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WEAKLY O-MINIMAL TYPES

SLAVKO MOCONJA AND PREDRAG TANOVIĆ

Abstract. We introduce and study weak o-minimality in the context of complete types in an ar-
bitrary first-order theory. A type p P SpAq is weakly o-minimal with respect to ă, a relatively
A-definable linear order on ppCq, if every relatively definable subset has finitely many convex compo-
nents; we prove that in that case the latter holds for all orders. Notably, we prove: (i) a monotonicity
theorem for relatively definable functions on the locus of a weakly o-minimal type; (ii) weakly o-
minimal types are dp-minimal, and the weak and forking non-orthogonality are equivalence relations
on weakly o-minimal types. For a weakly o-minimal pair p “ pp,ăq, we introduce the notions of the
left- and right-p-genericity of a |ù p over B; the latter is denoted by B Ÿp a. We prove that Ÿp

behaves particularly well on realizations of p: the Ÿp-incomparability and x 6 |
!domppq

y are the same

equivalence relation and the quotient order is dense linear. We show that this naturally generalizes
to the set of realizations of weakly o-minimal types from a fixed Mw -class.

In seminal papers [13, 14] by Pillay and Steinhorn and [8] by Knight, Pillay and Steinhorn, the
notions of o-minimal structures and theories were introduced, and a substantial theory of definable sets
within the o-minimal framework was developed. In particular, they proved the Monotonicity Theorem
and the Cell Decomposition Theorem, which are fundamental tools used in the analysis of definable
sets in o-minimal structures. Extensive research has been conducted on o-minimal structures in the
decades that followed, and applications in various areas outside logic, even outside mathematics, have
been discovered. One direction of the research included generalization of the concept of o-minimality;
this involved relaxing the o-minimality assumption and developing a theory of definable sets that
resembles, as closely as possible, that for o-minimal structures.

Let M “ pM,ă, . . . q be an infinite linearly ordered first-order structure. M is o-minimal if every
definable1 subset of M is a finite union of points and open intervals (with endpoints in M Y t˘8u).
There are several generalizations of o-minimality; some of them are:

‚ (Dickmann [3]) M is weakly o-minimal if every definable subset ofM is a finite union of convex
sets;

‚ (Belegradek, Stolboushkin and Taitslin [2]) M is quasi-o-minimal if every definable subset of
M is a Boolean combination of H-definable sets, points, and open intervals;

‚ (Kudăıbergenov [9]) M is weakly quasi-o-minimal if every definable subset of M is a Boolean
combination of H-definable sets and convex sets.

All of the above definitions refer to the distinguished linear order ă; in fact, they depend on ă in the
sense that a structure can be (weakly, quasi- or weakly quasi-) o-minimal with respect to ă, but it
might not be the case for some other H-definable linear order. A complete first-order theory T is o-
minimal (weakly o-minimal, quasi-o-minimal, weakly quasi-o-minimal) with respect to a distinguished
H-definable linear order if all models (equivalently, some ℵ0-saturated model) of T are such. It is
well known that the o-minimality of the structure M (with respect to ă) is always carried over to
the theory ThpMq ([15]); however, this fails for weak, quasi- and weak quasi-o-minimality. Let us also
mention that the weak quasi-o-minimality of the theory does not depend on the choice of order ([12,
Theorem 1]); in general, this fails for o-minimal, weakly o-minimal and quasi-o-minimal theories.

The Monotonicity Theorem for an o-minimal structure pM,ă, . . . q, [14, Theorem 4.2] states that
for every definable function f :M ÑM there is a finite definable partition of M into points and open
intervals such that f is either constant of strictly monotone on each member of the partition. This fails
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2 S. MOCONJA AND P. TANOVIĆ

if the structure is not o-minimal; an explanation for this and a more detailed discussion of analogues of
monotonicity and cell decomposition outside the o-minimal context can be found in Goodrick’s article
[5]. Among the weak analogues is a “local” version of monotonicity proved in the weakly o-minimal
context by Macpherson, Marker, and Steinhorn in [10]. Roughly speaking, it states that for every
definable function f : M Ñ M̄ there is a finite convex partition of M such that f is locally constant
or locally strictly monotone on each of the convex parts of the partition.

In this paper, we start a systematic study of weak o-minimality transferred to the locus of a complete
type in an arbitrary complete (possibly multi-sorted) first-order theory T ; we introduce weakly o-
minimal types. The motivation for introducing this notion comes from our recent work on complete
1-types in weakly quasi-o-minimal theories ([12]) (which are all weakly o-minimal in our sense) and
on (stationarily ordered, or) so-types ([11]); the latter include weakly o-minimal types. Here, we will
adapt to the context of weakly o-minimal types and reprove several results from these two papers, as
well as establish novel results. For example, in [12] we proved Theorem 1(i) for complete 1-types in a
weakly quasi-o-minimal theory; however, Theorems 1(ii), 2, and 3 are novel. The results presented in
this paper will be utilized in our forthcoming papers on Vaught’s conjecture for weakly quasi-o-minimal
theories.

Let C be a monster model of T , let A be a small subset of C, and let p P SpAq. We will consider
orders pppCq,ăq, where ă is a relatively A-definable linear order on ppCq and say that pp,ăq is a weakly
o-minimal pair over A if every relatively definable subset of ppCq is the union of a finite number of
convex sets; a type p is weakly o-minimal if there exists such a pair.

We will prove that weakly o-minimal types have several favorable model-theoretic properties, both
geometric and general. For example, we will prove that the weak o-minimality of a type does not
depend on the choice of order and that a theory T is weakly quasi-o-minimal if and only if every
complete type p P S1pT q is weakly o-minimal. Among the geometric properties of weakly o-minimal
types, the most interesting one is a version of the Monotonicity Theorem formulated in Theorem 1
below which, roughly speaking, says that every relatively definable function on the locus of a weakly
o-minimal type is “weakly monotone”; this is explained as follows: Given a linear order pD,ăq and
an equivalence relation with convex classes E, we can define another linear order ăE by reversing the
order ă within each class, but leaving the classes originally ordered:

x ăE y ô pEpx, yq ^ y ă xq _ p Epx, yq ^ x ă yq.

For an Ď-increasing sequence of convex equivalence relations ~E “ pE1, . . . , Enq we can iterate this
construction and define ă ~E

:“ p. . . păE1
qE2

. . . qEn
. If pD1,ă1q is another linear order and f : D Ñ D1

is an increasing function, then we say that f is pă,ă1q-increasing; similarly for pă,ă1q-decreasing and

pă,ă1q-monotone. If f is pă ~E
,ă1q-monotone for some sequence of convex equivalence relations ~E,

then we may think of f as a weakly pă,ă1q-monotone function.

Theorem 1. (Weak monotonicity). Suppose that pp,ăpq is a weakly o-minimal pair over A, pD,ăq
an A-definable linear order, and f : ppCq Ñ D a relatively A-definable non-constant function. Then:

(i) There exists a strictly increasing sequence of relatively A-definable convex equivalence relations
~E “ pE0, . . . , Enq on ppCq such that f is ppăpq~E ,ăq-increasing.

(ii) There exists an increasing sequence of A-definable convex equivalence relations ~F “ pF0, . . . , Fnq
on pD,ăq such that f is păp,ă~F

q-increasing.

Under the assumptions of Theorem 1, as a consequence of the ppăpq~E ,ăq-monotonicity of f , we
obtain the following:

Theorem 2. (i) (Local monotonicity). There exists a convex relatively A-definable equivalence E
on ppCq, such that E ‰ idppCq and the restriction of f to each E-class is constant or strictly
păp,ăq-monotone.

(ii) (Upper monotonicity). There exists a convex relatively A-definable equivalence E on ppCq, such
that E ‰ ppCq2 and one of the following two conditions holds for all x1, x2 realizing p:

rx1sE ăp rx2sE ñ fpx1q ă fpx2q or rx1sE ăp rx2sE ñ fpx1q ą fpx2q.
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Assume for a moment that the underlying theory is weakly quasi-o-minimal and f : C Ñ D. Then
all complete 1-types are weakly o-minimal, and Theorem 1 applies to each of them. Using a routine
compactness argument, one obtains a finite definable partition of C such that the restriction of f to
each member of the partition is weakly monotone; that is exactly the content of our aforementioned
result [12, Theorem 2]. Similarly, we can derive an interesting definable form of local monotonicity
(and a less interesting form of upper monotonicity, which we omit). In the following theorem, we state
specific versions adjusted to the context of weakly o-minimal theories; note that part (ii) is a version
of [10, Theorem 3.3].

Theorem 3. Suppose that ThpC,ă, . . . q is weakly o-minimal, pD,Ÿq is an A-definable linear order,
and f : CÑ D is an A-definable function.

(i) There exists a finite convex A-definable partition C of C and an increasing sequence of A-definable

convex equivalence relations ~E on C such that f is pă ~E
,Ÿq-increasing on each member of the

partition.
(ii) There exists a finite convex A-definable partition C of C and a convex A-definable equivalence

relation E with at most finitely many singleton classes on C such that E “
Ť

CPCEæC and for all
C P C the restriction færasE is constant or strictly pă,Ÿq-monotone uniformly for all a P C.

In [11], we investigated the weak and forking non-orthogonality (Mw and Mf ) of so-types over the
same domain, say A, and proved that they are equivalence relations; we also proved that forking,
viewed as a binary relation x 6 |

!A
y on the set of realizations of so-types over A, is an equivalence

relation. As weakly o-minimal types are so-types, the same conclusions hold for them. We will reprove
all of these results in Section 4 below. The main novelty here is the notion of (left and) right p-generic
elements over a parameter set B, where p “ pp,ăq is an so-pair over A; this makes the proofs presented
here intuitively clearer and considerably shorter than those in [11]. An element a |ù p is right (left)
p-generic over B if the locus of tppa{ABq is a final (initial) part of pppCq,ăq. We show that left and
right p-generic elements over (any) B exist and that tppa{ABq does not fork over A if and only if a
is left or right p-generic over B; B Ÿp a denotes that a is right p-generic over B. We will prove that
Ÿp, viewed as a binary relation on ppCq, particularly well behaves; for example, a |ù p is left p-generic
over b |ù p if and only if b is right p-generic over a (that is, aŸp b).

Theorem 4. Let p “ pp,ăq be an so-pair over A. Assume that p is non-algebraic.

(i) x 6 |
!A

y defines a convex equivalence relation, denoted by Dp, on pppCq,ăq.

(ii) pppCq,Ÿpq is a strict partial order in which the Ÿp-incomparability agrees with the relation Dp.
(iii) Ÿp and ă agree on ppCq{Dp; pppCq{Dp,Ÿ

pq is a dense linear order.

Two so-pairs over A, p “ pp,ăpq and q “ pq,ăqq, are weakly non-orthogonal (pMw q) if pMw q; they
are directly non-orthogonal, denoted by δApp,qq, if pM

w q and for all a |ù p and b |ù q the following
holds: a is left p-generic over b if and only if b is right q-generic over a. We will prove that Mw and
δA are equivalence relations on the set of all so-pairs over A, and that δA refines Mw and splits each
Mw -class (which consists of non-algebraic types) into two classes; note that the pairs r “ pr,ăq and
r˚ “ pr,ąq are in the same Mw -class, but in distinct δA-classes.

Let F be a δA-class and let FpCq be the set of realizations of all types from F. We will say that
a P FpCq is right F-generic over b P FpCq, denoted by bŸF a, if bŸp a holds for some (equivalently all)
p “ ptppa{Aq,ăq P F. Let DF :“ tpx, yq P FpCq2 | x 6 |

!A
yu. The following generalizes Theorem 4.

Theorem 5. Let F be a δA-class of non-algebraic so-pairs (or weakly o-minimal pairs) over A.

(i) pFpCq,ŸFq is a strict partial order.
(ii) DF and ŸF-incomparability are the same equivalence relation on FpCq.
(iii) pFpCq{DF,Ÿ

Fq is a dense linear order.

The paper is organized as follows. In Section 1, the terminology from model theory and terminology
concerning linear orders is given. The basic properties of orders ă ~E

are outlined. Relatively definable
sets are studied in some detail as they play an important role further in the paper. We also recall the
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definition and very basic properties of the so-types from [11]. Weakly o-minimal types are introduced
in Section 2, and few basic facts about them are proved. In Section 3, we characterize all relatively
definable linear orders on the locus of a weakly o-minimal type and deduce several corollaries, including
Theorems 1–3. Section 4 deals with so-types. We study forking independence of realizations of so-
types, and prove Theorems 4, 5 and the related aforementioned results on non-orthogonality. In
Section 5, we prove that weakly o-minimal types are dp-minimal. We also provide some analysis of
indiscernible sequences of realizations of weakly o-minimal types; in particular, we show that they have
a bit stronger property than the distality (as defined by Simon in [17]).

1. Preliminaries

We use standard concepts and notation from model theory. We work in C, a large, saturated
(monster) model of a complete, first-order (possibly multi-sorted) theory T in a first-order language
L. Both singletons and tuples of elements from C are denoted by a, b, c, . . . ; |a| denotes the length of
the tuple a. The letters A,B,A1, B1, . . . are reserved for small subsets (of cardinality ă |C |) of the
monster, while C,D,C 1, D1, . . . are used to denote arbitrary sets of tuples. By an LC-formula φpxq we
mean a formula whose parameters are from C; by a formula we mean an LC-formula. The set of all
the realizations of φpxq in C is usually denoted by φpCq, but sometimes, when we want to emphasize
|x| “ n, we also denote it by φpCnq. Sets of this form are said to be C-definable; a set is definable if
it is C-definable for some parameter set C. A partial type ppxq is any small finitely consistent set of

LC-formulae that is closed under conjunctions; ppCq (or ppC|x|q) denotes the set of all realizations of
ppxq. A subset D Ă Cn is type-definable (over A) if D “ ppCq for some partial type ppxq (over A).

The space of all complete n-types over the parameters C is denoted by SnpCq; the basic clopen
subsets are of the form rφs “ tp P SnpCq | φpxq P pu, where φpxq is an LC-formula and |x| “ n.
SpCq :“

Ť

nPN SnpCq. In particular, SpCq is the set of all global finitary types. A global type ppxq is
A-invariant if pφpx, b1q Ø φpx, b2qq P p for all LA-formulae φpx, yq and all tuples b1, b2 of length |y|
that satisfy b1 ” b2 pAq; the type p is invariant if it is A-invariant for some small set of parameters A.
For an A-invariant global type p and a linear order pI,ăq, a sequence of tuples pai | i P Iq is a Morley
sequence in p over A if ai |ù pæAaăi

holds for all i P I. Note that we allow Morley sequences to have
an arbitrary (even finite) order-type. Dividing and forking have the usual meaning, and by a |

!A
B

we denote that tppa{ABq does not fork over A. The types p, q P SpAq are weakly orthogonal, denoted
by pKw q, if ppxq Y qpyq determines a complete type over A; they are forking orthogonal, denoted by
pKf q, if a |

!A
b holds for all a |ù p and b |ù q.

