefficients grow sub-linearly as
√

n. Notice that φn(t) is also of the form that allows
extracting the Krylov metric from the OTOC via explicit contour integrals. We start by considering:

F(t1, t2) = −
1
N

∑
m

Tr
[
σ0

x(t1), σm
x

] [
σ0

x(t2), σm
x

]
= 2C(t12) −

2
N

∑
m

Tr
[
σ0

x(t1) σm
x σ

0
x(t2) σm

x

]
(66)

where N is total number of sites in the Hamiltonian. The OTOC term can be evaluated via similar tricks:

OTOC =
∑

m

Tr
[
eiHt1σ0

xe−iHt1 σm
x eiHt2σ0

xe−iHt2 σm
x

]
=

∑
m

Tr
[
e2it1

∑
j,0 J0 jσ

0
zσ

j
z+2it1h0σ

0
z σ0

xσ
m
x e2it2

∑
j,0 J0 jσ

0
zσ

j
z+2it2h0σ

0
z σ0

xσ
m
x

]
= C(t1 + t2) +

∑
m,0

Tr
[
e2it1

∑
j,0 J0 jσ

0
zσ

j
z+2it1h0σ

0
zσm

x e−2it2
∑

j,0 J0 jσ
0
zσ

j
z−2it2h0σ

0
z σm

x

]
= C(t1 + t2) +

∑
m,0

cos (2J0m(t1 + t2))
∏
j,0,m

cos
(
2J0 jt12

)
cos (2h0(t12)) (67)

Taking the statistical average then gives:

F(t1, t2) = 2e−
γ2

2 t2
12 −

2
N

e−
γ2

2 (t1+t2)2
−

2
N

∑
m,0

exp
(
−8J2e−|m|/ξt1t2

)
e−

γ2

2 t2
12 (68)
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The explicit dependence on {t1, t2} in (68) is complicated through the summation. In the late time limit J2t1t2/ξ ≫ 1, we can
approximate the summation by replacing all those terms with small exponents, i.e. 8J2e−|m|/ξt1t2 ≤ 1, by 1; and the others by 0.
Doing this then gives: ∑

m,0

exp
{(
−8J2e−|m|/ξt1t2

)}
≈ (N − 1) − 2ξ log

(
8J2t1t2

)
(69)

Plugging this back, we therefore obtain that:

F(t1, t2) ≈
2
N

e−
γ2

2 (t1−t2)2
−

2
N

e−
γ2

2 (t1+t2)2
+

2
N
ξ ln

(
8J2t1t2

)
e−

γ2

2 (t1−t2)2
(70)

Using the form of the operator wavefunction (65), the asymptotic Krylov metric is then related to F(t1, t2) at large t1, t2 via:∑
m,n

tm
1 tn

2Kmn =

√
m!n!
γm+n e

γ2

2 (t2
1+t2

2) F(t1, t2) ≈
2
√

m!n!
Nγm+n

(
eγ

2t1t2 − e−γ
2t1t2 + 2ξ ln

(
8J2t1t2

)
eγ

2t1t2
)

(71)

The RHS only depends on the product (t1t2). As a consequence, the asymptotic Krylov metric is diaogonal:

Kmn = Knnδmn (72)

The diagonal elements can therefore be extracted by a single contour integral in x = γ2t1t2:

Kn ≈
2
N
−

2(−1)n

N
+

2ξn!
N

∮
dx

xn+1 ln
(

8J2

γ2 x
)
ex (73)

At large order n ≫ 1 the integral is approximated by the contribution from the dominant saddle-point x∗ satisfying:

n + 1 = x∗ + ln
(

8J2

γ2 x∗
)−1

→ x∗ ≈ n (74)

The fluctuation about the saddle gives an additional
√

n factor. Combining these then gives the asymptotic behavior:

Knn ≈
2
N
−

2(−1)n

N
+

2ξ
N

ln
(

8J2

γ2 n
)
≈

2ξ
N

ln
(

8J2

γ2 n
)

(75)

