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Active matter systems being in a non-equilibrium state, exhibit complex behaviors such as self-
organization and giving rise to emergent phenomena. There are many examples of active particles
with biological origins, including bacteria and spermatozoa, or with artificial origins, such as self-
propelled swimmers and Janus particles. The ability to manipulate active particles is vital for
their effective application e.g. separating motile spermatozoa from nonmotile and dead ones, to
increase fertilization chance. In this study, we proposed a mechanism – an apparatus – to sort and
demix active particles based on their motility values (Pèclet number). Initially, using Brownian
simulations we demonstrated the feasibility of sorting self-propelled particles. Following this, we
employed machine learning methods, supplemented with data from comprehensive simulations that
we conducted for this study, to model the complex behavior of active particles. This enabled us to
sort them based on their Pèclet number. Finally, we evaluated the performance of the developed
models and showed their effectiveness in demixing and sorting the active particles. Our findings
can find applications in various fields, including physics, biology, and biomedical science, where the
sorting and manipulation of active particles play a pivotal role.

INTRODUCTION

Active matter systems – living and non-living – are de-
fined by their ability to consume energy, generate forces,
and show synchronized self-organization [1, 2]. These
systems are intrinsically nonequilibrium and show com-
plex behaviors and emergent phenomena [3–6]. They
exist in various forms and scales, and can be biologi-
cal or artificial, macroscopic or microscopic in nature.
Examples of biological active systems with macroscopic
origin include: flocks of birds [7], schools of fish [8],
swarms of insects [9, 10], and herds of mammals [11].
Microscopic examples to highlight the dynamics of bio-
logical active matter systems include: bacteria [12, 13],
sperm cells [14, 15], amoeba cell clusters [16–18], micro-
bial biofilms [19], marine algae [20], and zooplanktons
[21]. Self-propelled artificial swimmers (catalytic, mag-
netic and chemically driven micro-motors) [22–32], Janus
particles [33–36], and robotic swarms [37] are examples
of artificial active matter systems. All of the preceding
examples are only a portion of the spectrum of active
matter systems.

Despite advancements in understanding these systems,
there’s still a challenge: the effective sorting of active
particles based on their motility values (Pèclet num-
ber). Manipulating active particles is a vital part of
their effective application, there are many ways to achieve
this, examples of such cases are: separation and rectifi-
cation of swimming bacteria [38–40], using microswim-
mers for separating a mixture of colloids [41], aggregation
and segregation of microswimmers based on their motil-
ities [42, 43], using the confinement to manipulate mi-
croswimmers [44–48], separation [49] and sorting [50, 51]
of microswimmers based on their chirality, motility [52]
and separating motile spermatozoa [53, 54]. However, a

mechanism that can sort active particles based on their
motility values, such as the Pèclet value, is yet to be
developed.

Machine learning algorithms learn from the data and
establish connections between the data to generate deci-
sions/predictions for previously unobserved data without
explicit programming [55–58].

In machine learning, there are three main branches:
supervised, unsupervised, and semi-supervised learning
[58]. In supervised learning, algorithms are trained to
learn from input data and corresponding output data,
input is processed to map it to new data based on ex-
pected outputs. This algorithms are used on both regres-
sion and classification tasks. Unsupervised learning algo-
rithms are different, learning is done without any output
data for the given input data. examples of such algo-
rithms are clustering, PCA, etc. Semi-supervised learn-
ing falls between supervised and unsupervised learning,
in this algorithm, a combination of small labeled data
and a large amount of unlabeled data is used to train the
model [59].