1.1. Linear orders. Notation related to linear orders is mainly standard. Let pX,ăq be a linear
order, and let D Ď X .

‚ D is convex if a, b P D and a ă c ă b imply c P D.
‚ D is an initial part if a P D and b ă a imply b P D; D is a left-eventual part if it contains a
nonempty initial part. The final parts and right-eventual parts are defined dually.

‚ A subset C Ď D is a convex component of D if C is a maximal, convex subset of D.
‚ The set of all convex components forms a partition of D; therefore, the meaning of D has a finite
number of convex components is clear.

‚ For nonempty Y, Y 1 Ď X we write Y ă Y 1 if y ă y1 holds for all y P Y and y1 P Y 1; we write x ă Y

and Y ă x instead of txu ă Y and Y ă txu.
‚ x P X is an upper (lower) bound of D if D ă x (x ă D).
‚ D is upper (lower) bounded if an upper (lower) bound exists; D is bounded if it is upper and lower
bounded. Note that the set of all upper (lower) bounds of D is a final (initial) part.

‚ supD1 ď supD2 (where D1, D2 Ď X) denotes that any upper bound of D2 is an upper bounds
of D1 too; supD1 ă supD2, inf D1 ď inf D2 and inf D1 ă inf D2 have analogous meanings.

‚ An equivalence relation E Ď X ˆX is convex if all E-classes rxsE (x P X) are convex subsets of
X ; in that case, the quotient set X{E is naturally linearly ordered by ă.
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Note that all of the above definitions should be read as with respect to pX,ăq. Further in the text,
whenever the meaning of the order is not clear from the context, we emphasize it in some way; for
example, we say that D is convex in pX,ăq or that D is a ă-convex subset of X , etc.

If pX,ăXq and pY,ăY q are linear orders and f : X Ñ Y , we say that f is păX ,ăY q-increasing if
x ăX x1 implies fpxq ďY fpx1q for all x, x1 P X . In that case, the kernel relation Kerpfq, defined by
fpxq “ fpx1q, is a convex equivalence relation on pX,ďXq, and the mapping defined by rxsKerpfq ÞÑ fpxq
is an order isomorphism between pX{Kerpfq,ăXq and pfpXq,ăY q. Also, f is strictly păX ,ăY q-
increasing if x ăX x1 implies fpxq ăY fpx1q for all x, x1 P X .

In the rest of the subsection, we recall the construction of orders ă ~E
from [12] and state their basic

properties.

Definition 1.1. Let pX,ăq be a linear order and E a convex equivalence relation on X . Define:

x ăE y iff pEpx, yq ^ y ă xq _ p Epx, yq ^ x ă yq.

It is easy to see that pX,ăEq is a linear order; the order ăE reverses the order ă within each
E-class, but the classes in the quotient order remain originally ordered. In particular, E is a ăE-
convex equivalence relation, and pX{E,ăq “ pX{E,ăEq holds. Furthermore, let E1 be another convex
equivalence relation on pX,ăq that is Ď-comparable (either finer or coarser) to E. It is easy to see
that E1 is a ăE-convex equivalence, so the order păEqE1 is well defined. Similarly, the order păE1qE
is well-defined; it is not hard to see that păEqE1 “ păE1qE holds.

Definition 1.2. Let pX,ăq be a linear order and ~E “ pE1, . . . , Enq a sequence of convex equivalence
relations on X , such that any two of them are Ď-comparable. Define:

ă ~E
:“ p. . . păE1

qE2
. . . qEn

.

Remark 1.3. (a) If the order pX,ăq and the sequence ~E in the previous definition are definable, then
the resulting order ă ~E

is definable with the same parameters. Similarly, if X is type-definable

over A and ă and ~E are relatively A-definable, then ă ~E
is relatively A-definable.

(b) We have already remarked that ăpE1,E2q“ăpE2,E1q holds for any pair of Ď-comparable convex

equivalences. By induction, if ~E is a sequence of convex equivalences such that any two of them
are Ď-comparable, it is easy to prove that the order ă ~E

does not depend on the order of elements

of ~E: ă ~E
“ă

πp~Eq holds for any permutation πp ~Eq of ~E.

(c) It is very easy to see that păEqE “ă always holds and is only slightly harder to verify pă ~E
q~E “ă.

Indeed, we have pă ~E
q~E “ăpE1,E2...,En,E1,...,Enq“ăpE1,E1,...,En,Enq“ă; here, the second equality

holds by (b). As a consequence, we have the following: If Ÿ is another linear order on X then
ă“ Ÿ ~E

and ă ~E
“ Ÿ are equivalent.

(d) It is rather straightforward to verify that ă ~E
‰ă ~E1 holds for any pair of distinct strictly increasing

sequences of convex equivalence relations ~E and ~E1 that do not contain the identity relation.
(e) Let D Ď X be ă-convex. Then D properly intersects at most two E1-classes (the endpoints of

D{E1 in the quotient order X{E1). Thus, D has at most three ăE1
-convex components. Each of

these components has at most three păE1
qE2

-components, etc. Thus, D can have a maximum of
3n ă ~E

-convex components. Taking into account (c), it follows that a subset D Ď X has finitely
many ă-convex components if and only if D has finitely many ă ~E

-convex components.

1.2. Relative definability.

Definition 1.4. Let ppxq be a partial type over A. A set X Ď ppCq is relatively B-definable within

ppCq if X “ D X ppCq holds for some B-definable set D Ď C|x|. In that case, any formula φpxq that
defines D is called a relative definition of X within ppCq, and we also say that X is relatively defined
by φpxq within ppCq.

Clearly, the family of relatively B-definable subsets of a type-definable set is closed for finite Boolean
combinations. Also, if the subset P Ď Cn is type-definable over A, then so is any finite power of P .
Therefore, the relative definability of the relations on P is well defined. For example, if a relation
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R Ď P 2 is relatively defined by a formula φpx, yq and if pP,Rq is a linear order, then we say that φ
relatively defines a linear order on P . Similarly, if P Ď Cn and Q Ď Cm are type-definable sets, then
so is the set P ˆQ and the relative definability of (graphs of) functions f : P Ñ Q is well defined.

Several interesting properties of relatively definable relations on ppCq can be transferred to a defin-
able neighborhood θpCq Ě ppCq (where θpxq P p). For example, assume that φpx, yq relatively defines a
pre-order on ppCq. Let ψpx, y, zq :“ φpx, xq ^ pφpx, yq ^ φpy, zq Ñ φpx, zqq. Then ppxq Y ppyq Y ppzq $
ψpx, y, zq, so by compactness there exists a θpxq P ppxq such that tθpxq, θpyq, θpzqu $ ψpx, y, zq. There-
fore, φpx, yq relatively defines a pre-order on θpCq and pppCq, φpppCqqq is a suborder.

The key point in the above argument is that the theory of pre-orders is universally axiomatizable,
so that the property “φpx, yq relatively defines a pre-order on ppCq” can be expressed by a sentence
saying that “ψpx, y, zq holds for all x, y, z realizing p”. Formally, this is expressed by the following

L8,ω-sentence: p@x, y, zq
´

Ź

θPppθpxq ^ θpyq ^ θpzqq Ñ ψpx, y, zq
¯

, which will be informally denoted by

p@x, y, z |ù pq ψpx, y, zq. More generally, we will consider L8,ω-sentences denoted informally by p@x1 |ù
p1q . . . p@xn |ù pnq ψpx1, . . . , xnq, where p1px1q, . . . , pnpxnq are partial types and ψpx1, . . . , xnq an LC-
formula, and call them tp-universal sentences; the properties of relations (and their defining formulae)
expressed by these sentences are called tp-universal properties. For example, “φpx, yq relatively defines
a pre-order on ppCq” and “ď is a relatively definable pre-order on ppCq” are tp-universal properties.
The following is a version of the compactness that will be applied further in the text when dealing
with tp-universal properties.

Fact 1.5. Suppose that p1px1q, . . . , pnpxnq are partial types and φpx1, . . . , xnq is an LC-formula such
that C |ù p@x1 |ù p1q . . . p@xn |ù pnq φpx1, . . . , xnq. Then there are formulae θipxiq P pi for all 1 ď i ď n

such that:

C |ù p@x1 . . . xnq

˜

ľ

1ďiďn

θ1
ipxiq Ñ φpx1, . . . , xnq

¸

for all formulae θ1
ipxiq such that θ1

ipCq Ď θipCq (1 ď i ď n).

Remark 1.6. A finite conjunction of tp-universal sentences is equivalent to a tp-universal sentence.
For example, p@x |ù pqp@y |ù qqφpx, yq ^ p@x |ù rqp@y |ù pqψpx, yq is equivalent to p@x, t |ù pqp@y |ù
qqp@z |ù rqpφpx, yq ^ ψpz, tqq.

One typical application of Fact 1.5 is the following. Let P “ pppCq;R1, . . . , Rnq, where ppxq is
a partial type over A and where each Ri is a relatively A-definable finitary relation on ppCq; let φi
relatively define Ri. Suppose that some interesting property of P can be expressed by a tp-universal
sentence p@x1, . . . , xm |ù pq ψpx1, . . . , xmq, where the formula ψ P LA is built from φ1, . . . , φn (viewed
as atomic); then Fact 1.5 produces A-definable superstructures pθpCq;φ1pθpCqq, . . . , φnpθpCqqq of P with
the same property; we will call them definable extensions of P. In all future applications, we will fix
the sequence of all relevant formulas before applying Fact 1.5.

Example 1.7. (a) Let P “ pppCq;ăq be a relatively A-definable linear order; we will always assume
that ă is defined by the formula x ă y. Clearly, that P is a linear order is expressible by a
tp-universal sentence (built from x ă y), so by Fact 1.5 there is θpxq P p such that x ă y defines a
linear order, also denoted by ă, on θpCq; pθpCq;ăq is a definable extension of P.

(b) Consider P “ pppCq;ă, Eq, where ă is a linear order and E is a convex equivalence relation; we will
always implicitly assume that E is relatively defined by Epx, yq. Each of the following properties:
“x ă y defines a linear order on ppCq”, “Epx, yq defines an equivalence relation on ppCq” and
“E-classes are ă-convex subsets of ppCq” is a tp-universal property (the latter is expressed by
p@x, y, z |ù pqpEpx, yq ^ x ă z ă y Ñ Epx, zqq). By Remark 1.6, the conjunction of these

properties is also tp-universal, so by Fact 1.5, there exists an A-definable extension pθpCq;ă, Êq of

P such that ă is a linear order and Ê is a convex equivalence relation on θpCq.
(c) Let P “ pppCq;ă, E1, . . . , Enq be a relatively A-definable linear order with a Ď-increasing sequence

pE1, . . . , Enq of relatively A-definable ă-convex equivalence relations (each Ei defined by an LA-
formula Eipx, x

1q). Again, we can describe this by a tp-universal sentence, so an A-definable
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extension pθpCq,ă, Ê1, . . . , Ênq of P can be found such that pÊ1, . . . , Ênq is a Ď-increasing sequence
of ă-convex equivalence relations on θpCq.

Let f : ppCq Ñ qpCq be a relatively definable function; we will always implicitly assume that (the
graph of) f is relatively defined by fpx, yq. In general, this is not expressible by a tp-universal sentence
built from fpx, yq, although one part of the conclusion of 1.5 always holds: f has a definable extension
relatively defined by fpx, yq.

Fact 1.8. Let ppxq and qpyq be partial types over A and f : ppCq Ñ qpCq a relatively A-definable
function. Then:

(i) There are θppxq P p and θqpyq P q and a definable extension of f , f̂ : θppCq Ñ θqpCq, relatively
defined by fpx, yq.

(ii) The image fpppCqq is an A-type-definable subset of qpCq.
(iii) The kernel relation of f , Ker f , defined by fpxq “ fpx1q, is a relatively A-definable equivalence

relation on ppCq.
(iv) The inverse image f´1pDq of a relatively A-definable subset D Ď qpCq is a relatively A-definable

subset of ppCq.

Proof. (i) The sentence p@x, x1 |ù pqp@y |ù qqpfpx, yq ^ fpx1, yq Ñ x “ x1q expresses that fpx, yq
relatively defines a partial function. By Fact 1.5 there is a formula θqpyq P q such that fpx, yq relatively
defines a partial function from ppCq to θqpCq; clearly, this function is total. Now, “fpx, yq relatively
defines a function ppCq Ñ θqpCq” is expressed by p@x |ù pqpD1yqpθqpyq ^ fpx, yqq. By Fact 1.5 there is

a θppxq P p such that fpx, yq relatively defines a function f̂ : θppCq Ñ θqpCq. This proves (i).

Fix f̂ : θppCq Ñ θqpCq, an A-definable extension of f , given by (i). It is easy to see that: (ii) the

type tpDxqpf̂ pxq “ y^ ψpxqq | ψpxq P ppxqu defines fpppCqq; (iii) f̂pxq “ f̂px1q relatively defines Ker f .
(iv) Suppose that D is relatively defined by φpyq within qpCq. Then the set f´1pDq is relatively

defined by pDyqpf̂pxq “ y ^ θppxq ^ θqpyq ^ φpyqq. �

Further in the paper, when dealing with tp-universal properties that involve a relatively definable
function, say f : ppCq Ñ qpCq, we will proceed similarly as in the proof of part (i) of the previous fact:
First, we collect all relevant properties of relatively definable relations on qpCq and apply Fact 1.5 to
find an appropriate θqpyq P q such that, in addition, fpx, yq relatively defines a function from ppCq into
θqpCq. Then we proceed with this and other properties involving ppxq. Here is an example.

Example 1.9. Suppose that ppxq and qpyq are partial types over A, ăp and ăq are relatively A-
definable orders on ppCq and qpCq, respectively, and f : ppCq Ñ qpCq is a relatively A-definable strictly
păp,ăqq-increasing function. We find θppxq P p and θqpyq P q, such that the A-definable structure
determined by θppxq, θqpyq, x ăp x

1, y ăq y
1 and fpx, yq has the properties listed above, as follows.

First, apply Fact 1.5 to:
– y ăq y

1 relatively defines a linear order on qpCq, and
– fpx, yq relatively defines a partial function from ppCq into qpCq.

Let θqpyq P q be such that y ăq y
1 defines a linear order on θqpCq and fpx, yq relatively defines a

function from ppCq into θqpCq. The desired formula θppxq P p is obtained by applying Fact 1.5 to:
– x ăp x

1 relatively defines a linear order on ppCq, and
– fpx, yq relatively defines a strictly păp,ăqq-increasing function from ppCq into θqpCq.

1.3. Stationarily ordered types. In this subsection, we recall basic facts about stationarily ordered
types from [11].

Definition 1.10. A complete type p P SpAq is stationarily ordered (or so-type for short), if there exists
a relatively A-definable linear order ă on ppCq such that for every relatively definable set D Ď ppCq,
(exactly) one of the sets D and ppCqrD is left-eventual, and (exactly) one of them is right-eventual
in pppCq,ăq. In that case we say that pp,ăq is an so-pair over A.

Definition 1.11. For an so-pair p “ pp,ăq, define the left (pl) and the right (pr) globalization of p:
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plpxq :“ tφpxq P LC | φpCq X ppCq is left-eventual in pppCq,ăqu and
prpxq :“ tφpxq P LC | φpCq X ppCq is right-eventual in pppCq,ăqu.

We collect the basic properties of the defined globalizations. These were proved in [11, Remark 3.5,
Lemma 3.6]. However, to maintain the completeness of the presentation, we provide a proof here.

Fact 1.12. Let p “ pp,ăq be an so-pair over A.

(i) Both pl and pr are complete global types that extend p.
(ii) Both pl and pr are A-invariant types, so, in particular, they are nonforking extensions of p.

Moreover, pl and pr are the only A-invariant globalizations of p.
(iii) For all B Ě A the locus præBpCq is a final part of pppCq,ăq, and the locus plæBpCq is an initial

part of pppCq,ăq.
(iv) For a, b |ù p, a |ù plæAb iff b |ù præAa. In other words, pa, bq is a Morley sequence in pr over A iff

pb, aq is a Morley sequence in pl over A.
(v) For any relatively A-definable linear order Ÿ on ppCq, pp,Ÿq is also an so-pair over A.

Proof. (i) is easy. For (ii), note that the property being a left-eventual (right-eventual) subset of ppCq
is invariant under automorphisms from AutApCq, so both pl and pr are A-invariant. To see that they
are the only two A-invariant extensions, suppose that p is an A-invariant global extension of p. Note
that by A-invariance, either pa ă xq P p for all a |ù p or px ă aq P p for all a |ù p. In the first case,
it is easy to see that any φpxq P p has an arbitrarily large realization in ppCq, so φpCq X ppCq is a
right-eventual subset of pppCq,ăq, that is, φpxq P pr; p “ pr follows. Similarly, px ă aq P p implies
p “ pl.

(iii) Clearly, the locus præBpCq is right-eventual in pppCq,ăq, so tx P ppCq | a ă xu Ď præBpCq holds
for some and hence for all a |ù præB. Thus, præBpCq is final in pppCq,ăq. Similarly, plæBpCq is an
initial part of pppCq,ăq.

(iv) Suppose b |ù præAa and let c |ù p be such that b |ù plæAc; in particular, we have a ă b ă c.
By (iii), c ą b and b |ù præAa imply c |ù præAa, while a ă b and b |ù plæAc imply a |ù plæAc. Thus,
ab ” ac ” bc pAq. Now b |ù plæAc implies a |ù plæAb as pr is A-invariant. The other implication is
similar.

(v) Let x Ÿ y be an LA-formula that defines Ÿ. Clearly, for a |ù p, either x Ÿ a or a Ÿ x belongs
to pl. Without loss of generality, suppose that the former is the case. By the A-invariance of pl,
pxŸ aq P pl for all a |ù p. By (iv) and the A-invariance of pr, paŸ xq P pr for all a |ù p. It suffices to
prove that plæBpCq is an initial part of pppCq,Ÿq for all B Ě A; indeed, this implies that every formula
from pl is left-eventual in pppCq,Ÿq, and an analogous argument shows that every formula from pr is
right-eventual in pppCq,Ÿq, so we conclude that pp,Ÿq is an so-pair over A.

So, let B Ě A, a |ù plæB and b |ù p, b Ÿ a. Since pa Ÿ xq P pr, b ­|ù præAa follows. By saturation
find c |ù plæB such that a |ù plæBc; in particular, a |ù plæAc, so c |ù præAa by (iv). Since b ­|ù præAa,
c |ù præAa and præAapCq is a final part of pppCq,ăq by (iii), we conclude b ă c. Since c |ù plæB and
plæBpCq is an initial part of pppCq,ăq by (iii), b ă c implies b |ù plæB, and we are done. �

2. Weakly o-minimal types

The notion of a weakly o-minimal type, as defined below, was first observed by Belegradek, Peterzil
and Wagner in [1, p.1130], where they remark that every complete 1-type in a quasi-o-minimal theory
is weakly o-minimal. In this section, we introduce weakly o-minimal orders and types and prove a
few basic facts. For example, we prove that relatively definable equivalence relations on the locus
of a weakly o-minimal type are convex and pairwise Ď-comparable. We also show that the weak
o-minimality of a type (over A) is preserved under relatively A-definable mappings.

Definition 2.1. Let P be a type-definable set and ă a relatively definable linear order on P . We will
say that the order pP,ăq is weakly o-minimal if every relatively definable subset of P has finitely many
convex components.
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Definition 2.2. A complete type ppxq P SpAq is weakly o-minimal if there exists a relatively A-
definable linear order ă such that pppCq,ăq is a weakly o-minimal order. In that case, we say that
pp,ăq is a weakly o-minimal pair over A.

Remark 2.3. (a) If pP,ăq is a weakly o-minimal order and Q Ď P is a type-definable subset, then
the suborder pQ,ăq is also weakly o-minimal.

(b) Every complete type that extends a weakly o-minimal type is also weakly o-minimal. In fact, if
pp,ăq is a weakly o-minimal pair over A, B Ě A and the type q P SpBq extends p, then the pair
pq,ăq is weakly o-minimal over B because pqpCq,ăq is a suborder of pppCq,ăq.

(c) If the theory T is weakly o-minimal with respect to ă, then pP,ăq is a weakly o-minimal order
for every type-definable set P Ă C; in particular, the pair pp,ăq is weakly o-minimal for every
complete 1-type p. In fact, the latter holds even if T is weakly quasi-o-minimal with respect to ă.

(d) The weak o-minimality of a type is preserved by passing from T to T eq. More precisely, if pp,ăq
is a weakly o-minimal pair over A Ď C, then p, viewed as a T eq-type of a real sort, is also weakly
o-minimal (as witnessed by ă).

(e) If pppCq,ăq is a weakly o-minimal order, then so is pppCq,ă ~E
q for any sequence ~E of pairwise Ď-

comparable, relatively definable, ă-convex equivalence relations on ppCq; this is a consequence of
Remark 1.3(e). Similarly, if pp,ăq is a weakly o-minimal pair, then so is pp,ă ~E

q for any sequence
~E of pairwise Ď-comparable, relatively A-definable ă-convex equivalence relations.

(f) It is easy to see that every weakly o-minimal type is an so-type. In fact, every weakly o-minimal pair
over A, say p “ pp,ăq, is an so-pair over A; therefore, pr and pl, the right and left globalizations
of p, are well defined.

(g) The main advantage of weakly o-minimal types compared to so-types is that weak o-minimality
transfers to complete extensions.

Weakly o-minimal types have the following important property (later proved in Corollary 3.4):
Every weakly o-minimal type p P SpAq is weakly o-minimal with respect to any relatively A-definable
order on ppCq; that is, the order pppCq,Ÿq is weakly o-minimal for any relatively A-definable order Ÿ
on ppCq. However, this does not hold for all relatively C-definable orders, as illustrated in the following
example.

Example 2.4. Consider the structure M “ pR,ă, Sq where Spxq “ x` 1. M is o-minimal as a reduct
of the ordered group of reals, and the theory T “ ThpMq eliminates quantifiers. Since any translation
x ÞÑ x ` r is an automorphism of M, there is a unique complete type p P S1pHq; pp,ăq is a weakly
o-minimal pair over H. The only H-definable linear orders on R are: ă and its reverse ą; this follows
by elimination of quantifiers. Hence p is weakly o-minimal with respect to all H-definable orders. Let
Ÿ be defined by:

– for x P r0, 1q and y P r1, 2q: xŸ y iff x` 1 ď y, and y Ÿ x iff x` 1 ą y;
– for all other pairs px, yq define xŸ y iff x ă y.

It is not hard to see that Ÿ is a t0u-definable linear order on R. The order pR,Ÿq is not weakly
o-minimal, since the formula x ă 1

2
alternates on the sequence

¨ ¨ ¨ Ÿ
1

5
Ÿ 1`

1

5
Ÿ

1

4
Ÿ 1`

1

4
Ÿ

1

3
Ÿ 1`

1

3
.

Therefore, the type p P S1pT q is weakly o-minimal and pppCq,ăq is a weakly o-minimal order for all
H-definable orders on ppCq, but the order pppCq,Ÿq is not weakly o-minimal.

Recall that a function f : X Ñ Y is păX ,ăY q-increasing, where ăX is a linear order on X and ăY

a linear order on Y , if x ăX x1 implies that fpxq ďY fpx1q holds for all x, x1 P X .

Lemma 2.5. (i) Suppose that pP,ăq is a weakly o-minimal order, D is a definable set, and f :
P Ñ D is a relatively definable function with a convex kernel. For y, y1 P fpP q define: y ăf y

1

iff f´1ptyuq ă f´1pty1uq. Then pfpP q,ăf q is a weakly o-minimal order, and f : P Ñ fpP q is
pă,ăf q-increasing.
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(ii) The weak o-minimality of types is preserved under interdefinability, that is, if p, q P SpAq are
interdefinable, then p is weakly o-minimal iff q is such.

Proof. (i) Let P be type-defined by ppxq and let D “ ψpCq. Suppose that x ă y and fpx, yq relatively
define ă and f respectively. The kernel relation, Ker f , is relatively defined by pDyqpψpyq ^ fpx, yq ^
fpx1, yqq on P . We have the following:

– x ă x1 defines a linear order on ppCq and fpx, yq defines a function ppCq Ñ ψpCq;
– pDyqpψpyq ^ fpx, yq ^ fpx1, yqq defines a convex equivalence relation on pppCq,ăq).

This is expressible by a tp-universal sentence, so by Fact 1.5 there exist a definable extension pθpCq,ăq

of pppCq,ăq and a definable extension f̂ : θpCq Ñ ψpCq of f such that Ker f̂ is a ă-convex equivalence

relation on θpCq. By the convexity of Ker f̂ , it is easy to see that f̂´1ptyuq ă f̂´1pty1uq defines a linear

order on f̂pθpCqq that agrees with ăf on fpP q. By Fact 1.8, the set fpP q is type-definable, so ăf is
relatively definable on fpP q. It is easy to see that the function f : P Ñ fpP q is pă,ăf q-increasing.

Now we prove that pfpP q,ăf q is a weakly o-minimal order. Let D1 be a relatively definable subset
of fpP q; we need to show that D1 has finitely many convex components in pfpP q,ăf q. By Fact 1.8,
the inverse image f´1pD1q is a relatively definable subset of P ; the weak o-minimality of pP,ăq implies
that f´1pD1q has finitely many ă-convex components, say n. Since f : P Ñ fpP q is pă,ăfq-increasing
and surjective, it follows that the set D1 “ fpf´1pD1qq has exactly n convex components in pfpP q,ăf q.
Thus, pfpP q,ăf q is weakly o-minimal.

(ii) follows easily from (i). �

Lemma 2.6. Let pp,ăq be a weakly o-minimal pair over A and let B Ě A.

(i) If D is a relatively B-definable subset of ppCq, then every convex component of D, as well as each
of the sets tx P ppCq | x ă Du and tx P ppCq | D ă xu, is relatively B-definable.

(ii) If q P SpBq is an extension of p, then qpxq is determined by the subtype of all LB-formulae that
relatively define a convex subset. In particular, qpCq is a convex subset of ppCq and pq,ăq a weakly
o-minimal pair over B.

Proof. (i) Let D “ φpppCqq. Denote by C0 the finite convex partition of ppCq consisting of all the
convex components of the sets D and Dc “  φpppCqq. Let n “ |C0|. Then all the sets mentioned in
the conclusion of the lemma are members of C0; we will prove that every member of C0 is relatively
B-definable. Note that “x ă y defines a linear order on ppCq” and “φpxq determines a convex partition
of ppCq with at most n elements” are tp-universal properties; the latter is expressed by:

|ù p@x0, . . . , xn |ù pq

˜

x0 ă x1 ă . . . ă xn Ñ
ł

iăn

pφpxiq Ø φpxi`1qq

¸

.

By Fact 1.5 there is a formula θpxq P p such that x ă y defines a linear order on θpCq and φpxq induces a
convex partition C1 of pθpCq,ăq with ď n members. Then each component from C0 is the intersection
of the corresponding component from C1 with ppCq. Since the members of C1 are B-definable, the
desired conclusion follows.

(ii) Fix q P SpBq that extends p. For each φpxq P q let Dφ “ φpCq X ppCq, then qpCq “
Ş

φpxqPqDφ.

For each φ P q the set Dφ has finitely many convex components on ppCq and, by part (i), each of them
is relatively B-definable. Notice that the LB-formulae that relatively define the components can be
chosen pairwise inconsistent, in which case exactly one of them, say θφpxq, belongs to qpxq; denote by
Cφ the component relatively defined by θφpxq. Then qpCq “

Ş

φpxqPq Cφ and tθφpxq | φ P qu $ qpxq.

Finally, since each Cφ is a convex subset of ppCq, so is the intersection
Ş

φpxqPq Cφ “ qpCq. �

Corollary 2.7. Let p “ pp,ăq be a weakly o-minimal pair over A and let B Ě A. Then the set
SppBq “ tq P SnpBq | p Ď qu is linearly ordered by ă; plæB “ minSppBq and præB “ maxSppBq.

Proof. By Lemma 2.6(ii), tqpCq | q P SppBqu is a convex partition of ppCq, so it is naturally linearly
ordered by ă. The second assertion is valid by Fact 1.12(iii). �
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In Lemma 2.6(ii), we proved that every complete type extending a weakly o-minimal p has a convex
locus in pppCq,ăq (for any ă witnessing the weak o-minimality of p. Now we show that this actually
characterizes weakly o-minimal types.

Lemma 2.8. Let p P SpAq and ă be a relatively A-definable linear order on ppCq. If for all B Ě A

and all q P SpBq that extend p the locus qpCq is convex in pppCq,ăq, then pp,ăq is a weakly o-minimal
pair.

Proof. Denote λ “ 2ℵ0`|T |`|A|. By way of contradiction, suppose that formula φpx, bq relatively
defines a subset of ppCq that has infinitely many convex components in pppCq,ăq. Let y “ pxαqαăλ` .
By compactness, the set πpyq “ txα ă xβ | α ă β ă λ`u Y t pφpxα, bq Ø φpxα`1, bqq | α ă λ`u
is satisfiable; let a “ paαqαăλ` realize πpyq. Since there are at most λ extensions of p over Ab,
there are α ă β ă λ` such that aα ” aβ pAbq. Note that aα ı aα`1 pAbq, so β ą α ` 1. Since
also aα ă aα`1 ă aβ, this contradicts the assumption that the locus of tppaα{Abq is convex within
pppCq,ăq. �

Definition 2.9. For a complete type p P SpAq, define Ep as the set of all relatively A-definable
equivalence relations on ppCq; 1p P Ep is the complete relation ppCq2.