SIZE-RESOLVED KRYLOV METRIC

The OTOCs can often be interpreted in terms of the operator-spreading under time-evolution. In models where the operator-
size can be explicitly defined, one can construct eigen-states in the operator space with fixed operator-size:

N̂|On⟩ = n|On⟩ (76)

where N̂ is the super-operator that measures the size of the operator states. For example, in the SYK models and the MBL
systems the eigen-states of size n consists of:

|χi1 ...χin⟩, |σ
i1
α1
...σin

αn
⟩, αi ∈ {x, y, z} (77)

In these models, F(t1, t2) and the Krylov metric Kmn can be interpretted as the matrix elements of N̂:

F(t1, t2) = ⟨O(t1)| N̂ |O(t2)⟩, Kmn = ⟨Om| N̂ |On⟩ (78)

We can probe more refined aspects of the Krylov metric by further resolving it into contributions from the operator space sectors,
each of which contains operator states of only fixed sizes:

Kmn =
∑
ℓ

Kmn(ℓ), Kmn(ℓ) = ⟨Om| N̂P̂(ℓ) |On⟩ = ℓ P̂(ℓ)mn (79)

where P̂ is the super-projector into operator space with fixed operator size ℓ. The operator-size distribution P̂(ℓ)mn is equivalently
encoded in the generating function, which is more accessible by explicit computation:

Z(t1, t2, µ) = ⟨O(t1)| e−µN̂ |O(t2)⟩ =
∑
ℓ,m,n

e−ℓµP̂(ℓ)mn φm(t1) φn(t2)∗ (80)

Therefore, by computing the operator-size generating function Z(t1, t2, µ), we can retrieve the distribution P̂(ℓ)mn and hence the
resolved Krylov metric Kmn(ℓ). In this section, we will perform this calculation for the examples where the operator-size can be
explicitly defined, i.e. the SYK models and the MBL systems.
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= λ

θ1

θ2

= ΥR,m(θ12)

θ1

θ2

= ΥA,m(θ12) Z(µ, t1, t2) =

FIG. 4. A sketch of diagrammatics in the scramblon effective theory.

Example 1: the SYK models

We begin with the SYK models considered in the main text. Recall that these models contain N majorana fermions χi, i =
1, ...,N satisfying the anti-commutation relations:

{χi, χ j} = 2δi j (81)

The generating function Z(t1, t2, µ) can be computed more conveniently by working in the doubled Hilbert-space HL ⊗ HR. This
allows us to defining the size super-operator explicitly as:

N̂ =
∑

i

1
2

(
1 + iχL

i χ
R
i

)
(82)

where χL
i and χR

i are majorana fermions acting on HL and HR respectively satsifying {χL
i , χ

R
j } = 0. To be compatible with this

definition, the operator norm ⟨.⟩ is defined by the expectation value:

⟨α, β⟩ = ⟨I| α†LβL |I⟩ = Tr
(
α†β

)
(83)

in the maximally entangled state |I⟩:

|I⟩ ∝ ΠN
i=1c†i |Ω⟩, ci =

1
2

(
χL

i − iχR
i

)
(84)

where |Ω⟩ = ΠN
i=1|Ω⟩

L
i ⊗|Ω⟩

R
i is the product state of the fermionic vacua for all χL,R

i . The state |I⟩ is chosen so that it is annihilated
by the combination of fermion operators: (

χL
i + iχR

i

)
|I⟩ = 2c†i |I⟩ = 0 (85)

It is then easy to check that:

N̂ χL
i1 ...χ

L
in |I⟩ = n χL

i1 ...χ
L
in|I⟩ (86)

and therefore fulfilling definition of the operator size operator. The definitions of the operator size can be extended to finite
temperatures by replacing |I⟩ by a thermal field double state |T FD⟩:

|T FD⟩ ∝ e−
β
4 (ĤL+ĤR)|I⟩ (87)

Analogous to before, in computing the norm using |T FD⟩ we also separate the two operators by a ρ1/2 insertion:

⟨ψ, γ2⟩T FD = ⟨I|e−
β
8 (ĤL+ĤR)ψ†Le−

β
4 ĤL e−

β
4 ĤLγLe−

β
8 (ĤL+ĤR)|I⟩

= Tr
(
ρ1/4ψ†ρ1/2γρ1/4

)
, ρ = e−βĤ (88)

Alternatively this can can be understood as measuring the original operator size in the operator “smeared” by the thermal density
matrix: O→ ρ1/4Oρ1/4.

It is very difficult to compute the generating function Z(t1, t2, µ) from first principles. Fortunately for the SKY models, progress
can be made using the effective description based on the scramblon mode, see Figure (4). In this framework, the relevant
dynamics can be captured by two ingredents: (i) the scramblon mode propagator λ, characterized by the lyapunov exponent κ;
(ii) the retarded/advanced vertex functions ΥR/A,m(θ12) describing the couplings to m scamblon modes, where θi j = θi − θ j for
the complexified time of insertion θ = 2π

β
(τ + it). For our purpose, we can set ΥR

m = Υ
A
m = Υm by assuming time-reflection
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symmetry. For more details please refer to [79]. The scramblon mode propagator λ is expected to take the universal form for
generic lyapunov exponent κ:

λ = −
ei κ2 (π+θ3+θ4−θ1−θ2)

C
(89)

where C is a normalization constant proportional to N; while the explicit form of the vertex function Υm(θ12) is less understood
except at the maximal chaos κ = 1, where it is explicitly given by:

Υm (θ12) =
∫ ∞

0
dy ym h(y, θ12), h(y, θ12) =

G
Γ(2∆)

y2∆−1e−Θ12y, G =
1
2

cos
(
πv
2

)2∆
, Θ12 = cos

[
v(π − θ12)

2

]
(90)

where ∆ = 1/q is the conformal dimension of χ in q-body SYK models, and v is given by:

πv

cos
(
πv
2

) = βJ (91)

For our purpose we will always focus on the strong coupling limit v→ 1. The OTOC can be expressed using these as:

OTOC =
∞∑

m=0

Υm(θ12)
(λ)m

m!
Υm(θ34) (92)

The usual OTOC corresponds to setting:

θ1 =
2πi
β

t +
π

2
, θ2 =

2πi
β

t +
3π
2
, θ3 = π, θ4 = 0 (93)

For early time t ≪ log N, λ ∝ eκt/N ≪ 1, and the OTOC is dominated by single scramblon exchange at m = 1, giving the
exponential behavior in time. We are interested in computing the operator size generating function Z(µ, t1, t2) defined by:

Z(µ, t1, t2) =
〈
χ1(t1), e−µN̂χ1(t2)

〉
T FD

= e−
µN
2

〈
I
∣∣∣∣e− β

8 (ĤL+ĤR)χL
1 (t1)e−

β
4 ĤL

∑
n

1
n!

− iµ
2

∑
i

χL
i χ

R
i

n

× e−
β
4 ĤLχL

1 (t2)e−
β
8 (ĤL+ĤR)

∣∣∣∣I〉 (94)

We can again turn this expansion into correlation functions in terms of χL = χ only. To this end, we need to shift χR
i in the size

operator all the way to the left and use the identity (85) to transform it into χL
i . The key steps proceed as follows:∑

i

χL
i χ

R
i

n

e−
β
4 ĤLχL

1 (t2)e−
β
8 (ĤL+ĤR)

∣∣∣∣I〉
= (−1)

n(n−1)
2

∑
i1,i2,...,in

(
χL

i1 ...χ
L
in

) (
χR

in ...χ
R
i1

)
e−

β
4 ĤLχL

1 (t2)e−
β
8 (ĤL+ĤR)

∣∣∣∣I〉
= (−1)

n(n+1)
2

∑
i1,i2,...,in

(
χL

i1 ...χ
L
in

)
e−

β
4 ĤLχL

1 (t2)e−
β
8 ĤL

(
χR

in ...χ
R
i1

)
e−

β
8 ĤR

∣∣∣∣I〉
= (−i)n

∑
i1,i2,...,in

(
χL

i1 ...χ
L
in

)
e−

β
4 ĤLχL

1 (t2)e−
β
4 ĤL

(
χL

i1 ...χ
L
in

) ∣∣∣∣I〉 (95)

where in the second last line we have used
(
ĤR − ĤL

)
|I⟩ = 0. Assemble everything, in the end we get the following expression:

Z(µ, t1, t2) = e−
µN
2

∑
n

1
n!

〈
Tχ1

(
t1 +

3iβ
4

) −µ2 ∑
i

χi

( iβ
2

)
χi(0)

n

× χ1

(
t2 +

iβ
4

) 〉
β

(96)

where ⟨...⟩ = Tr (ρ...) is the thermal correlator and T denotes time-ordering in the imaginary time. This is a generalization of the
OTOC. Through the effective model, this can be expressed in terms of ΥR/A,m and λ:

Z(t1, t2, µ) = e−µN( 1
2−G(θ34)) ∑∞

m=0 Υ
m (θ12)

(
λµN

2

)m 1
m!Υ

1 (θ34)m (97)
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It is worth making a few comments regarding (97): (i) we have included in the prefactor a factor of eµNG(θ34) to factor out the
disconnected contribution to the size operator N̂ in the generating function, where the Green’s function is given as:

G (θ12) =
1
2

cos
(
πv
2

)
Θ12


2∆

(98)

(ii) the vertex function insertions Υ1(θ34) related to the size operator only contains those associated with single scramblon
emissions m = 1, this is the leading order contribution in the time regime t ≪ log N; (iii) the complexified time insertions are
given explicitly by:

θ1 =
2πi
β

t1 +
π

2
, θ2 =

2πi
β

t2 +
3π
2
, θ3 = 0, θ4 = π (99)

To compute Z(t1, t2, µ) explicitly using (97) for generic κ, we need the modification of the vertex function away from that of
κ = 1 given in (90). We can deduce this by examining how the structure of the OTOC is modified. At maximal chaos κ it can be
written by plugging (90) into (92) as:

OTOC =

∫ ∞

0
dy1

∫ ∞

0
dy2h (y1, θ12) h (y2, θ34) e−λy1y2

=

∫ ∞

0
dy1

∫ ∞

0
dy2h (y1, θ12) h (y2, θ34) e

et
C y1y2 (100)

where in the second line we have assigned t1 = t2 = t, t3 = t4 = 0 according to the usual OTOC conventions. The modifications
to the OTOCs at submaximal chaos κ < 1 has been studied, e.g. in contexts such as including the stringy corrections[9, 14]. The
following form of modification was proposed:

ÕTOC =
∫ ∞

0
dy1

∫ ∞

0
dy2 h (y1, θ12) h (y2, θ34) e

eκt
C (y1y2)κ (101)

We shall assume that the form of modification can be extended to generic time insertions (t1, t2, t3, t4). Then we can obsorb the
modifications by re-writing:

ÕTOC =

∫ ∞

0
dy1

∫ ∞

0
dy2 h̃ (y1, θ12) h̃ (y2, θ34) e−λ̃y1y2

λ̃ = −
ei κ2 (π+θ3+θ4−θ1−θ2)

C
, h̃

(
y, θi j

)
=

y1/κ−1

κ
h
(
y1/κ, θi j

)
(102)

In other words, at submaximal chaos κ < 1 we can work with the modified scramblon mode propagator λ̃, as well as the vertex
function derived from the modified kernel h̃ in (102). In what follows, we shall use (102) to proceed with the computations for
generic κ. In terms of these, the generating function Z(t1, t2, µ) can be written as:

Z(t1, t2, µ) = e−µN( 1
2−G(θ34))

∫ ∞

0
dy h̃ (y, θ12) exp

(
λ̃µNΥ1(θ34)

2
y
)

(103)

For the insertions (99), the ingredients are given explicitly as follows:

Θ12 = cosh
(
πt12

β

)
, t12 = t1 − t2, Θ34 = 1

λ = −
1
C

e
πκ
β (t1+t2), Υ1(θ34) =

Γ(2∆ + κ)
Γ(2∆)

G, G (θ34) = G (104)

Plugging these in, we obtain the following explicit form:

Z(t1, t2, µ) =
e−µN( 1

2−G)G
Γ(2∆)

∫ ∞

0

dy
κ

y
2∆
κ −1 exp

[
−µKe

κπ(t1+t2)
β y − cosh

(
πt12

β

)
y1/κ

]
, K =

Γ(2∆ + κ)µNG
2Γ(2∆)C

(105)

We could now apply an inverse laplace transform and obtain:

P(t1, t2, ℓ) =
1

2πi

∮
Γ

dµ eµℓZ(µ, t1, t2)

=
G
Γ(2∆)

∫ ∞

0

dy
κ
δ
(
ℓ̃ − Ke

πκ
β (t1+t2)y

)
y

2∆
κ −1e− cosh

(
πt12
β

)
y1/κ

=
G ℓ̃2∆/κ−1

κK2∆/κΓ(2∆)
exp

−2π∆
β

(t1 + t2) −
1
2

(
ℓ̃

K

)1/κ (
e−

2πt1
β + e

−2πt2
β

) (106)
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FIG. 5. We present the asymptotic behaviors of Jn(ℓ) as functions of λ = (ℓ/K)1/κ

n for n = 150: (a). the numerical result showing a transition
between oscillatory and exponential decay across λ = 4; (b). the numerical result vs. saddle analysis in the exponential decay regime λ > 4.

where we have defined the renormalized operator-size ℓ̃:

ℓ̃ = ℓ − N
(

1
2
−G

)
(107)

We make some observations. Firstly the inverse laplace transform P(t1, t2, ℓ) depends on ℓ only through the combination
(
ℓ̃
K

)1/κ
,

which can be viewed as an effective operator-size for κ < 1. Secondly, the dependence on the two time insertions {t1, t2} of
P(t1, t2, ℓ) can be factorized:

P(t1, t2, ℓ) = Qℓ(t1) × Qℓ(t2), Qℓ(t) =
ℓ̃∆/κ−1/2

√
κK∆/κ

√
G
Γ(2∆)

e−
2π∆
β t− 1

2

(
ℓ̃
K

)1/κ
e
− 2π
β t

(108)

As a consequence, Kmn(ℓ) also factorizes:

Kmn(ℓ) = ℓJm(ℓ)Jn(ℓ) (109)

It is interesting to contemplate what is behind the observed factorization property of Kmn(ℓ). To see what is happening, let us
write it as a product of rectangular matrices:

ℓ−1Kmn(ℓ) =
[
L(ℓ)† · L(ℓ)

]
mn
= Jm(ℓ)Jn(ℓ), [L(ℓ)]mα = ⟨Om, α⟩, α ∈ Hℓ (110)

where Hℓ denotes the operator space sector with fixed size ℓ. Factorization thus implies that the rectangular matrix L(ℓ) is of
rank one. We can therefore deduce that:

⟨Om, α⟩ = [L(ℓ)]mα = Jm(ℓ) × Ψℓα → P̂(ℓ)|Om⟩ = Jm(ℓ) × |Ψℓ⟩, |Ψℓ⟩ =
∑
α∈Hℓ

Ψℓα|α⟩ (111)

In other words, distinct Krylov basis statesOm share the same normalized projection |Ψℓ⟩ into each operator space sector Hℓ. This
is natural from the perspective that the Hamiltonian is symmetric under the permutation P(n), the action of which is “ergodic”
in each sector Hℓ. We therefore expect the common projection |Ψℓ⟩ to be the most permutation-symmetric operator state in Hℓ.
The factors Jm(ℓ) can therefore be viewed as the wave-function in operator-size of Om.

In the case of κ = 1, we can therefore compute Jm(ℓ) from Qℓ(t) via a single contour integral. Going through some algebra
produces the following explicit integral:

Jn(ℓ) =
ℓ̃∆/κ−1/2

√
κK∆/κ

√
Γ(n + 1)G
Γ(2∆ + n)

∮
dy

yn+1 (1 + y)−2∆ e−
1
2

(
ℓ̃
K

)1/κ( 1−y
1+y

)
(112)
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To extract the global behavior of Jn(ℓ) at large n, it is appropriate to rescale (ℓ/K)1/κ = λn. The saddle-point equation and the
solutions are then given by:

n +
2∆y
1 + y

−
λny

(1 + y)2 = 0, y∗± =
n (λ − 2) − 2∆ ±

√
(nλ − 2∆)2 − 4n2λ

2(n + 2∆)
(113)

It turns out that the physical saddle corresponds to y∗−, while the other saddle y∗+ gives a wave-function Jn(ℓ) that grows expo-
nentially with ℓ. Now plugging this in and taking into account the scaling factor from the fluctuations, we obtain the following
asymptotic behavior of Jn(ℓ̃):

Jn(ℓ̃) ∼
ℓ̃∆−1/2

K∆

√
Γ(n + 1)
Γ(2∆ + n)

e−S ∗ × (fluctuation) ∼ n−1/2
[
e
√
λ(λ−4)

2

(
λ − 2 −

√
λ(λ − 4)

2

)]−n

(114)

This result is consistent with the numerical calculation for λ > 4, see FIG. 5 (b). From this, we see that the wave-function Jn(ℓ)
exhibits a transition across λ ∼ 4: in terms of the original renormalized operator size ℓ̃, the wave-function is oscillatory in the
regime: ℓ̃ < K (4n)κ ; and decays exponentially in the regime: ℓ̃ > K (4n)κ, see FIG. 5 (a). As a result, one can estimate the
typical operator size of On to be of order: ℓ̃ ∼ Knκ.

Example 2: MBL systems

Next, let us consider the operator-size distribution of MBL systems. We begin with the Heisenberg evolution of σ0
x. Applying

the identity (62) introduced previously, we can derive:

σ0
x(t) = eiHtσ0

xe−iHt = σ0
x

∏
j,0

(
cos (2J0 jt) + i sin (2J0 jt)σ0

zσ
j
z

) (
cos(2h0t) + i sin(2h0t)σ0

z

)
. (115)

The generating function Z(t1, t2, µ) now is defined to be:

Z(t1, t2, µ) = Tr
[
σ0

x(t1)e−µN̂σ0
x(t1)

]
= Tr

{
σ0

x

∏
j,0

(
cos (2J0 jt1) + i sin (2J0 jt1)σ0

zσ
j
z

) (
cos(2h0t1) + i sin(2h0t1)σ0

z

)
× e−µN̂σ0

x

∏
k,0

(
cos (2J0kt2) + i sin (2J0kt2)σ0

zσ
k
z

) (
cos(2h0t2) + i sin(2h0t2)σ0

z

) }
(116)

This can be computed by direct counting techniques. Let us study the pattern of Pauli strings that arise from taking products
within either pf σ0

x(t1,2). The following observations arise: (i) each factor of cos (2J0 jt) corresponds to an identity operator on
site j, while each factor of sin (2J0 jt) indicates the existence of a σz operator on site j; (ii) terms containing cos(2h0t) or sin(2h0t)
differ by interchanging σ0

x and σ0
y . Taking trace then pairs up Pauli strings from σ0

x(t1,2). Therefore, We can neglect all cross
terms between sine and cosine functions when computing the generating function, which gives:

Z(µ, t1, t2) =e−µ cos (2h0(t1 − t2))
∏
j,0

(
cos

(
2J0 jt1

)
cos

(
2J0 jt2

)
+ e−µ sin (2J0 jt1) sin (2J0 jt2)

)
. (117)

The first term e−µ comes from the zeroth site, which is always occupied. Additional factor of e−µ appears when other sites are
occupied by σz. After taking the disorder average, it becomes

Z(µ, t1, t2) = e−µcos(2h0(t1 − t2))
∏
j,0

[1 − e−µ

2
cos

(
20 j(t1 + t2)

)
+

1 + e−µ

2
cos

(
20 j(t1 − t2)

)]
= e−µe−2h2(t1−t2)2

∏
j,0

(
1 − e−µ

2
e−2J2(t1+t2)2e

−
| j|
ξ
+

1 + e−µ

2
e−2J2(t1−t2)2e

−
| j|
ξ

)
.

(118)

Aiming at extracting Kmn, we multiply the generating function by eγ
2(t2

1+t2
2)/2, with γ2 = 4J2 ∑

j,0 e−
| j|
ξ +4h2 introduced previously.

The result can be simplified as

Z(µ, t1, t2)e
γ2

2 (t2
1+t2

2) = eγ
2t1t2 e−µ

∏
j,0

(
1 + e−µ

2
+

1 − e−µ

2
e−8J2t1t2e

−
| j|
ξ

)
. (119)
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Again, since this is only a function of t1t2, we expect Kmn(ℓ) to be exactly diagonal for all ℓ. We can approximate the product via
the similar logic used previously: when 8J2t1t2e−

| j|
ξ ≫ 1, the bracket gives (1 + e−µ)/2, indicating an equal probability between

σ
j
z and I; for 8J2t1t2e−

| j|
ξ ≪ 1, the bracket is 1, which indicates a trivial identity operator. Under this approximation, we have

that:

Z(µ, t1, t2)e
γ2

2 (t2
1+t2

2) ≈ eγ
2t1t2 e−µ

(
1 + e−µ

2

)2ξ ln(8J2t1t2)
= eγ

2t1t2 2−M(t1t2)
∑
ℓ

B (M(t1t2), ℓ) e−µ(ℓ+1) =
∑
ℓ

e−µℓℓ−1
∑

n

(γ2t1t2)n

n!
Knn(ℓ)

(120)
where M(t1t2) = 2ξ ln

(
8J2t1t2

)
and B (M, ℓ) is the binomial coefficient. The resolution Knn(ℓ) of the diagonal Krylov metric into

fixed operator-size ℓ can therefore be written in x = γ2t1t2 as:

Knn(ℓ) ≈
n!ℓ
2πi

∮
dx

xn+1

B
(
M(x/γ2), ℓ − 1

)
2M(x/γ2)

 ex (121)

For M, ℓ both large and of the same order, the binomial coefficients approaches a Gaussian distribution:

B (M, ℓ)
2M ≈ (πM/2)−1/2 e−

(ℓ−M/2)2
M/2 (122)

Giving the following integral expression that allows the saddle-point approximation:

K(ℓ) ≈
n!ℓ
2πi

∮
dx exp

−(n + 1) ln x + x −

(
ℓ − ξ ln

(
8J2

γ2 x
))2

ξ ln
(

8J2

γ2 x
) −

1
2

ln
(
πξ ln

(
8J2

γ2 x
)) (123)

To access the global distribution, we can rescale ℓ = λ ln n. The dominant saddle-point solutions in this limit is simply:

x∗ = n + .. (124)

Plugging this back into the integral and taking care of the additional factor from the fluctuations, we obtain in the end the
asymptotic form:

Knn(ℓ) ∼ λ exp
(
−

(λ − ξ)2

ξ
ln n

)
(125)

We end with a few comments. The operator-size distribution of On is given by a Gaussian with the average size:

ℓ ∼ ξ ln n (126)

It is also worth understanding the diagonal property of Kmn(ℓ) for any ℓ. In particular, it implies that:

Kmn(ℓ) = ℓ⟨Om| P̂(ℓ) |On⟩ = ℓ⟨P̂(ℓ)Om, P̂(ℓ)On⟩ ∝ δmn (127)

In other words, distinct Krylov basis elements project onto mutually orthogonal states in each sector Hℓ. This reflects the
localized nature of the dynamics as it explores within each sector of the operator space with fixed size ℓ.
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