Machine learning has applications across many sci-
entific and also practical disciplines. Within the fields
of medicine and biology, machine learning example use
cases are: drug discovery [60–65], neuroscience [66],
biomedicine [67–70], cancer research [71–75], medical
imaging [75–84]. Machine learning algorithms are also
being used for material design [85–94], polymer science
[95–101], crystallography [102–105], fluid dynamics [106–
116], condensed matter physics [117–119]. Active mater
physics also takes the advantage of machine learning
[120–122], example applications include: detecting var-
ious phase transitions using Principal Component Anal-
ysis (PCA) [123, 124], active particle control using neural
networks [125, 126], identifying anomalous diffusion using
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recurrent neural networks [127], forecasting dynamics of
active nematics using neural networks [128–130], extract-
ing the effective interaction of particles from the system
configuration [131], optimal navigation strategies for ac-
tive particles [132–140], characterizing motility induced
regimes [141, 142], tracking Janus particles in three di-
mensions [143], and applying deep learning algorithms to
plankton ecology [144].

In their study, Galajda et al. [145], developed an array
of funnel-shaped barriers with wide and narrow open-
ings which concentrated bacterial (E.coli) suspensions
with motility on the side with narrow openings. This
was because motile bacteria could swim into the fun-
nels through wide openings while their ability to do the
reverse through narrow openings was severely limited.
Paoluzzi et al. Kumar et al. [146] explored the trapping
phase transition of motile polar rods in the presence of
a V-shaped obstacle. They found that when the trap
angle of the obstacle was below a certain threshold, a
trapping transition would occur, while above the thresh-
old angle, all motile particles would escape. Ribeiro et
al. [147] considered the influence of spatially periodic
potentials on the trapping and sorting of motile active
particles. Using simulations they showed that different
diffusion regimes and trapping states occur which was a
result of the noise value of the active particles and the
density of the system. In their work, Ai et al. [148] in-
vestigated the mixing and demixing of binary mixtures of
polar chiral (clockwise and anticlockwise) active particles
with polar velocity alignment. They showed that when
chirality difference and the polar velocity alignment of
active particles compete with each other (neither is dom-
inant), demixing occurs in which particles with clockwise
rotation aggregate into one cluster and particles with an-
ticlockwise chirality aggregate into another cluster. Thus
using chirality was a means to demix particles. Miska et
al. [149] proposed a method incorporating an acoustoflu-
idic setup for selecting particles based on their motility,
where particles with high motility would escape from the
acoustic trap. They demonstrated their method using
both simulations and also experiments with Janus par-
ticles and human sperm and proposed that using this
method highly motile sperm could be selected for medi-
cally assisted reproduction.

Paoluzzi et al. [150] investigated the narrow es-
cape time of active particles from circular domains us-
ing numerical simulations, they showed that narrow es-
cape time undergoes a crossover between two asymptotic
regimes with control parameters being the ratio of persis-
tence length of the active particles and the length scale
of the circular domain, they suggested the possibility
of sorting active particles based on motility parameters.
Based on this, we propose a mechanism – an apparatus
– to sort (demix) active particles based on their motil-
ity. We use Brownian dynamics simulations and also in-
corporate machine learning methods to model the active

particles using the data from an extensive number of com-
prehensive simulations that we conducted for this study.

METHODS

We consider a rigid circular apparatus with radius rs
which is made up of monomers on its circumference each
having a radius of dmono. The apparatus is inside a pla-
nar square box, which also contains active Brownian par-
ticles each with a radius a. We also pin the apparatus
from its center of mass to the center of the box. Thus it
can rotate with angular velocity ω, but prevented from
moving. The angular velocity value can be varied in dif-
ferent simulations but has a constant value in each. We
study our system in 2D, which is convenient to reduce
computational resources while being effective in repro-
ducing the key features of active models.
We use the over-damped Langevin equations to de-

scribe the motion of particles as time (t) progresses:

ṙi = Vsni − µT
∂U

∂ri
+
√
2DT ηi(t), (1)

θ̇i = ω +
√
2DR ζi(t), (2)

here, ri(t) = (xi(t), yi(t)) is the position of the parti-
cle, Vs is the self-propulsion of the particle, and ni =
(cos θi, sin θi) is direction of motion with θi(t) as orien-
tation angles. µT is the translational mobility of parti-
cles, fi ≡ −∂U/∂ri is the force acting on each particle,
from interactions between the ith particle and all other
particles. DT = µT kBT is the translational diffusion co-
efficient of particles (kB is the Boltzmann constant and
T is the absolute temperature). ω is the angular veloc-
ity of particles. DR is the rotational diffusion coefficient
of particles which satisfies the relation DR = 3DT /σ

2 in
low Reynold’s regime. The symbols ηi(t) and ζi(t) de-
note independent translational and rotational noises for
each particle. They are characterized by white Gaus-
sian distributions with zero mean, such that ⟨ηαi (t)⟩ =
⟨ζi(t)⟩ = 0. Additionally, they exhibit two-point cor-
relations given by ⟨ηiα(t)ηjβ(t′)⟩ = ijδαβδ(t − t′) and
⟨ζi(t)ζj(t′)⟩ = δ(t − t′), where i and j represent active
particle labels, and α and β refer to the Cartesian coor-
dinates x and y. The steric potentials, denoted as V (rij),
govern the interactions among active particles and the in-
clusions. These potentials are derived from modified ver-
sions of the Weeks-Chandler-Andersen potential (WCA):

V (rij)=

4ϵ

[(
σeff

|rij |

)12

−2
(

σeff

|rij |

)6

+1

]
: |rij |≤σeff ,

0 : |rij |>σeff ,
(3)

The Péclet number (or rescaled self-propulsion
strength), Pes, defined as

Pes =
aVs

DT
=

3Vs

4DRa
, (4)
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where we have used DR = 3DT /4a
2 for no-slip spheres

in the low-Reynolds-number (Stokes) regime [151].

Using Brownian dynamics methods, we discretized the
simulations over sufficiently small time steps ∆t̃ to solve
the equations (1) and (2) numerically.

RESULTS

Demixing

Fig 1 shows an example of demixing of four particles
with different Pes, with system having rs = 10, 20, 30
and 40, with dmono = 1.0, lpore = 2.0, and kBT = 1.0,
with Figs 1a and 1b being the initial and the final config-
urations, respectively. Demixing of particles in this fig-
ure occurs because of the system configuration and Pes
values of particles that were chosen. Determining the
optimal parameters for successful demixing necessitated
a process of trial and error. Thus, with the aim of the
occurrence of demixing and the ambiguity of the relation-
ship between system parameters and the onset of demix-
ing, we employ a grid search across various parameter
combinations and system configurations. By leveraging
machine learning methods we aim to gain a better under-
standing of the demixing phenomenon in active matter
systems.

To model the demixing of particles from the appa-
ratus, more than 75,000 simulations were done to col-
lect data points with various parameters, namely: rs, ω,
dmono, lpore, and kBT . Data were obtained using Brow-
nian dynamics, simulations aimed to obtain Pes values
for active particles at which they start going outside of
the apparatus. The criteria were escaping 5% of parti-
cles after 500000 steps with a timestep of dt = 0.0001.
This was the main component to have demixing for par-
ticles/apparatus with different properties. After obtain-
ing the data from simulations, we proceeded with differ-
ent machine learning algorithms to model active particle
motility (Pèclet), each algorithm is considered in the fol-
lowing sections.

Machine Learning Models

Artificial Neural Network

In this section, we use ANN to model our systems.
Typical workflow for modeling using ANN involves sev-
eral steps, starting with collecting data and preprocessing
it, preparing the model, training it, and evaluating the
performance of the model. For collecting data, as stated
earlier, 2500 relevant data points from a set of 75000 sim-
ulations were used. Input parameters for the data was
rs, ω, dmono, lpore, and kBT with target values being

(a) Initial configuration of
example system

(b) Final configuration of
example system

FIG. 1. Example of demixing of 4 particles with different Pes.
System defined have rs = 10, 20, 30 and 40, d mono = 1.0,
lpore = 2.0, and kBT = 1.0

Pes. Then we preprocessed our data using the Scikit-
learn package [152], this step transforms the data into a
format that is more convenient to train ANN.

Using Keras from TensorFlow, we created a dense
(fully connected network), meaning that each of the neu-
rons in a layer is connected to every neuron in the preced-
ing and subsequent layers, this interconnectivity would
make the ANN capable of modeling complex and non-
linear relationships between data. The architecture of
our ANN which was designed for regression is comprised
of (Fig 2): an input layer, a dense layer where each unit is
connected to every feature in the input data, and a Rec-
tified Linear Unit (ReLU) activation function. This was
followed by a Batch Normalization Layer, we included
this layer to normalize the activation of the previous layer
to enhance the training stability and convergence speed.
A Dropout Layer was added to ”drop out” (set to zero)
a fraction of the neurons from the previous layer at ran-
dom while training the network. Using this we prevent
the model from relying heavily on a neuron or a fea-
ture. Thus, making the network more general and not
specialized and overly complex, in simple words prevents
overfitting. This was succeeded with another dense layer
and a ReLU activation function. This layer processes
information from the input and learns to recognize com-
plex patterns in the data. This layer also was followed
by Batch Normalization and Dropout layers. A subse-
quent hidden layer with ReLU activation was included,
followed by a dropout layer. Finally, we have the out-
put layer which contains a single unit, appropriate for
regression tasks where the goal is to predict a continuous
value.

Following defining the ANN architecture, hyperparam-
eters of the model were optimized to enhance the predic-
tive performance, optimized hyperparameters are listed
in Table I. We trained the model utilizing a custom Adam
optimizer with the determined learning rate. The loss
function we chose was MSE. We also utilized early stop-
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Input

Dense BatchNorm Dropout

DenseBatchNormDropout

Dense Dropout Output

FIG. 2. ANN architecture containing the input, dense layer
with 512 neurons, a bath normalization layer, a dropout layer,
dense layer with 128 neurons, a bath normalization layer, a
dropout layer, dense layer with 64 neurons, a dropout layer,
and the output layer

ping while training the model, this technique monitors
MSE on a validation set and when the model has no
improvement over a defined number of epochs, training
stops. This prevents learning noise and aids generaliza-
tion to unseen data.

After completion of training the ANN model, we as-
sessed it on the data that we used to train the model
and also the test set. We also used another external test
set, which was not used or seen by the neural net, and
we assessed it after getting the final model to see its pre-
dictive ability. We employed R-squared (R2), Mean Ab-
solute Error (MAE), Root Mean Squared Error (MSE),
and Mean Absolute Percentage Error (MAPE) as evalu-
ation metrics, these showcase the predictive capabilities
of the model, and are defined in the following:

R2 = 1−

N∑
i=1

(yi − ŷi)
2

N∑
i=1

(yi − ȳ)
2

(5)

MAE =

N∑
i=1

|yi − ŷi|

N
(6)

RMSE =

√√√√√ N∑
i=1

(yi − ŷi)
2

N
(7)

MAPE =

N∑
i=1

∣∣∣yi−ŷi

yi

∣∣∣
N

× 100% (8)

N is the total number of data points that are getting
evaluated, yi , ŷi, and bary are the real, predicted, and

mean values of the entity being evaluated, respectively.
For ANN model evaluation metrics are presented in Table
II.

Support Vector Regression

In this section, we discuss the utilization of Support
Vector Regression (SVR) to model our systems. The
modeling steps for SVR are similar to those for ANN:
data collection, data preprocessing, model preparation,
model training, and model evaluation performance. Data
collection and preprocessing are the same as before. To
implement the SVR model, we used the scikit-learn li-
brary, specifically Epsilon-Support Vector Regression.
We used the Radial Basis Function (RBF) kernel in

our SVR model. It is defined by the formula: K(x, x′) =

e−γ·∥x−x′∥2

. Here, x and x′ are the input vectors,
||x − x′||2 is the squared distance between them, and
gamma is a parameter that controls the width of the
Gaussian distribution. The RBF kernel can effectively
capture complex, non-linear relationships in the data
by transforming the data using the preceding formula.
Gamma is the hyperparameter that needs to be tuned
for optimal model performance.
Other hyperparameters for implementing this SVR

model include C (regularization parameter) and epsilon
(insensitivity parameter). Hyperparameter C controls
how the model treats outliers. A low value of C implies
that more outliers are allowed, while a high value of C im-
plies that fewer outliers are tolerated. Hyperparameter
epsilon is given by L(y, f(x), ϵ) = max(0, |y − f(x)| − ϵ),
where y represents the true target value, f(x) is the pre-
dicted target value and ϵ denotes the width of the insen-
sitive zone, controlling the tolerated error. Optimum hy-
perparameters and evaluation metrics for our SVR model
are listed in Tables I, II, respectively.

Kernel Ridge Regression

Similar to the SVR, Kernel Ridge Regression (KRR)
transforms the input data into a higher-dimensional
space using a nonlinear kernel function. This makes it
possible for the algorithm to learn complex relationships
between the input data and the outputs. In this section,
we will introduce and use KRR to model our systems.
The objective function in KRR is defined by the equa-

tion:

α̂ = arg min
α∈RN

∥y −Kα∥22 + λαTKα. (9)

KRR is designed to fit the training data while controlling
overfitting through regularization. The objective is to
find the vector α̂ that minimizes the squared Euclidean
norm between y andKα plus a regularization term (∥y−
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Kα∥22 + λαTKα). Here, α is the coefficients (weights)
assigned to each training sample in the kernelized feature
space which is getting optimized. y is the real (target)
value. K is the kernel matrix where each element is the
result of applying a kernel function to the pair of input
samples and Kα is the transformed input data. The
squared Euclidean norm between y and Kα measures
the deviation between real and predicted values. The
regularization term is λαTKα, where λ is a constant
parameter that specifies the strength of the regularization
to prevent overfitting.

We implemented the KRR using the scikit-learn library
and performed a grid search to obtain the optimal values
of the hyperparameters. The hyperparameters included
in the optimization were regularization strength, kernel
type (Linear, polynomial, RBF, and sigmoid), gamma,
which denotes the kernel coefficient (the width of the
kernel) that is specific to each kernel being used, and
the polynomial degree for the polynomial kernel (ignored
by other kernels). Best performing hyperparameters ob-
tained for the KRR model and the evaluation metrics for
the KRR model are listed in Tables I, II, respectively.

Gaussian Process Regression

Gaussian Process Regression (GPR) is a probabilistic
modeling technique used to capture non-linear relation-
ships in data to perform regression tasks. Unlike con-
ventional methods, GPR treats the target variable as a
distribution over functions, rather than yielding single-
point estimates. This allows for making predictions with
associated uncertainty.

To perform a regression task using GPR, initially, we
establish a prior belief, characterized by a mean function
m(x) and a covariance function (kernel) (k(x, x′), before
any data is observed. This represents the initial under-
standing of the function space. Combining the prior be-
lief with the observed data results in a posterior distri-
bution (Bayes’ rule) which is Gaussian. The posterior
is a refined understanding of the function space. This
procedure is iterative, and with each new data point, the
model’s accuracy increases.

During training, we compute the posterior mean µ and
covariance Σ using the following equations:

µ(X∗, X,y) = K(X∗, X)[K(X,X) + σ2
nI]

−1y (10)

Σ(X∗, X) = K(X∗, X∗)

−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗) (11)

K is the kernel matrix with Kij = k(xi, xj). This cap-
tures the pairwise similarities between input points. X∗
represents new input points, y is the vector of observed
values, σ2

n is the variance of the noise, and I is the iden-
tity matrix. When making predictions for new inputs,

the posterior mean µ is the predicted value, while covari-
ance Σ indicates the associated uncertainty.
We used the scikit-learn library to implement GPR for

modeling our systems. Specifically, we used the method
therein called GaussianProcessRegressor with a custom
kernel function which is a combination of the product of a
constant kernel (C) by an RBF kernel plus a white kernel
to account for noise in data plus a ”DotProduct” kernel
with power four to act as a four-degree polynomial. Both
the RBF kernel and DotProduct kernel (with power 4)
account for the non-linear relationship between the input
data and the targets. We used default hyperparameters
for our GPR, listed in Table I, the reason being that all of
these hyperparameters are optimized during the training
by the implementation of GPR in the scikit-learn library.
Evaluation metrics for our GPR model are also listed in
Table II.

TABLE I. ML models hyperparameters

Model Hyperparameter Details

ANN optimizer Adam

max iter 10000

early stopping patience 2000

learning rate 0.001

batch size 512

hidden neurons 512, 128, 64

activations relu

loss mse

SVR kernel rbf

C 100000

epsilon 0.9

gamma 0.05

KRR kernel polynomial

degree 4

λ 0.5

gamma 0.2

GPR kernel Constant*rbf+
WhiteKernel+
DotProduct4

alpha 0.1

n restarts optimizer 10

Comparing the ML methods

Here, we compare the overall performance of all models
using evaluation metrics listed in Table II. The R2 val-
ues for all models are high, approaching unity, across all
three datasets, suggesting a strong correlation between
the variables and the target values. We also note that a
high R2 value for the training set would indicate overfit-
ting, considering the table, R2 values for test and external
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test sets are high and near the values of R2 for their re-
spective training set, this would mitigate the overfitting
problem, thus, validating the generalizability of our mod-
els. The MAPE, MAE, and RMSE evaluation metrics
too, further showcase consistent values across all three
datasets, with minor variations, this too denotes the gen-
eralizability and consistency in the predictive power of
our models.

TABLE II. Evaluation Metrics for Different Models

Model Eval. R2 MAPE MAE RMSE

NN Train 0.9997 1.9539 1.1007 1.5084

Test 0.9997 2.1825 1.2077 1.5331

Ext. 0.9997 1.9725 1.2286 1.6334

SVR Train 0.9996 1.4968 1.1768 1.8964

Test 0.9995 1.6141 1.3136 2.0397

Ext. 0.9993 1.7029 1.4192 2.4055

KRR Train 0.9994 2.1512 1.5838 2.4108

Test 0.9992 2.0918 1.6233 2.4612

Ext. 0.9991 2.2392 1.7889 2.7267

GPR Train 0.9995 2.7235 1.5265 2.2082

Test 0.9994 2.6323 1.5563 2.2458

Ext. 0.9993 2.7110 1.6136 2.4577

0 100 200 300 400 500 600
True value

0

100

200

300

400

500

600

Pr
ed

ic
te

d

Train Data
Test Data
External Test Data
Perfect Predictions

(a) NN

0 100 200 300 400 500 600
True value

0

100

200

300

400

500

600

Pr
ed

ic
te

d

Train Data
Test Data
External Test Data
Perfect Predictions

(b) SVR

0 100 200 300 400 500 600
True value

0

100

200

300

400

500

600

Pr
ed

ic
te

d

Train Data
Test Data
External Test Data
Perfect Predictions

(c) KRR
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(d) GPR

FIG. 3. Plots of prediction vs observed value for our models:
a)NN, b)SVR, c)KRR, and d)GPR.

We also included Fig. 3, which illustrates the predicted
values plotted against the observed values for each ML
method we used, it includes the data for all three datasets
– training, testing, and external validation – and also a
guideline to show the perfect predictions (benchmark).
Each plot shows how closely predictions from each of the
ML models match up to the actual target values across
the datasets.

Overall, based on the evaluation metrics and also plots

FIG. 4. Feature importance using SHAP analysis. The x-
axis represents the SHAP values and the y-axis represents the
feature names. Feature values change from cyan to blue as
they increase from low to high. The most important feature
is placed at the top. Here, a positive (negative) SHAP value
for a feature means that the prediction increases (decreases)
with an increase (decreases) in the given feature value.

of predicted vs observed values, the predictive power of
the ML methods from the highest performing to the low-
est one – with a minimal variation – is: ANN, SVR, GPR,
and SVR respectively.

Model Interpretation

All the models we used, as well as many ML meth-
ods, present challenges to rationalizing and interpreting
the results of predictions, this is due to their intrinsic
black-box nature. To overcome this shortcoming we will
use the SHapley Additive exPlanations (SHAP) method,
utilizing SHAP we can measure the contribution of each
feature on the model’s predictions [153].

In Figure 4, x coordinates show the SHAP values and
the y coordinate depicts the feature names, there is also
color coding for the values of each feature from low to
high when going from cyan to blue. This plot also shows
the importance of features, with the most important one
placed at the top. We also note that a positive (nega-
tive) SHAP value for one feature means the prediction,
namely the Pèclet value, increases (decreases) with the
given feature value. Feature importance from the figure
is: rs > ω > lpore > dmono > kBT . Further, from the
color coding in the figure, for radius (rs), increasing the
feature values increases Pècelt values. This is in line with
the apparatus design and configuration of our systems,
higher radius (rs) values would mean a higher linear ve-
locity for the monomers of the apparatus while all other
parameters including angular velocity (ω) are kept con-
stant, this translates into higher Pèclet values needed
for active particles to escape outside of the apparatus.
This is the same for the angular velocity of the appara-
tus, an increase in this feature would lead to an increase
in the velocity needed for particles to pass through the
pore of the apparatus, as it is shown from color coding for
ω. Higher monomer diameter dmono also shows increased
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FIG. 5. Last snapshots of the simulations, radial probability distributions, and also number of particles going outside of their
respective confinements. a, c, e for system with ω=1.0, kBT=1.0, lpore=2.0, dmono=1.0, and Pes: 27.28, 66.11, 105.65, 145.47.
b, d, f for systems with ω=3.0, kBT=1.0, lpore=4.0, dmono=2.0, and Pes: 70.57, 162.37, 250.83, 338.16. Colors indicate particle
types with specific Péclet values that are predicted with ANN. In the legend for e and f, the first number indicates the number
of particles that escaped their confinement, and the second value is their ratio (same color).

SHAP values, considering that when all parameters are
kept constant, a higher dmono would mean smaller pore
length and bigger contact area for the swimmers to pass
through the pore. For pore length lpore this means that
a higher value of the feature would decrease the Pèclet
needed for active particles to go outside the apparatus, as
evident from the figure. Finally, as it can be seen from
the figure, increasing kBT decreases the SHAP values,
it is intuitive that increasing kBT values would mean a
higher activity of the swimmers, and the Pèclet values
needed to escape get smaller.

Demixing using ML

Here, we showcase how our ML models define our
systems capable of demixing. We consider our best-
performing model, namely ANN. Figures 5a and 5b show
the last snapshots of simulations of two separate systems
in which we modeled the system using our ANN model.
This figure also includes the radial probability distribu-
tions of the particles for their respective systems, Figures
5c and 5d. Further, we show the number of particles
that escape their respective confinements and the ratio
of escaped particles to the total particles of the respec-
tive type in Figures 5e and 5f. Figure 5a is the last
snapshot of the system with ω=1.0, kBT=1.0, lpore=2.0,
dmono=1.0. Pes values predicted for this system using
our GPR model are Pes: 27.28, 66.11, 105.65, 145.47.

We used these parameters and Pes values to simulate the
system, and from the figure, we see the onset of demix-
ing. Figure 5c shows the Radial Probability Distribution
for this system, from this, we see that most of the par-
ticles remain in between their respective confinements.
From Figure 5e, 95% of particles of type A remain be-
low the radius 10 and only 5% of them go outside. For
other types of particles, namely B, C, and D, less than
5% of each goes above their respective confinement radii,
namely 20, 30, and 40 respectively.
Other system with ω=3.0, kBT=1.0, lpore=4.0,

dmono=2.0 and predicted values of Pes: 70.57, 162.37,
250.83 and 338.16 showcase a similar pattern (see Fig-
ures 5b,5d,5f), showing effectiveness of our ANN to pre-
dict Péclet values for demixing.

DISCUSSION

The trapping phenomena of active particles, as ob-
served in various experimental and numerical studies,
have been instrumental in advancing our understand-
ing of how geometrically designed boundaries can be
leveraged for effective substance purification and mi-
croorganism control. These studies have demonstrated
the potential of active [146, 147, 154] and chiral active
[49, 50, 148, 155–157] particles to navigate through ge-
ometrically designed boundaries, offering promising ap-
plications in the purification of substances by selectively
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eliminating unwanted microorganisms. A notable aspect
of these studies is the exploration of narrow escape times
of active particles from a circular domain, which was
achieved using numerical simulation [150]. In addition,
trapping particles using an array of funnel-shaped bar-
riers with wide and narrow openings was developed to
concentrate bacteria (E. coli) suspensions with motility
on the side with narrow openings [145]. Another study
investigated the impact of spatially periodic potentials on
trapping and sorting motile active particles [147]. Fur-
thermore, a study proposed a method that incorporates
an acoustofluidic setup for selecting particles based on
their motility, where particles with high motility would
escape from the acoustic trap [149]. This method was
demonstrated using both simulations and experiments
with Janus particles and human sperm, proposing that
this method could be used to select highly motile sperm
for medically assisted reproduction. All of the previous
research focused on entrapment and sorting active par-
ticles, however, one key challenge that remained unex-
plored was sorting microorganisms with various propul-
sions with a high selectivity.

In the present study, we have developed a novel mech-
anism to sort active particles based on their motility val-
ues, specifically the Pèclet number, utilizing a combi-
nation of Brownian dynamics simulations and machine
learning methods. Our proposed mechanism is based on
a circular spinning apparatus with pores allowing active
particles with certain Pèclet numbers to pass through it.
Initially, we devised a system with a configuration that
would demix and separate active particles with four dif-
ferent motilities. To better understand the system con-
figurations required to separate motile particles, consid-
ering their complex and non-equilibrium dynamics, the
utilization of machine learning methods was necessary.

Using Brownian dynamics we conducted an extensive
number of simulations to generate a dataset to be used by
the machine learning methods to capture the complex dy-
namics of active particles. After gathering the data, four
machine learning methods, namely: artificial neural net-
work, support vector regression, kernel ridge regression,
and Gaussian process regression were developed, with the
best performing one being the artificial neural network.
Further, we showcased the onset of demixing and sort-
ing based on the Pèclet numbers predicted by the neural
network, simulation snapshots, plots of radial probabil-
ity distribution, and also plots of the escape number of
particles from the apparatus were included as visual and
numerical supplements to our findings. We also employed
the SHAP method to consider the importance of system
configurations and to interpret the model’s predictions,
this revealed that the radius (rs) and angular velocity (ω)
of the apparatus, the monomer diameter (dmono), and
the pore length (lpore) significantly influenced the Pèclet
numbers required for active particles to escape the appa-
ratus, while kBT values, indicating the noise part of the

motion, resulted in lower required Pèclet numbers and
had the lowest impact.

Although our system was confined to two dimensions,
such a mechanism could easily be implemented in 3D ex-
perimental setups. However, further research is needed to
explore the effectiveness of this mechanism with different
motility parameters and in real-world systems. Further,
with significant advancements in microfluidic device fab-
rication techniques [158, 159], and the introduction of 3D
printing technologies, rapid and single-step production of
intricate microfluidic devices is not only more accessible
but has also expanded the design possibilities [160, 161],
[162]. Such devices show great potential as advanced sys-
tems for manipulating and immobilizing small organisms.
Therefore, we believe that our proposed mechanism and
apparatus can be designed and fabricated with an au-
tonomous mechanism, opening up possibilities for appli-
cations in various fields such as physics, biology, and drug
delivery.
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