Proposition 2.10. Let pp,ăq be a weakly o-minimal pair over A. Then:

(i) Every relation from Ep is ă-convex;
(ii) pEp,Ďq is a linear order.

Proof. (i) Let E P Ep. By way of contradiction, suppose that E is not convex and choose a1 ă b1 ă a2
realizing p such that |ù Epa1, a2q ^  Epa1, b1q. Let f P AutApCq map a1 to a2. Define fpanq “ an`1

and fpbnq “ bn`1 for n ě 1. Then |ù Epan, an`1q^ Epan, bnq holds for all n ě 1. Therefore, members
of the sequence a1 ă b1 ă a2 ă b2 ă a3 ă . . . alternately satisfy the formula Epa1, xq; that contradicts
weak o-minimality of pp,ăq.

(ii) Let E1, E2 P Ep and a |ù p. It suffices to prove rasE1
Ď rasE2

or rasE2
Ď rasE1

. Suppose, for
the sake of contradiction, that b P rasE1

r rasE2
and c P rasE2

r rasE1
. By (a), both rasE1

and rasE2

are convex, so either b ă rasE2
and rasE1

ă c, or c ă rasE1
and rasE2

ă b. Without loss, suppose
that the former holds. Take f P AutApCq such that fpbq “ a, and let fpaq “ a1; clearly, a ă a1 as
b ă a, and a1 P rasE1

as |ù E1pb, aq. Thus, a1 ă c as rasE1
ă c. Since a ă a1 ă c, a, c P rasE2

, and
since rasE2

is convex, we obtain |ù E2pa, a
1q. Thus, |ù E2pf

´1paq, f´1pa1qq holds, that is, |ù E2pb, aq;
a contradiction. �

Corollary 2.11. If pp,ăq is a weakly o-minimal pair over A, then Ker f P Ep is a convex equivalence
relation for any relatively A-definable function f from ppCq into an A-definable set.

Proof. By Fact 1.8 the kernel Ker f is relatively A-definable, so it is convex by Proposition 2.10(i). �

Proposition 2.12. Let pp,ăq be a weakly o-minimal pair over A and let q P SpAq. Suppose that
f : ppCq Ñ qpCq is a relatively A-definable function. Then:

(i) pq,ăf q is a weakly o-minimal pair over A, where ăf is defined by y ăf y1 iff f´1ptyuq ă
f´1pty1uq; in particular, q is a weakly o-minimal type.

(ii) f : pEp,Ďq Ñ pEq ,Ďq is an order-epimorphism whose restriction tE P Ep | Ker f Ď Eu Ñ Eq is
an order-isomorphism;

(iii) For all E P Ep, rxsE ÞÑ rfpxqsfpEq defines a function fE : ppCq{E Ñ qpCq{fpEq.

Proof. (i) By Corollary 2.11, the kernel relation, Ker f , is convex on pppCq,ăq. Hence, the weakly o-
minimal order pppCq,ăq and the function f satisfy the assumptions of Lemma 2.5(i); we conclude that
pfpppCqq,ăf q is a weakly o-minimal order. As fpppCqq “ qpCq, the pair pq,ăf q is weakly o-minimal
over A.

(ii) Here, the main task is to prove that f determines a function from Ep to Eq . Fix E P Ep and
we will prove fpEq P Eq. As Ker f P Ep, by Proposition 2.10(ii), we have two possibilities: E Ď Ker f
and Ker f Ď E. Clearly, E Ď Ker f implies fpEq “ idqpCq P Eq and we are done, so from now on
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assume Ker f Ď E. Suppose that f is relatively defined by the LA-formula fpx, yq. By Fact 1.5 there
is an A-definable set D Ě qpCq, defined by ψpyq say, such that fpx, yq relatively defines a function
ppCq Ñ D. Then the formula pDyqpψpyq ^ fpx, yq ^ fpx1, yqq relatively defines the kernel Ker f , so we
have the following properties:

(1) pppCq,ă, Eq is a linear order with a convex equivalence relation;
(2) fpx, yq relatively defines a function ppCq Ñ D;
(3) pDyqpψpyq ^ fpx, yq ^ fpx1, yqq relatively defines a convex equivalence on pppCq,ăq;
(4) |ù p@x, x1 |ù pqppDyqpψpyq ^ fpx, yq ^ fpx1, yqq Ñ Epx, x1qq.

Here, (3) says that Ker f is convex on pppCq,ăq and (4) says Ker f Ď E. Clearly, (1)–(4) are tp-

universal properties, so by Fact 1.5 there exists an A-definable set Dp Ě ppCq such that letting Ê and

f̂ be as usual, we have: pDp,ă, Êq is a linear order with a convex equivalence relation; f̂ : Dp Ñ D;

Ker f̂ is a convex equivalence on pDp,ăq and Ker f̂ Ď Ê. Furthermore, by replacing D with f̂pDpq the

kernel relation does not change, so we can also assume that f̂ is surjective. Note that Ker f̂ Ď Ê implies

that f̂pÊq is an equivalence relation on Dq; clearly, f̂pÊq is A-definable. Then f̂pÊqæqpCq “ fpEq is a
relatively A-definable equivalence relation on qpCq, so fpEq P Eq. Therefore, f maps Ep to Eq.

To show that f is surjective, let F P Eq be relatively defined by F py, y1q. Then E1 “ tpx, x1q P
ppCq2 ||ù F pfpxq, fpx1qqu is an equivalence relation on ppCq that is relatively defined by pDy, y1 P
Dqpfpx, yq ^ fpx1, y1q ^F py, y1qq, so E1 P Ep. As fpE

1q “ F is clearly true, the function f : Ep Ñ Eq is
surjective; it follows that f is an order-epimorphism.

Finally, note that Ker f Ď E1 Ă E2 implies fpE1q Ă fpE2q, so f : tE P Ep | Ker f Ď Eu Ñ Eq is an
order-isomorphism. This completes the proof of (ii). (iii) follows from (ii) �

Remark 2.13. A consequence of the previous proposition is that, roughly speaking, the quotient
pp{E,ăq of a weakly o-minimal pair pp,ăq over A by a relatively A-definable (convex) equivalence
relation E is also a weakly o-minimal pair. In general, p{E is not a Ceq-type, so formally it cannot be

a weakly o-minimal type. So, instead of p{E we will work with p{Ê P SeqpAq, where Ê is a definable

(convex) extension of E. The pair pp{Ê,ăq is weakly o-minimal by the previous proposition, and

p{E is interdefinable with p{Ê in the sense that for each a |ù p, hyperimaginary rasE and imaginary
ras

Ê
P Ceq are interdefinable (meaning AutArasE pCq “ AutAras

Ê
pCq).

In the next lemma, we will state some basic properties of the pă ~E
,Ÿq-increasing functions that will

be used in the proof of the monotonicity theorems.

Lemma 2.14. Suppose that pp,ăq and pq,Ÿq are weakly o-minimal pairs over A, ~E “ pE1, . . . , Enq P
pEp r t1puq

n an Ď-increasing sequence, and f : ppCq Ñ qpCq a non-constant, relatively A-definable
function such that Kerpfq Ď E1. Then:

(i) f is pă ~E
,Ÿq-increasing iff it is pă,Ÿ

fp~Eqq-increasing;

(ii) If f is pă ~E
,Ÿq-increasing, then:

(a) fEn
: ppCq{En Ñ qpCq{fpEnq is strictly pă,Ÿq-increasing;

(b) fEk
: ppCq{Ek Ñ qpCq{fpEkq is strictly păpEk`1,...,Enq,Ÿq-increasing for all k ď n.

Proof. Since Ker f Ď E1 holds, we can apply Proposition 2.12(ii) and conclude that pfpE1q, . . . , fpEnq
is an increasing sequence of convex equivalences on qpCq. In particular:

(˚) pa, bq P Ek ô pfpaq, fpbqq P fpEkq holds for all k ď n.

(i) We will prove the case n “ 1; the general case follows from this one and Remark 1.3(b) by easy
induction. To prove pñq, suppose that f is păE1

Ÿq-increasing, and let a ă b be realizations of p.
We consider two cases. If pa, bq P E1, then b ăE1

a, so fpbq Ĳ fpaq as f is păE1
,Ÿq-increasing. Since

also pfpaq, fpbqq P fpE1q by p˚q, we conclude fpaq ĲfpE1q fpbq. On the other hand, if pa, bq R E1, then
a ăE1

b, so fpaq Ĳ fpbq as f is păE1
,Ÿq-increasing. Since also pfpaq, fpbqq R fpE1q by p˚q, we conclude

fpaq ĲfpE1q fpbq. Therefore, for all a, b |ù p, a ă b implies fpaq ĲfpE1q fpbq, so f is pă,ŸfpE1qq-
increasing. This completes the proof of pñq. To prove pðq, note that f being pă,ŸfpE1qq-increasing is



WEAKLY O-MINIMAL TYPES 13

the same as being ppăE1
qE1

,ŸfpE1qq-increasing as păE1
qE1

“ă. So, by pñq, f is păE1
, pŸfpE1qqfpE1qq-

increasing, that is, it is păE1
,Ÿq-increasing as pŸfpE1qqfpE1q “ Ÿ.

(ii) Suppose that f is pă ~E
,Ÿq-increasing. To prove part (a), assume that a, b |ù p and rasEn

ă rbsEn
.

Since En is maximal in ~E, the orders ă and ă ~E
agree on the En-classes, so fprasEn

q Ĳ fprbsEn
q follows

as f is pă ~E
,Ÿq-increasing. Furthermore, by p˚q, rasEn

ă rbsEn
implies pfpaq, fpbqq R fpEnq, so the

classes rfpaqsfpEnq and rfpbqsfpEnq are distinct; rfpaqsfpEnq Ÿ rfpbqsfpEnq follows. Therefore, fEn
is

strictly pă,Ÿq-increasing, which proves part (a). To prove (b), consider pppCq,ăpEk`1,...,Enqq instead
of pppCq,ăq. Then f is ppăpEk`1,...,EnqqpE1,...,Ekq,Ÿq-increasing by Remark 1.3(b), so fEk

is strictly
păpEk`1,...,Enq,Ÿq-increasing by part (a). �

3. Relatively definable orders and monotonicity theorems

In this section, we characterize relatively definable linear orders on the locus of a weakly o-minimal
type and, as corollaries, obtain monotonicity theorems. The most technically demanding part is
Theorem 3.3, where we prove that any pair of relatively definable orders on the locus of a weakly

o-minimal type p satisfies Ÿ “ă ~E
for some increasing sequence of relations ~E P pEpq

ăω . This result
has already been proved in [12, Proposition 5.2] in the context of weakly quasi-o-minimal theories.
Although the proof there ad verbum goes through in the context of weakly o-minimal types, we present
a simpler argument here.

Lemma 3.1. Let pp,ăq be a weakly o-minimal pair over A and φpx, yq an LA-formula. Let Cpaq “
φpC, aq. Suppose that for some (any) a |ù p, Cpaq is an initial part of tx P ppCq | a ă xu. Then there
do not exist a1 ă b0 ă a0 realizing p with Cpb0q ă Cpa0q and Cpb0q Y Cpa0q Ď Cpa1q.

Proof. By way of contradiction, assume that a1 ă b0 ă a0 are realizations of p such that Cpb0q ă Cpa0q
and Cpb0q Y Cpa0q Ď Cpa1q; in particular, a1 ă Cpb0q ă a0. Let f P AutApCq map a0 to a1, and for
n ě 0 define an`1 “ fpanq and bn`1 “ fpbnq; by induction we have an`1 ă bn ă an, Cpanq Ď Cpan`1q
and an`1 ă Cpbnq ă an. Since a0 P Cpa0q Ď Cpa1q Ď Cpanq Ď . . . , we conclude |ù φpa0, anq as φpx, anq
relatively defines Cpanq. Also, an`1 ă Cpbnq ă an implies a0 ą Cpb0q ą Cpb1q ą . . . , so a0 R Cpbnq,
that is, |ù  φpa0, bnq. Therefore, the members of the sequence ¨ ¨ ¨ ă a2 ă b1 ă a1 ă b0 ă a0 alternately
satisfy the formula φpa0, xq, contradicting the fact that pp,ăq is a weakly o-minimal pair. �

Definition 3.2. Let p “ pp,ăq be an so-pair over A and let Ÿ be a relatively A-definable linear order
on ppCq. We say that the order Ÿ has the same orientation as ă if for some (all) a |ù p the formula
aŸ x relatively defines a right-eventual part of pppCq,ăq.

Let pp,ăq be an so-pair and let Ÿ be a relatively definable order on ppCq. By the definition of
so-pairs, for some (any) a |ù p, some final part of pppCq,ăq is contained in the set defined by aŸ x or
by xŸ a. Therefore, Ÿ or its reverse Ÿ˚ has the same orientation as ă.

Theorem 3.3. Suppose that p “ pp,ăq is a weakly o-minimal pair over A and Ÿ a relatively A-
definable linear order on ppCq. Then there exists a unique strictly increasing sequence of equivalence

relations ~E “ pE0, E1, ...Enq P E
n`1
p such that E0 “ idppCq and Ÿ “ă ~E

. Moreover, ă and Ÿ have the
same orientation if and only if En ‰ 1p.

Proof. For a |ù p, the subsets of pa,`8qp “ tx P ppCq | a ă xu relatively defined by the formulae
a Ÿ x and x Ÿ a have finitely many convex components in ppC,ăq. These components are relatively
Aa-definable by Lemma 2.6(i), form a ă-convex partition C0paq ă C1paq ă ¨ ¨ ¨ ă Cnpaq of pa,`8qp
and alternately satisfy x Ÿ a and a Ÿ x; note that we obtain the same partition if we work with the
reverse Ÿ˚ instead of Ÿ. We proceed by induction on n.

If n “ 0, then for any a, b |ù p, a ă b implies b P C0paq, so a Ÿ b or b Ÿ a is valid, depending on
whether C0paq is determined by aŸx or xŸa. Thus, ăĎ Ÿ or ăĎ Ÿ˚, that is, either ă“ Ÿ or ă“ Ÿ˚

holds by linearity. So taking ~E “ pidppCqq or ~E “ pidppCq,1pq completes the proof.
Assume that n ě 1. For k “ 1, . . . , n let Ek be the equivalence relation in ppCq given by

supCk´1pxq “ supCk´1pyq (the sets Ck´1pxq and Ck´1pyq have the same set of strict upper bounds
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in pppCq,ăq). We will prove that Ek P Ep and that they are Ÿ-convex. Moreover, it will turn out that
pidppCq, E1, . . . , Enq or pidppCq, E1, . . . , En,1pq is the desired sequence.

For a while, we will assume that the elements of Cnpaq satisfy aŸ x, that is, that the orders ă and
Ÿ have the same orientation, so the elements of Cn´1paq satisfy xŸa. Define Cpaq “

Ť

iăn Cipaq; then
inf Cpaq “ a, and x P Cpyq is a relatively A-definable relation on ppCq. Also note that maxCpaq does
not exist, for if a1 “ maxCpaq and a2 “ maxCpa1q, then a1 P Cn´1paq and a

2 P Cnpaq X Cn´1pa
1q, so

a1 Ÿ a, a Ÿ a2 and a2 Ÿ a1; this is impossible. Finally, since Cn´1paq is a final part of Cpaq, we have
Enpx, yq iff supCpxq “ supCpyq.

Claim 1. b P Cn´1paq implies Cpbq Ď Cpaq.

Proof. Assume b P Cn´1paq; then a ă b and b Ÿ a. The set Cpaq is convex and contains b “ minCpbq
so, to prove Cpbq Ď Cpaq, it suffices to show that some final part of Cpbq is contained in Cpaq; we will
prove Cn´1pbq Ď Cpaq. For any x P Cn´1pbq we have b ă x and x Ÿ b. Combining with a ă b and
b Ÿ a we derive a ă x and x Ÿ a, so x P pa,`8qp and x R Cnpaq, and thus x P Cpaq. This proves
Cn´1pbq Ď Cpaq and completes the proof of the claim. �

Claim 2. If Cpaq X Cpa1q ‰ 0, then Enpa, a1q holds.

Proof. Suppose not. Without loss, let supCpaq ă supCpa1q. Since Cn´1pa1q is a final part of Cpa1q,
there exists a a0 P Cn´1pa1q such that Cpaq ă a0; clearly, Cpaq ă Cpa0q. By Claim 1, a0 P Cn´1pa1q
implies Cpa0q Ď Cpa1q. Additionally, note that supCpaq ă supCpa1q implies that the nonempty
set Cpaq X Cpa1q is a final part of Cpaq. Since Cn´1paq is also a final part of Cpaq, we conclude
Cn´1paq X Cpa1q ‰ H. Choose b0 P Cn´1paq X Cpa1q; b0 P Cpa1q in particular implies a1 ă b0. By
Claim 1, b0 P Cn´1paq implies Cpb0q Ď Cpaq, which together with Cpaq ă a0 implies Cpb0q ă Cpa0q
and b0 ă a0. Now, Cpb0q ă Cpa0q, b0 P Cpa1q and Cpa0q Ď Cpa1q imply Cpb0q Ď Cpa1q. Therefore, we
have a1 ă b0 ă a0 such that Cpb0q ă Cpa0q and Cpa0q Y Cpb0q Ď Cpa1q; this is impossible by Lemma
3.1. �

Claim 3. Enpx, yq iff x P Cpyq _ y P Cpxq _ x “ y, and En P Ep is a Ÿ-convex equivalence relation.

Proof. By Claim 2 we see that Enpx, yq if and only if CpxqXCpyq ‰ 0. Since maxCpxq does not exist,
Cpxq X Cpyq ‰ 0 is easily seen to be equivalent to x P Cpyq _ y P Cpxq _ x “ y, and since x P Cpyq
is a relatively A-definable relation, the relation En is also relatively A-definable. It remains to show
that En is Ÿ-convex, so assume that x Ÿ z Ÿ y and Enpx, yq hold. If Cpzq X pCpxq Y Cpyqq ‰ 0, then
by Claim 2 we have z P rxsEn

“ rysEn
and we are done. So suppose Cpzq X pCpxq Y Cpyqq “ 0. Since

these are convex sets and Cpxq X Cpyq ‰ 0, we see that Cpzq ă Cpxq Y Cpyq or Cpxq Y Cpyq ă Cpzq
hold. To rule out the first option, note that Cpzq ă Cpxq implies x P Cnpzq, which contradicts xŸ z.
The second option is impossible, as Cpyq ă Cpzq implies z P Cnpyq, which contradicts z Ÿ y. �

As a consequence of Claim 3 we see that orders ă and Ÿ agree on p{En: rxsEn
ă rysEn

iff rxsEn
Ÿ

rysEn
. Now, consider the convex decomposition of pa,`8qp with respect to the formulae x ŸEn

a

and a ŸEn
x. Since the order ŸEn

reverses the order Ÿ within each En-class and maintains the
order of En-classes, it follows that the corresponding decomposition is C0paq ă ¨ ¨ ¨ ă Cn´2paq ă
Cn´1paq Y Cnpaq and that the elements of the final component Cn´1paq Y Cnpaq satisfy the formula
a ŸEn

x. By the induction hypothesis, relations pE1, . . . , En´1q are relatively A-definable and ŸEn
-

convex; note that each of them refines En, so they are all Ÿ-convex. By the induction hypothesis and
Remark 1.3(b,c) we also have ă“ pŸEn

qpidppCq,E1,...,En´1q “ ŸpidppCq,E1,...,En´1,Enq, which is equivalent
to Ÿ “ăpidppCq,E1,...,Enq.

So far, assuming that the elements of Cnpaq satisfy a Ÿ x, that is, the orders ă and Ÿ have the
same orientation, we proved Ÿ “ăpidppCq,E1,...,Enq. Now, if the elements of Cnpaq satisfy xŸa, then the

orders ă and Ÿ˚ have the same orientation, so ă“ ŸpidppCq,E1,...,En,1pq easily follows. To finalize the

proof of the theorem, it remains to notice that the uniqueness of ~E follows from Remark 1.3(d). �

3.1. Monotonicity theorems and other corollaries of Theorem 3.3.
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Corollary 3.4. If pp,ăq is a weakly o-minimal pair over A, then so is the pair pp,Ÿq for every
relatively A-definable linear order Ÿ on ppCq.

Proof. Suppose that pp,ăq is a weakly o-minimal pair over A and Ÿ is a relatively A-definable linear

order on ppCq. By Theorem 3.3 there is a sequence ~E P Eăω
p such that Ÿ “ă ~E

. By Remark 2.3(e),
pp,Ÿq is a weakly o-minimal pair over A. �

Corollary 3.5. Suppose that p “ pp,ăq is a weakly o-minimal pair over A and ď a relatively A-
definable total pre-order on ppCq. Then there exists a unique strictly increasing sequence of equivalence

relations ~E “ pE0, . . . , Enq P E
n`1
p such that E0 is defined by x ď y ^ y ď x and for all x, y P ppCq:

x ď y if and only if E0px, yq _ x ă ~E
y.

Proof. Note that E0 P Ep, so it is convex by Proposition 2.10(i). By Fact 1.5 there is an A-definable
set D Ě ppCq such that: x ă y defines a linear order on D, x ď y defines a total pre-order on D,

and x ď y ^ y ď x defines a convex equivalence relation, Ê0, on pD,ăq. The canonical projection

π : ppCq Ñ p{Ê0pCq is relatively A-definable, so by Proposition 2.12(i) the pair pp{Ê0,ăq is weakly

o-minimal. Define: rxs
Ê0
Ÿrys

Ê0
iff  Ê0px, yq^x ď y; it is easy to see that Ÿ is a relatively A-definable

linear order on p{Ê0pCq, so we can apply Theorem 3.3. Let ~E1 “ pidp{Ê0pCq, E
1
1, . . . , E

1
nq P E

n`1

p{Ê0

be a

strictly increasing sequence such that Ÿ “ă ~E1 . By Proposition 2.12(ii) there is a strictly increasing

sequence ~E “ pE0, E1, . . . , Enq P En`1
p such that πp ~Eq “ ~E1. For all x, y P ppCq satisfying  Ê0px, yq

we have:

x ď y ô rxs
Ê0
Ÿ rys

Ê0
ô rxs

Ê0
ă ~E1 rysÊ0

ô x ă ~E
y,

where the last equivalence easily holds by induction on n. �

We will now prove Theorem 1.

Theorem 3.6 (Weak monotonicity). Suppose that p “ pp,ăpq is a weakly o-minimal pair over A,
pD,ăq is an A-definable linear order, and f : ppCq Ñ D is a relatively A-definable non-constant
function.

(i) There exists a unique strictly increasing sequence of equivalence relations ~E “ pE0, . . . , Enq P
En`1
p such that E0 “ Ker f and f is ppăpq~E ,ăq-increasing.

(ii) There exists an increasing sequence of A-definable convex equivalence relations ~F “ pF0, . . . , Fnq
on pD,ăq such that f is păp,ă~F

q-increasing.

Proof. (i) The conclusion follows easily by Corollary 3.5, after noting that fpxq ď fpyq relatively
defines a total pre-order on ppCq.

(ii) Let q “ fppq and let ~E satisfy the conclusion of (i). Then f : ppCq Ñ qpCq is ppăpq~E ,ăq-

increasing. By Proposition 2.12(ii), fp ~Eq “ pfpE0q, . . . , fpEnqq is an increasing sequence of convex,
relatively A-definable equivalence relations on qpCq, and f is păp,ăfpĒqq-increasing by Lemma 2.14(i).

Now, the sequence ~F satisfying the conclusion in (ii) can be found by routine compactness. �

In the following two theorems we deduce Theorem 2.

Theorem 3.7 (Local monotonicity). Suppose that p “ pp,ăpq is a weakly o-minimal pair over A,
pD,ăq is a A-definable linear order, and f : ppCq Ñ D is a relatively A-definable non-constant function.
Then there exists E P Ep r tidppCqu such that the restriction of f to each E-class is either constant or
strictly păp,ăq-monotone.

Proof. If Ker f ‰ idppCq then E “ Ker f satisfies the conclusion of the theorem, as f is constant on each
E-class. If f is strictly păp,ăq-monotone, then E “ 1p satisfies the conclusion. The remaining case

is where Ker f “ idppCq holds and f is not strictly păp,ăq-monotone. Let ~E “ pE0, . . . , Enq P En`1
p

be given by Theorem 3.6(i). In particular, E0 “ Ker f “ idppCq, and f not strictly păp,ăq-monotone
implies n ě 1. Then we easily see that E “ E1 satisfies the conclusion of the theorem. �
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Theorem 3.8 (Upper monotonicity). Suppose that p “ pp,ăpq is a weakly o-minimal pair over A,
pD,ăq is a A-definable linear order and f : ppCq Ñ D is a relatively A-definable non-constant function.

(i) There exists a E P Ep r t1pu such that one of the following two conditions holds for all x1, x2
realizing p:

rx1sE ăp rx2sE ñ fpx1q ă fpx2q or rx1sE ăp rx2sE ñ fpx1q ą fpx2q.

(ii) If q “ fppq, then there exists a E P Ep r t1pu such that the function fE : ppCq{E Ñ qpCq{fpEq,
defined by fEprxsEq “ rfpxqsfpEq, is strictly păp,ăq-monotone.

Proof. (i) Let ~E “ pE0, . . . , Enq P E
n`1
p be an increasing sequence given by Theorem 3.6(i). If En ‰ 1p

then ăp agrees with păpqpE0,...,Enq on ppCq{En, so for E “ En the first option of (i) holds. Otherwise,
ąp agrees with păpqpE0,...,En´1q on ppCq{En´1, so for E “ En´1 the second option of (i) holds.

(ii) Let E P Eprt1pu satisfy the conclusion of (i). Then the function fE is well defined by Proposition
2.12(iii), and strictly păp,ăq-monotone by (i). �

Now we turn to the context of weakly o-minimal theories and prove Theorem 3.

Theorem 3.9. Suppose that ThpC,ă, . . . q is weakly o-minimal, pD,Ÿq is an A-definable linear order
and f : CÑ D is an A-definable function. Then:

(i) There exists a finite convex A-definable partition C of C and an increasing sequence of A-definable

convex equivalence relations ~E on C such that f is pă ~E
,Ÿq-increasing on each member of C.

(ii) There exists a finite convex A-definable partition C of C and a convex A-definable equivalence
relation E on C with finitely many finite classes, such that E “

Ť

CPCEæC and the restriction
færasE is constant or strictly pă,Ÿq-monotone uniformly for all a P C.

Proof. (i) First, note that the pair pp,ăq is weakly o-minimal for every p P S1pAq. For each p P S1pAq

we will find a formula θp P p and a sequence ~Ep P E
ăω
p such that

(1) θppCq is a ă-convex subset of C and fæθppCq is pă ~Ep
,Ÿq-increasing,

in the following way. If f is constant on ppCq, then by compactness there is a θppxq P p such that f is
constant on θppCq; by the weak o-minimality of the theory we may suppose that θppCq is convex. Set
~Ep “ idppCq and note that fæθppCq is pă ~Ep

,Ÿq-increasing, so condition (1) is satisfied in this case. The

other case is where f is non-constant on ppCq. Then by Theorem 3.6(i) there is an increasing sequence
~E1
p P E

ăω
p such that fæppCq is pă ~E1

p
,Ÿq-increasing. Note that the following are tp-universal properties:

– ~E1
p is an increasing sequence of ă-convex equivalence relations on ppCq;

– f : ppCq Ñ D is a pă ~E1
p
,Ÿq-increasing function.

By Fact 1.5 there is a θppxq P p and an increasing sequence of A-definable ă-convex equivalence

relations ~Ep on θppCq such that ~EpæppCq “ ~E1
p and fæθppCq is pă ~Ep

,Ÿq-increasing; again, we can assume

that θppCq is a ă-convex subset of C, so condition (1) is satisfied.
Since trθppxqs | p P S1pAqu is an open cover of S1pAq, by compactness, we can find a finite subcover

trθp1
pxqs, . . . , rθpn

pxqsu. By a simple modification, we can assume that θpi
pxq’s are mutually contra-

dictory. It remains to construct the sequence ~E. First, note that we may assume that all ~Epi
’s are of

the same length. Indeed, if m is the maximal length, then every shorter sequence ~Epi
can be expanded

by adding an appropriate number of idθpi pCq at the beginning; this does not change ă ~Epi

. So, let

~Epi
“ pEpi,1, . . . , Epi,mq. Now, define ~E “ pE1, . . . , Emq in the obvious way: set Ej equal to Epi,j on

the part θpi
pCq, leaving the elements of different parts unrelated. Clearly, ă ~E

equals ă ~Epi

on θpi
pCq,

so the conclusion follows.

(ii) We need the following observation: if F is a convex definable equivalence relation on C, then
the set ta P C | rasF is infiniteu is definable, which follows from the fact that weak o-minimality of T
guarantees that F has only finitely many classes with finitely many but more than one element.

For each p P S1pAq we find a θppxq P p and an A-definable convex equivalence relation Ep on θppCq,
such that θppCq is convex and:
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(1) If fæppCq is constant, then fæθppCq is also constant and Ep “ θppCq
2;

(2) If fæppCq is non-constant, then each Ep-class is infinite and færasEp
is constant/strictly pă,Ÿq-

increasing/strictly pă,Ÿq-decreasing uniformly for all a P θppCq.

(1) is fulfilled as in the proof of (i). For (2), assume that f is non-constant. By Theorem 3.7, there exists
a Ep P Ep r tidppCqu such that færasEp

is constant/strictly pă,Ÿq-increasing/strictly pă,Ÿq-decreasing

on rasEp
uniformly for all a P ppCq; for simplicity, assume that færasEp

is strictly pă,Ÿq-increasing. Note

that Ep ‰ idppCq implies that each Ep-class is infinite. As in the proof of part (i), we find θppxq P p and
a convex A-definable equivalence relation on θppCq, also denoted by Ep, such that the restriction of f
to each Ep-class is strictly pă,Ÿq-increasing. By the above observation, we can further shrink θppCq
so that condition (2) is satisfied.

As in the proof of (i), choose a finite subcover trθp1
pxqs, . . . , rθpn

pxqsu of trθppxqs | p P S1pAqu. Let
C “ tθpi

pCq | i ď nu. For each C “ θpi
pCq P C denote EC :“ Epi

. Thus, we have a finite A-definable
convex cover C of C, and for each C P C a convex A-definable definable equivalence relation EC on C,
such that at least one of the following two conditions is satisfied:

(3) fæC is constant and EC “ C2;
(4) EachEC -class is infinite and frasEC

is constant/strictly pă,Ÿq-increasing/strictly pă,Ÿq-decreasing
uniformly for all a P C.

Refine C in an obvious way to become a convex partition of C; attach to each member of the partition
the restriction of an appropriately chosen EC . Note that after this modification, we have at most
finitely many “new” finite EC -classes (parts of previously infinite classes); each of those classes is A-
definable, so we can split each of them into single-element classes and form a new A-definable convex
partition, each of whose members satisfies at least one of conditions (3) and (4). It is easy to see that
the partition C and the relation E “

Ť

CPCEC satisfy the conclusion of (ii). �

3.2. Weak quasi-o-minimality.

The following proposition describes the weak quasi-o-minimality of a theory as a “local” property
of its complete 1-types. This extends [11, Theorem 1(ii)], in which we showed that the weak quasi-o-
minimality of T does not depend on the particular choice of the linear order.

Proposition 3.10. A complete first-order theory T with infinite models is weakly quasi-o-minimal if
and only if every type p P S1pT q is weakly o-minimal.

Proof. It is easy to see that if T is weakly quasi-o-minimal with respect to ă, then pp,ăq is a weakly
o-minimal pair over H for every p P S1pT q. For the converse, assume that every p P S1pT q is weakly
o-minimal. In particular, every p P S1pT q is linearly ordered (there is a relatively H-definable linear
order on ppCq), so by routine compactness we may find an H-definable linear order on whole C. We
prove that T is weakly quasi-o-minimal with respect to ă.

Let D Ď C be definable. By Corollary 3.4, pp,ăq is a weakly o-minimal pair for every p P S1pT q, so
DX ppCq has finitely many convex components, say np, in pppCq,ăq. By compactness, as in the proof
of Lemma 2.6(i), we find θppxq P p such that D X θppCq has np convex components in pθppCq,ăq, say
Dp,i, 1 ď i ď np: D X θppCq “

Ťnp

i“1
Dp,i. Note that each of Dp,i is definable. Setting Dconv

p,i as the

convex hull of Dp,i in pC,ăq, we have Dp,i “ Dconv
p,i X θppCq, so DX θppCq “

Ťnp

i“1
Dconv

p,i X θppCq. Since
tθppxq | p P S1pT qu covers S1pT q, by compactness we find a finite sub-cover tθpj

pxq | 1 ď j ď mu. We
have:

D “ D X C “ D X
m
ď

j“1

θpj
pCq “

m
ď

j“1

D X θpj
pCq “

m
ď

j“1

npj
ď

i“1

Dconv
pj ,i

X θpj
pCq,

which is a Boolean combination of convex and H-definable sets, and we are done. �

The proposition motivates the following definition.

Definition 3.11. A partial type πpxq is weakly quasi-o-minimal over A if πpxq is over A and every
p P SpAq extending πpxq is weakly o-minimal; in that case we say that the set πpCq is weakly quasi-o-
minimal over A.
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Note that if πpxq is weakly quasi-o-minimal over A, then πpxq is weakly quasi-o-minimal over any
B Ě A as complete extensions of weakly o-minimal types are weakly o-minimal by Lemma 2.6(ii).

Proposition 3.12. Let P be type-definable over A. Then P is weakly quasi-o-minimal over A if and
only if there exists a relatively A-definable linear order ă on P such that every relatively definable
subset of P is a Boolean combination of ă-convex and relatively A-definable sets. In that case, the
latter is true for any relatively A-definable linear order ă on P .

Proof. The proof of Proposition 3.10 with obvious modifications goes through. �

Let pX,ăq be a linear order and C “ pC1, . . . , Cnq a partition of X . By ăC we denote the order ob-
tained by keeping the original order within each component and defining C1 ăC ¨ ¨ ¨ ăC Cn. Combining
the arguments from previous proofs, the following theorem can be routinely derived.

Theorem 3.13. Suppose that a type-definable set P is weakly quasi-o-minimal over A, ă is a relatively
A-definable linear order on P , pD,Ÿq is an A-definable linear order, and f : P Ñ D is a relatively

A-definable function. Then there are A-definable extensions pP̂ ,ăq of pP,ăq and f̂ : P̂ Ñ D, an A-

definable partition C of P̂ and an increasing sequence of A-definable ăC-convex equivalence relations
~E on P̂ such that f̂ is ppăCq~E ,Ÿq-increasing on each member of C.

4. Non-orthogonality and orientation

In this section, we study forking independence in the context of so-types. We introduce the notion
of p-genericity, and prove Theorems 4 and 5. We also prove that the following binary relations are
equivalences: forking on the set of realizations of all so-types over a fixed domain A, weak and forking
non-orthogonality of so-types over A, and direct non-orthogonality of so-pairs over A; As we remarked
before, this was proven in [11], but we find the current presentation substantially simpler and intuitive.
Almost all the results of this section are obtained in the context of so-types, exemptions are 4.10 and
4.21 which rely on the preservation of weak 0-minimality in extensions.

Lemma 4.1. Let p “ pp,ăq be an so-pair over A and let φpx, bq be any formula. Then the type
ppxq Y tφpx, bqu forks over A if and only if φpx, bq relatively defines a bounded subset of pppCq,ăq.

Proof. For one direction of the equivalence, assume that ppxq Y tφpx, bqu forks over A. By Fact
1.12(ii), pl and pr are nonforking extensions of p, so φpx, bq R plpxq Y prpxq. Then φpx, bq R prpxq
implies that ppCq X φpC, bq is upper bounded, while φpx, bq R plpxq implies that ppCq X φpC, bq is lower
bounded. Therefore, ppCq X φpC, bq is bounded in pppCq,ăq. For the other direction, assume that
ppCq X φpC, bq is bounded. Let b0 “ b, and let a0, a1 |ù p be such that a0 ă ppCq X φpC, b0q ă a1.
By compactness there is θpxq P p such that a0 ă θpCq X φpC, b0q ă a1. Let f P AutApCq be such
that fpa0q “ a1. Define an`1 :“ fpanq and bn`1 :“ fpbnq; each bn |ù tppb{Aq. By induction, we see
that an ă θpCq X φpC, bnq ă an`1. So tθpCq X φpC, bnq | n ă ωu is 2-inconsistent, which shows that
ppxq Y tφpx, bqu divides over A. �

Immediately from the lemma, we have the following corollary.

Corollary 4.2. Let p “ pp,ăq be an so-pair over A and let B Ě A.

(i) The type p has exactly two global nonforking extensions: pr and pl.
(ii) The only nonforking extensions of p in SpBq are præB and plæB .
(iii) The following holds for all q P SpBq that extend p: q forks over A if and only if the locus qpCq is

bounded in pppCq,ăq.

Notice that condition “ppxqYtφpxqu forks over A” from Lemma 4.1 does not refer to any particular
relatively definable order ă on the locus of the so-type p P SpAq, so the equivalent condition, φpppCqq
is bounded in pppCq,ăq, holds for all relatively A-definable orders on ppCq.

Definition 4.3. Let ppxq P SpAq be an so-type. We will say that φpxq is a p-bounded formula if
ppxqYtφpxqu forks over A; p-bounded subsets of ppCq are those that are relatively defined by p-bounded
formulas.
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Notice that any formula that relatively defines a p-bounded set is p-bounded, too.

Definition 4.4. Let p “ pp,ăq be an so-pair over A and B a small set. Define:

LppBq :“ pplæABqpCq; RppBq :“ ppræABqpCq; DppBq :“ ta P ppCq | a 6 |
!A

Bu.

Recall that p, q P SpAq are forking orthogonal, pKf q, if a |
!A

b holds for all a |ù p and b |ù q.

Lemma 4.5. Let p “ pp,ăq be an so-pair over A.

(i) LppBq is an initial and RppBq is a final part of pppCq,ăq.
(ii) a |

!A
B if and only if a P LppBq Y RppBq.

(iii) DppBq “ ppCqr pLppBq Y RppBqq is a convex (possibly empty), p-bounded subset of pppCq,ăq;
DppBq is the union of all p-bounded, relatively AB-definable subsets of ppCq.

(iv) There are three possible cases:
1˝ pMf tppB{Aq. Then LppBq ă DppBq ă RppBq is a convex partition of ppCq;
2˝ pKf tppB{Aq and pMw tppB{Aq. Then DppBq “ H and LppBq ă RppBq is a convex partition

of ppCq.
3˝ pKw tppB{Aq. Then LppBq “ RppBq “ ppCq and DppBq “ H.

Proof. (i) is Fact 1.12(iii), (ii)–(iv) follow by (i) and Corollary 4.2. �

By part (i) of the previous lemma, the set RppBq is a final part of pppCq,ăq, so its elements can be
thought of as being realizations of p which are “as far to the ă-right (from the point of view) of B as
possible”. This is formalized in the next definition.

Definition 4.6. Let p “ pp,ăq be an so-pair over A, B be a small set of parameters, and a P ppCq.
We say that a is right p-generic over B, denoted by BŸp a, if a P RppBq; similarly, a is left p-generic
over B if a P LppBq.

Remark 4.7. Let p “ pp,ăq be an so-pair over A.

(a) There exist left- and right p-generic elements over any small set B.
(b) By Fact 1.12(iv), for a, b |ù p, a P Lppbq iff b P Rppaq, that is, a is left p-generic over b iff b is right

p-generic over a.
(c) Lemma 4.5(i), B Ÿp a ă a1 implies B Ÿp a1.
(d) By Lemma 4.5(ii), for all a |ù p, a |

!A
B holds if and only if a is left or right p-generic over B.

(e) If a, b |ù p then a is left (resp. right) p-generic over b if and only if b is left (resp. right) p˚-generic
over a, where p˚ “ pp,ąq is the reverse of p.

(f) By Lemma 4.5(iv), pMf tppB{Aq and B Ÿp a imply DppBq ă a.
(g) Note that we did not choose a special symbol to denote the left p-genericity. However, “a is left

p-generic over B” can be expressed by B Ÿp
˚

a.

Lemma 4.8. Let p “ pp,ăpq and q “ pq,ăqq be so-pairs over A. Assume B Ÿp a. Then there exists
b |ù q such that B Ÿq bŸp a.

Proof. Choose b1 |ù q satisfying B Ÿq b1, and then a1 |ù p satisfying Bb1 Ÿp a1; in particular, B Ÿp a1

and b1Ÿp a1 hold. Then BŸp a1 and BŸp a imply tppa{ABq “ tppa1{ABq “ præAB. Let f P AutABpCq
map a1 to a. Put b “ fpb1q. Then B Ÿq b1 Ÿp a1 implies the desired conclusion B Ÿq bŸp a. �

Lemma 4.9. a |
!A

bô b |
!A

a holds for all realizations of so-types over A.

Proof. Suppose that p “ tppa{Aq and q “ tppb{Aq are so-types and b 6 |
!A

a; in particular, qMf p. Set

a0 :“ a and b0 :“ b and note b0 P Dqpa0q. Choose orders ăp and ăq such that p “ pp,ăpq and
q “ pq,ăqq are so-pairs over A. By Lemma 4.5(iv), Dqpa0q is a nonempty bounded subset of qpCq, and
by taking d0 P Lqpa0q and d1 P Rqpa0q we have d0 ăq Dqpa0q ăq d1. Let f P AutApCq be such that
fpd0q “ d1; set an`1 :“ fpanq and bn`1 :“ fpbnq for n “ 0, 1. Then Dqpa0q ăq Dqpa1q ăq Dqpa2q and
bi P Dqpaiq for i “ 0, 1, 2. Note that the sequence pa0, a1, a2q is ăp-monotone, so by possibly reversing
the order, we may assume that it is ăp-increasing.
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Since Dqpa0q ăq b1 P Dqpa1q we have a0 ı a1 pAb1q, and since Dqpa1q Q b1 ăq Dqpa2q we have
a1 ı a2 pAb1q. Consider the locus P of tppa1{Ab1q. Since a0 ăp a1, a1 P P , and a0 R P , P is not an
initial part of pppCq,ăpq, so a1 is not left p-generic over b1. Similarly, a1 ăp a2, a1 P P and a2 R P
imply that P is not a final part of pppCq,ăpq, so a1 is also not right p generic over b1. Thus, by Lemma
4.5(ii), a1 6 |

!A
b1. Applying f

´1 we get a 6 |
!A

b, and we are done. �

Lemma 4.10. Let p P SpAq be an so-type and let B Ě A.

(i) If q “ tppa{Bq is a nonforking extension of p, then Dppaq Ď qpCq.
(ii) If q in (i) is also an so-type over B (which is the case if p is weakly o-minimal, for example),

then Dppaq Ď Dqpaq.
(iii) For all a, a1 |ù p: a |

!A
B and a1 6 |

!A
a imply a ” a1 pBq.

Proof. (i) Let p “ pp,ăq be an so-pair over A. Since q is a nonforking extension of p, by Corollary
4.2(ii) we have q “ plæB or q “ præB; by reversing the order ă if necessary, we can assume q “ præB;
hence, BŸp a. Next, we show that Dppaq is lower bounded in qpCq. By Lemma 4.8 there exists a1 |ù p

such that BŸp a1Ÿp a. By Remark 4.7(b), a1 Ÿp a implies a1 P Lppaq, so a
1 ă Dppaq holds by Lemma

4.5(iv). BŸp a1 implies a1 |ù q, a1 P qpCq is a lower bound of Dppaq. As qpCq is a final part of pppCq,ăq
we conclude Dppaq Ď qpCq.

(ii) From the proof of (i), we have that Dppaq is lower bounded in qpCq; Dppaq is also upper bounded
by any a2 which satisfies aŸq a2. So, for each b P Dppaq, the locus of tppb{Baq is bounded in pqpCq,ăq,
and hence b P Dqpaq by Corollary 4.2(iii).

(iii) Suppose a |
!A

B and let q “ tppa{Bq. By (i), we have Dppaq Ď qpCq, so every element

a1 P Dppaq realizes q, that is, a ” a1 pBq. �

Now, we can prove Theorem 4.

Theorem 4.11. Let p “ pp,ăq be an so-pair over A. Assume that p is non-algebraic.

(i) x 6 |
!A

y defines a convex equivalence relation, denoted by Dp, on pppCq,ăq.

(ii) pppCq,Ÿpq is a strict partial order in which Ÿp-incomparability agrees with the relation Dp.
(iii) Ÿp and ă agree on ppCq{Dp; pppCq{Dp,Ÿ

pq is a dense linear order.

Proof. (i) The reflexivity is clear and the symmetry follows from Lemma 4.9. For transitivity, assume
a, b, c |ù p, a 6 |

!A
b, and b 6 |

!A
c. If a |

!A
c were true, then, by Lemma 4.10(iii), a |

!A
c and a 6 |

!A
b

would imply a ” b pAcq, which contradicts b 6 |
!A

c. Therefore, a 6 |
!A

c.

(ii) Clearly, Ÿp is antireflexive and the transitivity follows by Remark 4.14(c). To prove the other
claim, let a, b |ù p. By Remark 4.7(d), a 6 |

!A
b holds if and only if a is neither left nor right p-generic

over b. By Remark 4.7(b), a is left p-generic over b if and only if b is right p-generic over a. Therefore,
a 6 |

!A
b holds if and only if a is not right p-generic over b and b is not right p-generic over a, that is,

if a and b are Ÿp-incomparable.
(iii) By (i), the quotient ppCq{Dp is linearly ordered by ă. If rxsDp

Ÿp rysDp
then xŸp y and thus

x ă y. Conversely, if rxsDp
ă rysDp

then x |
!A

y, so by (ii) either xŸp y or yŸp x holds; the latter is

ruled out by x ă y. Therefore, Ÿp and ă agree on ppCq{Dp. So Ÿp is a linear order on ppCq{Dp. To
prove the density, assume rasDp

Ÿp rbsDp
. Then aŸp b, so by Lemma 4.8 there exists c |ù p such that

aŸp cŸp b; then rasDp
Ÿp rcsDp

Ÿp rbsDp
. �

4.1. Orientation.

Let p “ pp,ăpq and q “ pq,ăqq be so pairs. We have chosen a Ÿq b to describe that “b P qpCq is
as far to the ăq-right of a as possible”; the underlying intuition would be justified if “b is far to the
ăq-right of a” and “a is far to the ăp-left of b” would be equivalent. Note that option (I) in part (i)
of the following lemma says just that, which motivates the definition of direct non-orthogonality of
so-pairs.

Lemma 4.12. Suppose that p “ pp,ăpq and q “ pq,ăqq are so-pairs over A and pMw q.

(i) Exactly one of the following two conditions holds:
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(I) For all a |ù p and b |ù q: a P Lppbq ô b P Rqpaq and a P Rppbq ô b P Lqpaq.
(II) For all a |ù p and b |ù q: a P Lppbq ô b P Lqpaq and a P Rppbq ô b P Rqpaq.

(ii) (I) is equivalent to: aŸq b and b Žp a hold for some a |ù p and b |ù q.
(iii) (II) is equivalent to: aŸq b and b Ÿp a hold for some a |ù p and b |ù q.

Proof. (i) Let a |ù p and b |ù q. By Lemma 4.5(ii) we know that a |
!A

b is equivalent to a P

Lppbq Y Rppbq. By the independence symmetry, proved in Lemma 4.9, one more equivalent condition
is b P Lqpaq Y Rqpaq. Therefore, for all x |ù q we have:

(˚) a P Lppxq Y Rppxq if and only if x P Lqpaq Y Rqpaq.

Note that, by A-invariance of pl and pr, each of a P Lppxq and a P Rppxq determines a completion of
qpxq in SpAaq; denote these completions by qL and qR, respectively, and note that they are different
because of pMw q. Since x P Lqpaq determines the type qlæAapxq and x P Rqpaq determines qræAapxq,
the equivalence in (˚) can be expressed by tqL, qRu “ tqlæAa,qræAau. Here, we have two possibilities.
The first is qRpxq “ qlæAapxq and qLpxq “ qræAapxq (for all a |ù p); this is equivalent to (I). The other
possibility, qLpxq “ qlæAapxq and qRpxq “ præAapxq, corresponds to (II).

(ii) and (iii) Let a |ù p and b |ù q satisfy aŸq b. Notice that b Žp a is inconsistent with (II) and is
therefore equivalent to (I). Similarly, bŸp a is equivalent to (II). �

Definition 4.13. Let p “ pp,ăpq and q “ pq,ăqq be so-pairs over A and pMw q. The pairs p and q

are directly non-orthogonal, denoted by δApp,qq, if option (I) of Lemma 4.12 holds.

Remark 4.14. (a) Immediately from the definition, we find that δ is symmetric: δApp,qq iff δApq,pq.
(b) By Lemma 4.12, pMw q implies that exactly one of δApp,qq and δApp,q

˚q is true.
(c) So-pairs p “ pp,ăq and p1 “ pp,ă1q are directly non-orthogonal if and only if the orders ă and ă1

have the same orientation (in the sense of Definition 3.2). In that case, B Ÿp a iff B Ÿp
1

a for all
B and a |ù p.

Lemma 4.15. Let p “ pp,ăpq and q “ pq,ăqq be so-pairs over A and pMw q. Then δApp,qq is
equivalent to each of the following conditions:

(1) for all a1 ăp a2 |ù p, Rqpa1q Ě Rqpa2q, i.e. a1 ăp a2 Ÿ
q x implies a1 Ÿ

q x;
(2) for all a1, a2 |ù p, a1 Ÿ

p a2 iff Rqpa1q Ľ Rqpa2q;
(3) There are no a |ù p and b |ù q such that aŸq b and bŸp a.

Proof. δApp,qq ñ(1) Assume δpp,qq. Let a1 ăp a2 realize p. Suppose b P Rqpa2q. Then b is right q-
generic over a2, so direct non-orthogonality implies that a2 is left p-generic over b, that is, a2 P Lppbq.
Combining with a1 ăp a2 we derive a1 P Lppbq, so direct nonorthoganality implies b P Rqpa1q.

(1)ñ(2) Assume (1) and let a1, a2 |ù p. For pñq, assume a1 Ÿ
p a2. Choose a1 |ù p satisfying

Rqpa1q Ľ Rqpa
1q and choose a1

2 satisfying a1a1Ÿ
p a1

2. In particular a1Ÿ
p a1

2, hence a1a2 ” a1a
1
2 pAq, so

we can find a |ù p such that a1a2a ” a1a
1
2a

1 pAq; Rqpa1q Ľ Rqpaq and aa1 Ÿ
p a2 hold. Since aŸp a2,

by (1), Rqpaq Ě Rqpa2q, which together with Rqpa1q Ľ Rqpaq implies Rqpa1q Ľ Rqpa2q.
For pðq, assume Rqpa1q Ľ Rqpa2q; let b P Rqpa1qrRqpa2q and note a1 ı a2 pAbq. By Lemma 4.9,

a1 |!A
b as b P Rqpa1q, so a1 ı a2 pAbq implies a1 |!A

a2 by Lemma 4.10(iii), so a2 |!A
a1 by Lemma

4.9. Thus either a2 P Rppa1q, i.e. a1 Ÿ
p a2, or a2 P Lppa1q. The latter implies a1 P Rppa2q by Remark

4.7(b), i.e. a2 Ÿ
p a1, so Rqpa2q Ľ Rqpa1q by pñq; a contradiction.

(2)ñ(3) Assume (2) and, towards a contradiction, suppose a Ÿq b Ÿp a. Let a1 |ù p be such that
b R Rqpa

1q. Since b P Rqpaq as a Ÿ
q b, and Rqpaq and Rqpa

1q are Ď-comparable as the final parts of
pppCq,ăpq, we conclude Rqpaq Ľ Rqpa

1q. By (2), aŸp a1 follows; in particular, a ăp a
1. Since a P Rppbq

as bŸp a, a ăp a
1 implies a1 P Rppbq. Thus, a ” a1 pAbq, but this contradicts b P Rqpaqr Rqpa

1q.
(3)ñ δApp,qq follows from Lemma 4.12(ii). �

In the following lemma, we prove a more general form of transitivity of Ÿ.

Lemma 4.16. Suppose that p “ pp,ăpq and q “ pq,ăqq are directly non-orthogonal so-pairs over A.

(i) For all a, b and B: B Ÿp a and aŸq b imply B Ÿq b.
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(ii) For all a, b and B: B Ÿtp,qu a and aŸtp,qu b imply B Ÿtp,qu b (where Ÿtp,qu “ Ÿp YŸq).
(iii) pppCq Y qpCq,Ÿp,qq is a strict partial order.

Proof. (i) Suppose not. Then b P Rqpaq r RqpBq. Since RqpBq and Rqpaq are the final parts of
pqpCq,ăqq we get RqpBq Ĺ Rqpaq. Let b1 P RqpBq. Choose a1 |ù p such that b1 P Lqpa

1q. Then
Lqpa

1q ăq Rqpa
1q and b1 P Lqpa

1q together imply b1 ăq Rqpa
1q, which combined with b1 P RqpBq gives

Rqpa
1q Ĺ RqpBq. Therefore, Rqpa

1q Ĺ RqpBq Ĺ Rqpaq holds and, in particular, a ı a1 pABq. Now, by
Lemma 4.15 Rqpaq Ľ Rqpa

1q implies aŸp a1, which together with B Ÿp a gives a, a1 |ù præAB and, in
particular, a ” a1 pABq; a contradiction.

(ii) Clearly, δApx,yq holds for all x,y P tp,qu, so by part (i), B Ÿx aŸy b implies B Ÿy b.
(iii) Irreflexivity is clear and transitivity follows from part (ii). �

Theorem 4.17. Let P denote the set of all so-pairs over A or the set of all weakly o-minimal pairs
over A. Denote by T the set of all types corresponding to an element of P and by TpCq the set of all
realizations of types of T.

(i) Mw is an equivalence relation on both T and P. (Here, we say pp,ăpqM
w pq,ăqq iff pMw q.)

(ii) δA is an equivalence relation on P; δA refines Mw by splitting each class consisting of non-algebraic
types into two classes, with each of them consisting of the reverses of the other class.

(iii) x 6 |
!A

y is an equivalence relation on TpCq.

(iv) Mf is an equivalence relation on T.

Proof. Clearly, both δA and Mw are reflexive and symmetric.
(i) To prove the transitivity of Mw , assume that p, q, r P SpAq are so-types such that pMw q and

qMw r. Choose relatively A-definable orders ăp,ăq and ăr such that p “ pp,ăpq, q “ pq,ăqq, and
r “ pr,ărq are so-pairs over A. By Remark 4.14(b), after reversing the order ăq if needed, we can
assume δApp,qq, and then, after reversing ăr if needed, we can assume δApq, rq. Let a |ù p. Choose
b1, b2, c1, c2 that satisfy c1 Ÿ

q b1Ÿ
p a and aŸq b2 Ÿ

r c2. We claim tppc1a{Aq ‰ tppc2a{Aq. Otherwise,
there would be b1 |ù q such that c2 Ÿ

q b1 Ÿp a. Then a Ÿq b2 Ÿ
r c2 Ÿ

q b1 Ÿp a. Since δApp,qq and
δApq, rq hold, we can successively apply Lemma 4.16(i):

aŸq b2 Ÿ
r c2 Ÿ

q b1 Ÿp a ñ aŸr c2 Ÿ
q b1 Ÿp a ñ aŸq b1 Ÿp a ñ aŸp a; a contradiction.

This proves the claim: tppc1a{Aq ‰ tppc2a{Aq, so pM
w r holds; Mw is an equivalence relation.

(ii) To prove the transitivity of δA, assume that p “ pp,ăpq, q “ pq,ăqq and r “ pr,ărq are so-pairs,
δApp,qq and δApq, rq. By part (i), pMw q and qMw r imply pMw r. We will verify condition (1) from
Lemma 4.15: Assuming a1 ăp a2 Ÿ

r c we need to prove a1 Ÿ
r c. By Lemma 4.8 there exists a b |ù q

that satisfies a2 Ÿ
q b Ÿr c. Then a1 ăp a2 Ÿ

q b, by condition (1) from Lemma 4.15, implies a1 Ÿ
q b.

By Lemma 4.16(i), a1Ÿ
q bŸr c implies a1Ÿ

r c. Therefore, δA is an equivalence relation. Finally, each
(non-algebraic) Mw -class is split into two δA-classes by Remark 4.14(b).

(iii) By Lemma 4.9, 6 |
!

is symmetric and the reflexivity is clear. To prove transitivity, assume
a 6 |

!A
b and a |

!A
c, and we prove b |

!A
c. Let p “ tppa{Aq, q “ tppb{Aq and r “ tppc{Aq; these are

so-types, and note that a 6 |
!A

b implies pMw q. Thus, if pKw r, then qKw r holds by (i); b |
!A

c follows,

and we are done. So suppose pMw r; By (i), qMw r holds also. Choose orders ăp,ăq and ăr such
that the corresponding so-pairs p,q and r are in the same δA-class. Then a |

!A
c implies that a is

left- or right p-generic over c; without loss (by reversing all three orders if necessary) assume a Ÿr c.
By Lemma 4.8 there exists a b1 |ù q such that aŸq b1 Ÿr c. By Remark 4.7(f), a Ÿq b1 and qMf p (as
b 6 |

!A
a) imply Dqpaq ăq b

1, which together with b P Dqpaq yields b ăq b
1. Furthermore, b1 Ÿr c by

direct non-orthogonality implies b1 P Lqpcq. Now, b ăq b
1 and b1 P Lqpcq imply b P Lqpcq; in particular,

b |
!A

c, as desired.

(iv) Follows easily from (iii). �

Definition 4.18. Let F be a δA-class of so-pairs over A. Define:

‚ FpCq is the set of all realizations of types from F;
‚ DF “ tpa, bq P FpCq ˆ FpCq | a 6 |

!A
bu;
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‚ b P FpCq is right F-generic over a P FpCq, denoted by aŸF b, if aŸq b holds for some (equivalently,
any, by Remark 4.14(c)) pair q “ pq,ăqq P F such that b P qpCq.

Remark 4.19. By Remark 4.7(d), a, b P FpCq are ŸF-comparable if and only if a |
!A

b.

Now, we prove Theorem 5.

Theorem 4.20. Let F be a δA-class of non-algebraic so-pairs (or weakly o-minimal pairs) over A.

(i) pFpCq,ŸFq is a strict partial order.
(ii) DF and ŸF-incomparability are the same equivalence relation on FpCq.
(iii) pFpCq{DF,Ÿ

Fq is a dense linear order.

Proof. (i) The antireflexivity is clear. To prove the transitivity, assume that a ŸF b ŸF c. Choose
p,q P F such that aŸp bŸq c. By Lemma 4.16(i), we have aŸq c, proving transitivity.

(ii) By Remark 4.19, DF and ŸF-incomparability agree on FpCq; DF is an equivalence relation by
Theorem 4.17(iii).

(iii) First we claim: aŸF b iff rasDF
ŸF rbsDF

. We prove only the left-to-right implication; the other
one is immediate. Assume aŸF b. Let a1 P rasDF

be arbitrary. Then, by (ii), a1 ŸF b or bŸF a1 holds.
The latter is impossible: aŸF bŸF a1, by (i), implies aŸF a1, which contradicts a1 P rasDF

. Therefore,
a1 ŸF b is valid for all a1 P rasDF

; we conclude rasDF
ŸF b. Similarly, we obtain rasDF

ŸF rbsDF
. This

proves the claim.
From (i), (ii) and the claim, we immediately conclude that pFpCq{DF,Ÿ

Fq is a linear order. For
density, assume rasDF

ŸF rbsDF
. Then a ŸF b, so by Lemma 4.8 there exists c ” a pAq such that

aŸF cŸF b; rasDF
ŸF rcsDF

ŸF rbsDF
follows by the claim. �

In the next proposition, we make a connection between direct non-orthogonality of weakly o-minimal
pairs and direct non-orthogonality of their nonforking extensions.

Proposition 4.21. Let F be a δA-class of weakly o-minimal pairs over A and let B Ě A. For each
pair p “ pp,ăpq P F set pB “ præB and pB “ ppB,ăpq.

(i) There exists a (unique) δB-class, FB, which contains all the pairs tpB | p P Fu. In particular,
pB M

w qB holds for all types from F.
(ii) FBpCq is a final part of pFpCq,ŸFq, that is, B ŸF aŸF b implies B ŸF b.
(iii) The restriction of DFB

is a convex equivalence relation on pFBpCq,Ÿ
Fq, that is BŸF aŸF bŸF c

and a 6 |
!B

c imply b 6 |
!B

a and b 6 |
!B

c.

Proof. (i) We need to prove that δBppB ,qBq is valid for all p,q P F. Fix p,q P F. First, we prove
pB M

w qB. Choose a, a1 |ù p and b |ù q that satisfy B Ÿp a Ÿq b Ÿp a1. Then, by Lemma 4.16(i),
a, a1 |ù pB and b |ù qB. Also, δApp,qq and a Ÿ

q b Ÿp a1 imply that a is left p-generic and a1 is right
p-generic over b, so a ı a1 pAbq holds, and, in particular, ab ı a1b pBq. Therefore, the types tppab{Bq
and tppa1b{Bq are distinct completions of pBpxq Y qBpyq; pB M

w qB follows. To prove δBppB ,qBq, by
Lemma 4.15 it suffices to show that aŸqB bŸpB a is impossible for all a |ù pB and b |ù qB. Otherwise,
aŸqB bŸpB a would imply aŸq bŸp a which contradicts δApp,qq. This proves δBppB ,qBq.

(ii) Follows from Lemma 4.16.
(iii) Assume B ŸF aŸF bŸF c and a 6 |

!B
c. Then c 6 |

!B
a, so c is not right F-generic over Ba. Let

p “ pp,ăpq P F be such that tppa{Aq “ p. Choose a1 |ù p that satisfies bŸF a1ŸF c. We claim a 6 |
!B

a1.

To prove it, first note that B ŸF aŸF bŸF a1 implies B Ÿp aŸp a1, so both a and a1 realize the type
præB. Therefore, if a |!B

a1 were true, then a ăp a
1 would imply a1 |ù præBa, that is, BaŸ

p a1, which

together with a1ŸF c by Lemma 4.16 implies BaŸF c; the latter contradicts the fact that c is not right
F-generic over Ba. Therefore, a 6 |

!B
a1. If, in addition, a |

!B
b were true, then by Lemma 4.10(iii) we

would have ab ” a1b pBq, which contradicts aŸF bŸF a1. Therefore, a 6 |
!B

b holds. By symmetry and

transitivity, b 6 |
!B

c also holds, as desired. �
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5. dp-minimality

In this section, we prove that weakly o-minimal types are dp-minimal and that their indiscernible
sequences enjoy some nice properties. For example, in Proposition 5.8 below, we prove that every
Morley sequence I of realizations of a weakly o-minimal type p remains Morley after replacing every
element a P I with an element a1 P Dppaq.

We will very briefly recall the notions of NIP and dp-minimality for (partial) types, without recalling
the original definition of dp-minimal types, as we will not use it in this paper; a detailed exposition of
NIP can be found in Simon’s book [16]. Rather, we recall two characterizations of NIP types (see [7,
Claim 2.1]), since we will use them later. We also recall an equivalent characterization of dp-minimality
due to Kaplan, Onshuus, and Usvyatsov (see [6, Proposition 2.8]).

Definition 5.1. Let ppxq be a (partial) type over A. The type ppxq is:

(a) NIP if there does not exist a formula ϕpx, yq, an A-indiscernible sequence pbn | n ă ωq of tuples of
length |y| and a |ù p such that |ù ϕpa, bnq iff n is even. Equivalently, there is no formula ϕpx, yq,
an A-indiscernible sequence pan | n ă ωq in p and a tuple b, such that |ù ϕpan, bq iff n is even;

(b) dp-minimal if there does not exist a formula ϕpx, yq, an A-indiscernible sequence I of tuples of
length |y| and a |ù p such that ϕpa, yq has at least four alternations on I.

Fact 5.2. (i) Every dp-minimal type is NIP.
(ii) Every weakly o-minimal type is NIP.
(iii) If ppxq over A is NIP and ai |ù p for i ă n, then tppa0, . . . , an´1{Aq is NIP.

Proof. (i) is obvious by the first characterization from the definition of NIP types. (ii) If pp,ăq is a
weakly o-minimal pair over A, then every A-indiscernible sequence of realizations of p is monotone
with respect to ă, so weak o-minimality implies that the second characterization of NIP types above
is satisfied. (iii) follows from [6, Theorem 4.11]. �

We prove that a weakly o-minimal type is dp-minimal. In the proof, we will use the following simple,
Helly-style fact.

Fact 5.3. Let pX,ăq be a linear order and tSn | n ă ωu a family of non-empty subsets of X such
that there is N ă ω such that each Sn has at most N convex components. Suppose that tSn | n ă ωu
has the 2-intersection property. Then there is an infinite I Ď ω such that tSn | n P Iu has the finite
intersection property.

Proof. Without loss we may assume that each Sn has N convex components, and write Sn “ C1
n Ÿ

¨ ¨ ¨ Ÿ CN
n with C1

n ă ¨ ¨ ¨ ă CN
n being convex. For n ă m choose minimal i and minimal j such that

Ci
n X Cj

m ‰ H. By Ramsey’s theorem, there is an infinite I Ď ω such that the chosen pairs pi, jq are
the same for all n ă m in I. If i “ j then tCi

n | n P Iu is a 2-consistent family of convex sets, so it is
k-consistent for all k ě 2 by Helly’s theorem, and hence tSn | n P Iu is k-consistent for all k ě 2, too.

Consider the case i ă j. If n ă m in I then Ci
m ă Ci

n as Ci
m ă Cj

m and j is minimal such that
Ci

n X Cj
m ‰ H. Write I “ tn0, n1, n2, . . . u in increasing order. Then Ci

n2
ă Ci

n1
ă Ci

n0
. For each

l ě 3, the set Cj
nl

meets both Ci
n2

and Ci
n0
, so by convexity it completely contains Ci

n1
. Therefore,

tSnl
| l ě 3u contains Ci

n1
at its intersection, so it is k-consistent for all k ě 2. The proof in the case

i ą j is similar. �

Proposition 5.4. Suppose that ppxq is a partial type over A whose completions over A are all weakly
o-minimal. Then ppxq is dp-minimal.

Proof. Suppose not. Let ϕpx, yq be a formula, I “ pbn | n ă ωq a A-indiscernible sequence, and c

realizing p such that ϕpc, yq has at least four alternations on I. Let i0 ă i1 ă i2 ă i3 be such that:

(˚) |ù ϕpc, bi0 q ^  ϕpc, bi1q ^ ϕpc, bi2q ^  ϕpc, bi3q.

Put q “ tppc{Aq. By assumption, q is a weakly o-minimal type, so pq,ăqq is a weakly o-minimal pair
over A for some (any) relatively A-definable order ăq on qpCq. Consider the relatively definable subsets
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Sn of qpCq relatively defined by ϕpx, b2nq^ ϕpx, b2n`1q. By weak o-minimality of q and indiscernibility
of I, for some N ă ω each Sn has N ăq-convex components. Furthermore, by the indiscernibility of I
and (˚) we see that tSn | n ă ωu is 2-consistent. Then by Fact 5.3 there is an infinite J Ď ω such that
tSn | n P Ju has the finite intersection property; in fact, by the indiscernibility of I, we may conclude
that tSn | n ă ωu has the finite intersection property. By saturation we find a P

Ş

năω Sn, but this
contradicts the fact that p is NIP (Fact 5.2(ii)). �

Corollary 5.5. Every weakly o-minimal type is dp-minimal, and every weakly quasi-o-minimal theory
is dp-minimal.

In the rest of this section, we focus on indiscernible sequences of realizations of a weakly o-minimal
type. In part (ii) of the following lemma, we show that they have a bit stronger property than the
distality as defined by Simon in [17] (see [17, Lemma 2.7, Corollary 2.9] and [4, Definition 4.21]).

Lemma 5.6. Let pp,ăq be a weakly o-minimal pair over A, let a0, a1 |ù p and B Ě A. Suppose that
I and J are sequences of realizations of p such that I ` J is infinite and ă-increasing. Then:

(i) If I has no maximum, I ă a0 ă a1 and I ` a1 is B-indiscernible, then I ` a0 is B-indiscernible.
(ii) If I ` J is B-indiscernible, I has no maximum, J has no minimum, and I ă a0 ă J , then

I ` a0 ` J is B-indiscernible.
(iii) If I ` a0 ` a1 ` J is B-indiscernible, a |ù p and a0 ă a ă a1, then at least one of the sequences

I ` a0 ` a` J and I ` a` a1 ` J is B-indiscernible.

Proof. (i) Let I0 be a finite subset of I. Since I has no maximum, there exists a P I such that I0 ă a.
Then a ă a0 ă a1 and the sequence I0 ` a ` a1 is B-indiscernible, so a ” a1 pBI0q holds. Since p is
weakly o-minimal, the locus of type tppa1{BI0q is a convex subset of pppCq,ăq by Lemma 2.6(ii), so
a ă a0 ă a1 implies a0 ” a1 pBI0q. In particular, the sequence I0 ` a0 is B-indiscernible. Since this
holds for all finite I0 Ď I, I ` a0 is B-indiscernible.

(ii) Let I0 Ď I and J0 Ď J be finite. Choose ai P I and bj P J that satisfy I0 ă ai and bj ă J0.
Then the sequence I0 ` ai ` bj ` J0 is B-indiscernible, and ai ă a0 ă bj . By Lemma 2.6(ii) the locus
of tppai{BI0J0q “ tppbj{BI0J0q is convex in pppCq,ăq, so a0 ” ai pBI0J0q, therefore the sequence
I0`a0`J0 is B-indiscernible. Since this holds for all finite I0 Ď I and J0 Ď J , the sequence I`a0`J
is B-indiscernible.

(iii) Choose a 1

2

|ù p such that I`a0`a 1

2

`a1`J is B-indiscernible; this is possible by compactness

as I ` J is infinite. Then a0 ă a 1

2

ă a1, so a is in one of the intervals pa0, a 1

2

s and ra 1

2

, a1q. First,

assume a P pa0, a 1

2

s. Notice that a0 and a 1

2

realize the same type, say q, over a1BIJ . By Lemma

2.6(ii), qpCq is a convex subset of ppCq, so a0 ă a ď a 1

2

implies a |ù q. In particular, a ” a 1

2

pa1BIJq

implies that I ` a ` a1 ` J is B-indiscernible. Similarly, a P ra 1

2

, a1q implies the indiscernibility of

I ` a0 ` a` J . �

Corollary 5.7. Let pp,ăq be a weakly o-minimal pair over A and B Ě A. Suppose that I and J are
increasing sequences of realizations of p such that I ` J is infinite and B-indiscernible. Let a |ù p

satisfy I ă a ă J . Then by removing at most one element except a from the sequence I ` a ` J the
sequence remains B-indiscernible. More precisely, at least one of the following conditions holds:

(1) I ` a` J is B-indiscernible;
(2) a0 “ max I exists and the sequence pI ´ a0q ` a` J is B-indiscernible;
(3) a1 “ min J exists and the sequence I ` a` pJ ´ a1q is B-indiscernible.

Proof. If I has no maximum and J has no minimum, then I ` a` J is indiscernible by Lemma 5.6(ii).
If both a0 “ max I and a1 “ min J exist, then the sequence pI ´ a0q ` a0 ` a1 ` pJ ´ a1q is B-
indiscernible and a0 ă a ă a1, so by Lemma 5.6(iii) at least one of conditions (2) and (3) holds. If I
has no maximum and a1 “ min J exists, then I ă a ă a1 and I ` a1 is BpJ ´ a1q-indiscernible, so
condition (3) holds by Lemma 5.6(i); similarly, if a0 “ max I and J has no minimum, then condition
(2) holds. �
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Proposition 5.8. Let p “ pp,ăq be a weakly-o-minimal pair over A. Suppose that I “ paj | j P Jq is
a (possibly finite) Morley sequence in pr over A.

(i) Suppose that a |ù p is in the ă-convex hull of I. Then we can remove at most one element from
I and insert a so that the sequence remains Morley over A.

(ii) If I 1 “ pa1
j | j P Jq is a sequence of realizations of p such that a1

j 6 |
!A

aj for all j P J , then I 1 is
a Morley sequence in pr over A.

Proof. (i) By extending I if necessary, we may assume that I is infinite; also, we may assume a R I.
Let I´ “ tx P I | x ă au and I` “ tx P I | a ă xu. Then tI´, I`u is a partition of I and I´ ă a ă I`

also holds; the assumptions of Corollary 5.7 are satisfied, so by removing at most one element from
I´ ` a` I` except a we get an A-indiscernible sequence. The obtained sequence is Morley over A as
it is A-indiscernible and contains an infinite subsequence which is Morley over A.

(ii) It suffices to prove the statement for a finite I. So, assume that I “ pa0, . . . , anq is a Morley
sequence in pr over A. Extend I to a longer Morley sequence I0 “ pa´1, a0, . . . an, an`1q; we will
show that the sequence I 1

0 “ pa´1, a
1
0, . . . a

1
n, an`1q has the same type over A as I0. Note that ak´1 ă

Dppakq ă ak`1 holds for all k “ 0, 1, . . . , n, so ak 6 |
!A

a1
k implies ak´1 ă a1

k ă ak`1. By part (i), we

can replace some element of I0, say ai, by a1
k so that the sequence remains Morley. In particular,

ai´1 ă a1
k ă ai`1 is satisfied, so i “ k. Therefore, replacing ak by a1

k in I0 does not change the type
tppI0{Aq. Successively, we can replace all ak’s and conclude tppI0{Aq “ tppI 1

0{Aq. �
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