
CODE GENERATION AND PERFORMANCE ENGINEERING FOR
MATRIX-FREE FINITE ELEMENT METHODS ON

HYBRID TETRAHEDRAL GRIDS

FABIAN BÖHM†∗, DANIEL BAUER†∗, NILS KOHL‡ , CHRISTIE ALAPPAT∗,

DOMINIK THÖNNES† , MARCUS MOHR‡ , HARALD KÖSTLER†∗, AND ULRICH RÜDE†§

Abstract. This paper introduces a code generator designed for node-level optimized, extreme-
scalable, matrix-free finite element operators on hybrid tetrahedral grids. It optimizes the local
evaluation of bilinear forms through various techniques including tabulation, relocation of loop in-
variants, and inter-element vectorization - implemented as transformations of an abstract syntax tree.
A key contribution is the development, analysis, and generation of efficient loop patterns that lever-
age the local structure of the underlying tetrahedral grid. These significantly enhance cache locality
and arithmetic intensity, mitigating bandwidth-pressure associated with compute-sparse, low-order
operators. The paper demonstrates the generator’s capabilities through a comprehensive educational
cycle of performance analysis, bottleneck identification, and emission of dedicated optimizations. For
three differential operators (−∆, −∇·(k(x)∇), α(x) curl curl+β(x)), we determine the set of most
effective optimizations. Applied by the generator, they result in speed-ups of up to 58× compared
to reference implementations. Detailed node-level performance analysis yields matrix-free operators
with a throughput of 1.3 to 2.1 GDoF/s, achieving up to 62% peak performance on a 36-core Intel
Ice Lake socket. Finally, the solution of the curl-curl problem with more than a trillion (1012) de-
grees of freedom on 21 504 processes in less than 50 seconds demonstrates the generated operators’
performance and extreme-scalability as part of a full multigrid solver.

Key words. matrix-free finite elements, code generation, performance engineering

MSC codes. 65F50, 65N30, 65N55, 65Y20, 65F10

1. Introduction. Matrix-free finite element methods [10, 28, 30, 36, 40] address
two main limitations faced by conventional approaches that follow the assemble-solve
cycle. Matrix-vector operations using standard sparse storage formats are typically
bandwidth-limited on state-of-the-art architectures [32]. The characteristic machine
balance, i.e., the ratio of memory bandwidth (B/s) to performance (FLOP/s) of cur-
rent hardware favors on-the-fly evaluation that reduces bandwidth-pressure at the
cost of additional arithmetic operations [25, 31, 32, 35]. Secondly, the available mem-
ory typically limits the spatial resolution if the entire matrix has to be assembled and
stored. An example from the geosciences illustrates the latter issue. The simulation
of convection in the Earth’s mantle with a global resolution of 1 km requires about
a trillion (1012) elements [6]. Under the simplifying assumption that the underlying
discretization yields one degree of freedom per element and an operator with a 7-point
stencil, we end up with a memory requirement of

7︸︷︷︸
non-zeros per row

· 1012︸︷︷︸
matrix rows

· 8B︸︷︷︸
double precision

= 56TB(1.1)

for the system matrix. This estimate is extremely optimistic. The number of degrees
of freedom and the stencil size are typically much larger and the overhead required

∗Erlangen National High Performance Computing Center (NHR@FAU), Erlangen, Germany
†Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

({fabian.boehm, daniel.j.bauer, christie.alappat, dominik.thoennes, harald.koestler,
ulrich.ruede}@fau.de).

‡Dept. of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München (LMU),
Munich, Germany ({nils.kohl, marcus.mohr}@lmu.de).

§Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS),
Toulouse, France.

1

ar
X

iv
:2

40
4.

08
37

1v
1

 [
cs

.C
E

]
 1

2
A

pr
 2

02
4

2 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

to store the indexing data structure of the sparse matrix format is omitted here.
Expecting a memory requirement one order of magnitude higher than (1.1), storing
the system matrix becomes infeasible, even on the majority of the largest available
supercomputers. Since most iterative linear solvers only require the results of matrix-
vector operations but no explicit access to the matrix entries, matrix-free methods
enable the solution of linear systems with trillions (1012) of unknowns [16, 28] that
could not be realized with standard sparse assembly.

However, the implementation of efficient matrix-free methods is challenging since
the matrix-free execution requires that the discretization and the linear solvers are
coupled more tightly. Performing a matrix-free matrix-vector multiplication requires
information about the underlying mesh, finite element spaces and the differential op-
erators. At the same time, having this knowledge enables further domain-specific op-
timizations that cannot be exploited using standard sparse linear algebra. The exten-
sive range of combinations of differential operators, finite element spaces, application-
dependent optimizations and target platforms renders the manual implementation and
optimization of compute kernels a daunting task. Not only because of the amount of
code that needs to be developed, maintained and tested, but also because expertise
from both numerical mathematics and performance engineering is crucial to leverage
the full potential of the underlying hardware.

1.1. Contribution. This paper presents theHyTeGOperator Generator1 (HOG)
– a unified pipeline that realizes the automated generation of matrix-free compute ker-
nels from a symbolic description of a differential operator and respective finite element
spaces. The compute kernels are tailored to block-structured, hybrid tetrahedral grids
that enable direct addressing of unknowns via implicit, analytical index mappings for
fast, contiguous and predictable memory access. Specifically, they are integrated into
the HyTeG finite element framework2 [26, 29].

The main focus is put on the optimization of the matrix-free matrix-vector prod-
uct y ← Ax, where A is the system matrix stemming from a finite element discretiza-
tion of a partial differential equation (PDE). To demonstrate the flexibility of the
code generator, we analyze bilinear forms that arise from the weak formulation of
three different differential operators (−∆, −∇ · (k(x)∇), α(x) curl curl + β(x)) for
different types of finite element spaces (linear and quadratic Lagrange, first order
Nédélec).

A central contribution of this paper is the in-depth, step-by-step performance
analysis guiding the generation of optimized compute kernels through resource-based
performance models [18]. Optimizations include identification of loop invariants in
the abstract syntax tree (AST), inter-element vectorization, tabulation of factors of
the weak form and several others. Tailored loop patterns that exploit the underlying
structure of the grid to enhance cache locality are presented and analyzed. We evalu-
ate the efficiency of the applied optimizations via the roofline performance model [46],
layer condition analysis [20, 42], and analytical bounds for the memory traffic. For a
range of weak forms, the set of most effective optimizations is identified from a larger
pool of optimizations. Our analysis qualitatively and quantitatively demonstrates
what limitations have to be overcome to achieve high node-level performance.

Concretely, the generated operators achieve a single-socket (36 cores) throughput
of 1.3 – 2.1GDoF/s on an Intel Xeon IceLake architecture. Thoroughly exploiting the
machine, the operators reach up to 62% of the machine’s peak performance and lie

1https://i10git.cs.fau.de/hyteg/hog
2https://i10git.cs.fau.de/hyteg/hyteg

https://i10git.cs.fau.de/hyteg/hog
https://i10git.cs.fau.de/hyteg/hyteg

MATRIX-FREE FINITE ELEMENT METHODS ON HYBRID TETRAHEDRAL GRIDS 3

0 200 400 600 800 1,000 1,200 1,400

reference
symmetry

inter-element vectorization
under-integration

move loop invariants
cubes loop strategy

tabulation

total: 58×1.7×
3.2× 3.8×

1.9×

1.4×

1.1×

single socket performance [MDoF/s]

Figure 1 Performance of generated matrix-free matrix-vector multiplication kernels for a variable-
coefficient diffusion operator −∇ · (k(x)∇) discretized with quadratic conforming elements after
application of individual performance optimizations. The final operator exhibits an accumulated
speed-up of 58×. Detailed discussion in Section 7.

close to the machine balance due to optimizations targeting the arithmetic intensity.
Figure 1 summarizes the effect of the individual optimizations available in the

code generator for a variable-coefficient diffusion operator discretized by quadratic,
conforming finite elements. Compared to a reference implementation, we achieve an
accumulated speed-up of 58× in this example. Section 7 discusses more results and
details of the analysis.

Finally, HyTeG’s full multigrid solver equipped with the generated matrix-free
kernels demonstrates extreme scalability by solving a curl-curl problem with more
than a trillion (> 1012) degrees of freedom (DoFs) on 21 504 processes in less than 50
seconds.

1.2. Related Work. Automated code generation has been successfully applied
to accelerate the development of finite element (FE) based applications for several
years and in many projects, most prominently via the FEniCS project [2]. FEniCS
generates code for fast global matrix assembly from a weak PDE definition in a
dedicated, domain specific language (DSL) and using the FEniCS form compiler
(FFC) [24]. The resulting assembled linear system is solved with black-box solvers
from the PETSc package [4]. The present approach is similar but focuses on the
generation of matrix-free FE methods, with a co-design of discretization, matrix-free
operator and geometric multigrid solver. This is in contrast to the discretization-solver
split implemented in FEniCS and offers the option to exploit the type of discretiza-
tion in the solver. For this work, extreme scalability and high node-level performance
are a first order design goal, which goes to the cost of having a narrower range of
discretizations and PDEs than FEniCS.

A similar approach is realized through the Firedrake project [19]. Like FEniCS,
it uses a DSL to define the weak form and PETSc as a solver backend. Firedrake also
supports matrix-free evaluation of matrix-vector products within Krylov solvers [25],
with assembled matrices in the preconditioner.

The ExaStencils [34] framework offers code generation of whole programs. It im-
plements a multi-layered language approach where each of the four layers provides a
separate DSL that is tailored for domain experts from different communities. Prob-
lems can be generated from a textbook-like definition, where the discretization, solver
and parallelization are generated by the framework.

1.3. Structure. The remaining article is structured as follows. The domain
partitioning follows the concept of hybrid tetrahedral grids and is introduced in Sec-
tion 2. Section 3 describes the architecture of the code generator. Section 4 defines
the finite element setting and the matrix-free application of an FE operator. Section 5
presents loop strategies and discusses cache locality. Section 6 summarizes the imple-

4 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

v0
v1

v3

(a) I-up:

v0
v1

v3

(b) I-down:

v0
v1

v3

(c) II-up:

v0
v1

v3

(d) II-down:

v0
v1

v3

(e) III-up:

v0
v1

v3

(f) III-down:

Figure 2 Six types of micro-elements with different orientations in space, illustrated on refinement
level ℓ = 2. Each group is denoted by a unique symbol to streamline the presentation of algorithms.
Combined, they constitute the complete macro tetrahedron. Micros of a certain orientation are, as
visible, translation invariant. Depending on the orientation, the macro-tetrahedron fits a differing
number of micro-elements, e.g., four -elements against only two -elements in the longest row.
See [26] for details.

mented performance optimizations. Section 7 proceeds with the performance analysis
and optimization of the generated kernels for different differential operators. Finally,
Section 8 demonstrates the scalability of the generated operators in a matrix-free
multigrid solver applied to the curl-curl problem.

2. Hybrid Tetrahedral Grids. The optimizations presented in this paper are
tailored towards a block-structured domain partitioning. Specifically, we embed the
generated compute kernels into the HyTeG framework for matrix-free, large-scale
FE simulations [29]. HyTeG is based on the concept of hierarchical hybrid grids
(HHG) [7]. The domain is approximated by an unstructured tetrahdral coarse grid
that is uniformly refined according to [8, 26]. We refer to the elements of the un-
structured coarse grid as macro-tetrahedra and to the tetrahedra that emerge from
the refinement as micro-tetrahedra.

The resulting grid is fully structured within each macro-element, and each new
tetrahedron is identical up to translation to one of six reference tetrahedra. See Fig-
ure 2 for an illustration of two times refined macro-tetrahedra and the categorization
of the arising micro-tetrahedra. This local structure is heavily exploited by the com-
pute kernels through implicit indexing of the FE data structures without indirections
or additional bookkeeping of connectivities. Consecutive, direct memory access is
crucial for the high performance compute kernels presented in this paper. The arti-
cle [26] provides a detailed description of the refinement procedure and the resulting
indexing schemes.

An extreme-scalable data structure is constructed through the distribution of
the macro-primitives among parallel processes. The uniform refinement enables the
construction of matrix-free geometric multigrid solvers by design, and thus the con-
struction of asymptotically optimal matrix-free full multigrid solvers that are essential
to solve PDEs at the extreme scale [28]. The performance and scalability of this ap-
proach was demonstrated in a series of articles, see also [6, 17, 26, 27, 44]. Specifically,
the solution of saddle point systems with more than ten trillion (1013) unknowns on
hundreds of thousands of processes could be realized due to the matrix-free imple-
mentation [16].

3. Code Generation for FEM on Hybrid Tetrahedral Grids. HOG im-
plements a unified pipeline to generate efficient matrix-free FE compute kernels on
block-structured tetrahedral grids. Similar to the FEniCS-approach, it automatically
generates kernels from the symbolic description of a weak form and several other pa-
rameters, such as the quadrature rule, FE spaces and optimizations selected. Specif-
ically, the HOG takes a weak form as input in the shape of a Sympy [37] symbolic
expression. The quadrature points and weights are supplied by the quadpy library

MATRIX-FREE FINITE ELEMENT METHODS ON HYBRID TETRAHEDRAL GRIDS 5

Loop
Strategy

Quadrature

Weak Form

Grid loop

Local assembly

For(int ctr1 = …)

For(int ctr0 = …)

For(int ctr2 = …)

Real srcDoF0 = … Real dstDoF0 = …

Real tmp = ...

Transformed AST

Print

HyTeG

Optimizations

C++ Operator

Abstract syntax tree

Figure 3 Code generation pipeline of the HOG. A scalable, matrix-free operator for hybrid tetrahe-
dral grids is generated and optimized from simple input parameters. The resulting kernel is embedded
into the HyTeG FE framework [29, 26].

[41]. An abstract syntax tree (AST) is constructed from the inputs using AST node
classes from Pystencils [5], a library for the generation of stencil codes. Optimiza-
tions are applied to the AST, before C++ code is printed that will be called by the
HyTeG backend. Figure 3 visualizes the code generation pipeline.

The HOG generates kernels that execute an operation on a single refined macro-
primitive. Different operations are supported, including matrix-free matrix-vector
multiplication and assembly of matrix diagonals, and new operations can easily be
added. The generated code includes not only assembly of the element matrices on a
single element, but also encompasses the loop over the local subdomain. The regular
structure within a macro tetrahedron enables generation of specially adapted loop
strategies, which significantly improve memory access patterns and, thus, the opera-
tor’s performance. Inter-element vectorization [43], i.e., computing multiple elements
in parallel using vectorized instructions, is a second central optimization.

The HOG applies a wide range of efficient, state-of-the-art quadrature rules for
simplices, like the Xiao-Gimbutas rules [47] and can be configured to under-integrate,
when applicable. If reasonable, quadrature-free kernels can also be generated. Ad-
ditionally, the HOG applies established optimization techniques such as loop fusion,
tree- or polynomial-based common subexpression elimination (CSE) [22], exploitation
of symmetry and tabulation [24], all adapted to hybrid tetrahedral grids.

The generated operator uses HyTeG’s MPI communication routines, providing
the desired scalability. HyTeG’s geometric multigrid and Krylov solvers then employ
the generated operators in smoothers, residual computations and coarse grid solves.

4. Matrix-Free Finite Elements. We consider the solution of linear systems
of the form Av = f arising from the discretization of linear elliptic PDEs with the finite
element method [9, 14] subject to a triangulation T (Ω) of the domain Ω and finite
dimensional trial and test spaces V = ⟨ϕi⟩i∈IV and W = ⟨ψj⟩i∈IW with associated
basis functions ϕi and ψj .

Most iterative linear solvers such as multigrid and Krylov methods do not require
access to the entries of A. It is sufficient to provide a method to compute the result
of the application of A to a vector, which can be implemented via matrix-free kernels,
enabling a solution of the linear system without the need to explicitly form A.

With an integrand G that originates from the weak formulation of the PDE, we

6 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

Algorithm 1 Apply the local operator AT on element T .

1: function LocalApply(T , v, w)

2: AT ←
[∑

q |det JF |wqĜ(x̂q , ϕ̂i, ψ̂j)
]
j∈IW

T
,i∈IV

T

▷ assemble local operator

3: w← w + PW
T ATR

V
Tv ▷ apply

have that

A =

[∫
T (Ω)

G(x, ϕi, ψj)

]
j∈IW ,i∈IV

=
∑

T∈T (Ω)

PW
T

[∫
T

G(x, ϕi, ψj)

]
j∈IW

T ,i∈IV
T︸ ︷︷ ︸

=:AT

RV
T .

(4.1)

It is sufficient to compute the integral over T for pairings i, j with overlapping support

on T . RV
T : R|IV | → R|IV

T | and PW
T : R|IW

T | → R|IW | denote the selection of DoFs
with support on T and the corresponding mapping back to the set of global DoFs,
respectively.

Algorithm 1 implements the local matrix-vector multiplication on an arbitrary
element T . In practice, the integral over T is transformed to a reference element T̂
and evaluated by a quadrature rule with points x̂q on T̂ and weights wq. The map

F : T̂ → T facilitates the transformation of G,ϕ and ψ to their reference versions Ĝ, ϕ̂
and ψ̂. In this paper we only consider the case that the map is affine, in which case
its Jacobian JF is constant on each structured subdomain, i.e.,

macro-tetrahedron. Algorithm 1 is applied inside a loop over all grid elements
which is subject of Section 5.

Remark 1. The local matrix-vector multiplication is not necessarily split into the
assembly of the local matrix AT and the subsequent matrix-vector multiplication. The
local quadrature approach described in [30] fuses the two operations, such that each
entry of the local result vector ATR

V
Tv is evaluated using only a single integral. The

HOG does this implicitly by unrolling quadrature loops and fusing the assembly and
local matrix-vector multiplication during a CSE.

5. Optimizing Cache-Locality: Loop Strategies. On hybrid tetrahedral
grids, the sum over all elements T of the grid T (Ω) in (4.1) results in an outer loop
over the (unstructured) macro-elements TM of the macro (coarsest) grid TM (Ω) and
an inner loop over the (structured) micro-elements Tm which arise from each macro
due to uniform refinement. We refer to the specific order in which the micro-elements
of a single macro-element are traversed as loop strategy.

5.1. Sawtooth Loop Strategy. Using the sawtooth loop strategy, the micro-
elements Tm of the current macro-element TM are iterated over in six separate loops,
one for each orientation of micro elements. Each of these element-loops consists of a
triple-nested spatial loop. Algorithm 2 implements the grid loop with the sawtooth
loop strategy. Selecting a micro element of a specific orientation and position
x, y, z in space within a macro element TM is denoted by TM (, x, y, z). B(, ·)
determines the loop bound, which depends on the spatial orientation of the micro-
element. Specifically, we have B(, n) = n, B(, n) = n− 1 for ∈ { , , , }, and
B(, n) = n− 2 [26].

Algorithm 2 is straightforward to implement but has suboptimal memory prop-
erties for conforming discretizations. DoFs are shared between micro-elements, there-

MATRIX-FREE FINITE ELEMENT METHODS ON HYBRID TETRAHEDRAL GRIDS 7

Algorithm 2 Sawtooth loop strategy.

1: function ElementwiseApplySawtooth(v, w, ℓ)
2: for each TM ∈ TM (Ω) do ▷ loop macro elements
3: for each ∈ { , , , , , } do ▷ loop orientations
4: for z = 0 . . . B(, 2ℓ) do ▷ element loop
5: for y = 0 . . . B(, 2ℓ − z) do
6: for x = 0 . . . B(, 2ℓ − z − y) do
7: LocalApply(TM (, x, y, z), v, w)

 v 0
 v 1

 v 3

 v 0
 v 1

 v 3

 v 0
 v 1

 v 3

v 0
v 1

 v 3

 v 0
 v 1

 v 3

v 0
v 1

v 3

Figure 4 Left: Micro-elements of the - (purple to yellow gradient) and -type (in red) share
vertex and edge DoFs. The DoFs are loaded from main memory during the -element loop, which
then iterates the remaining macro-tetrahedron. The overlapping DoFs are evicted from cache in the
process for practically relevant refinement levels. The following -element-loop iterates over the
red micro-elements and has to reload the overlapping DoFs from main memory. Middle: The 6
element loops of the sawtooth loop strategy are fused together. Red micro elements lie outside the
macro-tetrahedron and must be omitted through conditionals and by splitting the iteration space into
complete and incomplete iterations. Right: The vertex-DoF in the lower front-right corner is part
of multiple micro tetrahedra and will be loaded only once from main memory with the cubes loop
strategy.

fore, DoFs are accessed repeatedly in multiple successive element-loops of Algorithm 2.
After a certain element-loop loaded a specific DoF from main memory, it will iter-
ate the whole remaining macro-tetrahedron, such that the DoF is likely evicted from
cache. When the following element-loop accesses the same DoF, it has to load it from
main memory again. This leads to more main memory traffic than necessary. Figure 4
(left) depicts a concrete example.

5.2. Cubes Loop Strategy. The disadvantageous memory properties of the
sawtooth loop strategy can be alleviated by fusing the 6 element-loops. The single,
fused loop computes the operator application on 6 micro-elements per iteration, which
compose a cube. If a DoF is part of multiple micros within the same cube, as exempli-
fied in Figure 4 (right), all accesses to this DoF from these micros are within a single
iteration of the cubes loop. Due to this temporal locality, the DoF is kept in cache
and must not be reloaded from main memory. Thus, the cubes loop strategy can be
considered a form of spatial blocking on tetrahedral grids. The cubes loop strategy is
depicted in Figure 4 (middle) and implemented in Algorithm 3.

Naively, cubes-iterations at the diagonally oriented plane of the macro tetrahe-
dron include micro-elements that are not part of the macro tetrahedron (marked red
in Figure 4 (middle)). These micros could be excluded from the iteration using con-
ditionals. However, to avoid conditionals in the innermost loop, the x-loop is cut into
three parts instead. In all but the last two iterations, all elements of a cube lie within
the macro-element. Thus, we call these iterations complete. On the other hand, the
remaining two iterations are incomplete. Neither includes the -tetrahedron, and in
the last cube, only the -tetrahedron is traversed.

8 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

Algorithm 3 Cubes loop strategy.

function ElementwiseApplyCubes(v, w, ℓ)
for each TM ∈ TM (Ω) do ▷ loop macro elements

for z = 0 . . . 2ℓ do ▷ triple nested spatial loop
for y = 0 . . . 2ℓ − z do

for x = 0 . . . 2ℓ − z − y − 2 do ▷ complete iterations
for each ∈ { , , , , , } do

LocalApply(TM (, x, y, z), v, w)

for each ∈ { , , , , } do ▷ incomplete iterations
LocalApply(TM (, 2ℓ − z − y − 1, y, z), v, w)

LocalApply(TM (, 2ℓ − z − y, y, z),v,w)

5.3. Memory Volume and Layer Conditions. In the following, we evaluate
cache locality of both loop strategies and validate the assumptions made in the previ-
ous sections. To that end, we bound the main memory volume M , that is how much
data the considered operators read from and write to main memory, by theoretical
lower and upper bounds Mlower ≤ M ≤ Mupper. If M is close to Mlower, the loop
strategy is efficient, but for a naive strategy M might be close to Mupper. Deter-
mining Mlower is straightforward: the operator has to read and write each DoF once
from main memory in order to update its content by a matrix-vector multiplication.
Mupper represents the worst case: the operator reloads all associated DoFs on each
micro-element from main memory, even if they have already been accessed on previous
elements.

The memory volume can be estimated more precisely through layer conditions [42,
20]. We translate the concept of layer conditions, which was originally developed for
stencil codes, to conforming, elementwise finite element operators. To that end, we
assume that a DoF can be read from cache if and only if all DoFs of at least one
neighboring micro-element still reside in cache.

Figure 5 (left) illustrates this for the -part of the sawtooth loop-strategy for ver-
tex and edge DoFs of a P2 discretization. The DoFs of the current micro-tetrahedron
(red) are subdivided into different groups: The light green DoFs will always be in
cache because they have been accessed in the previous iteration. The red DoFs will
never be in cache because they lie ahead in the iteration order (assuming a single
operator application). For teal and blue DoFs it depends on layer conditions, i.e.,
whether the neighbor element with the corresponding color has been evicted. Put
differently, whether the tail of the iteration containing those elements is still in cache.
In the cubes loop Figure 5 (right), a whole front of DoFs can be read from cache from
the last cube iteration (light green). They make up 1/3 of all DoF accesses. With the
sawtooth loop strategy, this fraction is just 1/10.

In practice, we compute an estimate for the main memory volume based on layer
conditions Mlc,s, s ∈ {sawtooth, cubes} as follows. We know the memory volumes
M red

s , M teal
s and Mblue

s associated to the respective DoF accesses per iteration of a

loop strategy s. Furthermore, we can compute the size of the tails M tail, teal
i,s and

M tail, blue
i,s between the current element in iteration i and the elements that have

to reside in cache to provide an overlapping DoF (teal or blue colored). Then, we
compare the computed tail size with the actual size of the cache on the used machine,
e.g. the L3 cache. Doing this for each micro-element on each macro-element, we
obtain an estimate for the memory volume an operator requires during its matrix-free
application:

MATRIX-FREE FINITE ELEMENT METHODS ON HYBRID TETRAHEDRAL GRIDS 9

Figure 5 Categorization of vertex and edge DoFs on the current iteration (red) of a sawtooth (left)
and cubes loop (right): light green DoFs are always cached from the previous iteration (light green
elements), red DoFs are never cached because they lie ahead of the iteration order, teal and blue
DoFs are cached depending on the presence of data from the corresponding neighbor elements in
cache.

6 7 8 9
10−2

10−1

100

101

102

103

level

m
em

o
ry

v
o
lu
m
e
[G

B
] P1

5 6 7 8

level

P2V

5 6 7 8

level

N1

Mupper

Mlower

Msawtooth

Mcubes

Mlc,sawtooth

Mlc,cubes

Figure 6 Corridor plot of main memory volume against refinement levels, comparing the measure-
ments with the analytical bounds and layer condition estimates.

Mlc,s = nmacros ·
∑
i

M red
s +

{
M teal

s if M tail, teal
i,s ≥ML3

Mblue
s +M teal

s if M tail, blue
i,s ≥ML3

(5.1)

with nmacros being the number of macro tetrahedra on the MPI process. If the tail
for a certain neighboring element, e.g. the teal colored ones in Figure 5, is larger than
the cache size, it must have been evicted from cache and reloaded from main memory
on access. This is a simplified model that neglects certain aspects of the caching
behavior, but yields good results in practice.

5.4. Memory Study. Figure 6 compares the measured main memory volume
for the two loop strategies Msawtooth, Mcubes, obtained by LIKWID’s [45] hardware
performance counters, with the bounds Mupper, Mlower and layer condition estimates
Mlc, sawtooth, Mlc, cubes based on (5.1). We measure (P1), a constant diffusion op-
erator (−∆) discretized by linear Lagrangian elements, (P2V), a variable-coefficient
diffusion operator (−∇ · (k(x)∇)) discretized by quadratic Lagrangian elements and
(N1), a curl-curl operator (α(x) curl curl + β(x)) discretized by Nédélec elements
(more details on the operators in Section 7).

The upper and lower bounds define a corridor in which all measurements lie. The
cubes loop strategy consistently comes close to the lower bound, showing high cache
locality and only few, necessary accesses to main memory.

In terms of cache locality, it clearly outperforms the sawtooth loop strategy which
consistently places close to the upper bound. On low refinement levels both strategies
achieve very low memory volumes close to the lower bound. For these cases the data
of a complete macro-tetrahedron fits into the L3-cache such that no special strategy
is required to improve caching.

10 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

Furthermore, the estimates incorporating layer conditions closely match the mea-
surements for both loop strategies. On level 9 for (P1) and 8 for (P2V) and (N1),
the stronger (blue) layer condition breaks, and we see an upward kink in the measured
memory volume for both loop strategies (less visible for sawtooth due the breaking of
layer conditions only contributing a single DoF). Apparently, our estimates precisely
capture the breaking of layer conditions.

Complementary to these pure memory focused observations, Section 7 analyses
the impact of the cubes loop strategy on kernel performance.

6. Optimizing Computations. In the following, we present the optimizations
the code generator applies to speed-up computation and reduce redundant calcula-
tions, and how they are realized as AST transformations during generation time. In
Section 7 we will apply them to three different bilinear forms.

6.1. Automatic Identification of Loop Invariants. The evaluation of a bi-
linear form over elements of a structured grid may contain large fractions of redundant
computation. For example, due to the translation invariance of micro-elements of the
same orientation [26], their Jacobians are identical and therefore loop-invariant. It is
common that in this and similar cases, the computation is moved outside of the loop,
see [49] for more examples.

Such invariants can be identified automatically by the HOG via traversing the
AST and checking statements in loop bodies for a dependency on loop counters. If
there is no dependency, the statement is moved in front of the loop, eliminating
the redundancy and reducing the number of floating point operations (FLOPs). The
HOG thereby not only targets the local operator application by drawing invariants out
of the loop over quadrature points, but also recognizes computation that is spatially-
invariant.

6.2. Inter-element Vectorization. Automatic vectorization of the grid loop
of the matrix-free operator application is a significant challenge for the backend C++
compiler. This is due to the irregular iteration space on tetrahedra and a large loop
body possibly containing another loop over quadrature points. On the other hand,
handwriting vectorized versions of the assembly for different vector widths, instruction
sets, architectures, weak forms and discrete function spaces is extremely tedious.

The HOG automatically vectorizes the matrix-free operator application during
generation time. It cuts the x-direction loop into a vectorized and a remainder loop.
All AST-nodes in the body of the former are replaced by vector instructions and the
loop counter is modified to run over patches of multiple elements. The result is an
operator that computes the local assembly on multiple micro-elements simultaneously,
an inter-element vectorization similar to [43].

6.3. Integration. The type of quadrature rule used to compute the integrals in
the local assembly significantly affects the number of FLOPs an operator executes.
A quadrature rule that achieves exact integration with the fewest points is an obvi-
ous choice. However, according to [14], for second-order elliptic variational problems
with polynomial degree q in the FE spaces, a quadrature rule exact up to polyno-
mials of degree 2q − 2 is sufficient to achieve the expected convergence rate. This is
called under-integration [24]. Alternatively, the HOG can integrate the local matrix
analytically, providing the option of a quadrature-free kernel.

6.4. Common Subexpression Elimination. Two types of CSE are available
in the HOG: a traditional, tree-based CSE and a polynomial CSE following [22]

MATRIX-FREE FINITE ELEMENT METHODS ON HYBRID TETRAHEDRAL GRIDS 11

which may be more effective for expressions that resemble polynomials. Examining
their effectivity on matrix-free FE operators is out of scope of this paper.

6.5. Quadrature Loops. The generator can either unroll the loops over quad-
rature points in Algorithm 1 or generate them in loop form. In the latter case, the
quadrature loops for each entry of the local matrix are fused into a single loop to
improve the CSE applied to the loop body. Unrolling the quadrature loops offers a
wider space of expressions the CSE can eliminate on, which leads to more effective
elimination and fewer FLOPs. However, it can bloat the number of statements in the
kernel, leading to L2 cache problems. We investigate this in Section 7.4.1.

6.6. Tabulation of Factors of the Weak Form. Another common technique
orthogonal to precomputing whole local element matrices is to tabulate, that is to
precompute factors of the weak form, e.g., the shape functions and their gradients,
store them in table-like structures and access them in the kernel. This is e.g., done
by the basix package within the FEniCS project [2].

Consider the entries of the local element matrix that arise from the discretization
of the operator −∇ · (k(x)∇):

(6.1) ATm
=

∑
q

k(x̂q)wq|det JF |(J−T
F ∇̂ϕ̂i(x̂q) · J−T

F ∇̂ϕ̂j(x̂q))︸ ︷︷ ︸
⋆

j∈IP2

Tm
,i∈IP2

Tm

.

The gradients in (6.1) are computed solely at quadrature points on the reference
element T̂ and independent of the micro element Tm. They can be tabulated for each
shape function ϕi and quadrature point x̂q. The table has 10 ·nq vector-valued entries

for 10 shape functions in IP2

Tm
and nq quadrature points. It is accessed in the loop

over micro elements and the values used to compute the local assembly.
On hybrid tetrahedral grids, the important property that micro elements of a

certain orientation are translation-invariant [26] leads to the Jacobian of the affine
mapping JF being identical for all micro elements of that orientation. Therefore,
on hybrid tetrahedral grids, not only the gradient in (6.1) can be tabulated, but the
complete factor ⋆. Then, we tabulate for each pairing of shape function (ϕi, ϕj),
quadrature point and orientation of micro-elements, yielding a table with 6 · 100 · nq
scalar entries, when neglecting symmetry.

Remark 2. In case of an additional curvilinear transformation occurring on cer-
tain meshes, another, spatially dependent Jacobian enters the weak form and we have
to tabulate multiple factors.

6.7. Symmetry. A symmetric variational form implies a symmetric local ma-
trix. For such forms only half of the off-diagonal entries have to be computed, an
optimization that reduces the FLOPs required for local assembly.

In moderately sized ASTs, the CSE is able to detect such symmetries itself without
any additional effort. However, for large ASTs with many nodes, e.g., stemming
from high degree quadrature rules or complicated integrands, the CSE sometimes
fails to detect symmetric parts of the local matrix. Fortunately, the optimization is
straightforward to implemented as an AST transformation: the entries of the local
matrix are available as symbolic expressions and the symmetric entries can be replaced
with accesses to their counterparts.

6.8. Precomputation of Local Element Matrices. A common technique
to speed up the matrix-vector multiplication of an FE operator is to compute the

12 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

local element matrix for each element and store it a priori [12, 13]. Each time the
operator is applied, the stored local matrix of the current element in the iteration is
loaded from memory and applied to the local DoFs. This is especially advantageous
for complicated variational forms and high-order quadrature rules, because all the
implied computation can be shifted to a setup phase. However, the major drawback
of the approach is the massively increased demand in main memory volume that makes
it only feasible for relatively low refinement levels. Furthermore, an operator using
precomputation essentially only runs as fast as the local matrices can be loaded from
memory and is thereby deeply memory-bound. We include this here only for reference,
as this approach is not matrix-free.

7. Performance Analysis. We evaluate the optimizations from Sections 5 and 6
implemented in the HOG by generating a range of operators for three different bilinear
forms and different finite element spaces. Particularly, we generate the matrix-free
matrix-vector multiplication optimized for maximum throughput measured in up-
dated DoF/s on a single node of the architecture presented in Section 7.1.

We will make use of the roofline performance model [46] which serves as a simple,
yet effective tool to understand the measured performance, observe the impact of
optimizations, identify bottlenecks and guide the optimization process. The peak
performance, maximummemory bandwidth and other roofline-constants are measured
using LIKWID [45]. The general approach is to explore the search space that is given
by all combinations of optimizations and determine the fastest operator for each weak
form, for which we lay out the optimization path taken to obtain it.

We emphasize three optimizations here, because the HOG applies them to all
weak forms in this article and they can be considered as a standard approach to
optimize matrix-free, elementwise FE operators (on hybrid tetrahedral grids):

1. Speed-up arithmetic by vectorizing across elements and executing arithmetic
in parallel on multiple vector lanes. This shows as a performance boost and
straight upward shift in the roofline model plot.

2. Eliminate redundant computation by identifying loop invariants and moving
them ahead of the loop. This reduces the arithmetic intensity and shifts
operators in direction of the memory-bound region of the roofline.

3. Alleviate the memory-boundedness induced during the previous step with
the cubes loop strategy. Improving the cache-locality increases the arithmetic
intensity and manifests as a shift in the direction of the compute-bound region
of the roofline. A performance boost is caused by the reduction of the main
memory volume in memory-bound operators.

Each partially optimized variant of an operator is labeled by a prefix for each of
the test cases ((P1), (P2V), or (N1)) that are described at the start of the following
sections. They are separated by an ’ ’ from a list of letters encoding the applied
optimizations, which are given in Table 1. For instance, P1 SV represents matrix-free
operator for the diffusion form with optimizations symmetry (S) and vectorization
(V).

7.1. Test Case and Machine. A single matrix-free application in double pre-
cision serves as the main test application. We do not consider the communication
prior to and after the operator application, as this is out-of-scope for this work but
will be considered in future publications.

The experiments are conducted on refinement level 7. Generally, we want to use as
few macro-elements as possible while still accurately capturing the domain. This way,
we can use many refinements, yielding largely ordered structure and potential for high

MATRIX-FREE FINITE ELEMENT METHODS ON HYBRID TETRAHEDRAL GRIDS 13

optimization short

symmetry S
inter-element vectorization V
loop invariants I
cubes loop strategy C
under-integration U
fused quadrature loops fQ
tabulation T
precomputation P

Table 1 Range of optimizations from Sec-
tion 6 and their abbreviations.

cores 36 (per socket)
L1data cache size 48 KB (per core)
L1inst cache size 32 KB (per core)
L2 cache size 1.25 MB (per core)
L3 cache size 54 MB (shared)
clock speed 2.6 GHz (fixed)

Table 2 Relevant technical details for the In-
tel(R) Xeon(R) Platinum 8360Y CPUs of type
IceLake SP.

performance. Our previous applications indicate that the refinement level typically
lies in the range from 5 to 8. In order to distribute at least one macro-primitive to
each process, the coarse grid should also have at least as many macro-primitives as
there are processes. For this paper, we choose a simple cuboid geometry made up of
36 macro-tetrahedra for the coarsest grid TM (Ω).

The macro-primitives are distributed to the 36 cores of a single socket of the
Fritz supercomputer at the Erlangen National High Performance Computing Center
NHR@FAU [39]. Table 2 summarizes relevant information regarding the cache hier-
archy, clock speed and number of cores of the CPU type built into the Fritz super-
computer. Measurements of roofline constants and the test application are conducted
with likwid-bench and likwid-mpirun from the LIKWID performance-measurement
tools [45]. The clock frequency is fixed to 2.6 GHz by the slurm environment on Fritz
and processes are pinned to processors by LIKWID pinning masks. The applications
are compiled with Intel ICX 2021.4 and the -march=native -O3 flags.

The reference implementations of the elementwise operators, on which the opti-
mizations build, are generated by the HOG without optimizations and do not yet take
the regular grid structure into account. Furthermore, apart from running Sympy’s
CSE during generation of the local assembly, they fully rely on the backend C++
compiler for optimizations like vectorization.

7.2. Constant Diffusion. The simplest test case benchmarks a constant dif-
fusion operator −∆ discretized by linear continuous Lagrangian elements, i.e., V =
W = P1(Tm(Ω)). Despite its simplicity, its performance characteristics are represen-
tative for compute-sparse, low-order operators, such as weak divergence, gradient, or
stabilization terms for the mixed P1 −P1 approximation of the Stokes equation used
in [23]. The local operator is given by:

(P1) ATm =

[∫
Tm

∇ϕi · ∇ψj

]
j∈IP1

Tm
,i∈IP1

Tm

with IP1

Tm
the index set of linear basis functions with support on micro element Tm.

The linear spaces yield 1.3× 108 DoFs on the test cube at level 7.
The operators using the most effective sets of optimizations with respect to

MDoF/s are plotted on the left column of Figure 7. Remarkably, the four fastest
operators all utilize the cubes loop strategy (C). Given the inherent compute-sparsity
associated with low polynomial degree, the enhancement of cache-locality becomes
imperative to overcome the constraints imposed by memory bandwidth limitations.
These operators achieve a throughput of up to 1.5 GDoF/s but reach only 23% of
the AVX FMA peak performance.

14 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

100 101

1347

697

391

195

avx fma

avx

fma

scalar
m
em

bw
17
7G

B/
s

arithmetic intensity [FLOP/byte]

p
er
fo
rm

a
n
ce

[G
F
L
O
P
/
s]

optimization search

100 101

1347

697

391

195

avx fma

avx

fma

scalar
m
em

bw
17
7G

B/
s

VI
C

arithmetic intensity [FLOP/byte]

p
er
fo
rm

a
n
ce

[G
F
L
O
P
/
s]

optimization path

0 500 1,000 1,500

P1 SVICfQ
P1 SVICT

P1 SVICfQT
P1 SVIT
P1 SVIC
P1 SVI

P1 SVIfQT
P1 SVIfQ

performance [MDoF/s]

0 500 1,000 1,500

P1 S

P1 SV

P1 SVI

P1 SVIC

P1 SVICfQ

3.5×

1.4×

1.4×

1.1×

performance [MDoF/s]

Figure 7 Left column: Roofline (top) and MDoF/s (bottom) for the set of fastest operators of the
form (P1). Right column: Roofline (top) and MDoF/s (bottom) with speed-ups for the optimization
path to P1 SVICfQ . The accumulated speed-up is 7.3×.

The optimization path to obtain P1 SVICfQ , the fastest operator on the cur-
rent machine is presented on the right column of Figure 7. We start with P1 S ,
an operator restricted by the scalar instruction roof. Employing our standard opti-
mization of inter-element AVX vectorization (P1 SV), the code is no more limited
to the hardware roof prescribed by scalar instructions, and the performance shoots
vertically up, reaching close to the AVX roofs. To obtain P1 SVI , the HOG iden-
tifies the whole integrand, that is the constant gradients of test and trial basis and
the Jacobian of the pull-back, as loop invariant and moves it ahead of the loop. This
drastically decreases the overall computations while keeping the memory traffic almost
constant. The result is a corresponding decrease in the arithmetic intensity, rendering
P1 SVI memory-bound. The performance drops in terms of FLOP/s from close to
50% to 23% peak performance. However, the performance in DoF/s improves (and
consequently runtime decreases) by a factor of 1.4× due to a reduction in the overall
FLOPs. Finally, we enhance the cache-locality of the memory-bound P1 SVI by
the cubes loop strategy, recovering its arithmetic intensity and placing it close to the
machine balance. The final operator P1 SVICfQ achieves an accumulated speed-up
of ∼ 7.3× compared to the scalar version.

Remark 3. Contrary to the upcoming, more compute-intensive (N1) and (P2V)
operators, (P1) operators are still memory-bound or at the machine-balance even after
applying the cubes loop strategy. Relocating loop invariants is exceptionally effective
here, removing almost all computations from the loop and essentially reducing the op-
erator to an elementwise copy-benchmark on tetrahedral grids. Thereby, the operators
are prone to bottlenecks in the data path. Although the optimization leads to speed-up,
it causes lower FLOP/s performance. This exemplifies the crucial difference between
GDoF/s and FLOP/s: the latter is not always meaningful to measure performance
improvements in presence of an optimization that changes the amount of FLOPs.

MATRIX-FREE FINITE ELEMENT METHODS ON HYBRID TETRAHEDRAL GRIDS 15

100 101

1347

697

391

195

avx fma

scalar
m
em

bw
17
7G

B/
s

arithmetic intensity [FLOP/byte]

p
er
fo
rm

a
n
ce

[G
F
L
O
P
/
s]

optimization search

100 101

1347

697

391

195

avx fma

scalar
m
em

bw
17
7G

B/
s

V

I
C

T

arithmetic intensity [FLOP/byte]

p
er
fo
rm

a
n
ce

[G
F
L
O
P
/
s]

optimization path

0 1,000 2,000

N1 SVICT
N1 SVIC
N1 SVI

N1 SVICfQT
N1 SVICfQ

N1 SVIT

N1 SVIfQT
N1 SVIfQ

performance [MDoF/s]

0 1,000 2,000

N1 S

N1 SV

N1 SVI

N1 SVIC

N1 SVICT

3.0×

1.9×

1.4×

1.3×

performance [MDoF/s]

Figure 8 Left column: Roofline (top) and MDoF/s (bottom) of the best optimization combinations
for the weak form (N1). Right column: Roofline (top) and MDoF/s (bottom) with speed-ups of
the intermediate operators during the optimization process to obtain N1 SVICT . The accumulated
speed-up is 11×.

7.3. Curl-Curl and Mass. