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Abstract

Proving compositionality of behavioral equivalence on state-based sys-
tems with respect to algebraic operations is a classical and widely studied
problem. We study a categorical formulation of this problem, where op-
erations on state-based systems modeled as coalgebras can be elegantly
captured through distributive laws between functors. To prove compo-
sitionality, it then suffices to show that this distributive law lifts from
sets to relations, giving an explanation of how behavioral equivalence on
smaller systems can be combined to obtain behavioral equivalence on the
composed system.

In this paper, we refine this approach by focusing on so-called coden-
sity lifting of functors, which gives a very generic presentation of various
notions of (bi)similarity as well as quantitative notions such as behavioral
metrics on probabilistic systems. The key idea is to use codensity liftings
both at the level of algebras and coalgebras, using a new generalization of
the codensity lifting. The problem of lifting distributive laws then reduces
to the abstract problem of constructing distributive laws between coden-
sity liftings, for which we propose a simplified sufficient condition. Our
sufficient condition instantiates to concrete proof methods for composi-
tionality of algebraic operations on various types of state-based systems.
We instantiate our results to prove compositionality of qualitative and
quantitative properties of deterministic automata. We also explore the
limits of our approach by including an example of probabilistic systems,
where it is unclear whether the sufficient condition holds, and instead we
use our setting to give a direct proof of compositionality.

In addition, we propose a composition of Komorida et al.’s codensity
games for bisimilarities. A novel feature of this composition is that it
can also compose game invariants, which are subsets of winning positions.
Under our sufficient condition of the liftability of distributive laws, com-
posed games give an alternative proof of the preservation of bisimilarities
under the composition.
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1 Introduction

Bisimilarity and its many variants are fundamental notions of behavioral equiv-
alence on state-based systems. A classical question is whether a given notion of
equivalence is compositional w.r.t. algebraic operations on these systems, such as
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parallel composition of concurrent systems, product constructions on automata,
or other language constructs. The problem can become particularly challenging
when moving from bisimilarity to quantitative notions such as behavioral met-
rics on probabilistic systems, where it is already non-trivial to even define what
the right notion of compositionality is (see, e.g. [26] [13]).

To formulate and address the problem of compositionality of algebraic oper-
ations on state-based systems at a high level of generality, a natural formalism is
that of coalgebra [19], which is parametric in the type of system, as modeled by a
“behavior” endofunctor F'. A key idea, originating in the seminal work of Turi
and Plotkin [31], is that composition operations and in fact whole languages
specifying state-based systems arise as distributive laws between F' and a func-
tor (or monad) T which models the syntax of a bigger programming language.
In fact, Turi and Plotkin’s abstract GSOS laws are forms of such distributive
laws which guarantee compositionality of strong bisimilarity, generalizing the
analogous result for specifications in the GSOS format for labeled transition
systems []. Distributive laws here precisely capture algebra-coalgebra interac-
tion needed for compositionality.

The results of Turi and Plotkin specifically apply to strong bisimilarity, and
not directly to other notions such as similarity or behavioral metrics. To prove
compositionality in these cases, the key observation is that the task is to define
the composition operation at hand not only on state-based systems but also
on relations (or, e.g., pseudometrics). This idea has been formalized in the
theory of coalgebras by requiring a lifting of the distributive law that models
the composition operator to a category of relations. The lifting of the behavior
functor F' then specifies the notion of bisimilarity at hand, and the lifting of
the syntax functor T the way that relations on components can be combined
into bisimulations on the composite system. It has been shown in [6] at a high
level of generality that the existence of such liftings, referred to in this paper as
liftability, ensures compositionality in this way. The generality there is offered
by the use of liftings of the behavior functor in fibrations which goes back
to [I7], and which allows us to study not only relations but also, for instance,
coinductively defined metrics or unary predicates (e.g., [23, 29, 16} [5]). But the
main challenge here is to prove liftability; this is what we address in the current
paper (Question BTTI2I).

We focus on the codensity lifting of behavior functors [29], which allows to
model a wide variety of coinductive relations and predicates including (bi)similarity
but also, for instance, behavioral metrics; these are commonly referred to as
codensity bisimilarity. In fact, the codensity lifting directly generalizes the cel-
ebrated Kantorovich distance between probability distributions used to define,
for instance, metrics between probabilistic systems [§]. The codensity lifting is
parametric in a collection of modal operators, which makes it on the one hand
very flexible and on the other hand much more structured than arbitrary lift-
ings. Moreover, the codensity lifting allows to characterize codensity games [23),
a generalization of classical bisimilarity games [30, 0] from transition systems
to coalgebras, and from strong bisimilarity to a wide variety of coinductively
defined relations, metrics and even topologies.



In this paper we study compositionality of codensity bisimulations with re-
spect to composition operators on the underlying state-based systems, modeled
as coalgebras. We model these composition operators as distributive laws be-
tween an n-ary product functor and the behavior functor F', referred to as one-
step composition operators. We mainly tackle two problems (Question B.1T])
in this paper: 1) How do we lift the n-ary product functor in order to capture
non-trivial combination of relations, pseudometrics etc? 2) When is a one-step
composition operator liftable?

A key idea for the first problem is to use codensity liftings not only to lift the
behavior functor F' and get our desired notion of equivalence, but to use another
codensity lifting of the product functor, to explain syntactically how relations
(or pseudometrics, etc) should be combined from components to the composite
system. This combination can be a simple product between relations, but in
many cases, such as for behavioral metrics, it needs to be more sophisticated;
the flexibility offered by the codensity lifting helps to define the appropriate
constructions on relations.

The second problem about liftability then becomes that of proving the ex-
istence of a distributive law between codensity liftings. To this end, we exhibit
a sufficient condition that ensure the existence of this distributive laws, defined
in terms of two properties: 1) commutation between the underlying modalities
that define codensity liftings, and 2) an approzimation property, which resem-
bles the one used to prove expressiveness of modal logics in [24]. Underlying our
approach is a combination of a new generalization of the codensity lifting beyond
endofunctors, to allow to lift product functors, and the adjunction-based decom-
position of codensity liftings proposed in [3]. The adjunction-based approach
precisely allows us to arrive at our sufficient condition.

We instantiate our approach to pseudometrics on deterministic automata.
We also revisit the compositionality of parallel composition w.r.t. behavioral
metrics studied in [I3]. In this case it is not clear whether our sufficient condition
holds; but the framework nevertheless helps to prove liftability and thereby
compositionality.

We further study a composition of codensity games. A key observation is
that our composite codensity games consist of positions that are tuples of posi-
tions of codensity games for component systems. This design of the composite
game directly leads to the compositionality of game invariants, which charac-
terize winning positions. Assuming our sufficient condition of the liftability of
distributive laws, we present an alternative proof of the preservation of bisimi-
larities along compositions (the inequality in Corollary B.10).

In summary, the contributions of this paper are

e a generalization of the codensity lifting beyond endofunctors (Section M),
which can be used in a special case to lift products in various ways (Sec-

tion [E);

e asufficient condition for proving the existence of a distributive law between
codensity liftings (Section [6), with several detailed examples (Section [7));



e a composition of codensity games, which also composes game invariants,
and an alternative proof of the preservation of codensity bisimilarities
under our sufficient condition (Section [8);

After the preliminaries (Section [2]), we start the paper with a more detailed
overview of our approach (Section B).

> Related work There is a wide range of results in the process algebra on
compositionality and rule formats to prove it, which are usually focused on
specific models (see, e.g., [27] for an overview). A full account is beyond the
scope of this paper, which focuses instead on generality in the type of models
and the type of coinductive predicates. Concerning general frameworks for
compositionality in the theory of coalgebras, we have already mentioned Turi
and Plotkin’s abstract GSOS format; the main innovation in the current paper
is that we go beyond bisimilarity by employing the codensity lifting.

In [6], it is shown that liftings of distributive laws to fibrations yield so-
called compatibility, a property that ensures soundness of up-to techniques, and
which implies compositionality. On the one hand, if one uses the so-called
canonical relation lifting then all distributive laws lift, but this only concerns
strong bisimilarity; on the other hand, in [6] examples beyond bisimilarity are
studied but liftability there is proven on an ad-hoc basis. In the current paper we
identify the codensity lifting as a sweet spot between the (restricted) canonical
relation lifting and abstract, unrestricted lifting of functors, and focus instead
on conditions that allow to prove liftability.

Many bisimilarity notions are known to be characterized by winning po-
sitions of certain safety games, including bisimilarity on Kripke frames [30],
probabilistic bisimulation [IT} 0], and bisimulation metric [25]. There are sev-
eral coalgebraic frameworks [25] [12] that captures such a relationship between
games and bisimilarities. In this paper, we focus on codensity games [23] that
are naturally obtained by codensity liftings and coalgebras.

Codensity lifting is first introduced to lift monads across fibrations [21]. Its
instances include the Kantorivich metric on Giry monad. Later, in [2§], it is ex-
tended to lift endofunctors across fibrations, and is shown to be a generalization
of Baldan et al.’s Kantorovich lifting [I].

2 Preliminaries

For a mathematical entity 2 equipped with the notion of product (x), by zv
we mean the (x)-product of N-many copies of z. For instance, when C is a
category, CV denotes the product category of N-many copies of C. By abuse of
notation, we use the same letter N for the set {1,..., N} and write ¢ € N for
ie{l,...,N}.

For two natural transformations o : F — G, : G — H, their vertical
composition is denoted by S e a;, which is the componentwise composition of 8
and «. For a functor p : E — B and an object X € B, the fiber category over



X, denoted by Ex, is the category whose objects are P € E such that pP = X,
and whose morphisms are f such that pf = idx.

2.1 CLat-fibration

A CLatn-fibration is a posetal fibration p : E — B such that each fiber Ex is
a complete lattice and each pullback f*: Ey — Ex preserves all meets. The
order relation of a fiber Ex is denoted by C, the meet and the join by [],| ],
and the empty meet and join by T, L. We remark that CLatn-fibrations are a
special case of topological functors [18], where each fiber is a small partial order.

Examples of CLatn-fibrations are forgetful functors from the following cat-
egories into Set: 1) Pre, the category of preorders and monotone functions, 2)
EqRel, the category of equivalence relations and relation-respecting functions,
3) Top, the category of topological spaces and continuous functions, 4) PMet,
the category of pseudometric spaces and non-expansive functions, 5) ERel, the
category of sets with endorelations, and relation-respecting functions. The for-
getful functors from these categories are denoted by Upye etc.

A CLatp-fibration p : E — B is faithful, i.e., for any E-object P,@Q and B-
morphism f : pP — pQ, there is at most one E-morphism f such that pf = f.
When such an E-morphism exists, we write f : P = Q. For instance, when
p is the forgetful functor from Top, the notation f : (X,0x) = (Y,Oy) for
a function f : X — Y is equivalent to the statement: “f is continuous with
respect to topologies Ox, Oy”. From the fiberdness, f : P = @ is equivalent to
the inequality P C f*Q.

2.2 Liftings

We extensively use the concept of lifting of various categorical structures in
this paper. Let p: E — B and ¢ : F — C be functors. A lifting of a functor
F :B — C along p,q (or simply p when p = ¢) is a functor F' : E — F such
that go F' = F o p. Similarly, for liftings F,Gof FG:B — C along p, g and
a natural transformation « : F' = G, a lifting of a with respect to F,Gis a
natural transformation & : ' = G such that qgoda =aop.

To extend the concept of lifting to other categorical structures, it is con-
venient to set-up the arrow 2-category CAT ™ given by the following data: a
0-cell is a functor p : E — B, a 1l-cell from p: E - B to ¢ : F — C is a pair
(F:B — C,F : E — F) of functors such that F is a lifting of F along p,q,
and a 2-cell from (F,F) : p — ¢ to (G, Q) is a pair of natural transformations
(av, &) such that ¢ is a lifting of a with respect to F, G. This 2-category CAT
has 2-products: the terminal O-cell is id;, and the binary product of py,ps is
the product functor p; X pa (we only use finite ones in this paper). The evident
forgetful 2-functor is denoted by cod : CAT~ — CAT. Any categorical struc-
ture expressible within this 2-category corresponds to a pair of the categorical
structure and its lifting along functors (and vice versa). For instance, a monad
onp:E — Bin CAT™ is a pair of a monad on B together with its lifting along
p (as a monad).



For the theory of coalgebraic bisimulation in Section B3] we often focus on
the full-sub 2-category CATCY2t" of CAT™ obtained by restricting 0-cells to
CLatq-fibrations. We say that a 1-cell (F, F) : p — q in CATCY" is fibered if
F preserves Cartesian morphisms, or equivalently (Ff)*(FP) = F(f*P) holds
for any f, P.

The action of this 2-functor on hom-categories is denoted by the functor
codp 4 : CAT 7 (p, q) — CAT(cod(p),cod(q)). This is a CLatq-fibration, hence
faithful. Thus, for a natural transformation o : F' = G and liftings F,GofF,G
respectively, there is at most one lifting ¢ : F = G of a. When it exists, we say
that « is liftable with respect to F, G.

CAT " (p,q)((F, F), (G, Q)
~{a:F=G|VYPedom(p) . app: FP = GP}.

If opp FP = GP holds for P in a subclass C of objects in E, we say that o is
liftable on C.

3 Overview

The theory of coalgebras provides a categorical framework for expressing various
transition systems in a unified manner. Let C be a category and F' : C — C be
an endofunctor (called behavior functor). An F-coalgebra is a pair of an object
X (called carrier) and a morphism ¢ : X — F(X). A morphism from ¢: X —
F(X)tod:Y — F(Y) is a morphism h : X — Y such that Fhoc=do h.

Example 3.1. We write P for the covariant powerset functor on Set. A P-
coalgebra ¢ : X — P(X) bijectively corresponds to a binary relation on X, that
is, a Kripke frame.

Example 3.2. Fix an alphabet ¥. We define the endofunctor Fy, on Set by
Fya 22 x (). An Fy,-coalgebra ¢ : X — Fg,(X) bijectively corresponds to a
deterministic automata over alphabet X.

The category of F-coalgebras and morphisms between them is denoted by
Coalg(F), and the evident forgetful functor to C is denoted by Up. We
note that (Coalg(F))N = Coalg(FN). When (F,F) : p — pis a l-cell in
CAT™, the application of p to F-coalgebras extends to a functor Coalg(p) :
Coalg(F) — Coalg(F).

3.1 Coalgebraic Bisimulation

One of the important concepts in state transition systems is the identification of
two states that behave in the same way. A classical notion of behavioral equiv-
alence is bisimilarity, which has been extensively studied in process algebra,
coalgebra theory and modal logic. Recently, the concept of bisimulation, ini-
tially formulated as a binary relation, is expressed using other spatial structures,



such as pseudometrics [2] and topologies [28]. A uniform treatment of these spa-
tial representations of bisimulation have been developed using the framework of
CLatn-fibrations [28]. We employ the formulation of bisimulation as coalgebras
in suitable fibrations. This formulation goes back to the seminal work by Her-
mida and Jacobs [I7], and the key ingredient is the lifting of behavior functors
along fibrations. We recall their theory here.

Let p: E — B be a CLatn-fibration and ¢: X — F(X) be an F-coalgebra.
Hermida and Jacobs’ theory first chooses a lifting F' of F along p; the main
body of the definition of bisimulation is pack into it. Then we formulate a F-
bisimulation on a coalgebra ¢ : X — F(X) to be a F-coalgebra ¢ : P — F(P)
such that p(¢) = ¢ (hence p(P) = X). The morphism ¢ witnesses that P is
respected by the underlying transition system p(c). Since there exists at most
one such arrow ¢ for a given P, a F-bisimulation bijectively corresponds to
P € Ex satisfying P C ¢* o F'(P). We thus define the set of bisimulations on ¢
by

Bisim(F,c) 2 {PeEx | PC ¢* o F(P)},

and impose a partial order on it by restricting the one on Ex. Since Ex is a
complete lattice, it contains the greatest postfixpoint v(c* o F') corresponding to
the bisimilarity.

Example 3.3. We express the definition of bisimulation for P-coalgebras. We
take the CLatn-fibration Ugqrel and take the following lifting P of P along
UgqRel:

P(X,P)2 (P(X),{(UV)|VzeU.3IyeV. (xry)ePA
VeeV .yelU. (z,y) € P}).

Then P is a P-bisimulation on ¢ : X — P(X) if and only if it satisfies the
standard bisimulation condition:

V(z,y) € P.V2' €c(x) .y €cly). (2/,y") € PA
Vo' € cly) . F ec(x) . (2',y) e P.

Example 3.4. We represent language-equivalent states in deterministic au-
tomata by the CLatn-fibration Ugqrel and the following lifting Fg, of Fya
along p:

Faa(P) 2 {((t1,p1), (t2,p2)) | t1 = t2 AVa € 2 . (p1(a), p2(a)) € P}.

Let P be a Fj,-bisimulation on ¢ : X — Fya(X). Then any pair of states
(x,y) € P are language equivalent, that is, the set of words accepted from x
coincides with that of y. Moreover, Fda-bisimilarity coincides with the set of all
language-equivalent state pairs.



3.2 Composing F-Coalgebras

Let F : C — C be an endofunctor over a category C. We model an N-ary
composition operation for F-coalgebras by a pair of

1. a functor T : CN — C (called structure functor) describing how the oper-
ation transforms coalgebra carriers, and

2. a natural transformation \: T o FY = F o T, describing the composition
of a transition system by merging one-step transition of its arguments.

The second component induces the lifting T) : (Coalg(F))" — Coalg(F) of T
along (Ur)N,UF given by

T2 XoT(cy,- - ,cn).
We call the pair (T, \) an N-ary one-step composition operation for F-coalgebras.

Example 3.5. We introduce a binary one-step composition operation (x,\) on
P-coalgebras. It takes the binary product of coalgebra carriers. The distributive
law A%y : PX x PY — P(X x Y) is given by A% (A,B) £ Ax B.

Example 3.6. We introduce a binary one-step composition operation (x, A4)
on Fy,-coalgebras. It takes the binary product of coalgebra carriers. The dis-
tributive law X}f‘)yz FyuX X Fa.Y — Fga(X x Y) is given by

A%y ((t1, 1), (2, p2)) = (t1 Ata, Aa . (pr(a), p2(a))).

3.3 Composing Coalgebraic Bismulations

The central theme of this paper is to deepen the understanding of the interaction
between composition operations on coalgebras and the concept of bisimulation.
The question we address is:

Question 3.7. Let (T, ) be an N-ary one-step composition operation

for F-coalgebras. How can we compose bisimulations Py, ---, Py on F-
coalgebras ¢, -+ ,cy into a bisimulation on the composed F-coalgebra
Tx(c1, - ,en)?

In other words, the problem is about extending the composition operation
on F-coalgebras to bisimulations. Using Hermida and Jacobs’ coalgebraic for-
mulation of bisimulation, we rephrase Question [3.7] as follows:

uestion 3.8. Let (F, F):p— pbe a l-cell in CATM@*" How can we
Q pP—=p



lift Ty along (Coalg(p))”, Coalg(p)?

(Coalg(F))N "> Coalg(F)
<Coa1g<p>>Nl lCoalg@) (1)
(Coalg(F))N D Coalg(F)

Thanks to the coalgebraic formulation of bisimulation, we notice that a
lifting of the distributive law with respect to liftings of relevant functors yields
the operation () on F-bisimulations that is compatible with the operation on F'-
coalgebras. We formally state this principle that guides this research as follows.
This itself is not new, and a limited version is seen as [6, Proposition 6.3].

Theorem 3.9 (composition of bisimulations). Let (F, F) p— p and (T, T) :
pV — p be 1-cells in CATCLat” and (M) : (T, T)o(FN,FN) — (F,F)o(T,T)
be a 2-cell. Then (Tx,T}) : (Coalg(p))Y — Coalg(p) is a 1-cell in CAT™. O

A restricted version of this theorem is also available. Let C' be a subclass
of objects in E. If X is liftable on C¥, then we obtain a 1-cell (T,\,T}\) :
(Coalg(p)|c)¥ — Coalg(p); here Coalg(p)|c is the restriction of Coalg(p)
to the category of F-coalgebras over objects in C. This restriction will be used
after Proposition [7.3l

Corollary 3.10 (preservation of bisimilarities). In the setting of Theorem[3.9,
for any F-coalgebra ¢; : X; — F(X;) (i=1---N),

T(w(cioF),-- ,v(ch o F) Cv(Ta(cr,--- ,en) o F). O

The preservation holds because v/(c* OF) is the domain of the terminal object
of Coalg(F). for each F-coalgebra ¢, and T; maps coalgebras in Coalg(F').,

(i € N) to a coalgebra in Coalg(F)r, (¢, ... cn)-

This theorem merely says that when all ingredients F), - - - ,).\ are available,
the lifting T}\ is available. In practice, the data F, F', T, X are given by hand when
designing transition systems and bisimulations on them, while a problematic
part is defining a lifting of the structure 7, and make the distributive law A
liftable with respect to T o (F)N and F o T.

Regarding lifting the behavior functor F', recently a systematic method called
the codensity lifting has been introduced [29]. This is a generalization of Kan-
torovich lifting [2], a classical notion of distance between distributions, to general
CLat-fibrations. The advantage of the codensity lifting is its flexibility; it has
some parameters and by varying it we obtain various liftings. Yet, it provides
more structure than assuming arbitrary liftings of F' and 7. Another impor-
tant point is that codensity bisimulations, where F is a codensity lifting, have
an interesting game-theoretic characterization. This flexibility and relevance to
bisimulation games is attractive, so we address the problem of having the coden-
sity liftings and the liftable A. This involves two specific questions. One is about
extending the codensity lifting technique to lift not only behavior functors, but
also structure functors 7.



Question 3.11. Let (T, \) be an N-ary one-step composition operation
for F-coalgebras.

1. How do we non-trivially lift structure functor (such as N-ary product
functors) in order to capture composition operators at the level of
relations?

2. When is A liftable as a distributive law between codensity liftings of
Fand T?

To answer to these questions, we employ Beohar et al.’s recent decomposition
result of codensity liftings [3]. Their decomposition separates fibration-specific
parts in the codensity lifting from the central part that does the actual lifting
task. Upon their decomposition, in Section Bl we first answer to (1) by general-
izing the codensity lifting to arbitrary functors. Then in Section [6] we answer
to (2) by providing a sufficient condition to lift A to a distributive law between
codensity liftings. The proof of the sufficiency takes advantage of the decompo-
sition and a 2-categorical nature of the central part in the decomposition.

4 Generalizing the Codensity Lifting

We recall the multiple parameter codensity lifting in [29]. It lifts an endofunctor
F : B — B along a CLatn-fibration p : E — B using three parameters €2, 2, 7.
We pack (p, 2, Q) into the following data.

Definition 4.1. Let A be a discrete category. A CLatnq-fibration with truth
values is a tuple (p : E — B,Q : A — B,Q : A — E) of functors such that
) =poQ and p is a CLatn-fibration. The notation for a CLatn-fibration with
truth values is (2,9) : Ida — (p: E — B).

Let (©,9) : Ida — (p : E — B) be a CLatn-fibration with truth values.
The codensity lifting of a functor F' : B — B takes as argument a natural
transformation 7 : FoQ) — . The components 7, : FoQ(a) — Q(a) are referred
to in coalgebraic modal logic as modalities; 7 is just an indexed collection of
these, and below we will often refer to 7 itself as a modality. The codensity
lifting of F: B — B with 7 along p is given by

[F,7]%X £ HaeA,keE(X,n(a))(Ta o F(pk))*(€(a)).

It is an endofunctor over E, and is a lifting of I" along p. When A =1, it is
called the single-parameter codensity lifting. F-bisimulations whose lifting part
F' is a codensity lifting are called codensity bisimulation.

Example 4.2. We write 2 for the two-point set {false,true} and Eq, for the
object (2,{(z,x) | * € 2}) in EqRel. We identify it as a functor of type
1 — EqRel, and form a CLatn-fibration with truth values (2,Eq,) : Id; —
Ugqrel- The codensity lifting of P with the modality ¢ : P(2) — 2 given
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by o(U) = true <= true € U coincides with the lifting P in Example
[23]. Therefore the standard bisimulations on P-coalgebras are expressible as
codensity bisimulations.

Example 4.3. We adopt the following CLatn-fibration with truth values
(2, 92) : Idswiey — Urqrer Where Q and Q are functors constantly returning 2
and Eq,, respectively. We define the modality for Fy, by

t (a=c¢€)

malt,p) = { pla) (a€X).

Then the codensity lifting [Fy., 7] maps (X, P) € EqRel to the set Fg,(X) =
2 x X* paired with the following equivalence relation:

{((t1; 1), (82, p2)) [ 1 = t2 ANVa € 5. (p1(a), p2(a)) € P}

The [Fya, 7|-bisimilarity on c identifies the states that accepts the same lan-
guage.

To organize the discussion, we package all the ingredients into the following
data. It specifies both abstract transition systems and a notion of bisimulation
on them.

Definition 4.4. Codensity bisimulation data consists of a CLatn-fibration with
truth values (Q,Q) : Idg — (p : E — B), an endofunctor F' : B — B, and a
natural transformation 7 : F o Q — Q.

4.1 Decomposition of Codensity Lifting

Let ((©,9) : Idya — (p : E — B), F,7) be codensity bisimulation data. Re-
cently, Beohar et al. [3] introduced a decomposition of the codensity lifting as a
“sandwich” of a monotone function within Galois connections. We adopt their
decomposition as it is useful for analyzing the interaction between codensity lift-
ings. In this paper, we describe their decomposition in fibered category theory.
The decomposition is given as

[F, 7] = RP? o SpA(F, 7) o LP,  (LP? + RP9Y) (2)

where Sp* (F,7) is an endofunctor over a suitable category that we introduce
below. The corresponding equation in Beohar et al. is in [3] Section 4.4].
Their presentation is based on indexed lattices, and left and right adjoints are
swapped

The description of the components of (2)) is in order. First, we observe
that the product [A, s°P]: [A, Pred®] — [A, Set?] of A-fold copies of the op-
posite of the subobject fibration Upreqa : Pred — Set is a CLatn-fibration.
Now the adjunction LP? - RP? in (@) is given between E and the category

LOur choice of left and right adjoint is consistent with the codensity lifting of monads
(using Eilenberg-Moore algebra) [22].

11



obtained by the change-of-base of the fibration [A, Ugh 4] along the functor
H(b) £ (B(b, Q(—)))"":

P —

E_—— 1T = Sp"B,Q) —L  ~[A Pred”)
,Q
w T]]?,Q\L \L[A7Ulgf‘ed]
P B — [A, Set®”]

Concretely, an object of SpA(IB%, Q) is a pair of an object X € B and a mapping
S : A — Set such that for any a € A, S(a) C B(X,Q(a)). A morphism
from (X,S) to (Y,T) is a morphism f : X — Y such that for any a € A and
ke T(a), ko f € S(a). The evident projection functor ’I”I‘Q)Q : Sp?(B, Q) — B is
a CLat-fibration, because s is so.

Beohar et al. showed that the following assignments form a left adjoint
functor [3] Theorem 7]:

LY (P) £ (pP, Aa . p(E(P, (), LM (f) £ f,
and the object part of its right adjoint satisfies
RPX, 8) =y kes(a k*(Q(a)).

The middle part Sp™(B,Q) in @) is defined as a lifting of an endofunctor
F :B — B along 74 , using a modality 7 : F o Q — €. It is an extension of the
predicate lifting (P : X — Q) — (70 F(P) : F(X) — ), which is commonly
used in the theory of coalgebras, to sets of morphisms into 2.

SpA(F,7)(X,S) 2 (FX,\a . {ra0 Fk | k € S(a)}) (3)
Sp(F,7)(f) £ Ff. (4)

By composing the above concrete characterizations of LP>}(P), RP}(X, S) and
SpA(F ,T), it is immediate that the codensity lifting satisfies the equation (2I).

4.2 Generalizing Codensity Liftings

From Beohar et al.’s decomposition, we notice that the actual lifting job of F'is
done by SpA(F , 7). We speculate that an extension of Sp to natural transforma-
tions would also help lifting distributive laws with respect to codensity liftings.
We therefore exhibit a 2-functorial nature of the Sp construction. Its domain is
the lax coslice 2-category A//CAT under a discrete category A, which is defined
as follows:

e A O-cell is a pair of a category C with a functor 2: A — C.

e A 1-cell from (C,Q) to (D,II) is a pair of a functor F : C — D and a
natural transformation 7 : F o 3 — IL
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e A 2-cell from (F,7) : (C,Q) — (D, 1) to (G, v) is a natural transformation
a: F — G such that ve (o) = 7.

Observe that an endo-1-cell on (C, ) bijectively corresponds to a pair of an
endofunctor F' on C and a modality 7: F o Q — Q.

Theorem 4.5. The following assignments Sp# form a 2-functor of type A//CAT —
CATCLatm )

sp*(C,Q) =rf,  Spt(F 1) = (FSp(F. 7)) Sp”(a) =a

Here, the functor Sp™(F, ) is the extension of @) to arbitrary I1-cell (F,7) :
(C,Q) — (D,II) by the same formulas @), ). Moreover, Sp™(F, ) preserves
Cartesian morphisms and all meets. O

This construction suggests that a categorical structure in A//CAT is trans-
ferred to CLatp-fibrations equipped with the same categorical structure and
its lifting. We employ this property to transfer distributive laws in A//CAT to
CATC™* in Theorem 6.2

As the construction of Sp™(F, 1) is extended to arbitrary 1-cells (C,Q) —
(D, II), it is natural to put different adjoints in the decomposition ([2). This
leads us to the following generalization:

Definition 4.6. Let (Q,Q) : Idy — (p: E — B) and (ILII) : Idy — (¢ : F —
C) be CLatn-fibrations with truth values. The codensity lifting of F : B — C
along p,q with a natural transformation 7 : F o Q — II, denoted by [F, 7]»,

is defined by
[F, 7] 2 ReMl o SpA(F, 1) o L7 (5)
= HaeA,keE(—,Q(a))(Ta o F(pk))*(I1(a)).

We show some properties of this generalized codensity lifting. The following
shows that it is the largest lifting that makes 7 liftable with respect to FoQ
and TI. Here, two liftings E', F' of F are compared by: F C F if F(P) C F(P)
for any P.

Theorem 4.7. For any (F), F) € CATC 2 (p,q), F C [F, 7™ if and only if
7: FoQ 51 in the fibration codia, 4 (§2.2). O

This is the generalization of the universal property possessed by codensity
liftings [29, Theorem 5.14].

When the indexing set A is one-point 1, the codensity lifting [F, 7]%™ is
determined by the object [F, 7]3H1Q.

Proposition 4.8. Assume A = 1 in the setting of Definition [{.6, Then
[F, 7] = ROIFIMNR o ol (F id) o LP2, O

Proposition 4.9. Assume A =1 in the setting of Definition [1.0. Let (F, F):
p — q be a fibered one-cell. If R o LP* = id and F preserves fibered meets,
the following statements hold.
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1. F = R%F2 5 Spl(F,id) o L.
2. [F, 7] = F if and only if [F,7]*TQ = FQ. O

The assumption RP* o LP¥¥ = id is mild enough for all examples of CLatn-
fibrations in this paper. The first statement means F' has the same property
as [F, 7] written in Proposition 8 and it immediately yields the sec-
ond statement. This proposition will be used to get a criterion for checking
[F, 7] = x: E2 — E (Corollary [5.1)).

5 Codensity Liftings of structure Functors

We use the generalized codensity lifting to lift the structure functor. Let (2, Q) :
Ids — (p: E — B) be a CLatq-fibration with truth values. Its N-fold tupling
(D n, (Q)n) : Ida — (pV : EN — BY) is again a CLatn-fibration with truth
values; here (Q)y denotes the tupling (Q,---,Q) : A — BN of N-fold copies
of  (and the same for (2)n). We call the codensity lifting of a structure
functor T : BY — B with o: T o (Q)x — Q along p~, p the N-codensity lifting.
Concretely,

[T70]<Q>N7Q(Pla' o aPN)

= |_| (UGOT(pkla"' apkn))*ﬂ(a)
a€A,
kiEIE(Pi,Q(a))
We overload the notation for the N-codensity lifting on that for the coden-

sity lifting: when N can be read-off from T, we simply write [T, ]* to mean
T, 0] 2,

5.1 Product Functors by Codensity Liftings

One of the most fundamental operators for composing processes and state tran-
sition systems is parallel composition. Typically it generates a new transition
system whose states are pairs z||y of component system’s states. This suggests
that the carrier of the composed system is the binary product of the carrier
of its components. We thus study the case where the structure functor 7' is
x : B2 - B.

In this section we illustrate some liftings of the binary product functor, and
show that they can be expressed by the single-parameter 2-codensity lifting. It
is easy to apply results here to the multiple-parameter codensity lifting because
it is the intersection of single-parameter one.

5.1.1 Product functor on the total category

Suppose that the base category B has a binary product functor x : B2 — B.
Since p : E — B is a CLatq-fibration, the functor x : E2 — E defined by

PxQ27n*Pna*Q (w7 are Ist and 2nd projections)
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is a fibered lifting of x along p?, p. It also preserves all meets. In fact, it is the
binary product functor on E [20, Proposition 9.2.1].

When can x be expressed by the codensity lifting [x, o]*? Since Proposi-
tion is applicable to x, we obtain the following:

Corollary 5.1. Let (2,9) : Idy — (p: E — B) be a CLatn-fibration with truth

values such that B has binary products, and RPSY o LP* = id. Then for any

modality o : Q@ x Q — Q, we have x = [x, 0] if and only if [x,d]}(R,Q) =

Qx Q. O
Therefore one can check x = [x, o] only by checking the equality [x, o](£2, Q) =

Q x Q.

Example 5.2. Upon the same CLatn-fibration with truth values (2,Eq,) :

Idy — Ugqgrel in Example £2] let A: 2 x 2 — 2 be the logical conjunction.
Then the binary product x on EqRel is the 2-codensity lifting [x, A]®9z.

5.1.2 Metric lifting of the binary product by a modality

Here we focus on the CLatn-fibration with truth values (I, (I,dy)) : Idy —
Upmet where [ is the interval [0, 1] and (I, d) € PMet is the Euclidean distance
over the interval on it. We will use it for quantitative bisimulations in §7.1] and

§r.3

We introduce a metric lifting of the binary product functor using a binary
function on the interval (which we also call a modality). We show that it is
equal to the codensity lifting given by the modality.

Proposition 5.3. Let 0: IxI — I be a function. For each pseudometric spaces
(X,dx),(Y,dy), we define the function x°(dx,dy): (X x Y)? =1 by

XU(an dY)((xv y)a (I/v y/)) = U(dX (Ia I/)a dY(ya y/))

Then this is a lifting of the product functor x : B2 = B along Upmes if and only
if o satisfies the following condition:

o 18 monotone,

0(0,0) =0, (6)
o(a,b) —o(e,d) < o(la—cl|,|b—d|).
Moreover, if o satisfies (@) then x° = [x,a]%. O

For example, the modalities og(a,b) = 1 — (1 — a)(1 — b), oay(a,b) =
(a+b)/2,and o (a,b) == max(a, b) satisfy (@), see Appendix[A2l The modalities
og(a,b) = a-band op(a,b) := min(a,b) do not satisfy the last condition of ().
However, their codensity liftings are equal to those of og and o/, respectively.
This follows from the following proposition.

Proposition 5.4. Let f: Q1 — Q be an isomorphism in B satisfying f*Q = €.

Then [T,0)* = [T, 0 T(fN)]? = [T, f o g] 2. O

Putting f(a) := 1 — a, the proposition above implies [x,0g]% = [x,00]"
and [x,0,]% = [x,0y]% because og = foogo(f x f) and op = foayo(f x f)
hold,
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6 Codensity Lifting of One-Step Composition

As discussed at the end of §3] our focus is on modalities that lifts one-step
composition operations for coalgebras. Technically, this is equivalent to the
liftability of distributive law A\: T o FN — F o T with respect to codensity
liftings of F,T.

Definition 6.1. Let ((Q,Q): Ids — (p: E — B), F,7) be codensity bisimula-
tion data, and (T, )\) be an N-ary one-step composition on F-coalgebras. We

say that a modality o: T o (Q)n — Q lifts X along p if X is liftable with respect
to [T, 0] o ([F, 7)) and [F,7]% o [T, 0.

Recall that the liftability of o may be restricted to a class C' of objects in
E. This restriction only appears in §7.3

Below we provide a sufficient condition for the modality o to lift a distribu-
tive law. Our approach employs the lifting of the distributive law A by the
2-functor Sp introduced in Theorem 5] and the decomposed definition of the
generalized codensity lifting ().

First, we restrict o so that A becomes a 2-cell A//CAT of type

(T,0) o (FN,7N) = (F,7) o (T, 0).
Its image by the 2-functor Sp yields a lifting A of A, whose type is
Sp™ (T, 0) o Sp(FN,7V) = Sp(F, 1) 0 Sp™ (T, 0).

This enables us to interchange the center of two codensity liftings that meets
in the middle of their composition (below we put R & RPSY [ & [P Ry £
RPN7<Q>N7LN £ LPN7<9>N);

[T,0)% o ([F,7])Y

= [T7 U]Q ° [FNvTN]<Q>N (([Fa T]Q)N = [FNvTN]<Q>N)

=RoSp™(T,0) 0 Ly o Ry o Sp™(FN, 7)o Ly

= RoSp™(T,0) o Sp(FN,7V)o Ly (by Ly 4 Ry)

= RoSp™(F,7) o Sp™(T,0) 0 Ly. (7)
Overall, the above natural transformation is again a lifting of A, because the
last natural transformation is a lifting of <d.

Next, we impose the last line (7)) to be equal to the composition [F, 7] o

[T, 7] of codensity liftings. Overall, we obtain a desired lifting of \ with respect
to [T, 0] o ([F, 7)) and [F,7]% o [T, 0.

Theorem 6.2 (sufficient condition). Let ((£2,9) : Idy — (p: E — B),F,7)
be codensity bisimulation data and (T, \) be an N-ary composition operation on
F'-coalgebras. Then a modality o lifts A along p if the following conditions hold.

1. o makes X a 2-cell of type (T,0) o (FN,7N) = (F,7)o(T,0) in A//CAT,

and
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2. BP0 Sp(F, ) 0 Sp (T, 0) o LV W — [F, 7] o [T, 0], 0

The first condition is equivalent to o, 0 T'((7a);c ) = Ta © Fog o A for each
a € A, and it induces Sp™ (T, 0) o Sp (FN,7V) = A*Sp?(F, 7) 0 Sp™(T, o).

We investigate the second condition. First, it can be expressed as “SpA (T,o)o
LPN’m)N(P) is approximating to [F,7]? for each P € EN” by the concept of
approzimating families introduced by Komorida et al. [24] for expressivity of
coalgebraic modal logics. Note that they consider a restricted setting such that
Q is constant on A.

Definition 6.3. An object S € SpA(IB%,Q) is approximating to the codensity
lifting [F, 7] if

RP9 o SpA(F, 7)(S) C RP%o SpA(F, 7)o LPt o RPEY(S).
That is, foreacha € Aand k € E([1,1c 4 pres , K*Qa"), (), [capes , (Taro
FENY*Q(a') C (14 0 Fpk)*Q(a).

It is equivalent to RP®? o Sp”(F,7)(S) = R»? o Sp™(F, 1) o LP? o RP(S)
by the counit of LP* 4 RP?. Thus (@) in Theorem can be written as
“Sp(T, o) o L (@ (P) is approximating to [F, 7]? for each P € EN”.

Next we show a result for the approximating condition that is applicable
when we can express k € E([],1c 4 pes,, K Q(a’), Q(a)) by a subset of S,.

Proposition 6.4. Assume that each hom-poset (B(X,Q),<x) is a complete
lattice, and we write \/ for the join. Then (X,S) € Sp (B, Q) is approzimating
to [F, 7] if the following conditions hold: for each a € A,

1. For each 8" C C(X',Q(a)), 74 © vaes/ f= \/feS/ Ta0 Ff.
2. For each 8" C C(X',Qa)), [1iecs f*RE (Ves [)*Qa).
3. Foreachk € E([,1capes , K S2(a"), (a)), there exists S} C Sq s.t. pk =

\/k’es,; K.
Additionally, if these conditions hold, (X,S,) € Sp*(B,Q(a)) is approzimating
to [F,7,)) for each a € A. O

Example 6.5 (Bisimulation for P-coalgebras). This example aims for showing
the composition of the standard bisimulations.

> Codensity bisimulation data We take the CLatn-fibration with truth values
(2,Eqy) : Idi — Ugqgrel and the covariant powerset functor P (Example B.)
with the modality ¢: P2 — 2 (Example [L2]) to form codensity bisimulation
data. We have [P, 0]%% = P (Example B3).

> Binary one-step composition operation for P-coalgebras We adopt (x, A¥) in
Example 3.5 recall that the distributive law A is given by )\?Y (A,B) = AxB.

> Modality for x We adopt the modality A : 2 X 2 — 2 in Example The
codensity lifting [x, A]®92 coincides with the binary product of predicates as in
Example
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Proposition 6.6. The modality A lifts \¥ along UgqRel- O

This proposition, together with Corollary B.I0, implies that for two P-
coalgebras ¢; : X1 — P(X1) and ¢ : Xo — P(Xs), if 2; and 2} are [P, o]
bisimilar in ¢; (i € {1,2}), the pairs (z1,72) and (2}, }) are [P, ¢]®%-bisimilar
in the composed P-coalgebra A¥ o (¢; x ¢3).

The proof of Proposition is the following: A satisfies two conditions
in Theorem [62} 1) For each A,B C 2, oAAoB = ofaAb | a € Ab €
B}. 2) As discussed before Definition [63] it’s equivalent to approximating
objects {Ao (kp x kq) | kp: P — Eqy, kg: @ — Eqy} for each P,Q € EqRel.
We can prove it by Proposition [64] with the ordered object (2, <) where <
is the order satisfying false < true. One easily verifies the first and second
condition in Proposition For the third condition, for each a € A and
k: [x,AJF%2(P,Q) = Eqy, we define Sj, == {A o (X[a]» X Xpyo) | k(z,y) = 1}
where X[4],, X[y, are characteristic functions. Then pk = Ve st k' holds.

Example 6.7. We next capture language equivalence of deterministic automata
using codensity bisimilarity.

> Codensity bisimulation data They are set-up in Example We package
the CLatp-fibration with truth values (€2, Q) : Idsy(y — Ugqrel, the behavior
functor Fy, and the modality 7 there into codensity bisimulation data.

> Binary one-step composition operation for Fg,-coalgebras We adopt the one
(x,A98) in Example 3.6l

> Modality for x We adopt the modality o given by o, = A (the logical
conjunction; here a € ¥ ¢ {e}). The binary codensity lifting [x, A]®92 is equal
to that in Example 5.2 so that [x, A]Pd2 = x.

Proposition 6.8. The modality o lifts Ada along UgqRel- O

As a consequence, given deterministic automata ¢; : X7 — Fg.(X;) and
ca: Xo = Faa(X2), if a;, 25 € X; are language equivalent in ¢; (i € {1,2}), the
pairs (z1,x2) and (2], 24) are also language equivalent in the product automaton
)\da o (Cl X 62).

The proof of Proposition is as follows. The modality A satisfies two
conditions in Theorem [6.2k 1) For each (¢, p), (', p') € 2 x 2%, both A o 7, and
7.0 (2x A¥)o X map ((t, p), (¥, p)) to t At if a = € and p(a) A p/(a) otherwise.
2) We can prove it by Proposition The second and third conditions are
the same as Example. The first condition in Proposition holds because
for each S’ C Set(X’,2) and (t,p) € 2 x X'*, both 7, 0 2 x (Vses f)¥ and

Ves Ta ©2 X f¥ map (t,p) to t if a = e and \/ ;g f(p(a)) otherwise.

As a side note, when we prove the sufficient condition by Proposition[6.4] we
get the liftability of A with respect to the composition of not only [T, ] and
[F, 7] but also [T, 0] and [F,7,]™® for each a € A. The latter is stronger
than the former. It enables us to compose bisimulations with respect to each
a € A.
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Lemma 6.9. Let o be a natural transformation F = G. Then « is a 2-cell
(F,7) = (G,v) in AJ/CAT if and only if a is a 2-cell (F, 1) = (G,vq) in
1//CAT for each a € A. O

Proposition 6.10. If a distributive law \: ToFYN = FoT is liftable w.r.t. [T, o]0
([F, 7] NN and [F, 7,2 o [T,0]? for each a € A, then o lifts \. O

6.1 Transferring Liftable Modalities

We next show that the transfer of liftable modalities from one CLatn-fibration
to another. We first see the interaction between L/R and the Sp.

Lemma 6.11. Let (F, F) € CATC™(p ¢).
1. LoFR o F C Sp™(F,id) o L»2. They are equal when F is full.

2. o RP9 C RoF2, SpA(F, id). They are equal when F is fibered and
preserving fibered meets. O

When F = Id, these properties are working behind Komorida et al.’s argu-
ment of transferring codensity bisimilarities [23]. Let (Id,G) : p — ¢ be a 1-cell
in CATCY2 guch that @ is full, fibered and preserving fiberwise meets; such
a l-cell is called a transfer situation in [23]. Then the 1-cell commutes with
codensity liftings, that is, G o [F, 7] = [F, 7]9°® 0 G. From this commutativity,
together with the adjoint lifting theorem of Hermida and Jacobs [17, Theorem
2.14] (see also [29, 23] [32] for relevant results), the preservation of the codensity
bisimilarity is obtained:

G(v(c" o [F, T]n)) =v(c* o[F, T]GOQ) (c: X = F(X)).

Such G not only transfers the codensity bisimilarities, but also the liftability
property of modalities.

Proposition 6.12. Let ((2,€2) : Ida — (p: E — B), F, 1) be codensity bisimu-
lation data and (T, \) be an N-ary composition operation for F-coalgebras. Let
(Id,G) :p = (q: F — B) be a I-cell in CATCY2" such that G is full, fibered
and preserving fibered meets. If a modality o lifts A along p, then in the CLatq-
fibration with truth values ((,Go Q) : Ida — (¢ : F — B)), o lifts A along ¢

The proof uses the equality G o [T,0]? = [T,0]®~ o GV derivable from
Lemma [6.11]

Example 6.13. Consider the CLatq-fibration Ugre1: ERel — Set and the
inclusion functor i: EqRel — ERel. Then (Ugqrel; UrRel, ) is a transfer
situation. In Example [6.5] we showed that o, lifts A7 along UgqRel. Proposi-
tion induces that o, lifts A also along UgRel.
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7 Examples of Lifting Distributive laws via Modal-
ities
7.1 Bisimilarity Pseudometric for Deterministic Automata

We next visit bisimilarity pseudometric for deterministic automata [2], [5], which
is a quantitative extension of language equivalence. We fix a weight w € I. We
regard the interval I as a quantitative extension of binary truth values via the
cast function i : 2 — I defined by i(true) = 0 and i(false) = 1.

> Codensity bisimulation data We use the same coalgebraic formulation of
deterministic automata as Fy,-coalgebras as Example [6.7 The difference from
that section is that we employ the category of pseudometric spaces for modeling
bisimilarity pseudometric. We adopt the CLatn-fibration with truth values
(Q,Q) : Idsyiey — Upmet where £ constantly returns the Euclidean space
(I,dy) over the [0,1]-interval. We pair it with the behavior functor Fy, for
deterministic automata and the following modality 7,: Fy.(I) — I to obtain
codensity bisimulation data:

t a=c¢
Ta(t’p)_{ w-pla) a€X.

The codensity lifting [Fya., 7] maps (X, d) € PMet to the space over Fy, X
with the following pseudometric:

((t1, 1), (t2, p2)) = maz{|t; — t2|,w - f;leagd(m (a), p2(a))}.

The [Fy., 7]?-bisimilarity on a Fy,-coalgebra ¢ : X — Fg,(X) is a quantitative
extension of the language equivalence on X. It maps (z,2') € X? to 0 if the
languages of z,z’ are the same, and w™ otherwise where n is the minimum
length of a word that is accepted from one and not from the other. This notion
corresponds to language equivalence if w = 1.

> Binary one-step composition operation We reuse (x, \4%) in Example 3.6l
> Modality for x We adopt o : I? — I given in §5.1.21 As we saw in §5.1.2} the

binary codensity lifting [x,oA]% maps (X, d;), (X,d2) € PMet to the space on
X x Y with the following pseudometric:

((,9), (', y") = max(di(v,2), d2(y, y))-
Proposition 7.1. The modality op lifts \da along UpMet - O

This liftability yields a bound of bisimilarity pseudometrics of composite
automata: given deterministic automata c;: X1 — Fya(X1) and co: Xo —
F4a(X2), the distance between (z,y) and (2/,y') in the product automaton
420 (¢1 X ¢g) is bounded by max (v, v2) where vy is the distance between z, z’
in ¢; and vy is the distance between y, 1y’ in cs.

The proof is to show that two conditions in Theorem[G.2l See Appendix[A.3.1]
for its proof.
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7.2 Similarity Pseudometric for Deterministic Automata

Let us consider similarity for the previous subsection. We get a similarity frame-
work just by relaxing the symmetry condition of PMet and taking an asym-
metric truth-value domain instead of the Euclidean distance dj. For omitted
proofs, see Appendix [A.3.2

> Codensity bisimulation data Let LMet be the category of Lawvere met-
ric spaces (meaning asymmetric pseudometric spaces) and non-expansive maps.
The forgetful functor Upmet: LMet — Set is a CLatn-fibration like Upnjet-
We adopt the CLatn-fibration with truth values (Q,€) : Ida — ULmet such
that € constantly returns the space over the interval with the Lawvere metric
d?*(z,y) = max(0,y—x). We pair it with the behavior functor Fy, for determin-
istic automata and the same modality 7 in §7.1] to form codensity bisimulation
data.

The codensity lifting [Fya, 7] maps (X, d) € LMet to the space on Fg,(X)
with the following Lawvere metric:

((t1, 1), (t2, p2)) = maz{dp®(i(t1),i(t2)), w - Igggd(m(a% p2(a))};

recall that ¢ : 2 — I is the cast function (§7.1)). Note that df® maps (true, false)
to 1 and the others to 0. In §7.0] we used the euclidean distance dj instead of
d?®*, which also maps (false, true) to 1. It makes a difference in the bisimilarity
as below.

The [Fya, 7]-bisimilarity on a Fy,-coalgebra ¢ : X — Fy,(X) is a similarity
pseudometric on X for the deterministic automaton c. It maps (x,2') € X2
to 0 if the language of z is included in that of ’, and w™ otherwise where n
is the minimum length of a word that is accepted from z and not from z’. A
bisimialrity pseudometric in §7.1] detects words that are accepted from z’ and
not from x while a similarity pseudometric doesn’t.

> Binary one-step composition operation We reuse (x, %) in Example B.61

> Modality for x We adopt o : 1?2 — I given in §5.1.21 The binary codensity
lifting [x,0A]%" maps (X,d;) and (Y, dz) to the Lawvere metric on X x Y

((.I, y)a (Ilv yl)) — max(dl (Ia Il)v dQ(ya y/))
Proposition 7.2. The modality op lifts Ada along UrMet - O

This liftability yields a bound of similarity pseudometrics of composite au-
tomata: given deterministic automata c¢;: X7 — Fya(X1) and co: Xo — Fya(X2),
the distance between (x,y) and (2’,y’) in the product automaton A4 o (¢; x cz)
is bounded by max(vy,v2) where vy is the distance between z,z’ in ¢; and vq is
the distance between y,y’ in cs.

The proof is to show that two conditions in Theorem[G.2l See Appendix[A.3.2]
for its proof.
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7.3 Bisimulation Metric for Markov Decision Processes

Bisimulation metric is a quantitative notion of behavioral equivalences for prob-
abilistic systems [9] [7] 34]. We shall see liftability of a distributive law for
composing bisimulation metrics [9].

> Codensity bisimulation data We first set-up coalgebraic formulation of Markov
decision processes (MDPs) and bisimulation metric. Let us write D: Set — Set
for the probability distribution functor which maps X to the set of distributions
on X. Then MDPs are naturally modeled by P o D-coalgebras ¢ : X — PD(X).
Hereafter we omit the composition between P and D.

For bisimulation metrics, let us provide two codensity bisimulation data for
the Kantorovich and Hausdorff lifting.

The first codensity bisimulation data is ((I,dy) : Id; = Upmet, D, €) where e
is the expectation function e: DI — I. The codensity lifting [D, ]9 : PMet —
PMet maps d € PMetx to the Kantorovich pseudometric K(d) on DX:

(h1, pa) = sup (Eaexk(@) - (1 (x) = pa(2))].
kEPMet((X,d),(I,dy))

The second codensity bisimulation data is ((I,dy) : Idi — Upmet, P, inf).
The codensity lifting [P, inf]%: PMet — PMet mapping d € PMetx to the
Hausdorff H(d) pseudometric on PX:

(A17 AQ) = sup |inf¢11€A1k(a’1) - infa2€A2l€(CL2)|
kePMet((X,d),(I,dy))

= maX(aftelgl nf d(ay, a2), Sup Jnf d(as, a2))
Notice that supf) = 0 and inf () = 1, hence H(d)(0, A2) = 1 for Az # (). The
equality is proved in [23] Appendix 3].

Then a [P, inf]% o [D, e]%-bisimulation on ¢ is called a bisimulation metric,
and the bisimilarity is called a bisimilarity metric [7]. It maps a pair of states
(z,y) to a distance that measures quantitative analogue to behavioral equiva-
lences.

> Binary one-step composition operation We have seen the binary one-step
composition (x, A”) for P in Example We next introduce the one for D by

AP (i) = () = p() - 1/ (y)-
This induces the binary one-step composition (x, APP) for PD-coalgebras by

A\PP & (Po )\D) ° ()\P o 'DQ).

> Modality for x From the discussion above, it is sufficient to find a modality
o for x that lifts both distributive laws A¥ and AP. Then both distributive
laws A7 and AP become liftable, hence so is APP. Among several modalities
introduced in §5.1.2 only og lifts both binary operations. Therefore:
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Proposition 7.3. The distributive law N\FP is liftable on countable pseudo-
metric spaces w.r.t. [x,0q]% o ([P,inf]% o [D,e]")N and [P,inf]% o [D,e]% o
[Xvo'@]dﬂ'

As a consequence of the proposition above, given two MDPs ¢; : X; —
PD(X;) over at most countable states X; (i = 1,2), if d; is a bisimulation
metric for ¢;, then the mapping

d((xu y)’ (xlv y/)) £ Og (dl (z, CL'/), da (y, yl))

becomes a bisimulation metric for the composite MDP A7P o (¢ x ¢3). Moreover,
the above proposition implies preservation of bisimilarity metrics. If d; is the
bisimilarity metric for ¢;, then the bisimilarity metric for the composite MDP
APP o (c1 X ¢2) is bounded by d. This bound itself was shown in [13]. We give
a proof in terms of composition of distributive laws.

We prove Proposition [.3] by checking if og lifts both binary operations
(x, A7) and (x,AP). Other o written in §5.1.2] do not satisfy all conditions in
the lemma.

Lemma 7.4. Let o: 12 — 1 be a modality satisfying (@), so that [x, o]

= x7.
1. The modality o lifts A if o is concave, o preserves infimums, and o(1,x) =
o(z,1) =1 for any z € 1.

2. The modality o lifts \P on countable pseudometric spaces if o is concave.

O

The second statement comes from the following lemma, which is a direct
adaptation of [I3] Theorem 2.20] in the context of pseudometric spaces. It can
be proved in almost the same way as the original theorem; here we rely on the
Kantorovich-Rubinstein duality theorem on at most countable sets [35].

Lemma 7.5. Let X,Y be at most countable sets, (X,d;), (Y,d2) € PMet, and
o : 12 =1 be a concave function satisfying @). Then for each 1,y € DX and
M2, ,u/2 € DY;

K(d)AR y (11, 12), ARy (11, 1)) < o(K(d)(pa, 1), K(d2) (p2, 1)) (8)

where d is the pseudometric on X XY given by d((z,y), (z',y")) = o(di(z,2"), d2(y,y")).
(]

We didn’t apply Theorem to this case because as of now, it remains
unsolved that the modality og satisfies the second condition in Theorem
while it satisfies the first one.

8 Composing Codensity Games

We introduce a composition of codensity games, and show that it preserves game
invariants. As a consequence, we provide an alternative proof of the preservation

23



of bisimilarities (the inequality shown in Corollary BI0) under the sufficient
condition in Theorem Equivalently, the preservation of bisimilarities is
restated as follows:

VP, Px o Nien (P Ev(cf o[F,7]7))

— [T, U]Q(FZ) Cu(Ta(cr, -+ en) o [F,7]%).

We call P; a witness of bisimilarity, and call the above formula the composition-
ality of witnesses.

Definition 8.1 (witness). Let ((©2,9) : Ida — (p: E — B), F, 7) be codensity
bisimulation data and ¢: X — F(X) be an F-coalgebra. An object P € Ex is
a witness of the codensity bisimilarity on ¢ if P T v(c* o [F, 7]?).

8.1 Compositionality of Invariants

We briefly recall definitions and results on codensity games. We reserve the
variable ¢ for N-indices, and write 7, for the sequence of mathematical entities
x; (such as morphisms and objects) indexed by i € N.

Definition 8.2. A safety game is a game G = (Qp,Q@s, E) played by two
players D (Duplicator) and S (Spoiler) where Qp, Qs are sets of positions of
D, S respectively and F C (Qp X Qs U Qs X Qp) is a set of possible moves.
A play of G is a finite or infinite sequence of positions qg,q1,... such that
(¢i, gi+1) € E for each i. The player S wins a play if the sequence is finite and
the last position is in Qp, and the player D wins the game otherwise.

A strategy of D is a partial function s: Q* x Qp — Qs where Q* is the set of
finite sequences of Qp WQs. A strategy s of D is winning from ¢ if D wins any
play qo,q1,... such that ¢o = ¢ and ¢;11 = s(qo,¢1,-..,¢;) for each ¢; € Qp.
A position g € Qg is winning (for D) if there exists a winning strategy s of D
from gq.

Winning positions on a safety games are characterizes by invariants, which
also induce winning strategies of D.

Definition 8.3. A set V C Qs is an inwvariant for D if for each ¢ € V and
¢ € Qp, (q,¢") € E implies that there is ¢ € V such that (¢, ¢") € E.

Proposition 8.4. A position q € Qs is winning if and only if there is an
invariant V for D such that ¢ € V. O

Codensity games are safety games that are induced by codensity liftings and
coalgebras.

Definition 8.5 (codensity games [23]). Let ((2,Q) : Ida — (p: E = B), F,7)
be codensity bisimulation data and ¢: X — F(X) be a F-coalgebra. The coden-
sity game G, is the safety game (Qp, s, F) played by two players D, S where
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Qp ={(a,k) |a € Ak € B(X,Q(a))}, Qs = Obj(Ex), and F = =g U —p is
given by

P —g (a,k) if 7,0 Fkoc: P-»Q(a),
(a,k) —=p P if k: P'»Q(a).

We show characterizations of invariants and winning positions of codensity
games, which are required in the latter part.

Proposition 8.6 ([23]). 1. A setV C Obj(Ex) is an invariant for D in the
codensity game G, if and only if | |pey, P is a [F, 7] -bisimulation on c.

2. A position P € Ex is winning in G. if and only if P is a witness of the
codensity bisimilarity on c. (]

Now we move to a codensity game of a composite coalgebra. Given F-
coalgebras ¢;: X; — F'(X;) (i € N), the codensity game Gr, (z7) of the composite
coalgebra T(¢]) is given by

(PEE —s (a,k) if Ty 0 Fko (Ao T(¢})): P-»(a),

T(X; ))
(a€ Ak eB(T(X)),2a) =p P if k: P'8(a).

In general, the codensity game Gr, (z7) may not be composed from each game of

Ge,: in particular, positions and moves may not be composed by products, and

therefore invariants may not be.

Instead, we define a composite codensity game (Definition B7)), where in-
variants are compositionally preserved:

Definition 8.7 (composite codensity games). Let ((2,9) : Idya — (p: E —
B), F,7) be a codensity bisimulation data and ¢;: X; — F(X;) (i € N) be F-
coalgebras. The composite codensity game g;;" is the safety game (Qp, Qs, F)

by two players D, S where Qp = {(Q,Z) | a € Ajk; € C(X;,Q(a))}, Qs =
[L; Obj(Ex, ), and E :=—g U —p is given by

P s (0, F) if 04 0 T(7a 0 Flyo): [T, 0] 2 P-(a),
%
(a,k)) —p P if there is i € N s.t. ki: Pl-»Q(a).

The following proposition shows that we can construct an invariant by com-
posing invariants of component games G, .

Proposition 8.8. If each V; C Obj(Ex,) is an invariant of G., for D then
[Licn Vi is an invariant of QCZ;U for D. O
8.2 Preservation of Bisimilarities

Under the sufficient condition in Theorem [6.2], invariants of composite codensity
games QF;U also characterizes codensity bisimilarities on composite coalgebras
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TA(E}). We introduce a join-closure operation for invariants: for a set V C
[Ticy Obi(Ex,), we write V for VU { (|_|13> R-) } We remark that if a
i€V "/ ieN

set V is an invariant of a codensity game G, for D then so is V.

Theorem 8.9. Assume that the sufficient condition in Theorem [6.2 holds and
let V C [[,cn Obj(Ex,) be a set.

1. The setV is an invariant for D in QF;_F_;U if

Uz ey(T, J]Q(FZ) is a [F, 72 -bisimulation on T(¢}).

2. The set V is an invariant for D in QF;_F_;U if and only if
Uz eyl J]Q(FZ) is a [F, 72 -bisimulation on T(¢}). O

Corollary 8.10. Assume that the sufficient condition in Theorem[6.9 holds. If
s a winning position for D with an invariant V then [T, U]Q(?Z) is a witness

on Tx(¢}). O

Finally, through a composite codensity game, we prove the compositionality
of witnesses (and equivalently the preservation of bisimilarities). If each P; is a
witness on the codensity bisimilarity on ¢;, P; is a winning position for D in G,
by Proposition Then Proposition B4l ensures the existence of invariants V;
of G., such that P; € V;. Proposition B8 and [Licn V, = [Licn Vi imply that
?i is a winning position with the invariant [, Vi. Therefore, Corollary B.I0

%
concludes that [T, 0]%(P,) is a witness of the codensity bisimilarity on Ty (¢ ).

9 Conclusion

In this paper, we have presented generalized codensity liftings in a 2-categorical
framework. This development has facilitated the derivation of liftings of struc-
ture functors, especially binary product functors, and enhanced our understand-
ing and manipulation of codensity liftings.

By integrating the 2-categorical framework of generalized codensity liftings
and structure functors through codensity liftings, we were able to identify a
sufficient condition to lift a distributive law between functors into one between
codensity liftings. Additionally, we have investigated our sufficient condition
from the perspective of compositional reasoning of codensity games.

For future work, we will continue to explore and expand the scope of our ap-
proach, particularly considering different structure functors or different notions
of compatibility as they appear in the study of up-to techniques.

Recently, higher-order abstract GSOS frameworks [14] [33] 15] are actively
studied: they extend behavior endofunctors to bifunctors and use certain dinat-
ural transformations for distributive laws. Seeking a higher-order extension of
our framework, that is, studying a liftability of distributive laws along codensity
liftings in a higher-order setting is an interesting future direction.

26



Acknowledgement

MK, KW and SK were supported by ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603), JST. MK was supported by JSPS
DC KAKENHI Grant (No. 22J21742). KW was supported by the JST grants
No. JPMJFS2136 and JPMJAX23CU. JR was supported by the NWO grant
No. OCENW.M20.053.

References

[1]

Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara Konig. Be-
havioral metrics via functor lifting. In Venkatesh Raman and S. P. Suresh,
editors, 34th International Conference on Foundation of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2014, December 15-
17, 2014, New Delhi, India, volume 29 of LIPIcs, pages 403-415. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2014.

Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara Konig. Coal-
gebraic behavioral metrics. Log. Methods Comput. Sci., 14(3), 2018.

Harsh Beohar, Sebastian Gurke, Barbara Konig, Karla Messing, Jonas
Forster, Lutz Schroder, and Paul Wild. Expressive quantale-valued log-
ics for coalgebras: An adjunction-based approach. In Olaf Beyersdorff,
Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov,
editors, 41st International Symposium on Theoretical Aspects of Computer
Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France, vol-
ume 289 of LIPIcs, pages 10:1-10:19. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2024.

Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be
traced. J. ACM, 42(1):232-268, 1995.

Filippo Bonchi, Barbara Konig, and Daniela Petrisan. Up-to techniques
for behavioural metrics via fibrations. In CONCUR, volume 118 of LIPIcs,
pages 17:1-17:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018.

Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. A gen-
eral account of coinduction up-to. Acta Informatica, 54(2):127-190, 2017.

Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics
for action-labelled quantitative transition systems. In Antonio Cerone and
Herbert Wiklicky, editors, Proceedings of the Third Workshop on Quan-
titative Aspects of Programming Languages, QAPL 2005, Edinburgh, UK,
April 2-3, 2005, volume 153 of Electronic Notes in Theoretical Computer
Science, pages 79-96. Elsevier, 2005.

J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for
labelled markov processes. TCS, 318(3), 2004.

27



[9]

[20]

[21]

Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panan-

gaden. Metrics for labelled markov processes. Theor. Comput. Sci.,
318(3):323-354, 2004.

Josée Desharnais, Frangois Laviolette, and Mathieu Tracol. Approximate
analysis of probabilistic processes: Logic, simulation and games. In QEST,
pages 264-273. IEEE Computer Society, 2008.

Nathanagl Fijalkow, Bartek Klin, and Prakash Panangaden. Expressiveness
of probabilistic modal logics, revisited. In ICALP, volume 80 of LIPIcs,
pages 105:1-105:12. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2017.

Chase Ford, Stefan Milius, Lutz Schroder, Harsh Beohar, and Barbara
Konig. Graded monads and behavioural equivalence games. In LICS, pages
61:1-61:13. ACM, 2022.

Daniel Gebler, Kim G. Larsen, and Simone Tini. Compositional bisim-
ulation metric reasoning with probabilistic process calculi. Log. Methods
Comput. Sci., 12(4), 2016.

Sergey Goncharov, Stefan Milius, Lutz Schroder, Stelios Tsampas, and

Henning Urbat. Towards a higher-order mathematical operational seman-
tics. Proc. ACM Program. Lang., 7(POPL):632-658, 2023.

Sergey Goncharov, Alessio Santamaria, Lutz Schréder, Stelios Tsampas,
and Henning Urbat. Logical predicates in higher-order mathematical op-
erational semantics. CoRR, abs/2401.05872, 2024. to Appear in FoSSaCS
2024.

Ichiro Hasuo, Toshiki Kataoka, and Kenta Cho. Coinductive predicates and
final sequences in a fibration. Math. Struct. Comput. Sci., 28(4):562-611,
2018.

Claudio Hermida and Bart Jacobs. Structural induction and coinduction
in a fibrational setting. Inf. Comput., 145(2):107-152, 1998.

Horst Herrlich. Topological functors. General Topology and its Applica-
tions, 4(2):125 — 142, 1974.

Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States
and Observation, volume 59 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2016.

Bart P. F. Jacobs. Categorical Logic and Type Theory, volume 141 of
Studies in logic and the foundations of mathematics. North-Holland, 2001.

Shin-ya Katsumata and Tetsuya Sato. Codensity liftings of monads. In
Lawrence S. Moss and Pawel Sobocinski, editors, 6th Conference on Alge-
bra and Coalgebra in Computer Science, CALCO 2015, June 24-26, 2015,

28



[22]

23]

24]

[25]

[26]

[27]

28]

29]

[30]

[31]

32]

Nijmegen, The Netherlands, volume 35 of LIPIcs, pages 156—170. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2015.

Shin-ya Katsumata, Tetsuya Sato, and Tarmo Uustalu. Codensity lifting
of monads and its dual. Log. Methods Comput. Sci., 14(4), 2018.

Yuichi Komorida, Shin-ya Katsumata, Nick Hu, Bartek Klin, Samuel
Humeau, Clovis Eberhart, and Ichiro Hasuo. Codensity games for bisimi-
larity. New Gener. Comput., 40(2):403-465, 2022.

Yuichi Komorida, Shin-ya Katsumata, Clemens Kupke, Jurriaan Rot, and
Ichiro Hasuo. Expressivity of quantitative modal logics : Categorical foun-
dations via codensity and approximation. In 36th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 -
July 2, 2021, pages 1-14. IEEE, 2021.

Barbara Konig and Christina Mika-Michalski. (metric) bisimulation games
and real-valued modal logics for coalgebras. In CONCUR, volume 118 of
LIPIcs, pages 37:1-37:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik, 2018.

Ugo Dal Lago and Maurizio Murgia. Contextual behavioural metrics. In
CONCUR, volume 279 of LIPIcs, pages 38:1-38:17. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2023.

Mohammad Reza Mousavi, Michel A. Reniers, and Jan Friso Groote. SOS
formats and meta-theory: 20 years after. Theor. Comput. Sci., 373(3):238—
272, 2007.

David Sprunger, Shin-ya Katsumata, Jérémy Dubut, and Ichiro Hasuo.
Fibrational bisimulations and quantitative reasoning. In Corina Cirstea,
editor, Coalgebraic Methods in Computer Science - 14th IFIP WG 1.8 In-
ternational Workshop, CMCS 2018, Colocated with ETAPS 2018, Thessa-
loniki, Greece, April 14-15, 2018, Revised Selected Papers, volume 11202
of Lecture Notes in Computer Science, pages 190-213. Springer, 2018.

David Sprunger, Shin-ya Katsumata, Jérémy Dubut, and Ichiro Hasuo.
Fibrational bisimulations and quantitative reasoning: Extended version. J.
Log. Comput., 31(6):1526-1559, 2021.

Colin Stirling. Bisimulation, modal logic and model checking games. Log.
J. IGPL, 7(1):103-124, 1999.

Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational
semantics. In LICS, pages 280—-291. IEEE Computer Society, 1997.

Ruben Turkenburg, Harsh Beohar, Clemens Kupke, and Jurriaan Rot. For-
ward and backward steps in a fibration. In CALCO, volume 270 of LIPlIcs,
pages 6:1-6:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023.

29



[33] Henning Urbat, Stelios Tsampas, Sergey Goncharov, Stefan Milius, and
Lutz Schroder. Weak similarity in higher-order mathematical operational
semantics. In LICS, pages 1-13, 2023.

[34] Franck van Breugel and James Worrell. A behavioural pseudometric for
probabilistic transition systems. Theor. Comput. Sci., 331(1):115-142,
2005.

[35] Cédric Villani. Optimal transport: old and new, volume 338. Springer,
20009.

30



A  Omitted Proofs

A.1 Onmitted Proofs for Section

Proposition A.1 (Proof for Example. £2). In Ezample. [52, the CLatn-
fibrations with truth values (2, (2, Eq2)) : Idi — Ugqrel and (2, (2,{0, {true},2})) :
Id; = Urop satisfy RPOALP — (.

Proof. RPSILPS? = id is equivalent to [,. .o k"2 = Q.

* ((2,(2,Eq2)) : Idi — Ugqrel): [lr. 0ok = {(z,y) | VE: Q —
Q. kx = ky} = Q holds. The last equality is because (z,y) in Lh.s. satis-
fies z = y by letting k := id, and (z,y) in r.h.s. satisfies kz = ky for each
k: 2 — Q.

o ((2,(2,{0,{true},2})) : Idi = Umrop): [ i. a_n k*Q is the topology gen-
erated by U,. g .qf{k 'A | A € Q}. Q is included in the topology by
k:=id: © — Q, and the topology is included in € because k1A € Q for
each k: @ — Q and A € Q.

O

Proof of Proposition[5.3. 1. (=) Suppose x?: PMet? — PMet is a lift-
ing of the product functor x. Consider arbitrary a,b,c,d € [0,1]. For
xz, 2’2" € {a,b,c,d} we write P, € PMets for the pseudometric satis-
fying P;(0,1) = z, and Py, »» € PMets (when = + 2’ < 2”) for the
one mapping (0, 1) to z, (1,2) to 2/, (0,2) to  + 2’ where 2 = {0,1} and
3 =1{0,1,2}. The modality o is monotone because a < ¢ and b < d imply
o(a,b) = o(P,(0,1), P,(0,1)) < o(P.(0,1), P4(0,1)) = o(c,d) by mono-
tonicity of the functor x°. ¢(0,0) = x?(P,, P,)((0,0),(0,0)) = 0 because
X7 (Py, Py) is a pseudometric. o(a,b) = xX7(P, |q—c|,a> Pa,jp—d),5)((0,0),(2,2)) <
XU(PC,‘afc‘,a7 Pd,|b7d|,b)((0= 0)7 (17 1))+XU(PC,|(176|,(17 Pd,|b*d|,b)((17 1)7 (27 2)) =
o(la—=c|,|b—d|)+0(c,d). Thus we have o(a,b)—oc(c,d) < o(la—c|,|b—d]).

(<) Suppose o satisfies (@). Then x?(P,Q) is a pseudometric for each
P,Q € PMet: For arbitrary z,2’, 2" € pP, y,y',y" € pQ,

® XU(Pv Q)((:c,y), (‘Tuy)) =0 P(‘Tv‘r)uQ(yay)) = U(0,0) =0,

o x7(P,Q)((z,y), (2", y) = o(P(z,2'),Qy,y)) = o(P(a',2),Q(,y)) =
x7(P,Q)((#",y), (z,y)),

o x7(P,Q)((z,y), (z",y")) = o(P(z,2"),Qy.y")) < o(P(z,2")+P(z', "), Qy,y')+
QW y")) < o(P(x,2),Qy, y))+o(P(',2"), QW y")) = x7(P,Q)((z,y), (', "))+
x7(P,Q)((#",y), («",y"))

For each f: P — P’ and g: Q@ — Q' in PMet, f x g: x7 (P,Q)=> x°
(P, Q") by monotonicity of o.

2. The third condition of (@) is equivalent to |o(a,b)—oc(c,d)| < o(la—c|,|b—
d|) for each a,b,c,d € [0,1], and it corresponds to o: x7 (dj,11)—>d[o,1]-
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Therefore it induces x°(P,Q) C [x,g]%01(P, Q) for each P,Q € PMet
by Proposition 7l For each P,Q € PMet, x°(P,Q) 3 [x,0]%01(P,Q)
because for each z, 2’ € pP and y,y’ € pQ, letting k1(¢) = P(x,t) and
kQ(t) = Q(ya t),

x7(P,Q)((x,y), (2",y") = o(P(z,2"), Qy,y"))

Proposition A.2. The modalities 0g, 0y defined by og(a,b) :=1—(1—a)(1-b)
and oy (a,b) = max(a,b) satisfy (@).

Proof. For each o € {og,0v}, It is easy to show that o is monotone and
0(0,0) = 0. Here we only show o(a,b) — o(c,d) < o(Ja — ¢|,|b — d|) for each
a,b,c,d € 10,1].

o (0 =o0g): Let vy =a, € '=a—c¢, vy =0b, and e = b —d. Then
max(0,¢;) <v; <min(l,14¢;) (i =1,2) and (lhs) = og(v1,v2) — og(v1 —
€1,V — 62) = 61(1 - ’Ug) + 62(1 - ’Ul) + €1€9.

If €1,e2 > 0, (Ihs) < e1(1 —ea) + ea(l —€1) + €162 = og (€1, €2) < (rhs).

If e, > 0and ex <0, (th) < 61(1 - 62) + 62(1 — 1) +e160 =€ < (l”hS)
Ife; <0and ey >0, (Ihs) <e1(1 —1) 4+ €e2(l —€1) + €162 = €2 < (rhs).

If e, <0 and e <0, (th) < 61(1 — (1 + 62)) + 62(1 — (1 + 61)) + €160 =
—€1€2 S 0 S (l“hS).

e (0 =oy): Since oy(z,y) = oy(y,z) for each x,y € [0, 1], we can assume
a < b without loss of generality.

If c<d, (Ihs) =b—d < |b—d| < (rhs).
Ife>d, (lhs) =b—c Ifb<gc, (lhs) <0 < (rhs). Otherwise (b >

¢),
b—c¢ <b—dbecause d < ¢ < b. Therefore (lhs) =b—c < |b— d|<( s).

O

Proof of Proposition[5.4} For each (P;),.y € EN and a € A, {00 T((ki);cp) |

ki: P;=Q(a)} = {ooT((f o ki);en) | kit Pi—+(a)} because for each (k;: Pi—8(a)),c

(fOki)ieN7(f_1 Oki)ieN : P,5Q(a) by f*Q = Q = (f1)*Q. It induces

Sp (T, 0)oLP ¥~ = gpA (T aoT(fN))oLp7<n>N. Therefore, [T, 7] = RP-(¥~o

Sp (T, o) 0 LPON = RPADN 0 SpA(T, g 0 T(fN)) 0 LN = [T, 00 T(fV)]2.
Similarly, for each S € Sp*(BY, Q) and a € 4, HaeA,(ki)iENeS(UOT((ki)ieN))*Q(a) =

I_laEA (k ) GNGS(UOT((k )zGN))*f*Q( ) = I_laGA (k')ieNGS(fOUOT((ki)iGN))*Q(a)'

It 1nduces Rp )N o SpN(T, o) = Rp N o Sp (T, f o o). Therefore, [T, 0]? =

RPN oSpA(T, 0)o LPWN = RPN oSpA(T, foo)oLP N = [T, foo]®. O
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A.2 Omitted Proofs for Section

Lemma A.3. In the setting of Proposition if the three conditions in the
proposition hold, then for each a € A,

RPSM@ 6 SpL(F, 7,)(S,) & RP) o Spt(F,7,) o LPH 6 RPE(S).

Proof. For each a € A and k: [,y pes , K R(a") = Qa),

[ (a0 FE)*Qa) E [] (700 FK)*Qa) since S, C S,
k€S, k'ES),
C( \/ 7o 0 FE')*Q(a) by the second condition
k€S,
= (140 F( \/ k")) Q(a) by the first condition
k'€S;,
= (74 0 Fpk)*Q(a). by the third condition
(]

Proof of Proposition [6.7. Because RP®oSp”(F,7)(S") = Moca BPH@oSp! (F, 7,)(Sh)
for each S’ € Sp”(B, ), S is approximating to [F,7]? is equivalent to RP* o
Sp™(F,7)(S) C RP2)oSpl(F, 7,)0 L2 o RP-2(S) for each a € A. Lemmal[AJ]
and RP® o Sp?(F,7)(S) C RP2(@) 6 Sp*(F,7,)(S,) for each a € A conclude the
proof. O

Proof of Proposition [6.12. Suppose that A is liftable with respect to [T, o],
[F, 7], i.e. there is a natural transformation \: [T, o]([F, 7]2)N = [F, 7]®[T, 0]®
above A. Then we have the natural transformation G o A above A. The natural
transformation Go is from [T, 6]5%o([F, 7] N oGV to [F, 7]9%0[T, 0]“ oGV
because G o [T, o] o ([F, 7)Y = [T, 0] o ([F, 7|9 N o GN and G o [F, 7]% o
[T, 0] = [F, 7] o [T, 0]9* o GV hold by the discussion of §6.11

Because G is full, it ensures the existence of a natural transformation from
[T, a]9([F, T]9NN to [F, 7|99 T, 0]%? above . O

Proof of Proposition 610, [T, 0] o([F, 7])N = [,c 4T, 0]%o([F, 7,)H)N =
[NacalF, 722 o [T, 0] = [F, 7] o [T, 0]?. The first natural transformation is
above id and the second one is above . o
A.3 Omitted Proofs for Section [7]

A.3.1 Bisimilarity Pseudometric

Proposition A.4. In the setting of {71}, the tuple ((Q2, Q) : Ids — UpMet, (X, A4),04)
satisfies the conditions in Theorem [6.2.
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Proof. 1) For each (t,p),(t',p') € 2 x [0,1]%, (or o e X T)((t,p), (', 0)) =
tAt = (10 (2 x aX) o A)((t,p), (t', ) and (op 0 T X 7a)((t, p), (', p)) =
w- (pla) Ap/'(a)) = (ta o (2% 0%) 0 N)((t, p), (t', ")) (a € D).

2) We aim to show that for each (di,d2) € PMetx x PMety, a € A,

ki [x,07]%000(dy, d2) = djo 1), (t1, f1), (t2, f2) € (2 x (X x Y)¥),

[(7a © (2 X k*))(t1, f1) = (Ta © (2 X k7)) (t2, f2)]

S S,U.p |(Ta/0(2>< (O'Aokl sz)z))(tl,fl)—(Ta/O(2>< (U/\Okl ng)z))(tg,fgﬂ.
ki: gliAdﬂ[oyl],
k2 : da—djo 1)

If a =¢, (lhs) = |t1 —to| = (rhs). If a € X, noting that |k(x1,y1) — (xg,y2)|
max(dy (z1, 22),d2(y1,y2)) for each x1,20 € X and y1,y2 € Y, (lhs) =
|/€f1(a) — kf2(a)] < w - max(di(x1,72),d2(y1,92)) = (74 0 (2 X (0p © kl X
k2)™))(t1, f1) = (Ta 0 (2% (0n 0ki X k2)™))(t2, f2)| < (rhs) where fi(a) = (z1,91),
fa(a) = (22,92), k1(t) =1 — di(1,1), k2(t) =1 — da(2,1).
O
A.3.2 Similarity Pseudometric
Lemma A.5. min(a,b) —min(c,d) < max(a—c¢,b—d) for each a,b,c,d € [0,1].

Proof. If a < b and ¢ < d, (lhs) = a — ¢ < (rhs). If a > b and ¢ > d, (lhs)
=b—d< (rhs). fa<band ¢ >d, (lhs) =a—d <b—d <(rhs). If a > b and
c¢<d, (Ihs) =b—c<a-—c<(rhs). O

Proposition A.6. di® is a Lawvere metric.
Proof. For each a,b,c € [0,1],
e di®(a,a) =0 is easy.

o di%(a,c) < dt%(a,b)+d3*(b, c) is because: If a < band b < ¢, (lhs) =

—qQ =

(rhs). If a > band b > ¢, (lhs) = 0 = (rhs). If a < bandbz ¢,

c—a <b—a=(rhs) and 0 < b—a = (rths). If a > band b < ¢,
¢c—a<c—>b= (rhs) and 0 < ¢ — b = (rhs).

O

Proposition A.7. 1. The codensity lifting [F,7]%" maps (X,d) € LMet to
the pseudometric on FX given by ((t1,p1), (t2, p2)) — max{ds®(t1,t2),w
maXgey d(Pl (a)v P2 (CL))}

2. The binary codensity lifting [, o A% maps (dy,ds) € LMetx xLMety to
the Lawvere metric on X XY given by ((x,y), (¢',y")) — max(dy (z,2'), d2(y,y")).

Proof. L. Fix arbitrary d € LMety and (t1,p1), (t2,p2) € 2 X X>. Tt is
easy to see that [F) 7 )4 (d)((t1, p1), (ta, p2)) = di(t1,t2). Let us prove
that [F,7,]4 (d)((t1,p1), (t2,p2)) = w - d(p1(a), pa(a)) for each a € X.
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(>): Letting k(t) == :d — d8® and (lhs) > d&*(w - kp1(a),w
kpa(a)) = w - d(p1(a), ) rhs). (<): For each k: d — d&°, d2*(w
kor(a). w-kpa(a)) = -5 (kpa (@) kpa(a)) < w-d(p1 (a). pa(a)). Therefore
we have (lhs) < (

2. Fix arbitrary dq,dz € LMetx and (x,y), (2',y') € X x Y. Let us prove
[, A% (dv, da)((2,y), (2", y)) = max(d 1 (@, ) da(y,y')). (2): Letting
kl(t) SZl—dl(t,,Tl) and kg(t) SZl—dQ( Y ), ki: dy —>de and ko: do —
di®. Therefore we have

(Ihs) > d2®(min(kyz, koy), min(k1 ', k2y'))
= max(dl (Ia I/), do (ya y/)) = (’I”hS)

(<): For each k1: di — d2® and ko: do — d2¥,

d3® (min (ki x, koy), min(ki12’, kay'))
< min(ki12’, koy') — min(kyz, kay)
< max(k1z' — ki1x, ko) — koy)

< max(d1(z, "), d2(y,y))

by Lemma [A5l Therefore we have (lhs) < (rhs).

O
Proposition A.8. In the setting of {7.2, the tuple (,Q) : Ida — (p :
LMet — Set), (x,\4), 5,) satisfies the conditions in Theorem [G2.
Proof. We can prove it in the same way as Proposition [A.4]l O

A.3.3 Bisimulation Metric

Proof of Lemma[74. 1) We can prove it by letting d = [T,0]%(dy,ds) and
z = o in Lemma

2) Let P € PMetx and Q € PMety. [T,c]}([P,inf]?P, [P,inf]?Q) C
NPH[Pinf|[T, 0]} (P, Q) is equivalent to for any Ay, Ay € PX, By, By € PY,

U(([Pv inf]QP)(Al, A2)7 ([Pv inf]QQ)(Blv B2)) > ([Pv inf]Q[T, U]Q(Pu Q))()‘P (A17 Bl)v

(9)

If \P(A1, By) = AP (Aa, By) = (), then (rhs) = 0 by the definition of [P, inf]*
so the inequality (@) holds.

If )\P(Al,Bl) = @ and )\P(AQ,BQ) 7§ @, then (A1 = @ or Bl = @), AQ }é @,
and By # () by definition of \”. Thus at least one of ([P,inf]®*P)(A;, As)
and ([P, inf]*Q)(Bi, B2) is equal to 1 by the definition of [P,inf]*. Because
o(1,a) = o(a,1) = 1 for any a € [0,1], we have (lhs) = 1. It indicates the
inequality (@) holds.
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Assume that A7 (Ay, By) # () and A7 (Ag, By) # (). The definition of [P, inf]®
gives that

(rhs) = max( sup

inf T,0]*(P,Q)((a1,b1), (a2, b)),
(a1,b1)ENP (A1, B1) (a2qb2)€>\7’(A2,Bz)[ ] ( )(( 1 1) ( 2 2))

sup inf
(a2,b2)ENP (A, By) (a1,b1)EAP (A1,B1)

[Tv U]Q(Pa Q)((al ’ bl)v (a2a bQ)))

Therefore it’s enough to show that two inequalities

(lhs) = sup [T,0)%(P,Q)((ax, by), (az,b2))

inf
(a1,b1)ENP (A1, By) (a2,b2)EAT (A2, Bz)

and

lhs) > sup inf T,0]*(P,Q)((a1,b1), (a2, b2)).
(Lhs) (a27b2)ew(,42,32)(al,bl)eAP(Al,Bl)[ (P, Q)((a1,b1), (az, b2))

Let us show the former. The other one can be shown similarly.
For any (a1,b1) € AP (A1, By),

(th) - 0(([7)7 lnf]np)(Alv A2)7 ([Pu lnf]nQ)(Bl ) B?))
>o(sup inf P(a},ab), sup ,ing Q(by,bh)) by the definition of [P, inf]

a,IEA1 a,QEAz b’leB1 bQE 2

>o( inf P(ar,ay), inf Q(br, b)) since ¢ is monotone
ab €Az by EB2

= inf  o(P(a1,ah),Q(b1, b)) since o preserves infimums

ab€Az,bLEB,

inf T, o|}(P, ai,by), (ah,bh)).
(aéybé)GAp(A2,B2)[ U] ( Q)(( 1 1) ( 2 2))

A.4 Omitted Proofs for Section [8]

Lemma A.9. Assume that two conditions in Theorem hold. A setV C
ITLen Ex,| is an invariant for D in the composite codensity game QF;_F_;U if and

onty if U o, [T, o)(P) € (T3 (@) [R. 10T, 01% (Up ey P) )
Proof.
N[F, T]Q[T, O']Q = \*RP o SpA(F, T)o SpA(T, o) o L ARCURY
(by the condition (@) in Theorem [6.2))
= RP2 o X*Sp™(F, 1) 0 Sp™ (T, o) o LP" (W
(since RP? preserves cartesian morphisms)
= RP 6 SpA(T, 0) o Sp™ (FN, 7V) o LP" (¥
(by the condition () in Theorem and discussion after Theorem [6.2])
— R oSpA (T o FN,ge(TorN))o L7

36



From this equation,

L] (701 ({P)ien) E (Mo T({e)ien)) [EAIN(T 0] || Pien)

(P;)ieN €V (P;)ieNEV
= Uipycwev T, o1 (Pi)ien)
C (T({ci)ien)) R o Sp* (T o FN g e (T o 7)) o L7 || Plien)
(P;YieNEV
= |_| (UOT(<TaOFkaiOCi>ieN))*Q
a€A (ki €E(L(p,y,ev Pir))ien
= V(P)ien €V.Va€ A V(ki: | | Pl5Qien. [T.0]%((P)ien) T (00 T((Ta 0 Fki o ci)ien))
(P/)i€V
< Y(P)ien €V.Va € A. V(k; € C(X;,Q))ien-
(V(P])ien € V. Vi€ N ki: Pl = [T,0]?((P)ien) C (0 0 T({(Ta 0 Fk;i 0 ¢;)ien))
)
]

*

Q

< Y(P)ien €V.Va € A V(k; € C(X;,Q))ien-

([T,U Q(( Pien) Z (O'OT(<Ta o Fk; oci>i€N)) Q= P ien €V. T €N k;: P'%)Q)

O
Proof of Theorem[89 (1) If| |z [T, 0]9(?1) is a [F, 7]%-bisimulation on T (),
then V satisfies the inequality in Lemma because ||z ,[T, a]n(?z) C

(T3 (@)) [F, 71 U o [T, (B) © (13 (@) [F, 71T, 0] <(upev ).
Therefore V is an invariant by Lemma

(2) Since (I—lPev )e €V and [T, 0]%(B) C [T, ]((|_|PEv >€N)for
cach P, €V, U 5T, o(F) = (1.0 ((Up ey ) ) = [0.0%(Ups B, )
Lemma [A.9] concludes the proof. O

Proof of Proposition [88. Assume that each V; C Ex, is an invariant of G., for
D. For any a € A and (k; € C(X4,Q));cn»

[T, 0] (14 0 Fki 0 ¢;)*Q(a)) = |_| (04 0 T(;@))*Q(a')

a/EA,(ki : (TaoFk:ioci)*Q—»Q)iEN

(0q 0T (140 Fk;o ci))*ﬂ(a)

I

(10)

For arbitrary ?Z € [LienyVi» a € A, and (k; € C(X;,Q)),cp, if [T, U]Q(?l) Z
(40T (1a 0 Fk;o ci))*ﬂ(a), we have 3i € N. P, [Z (1,0 Fk; 0¢;)*Q(a) by ().

~ =
Since V; is an invariant for D, 3P/ € V;. k;: P//Q(a). Thus we have P} € V
such that 3i € N k;: P//AQ(a). O
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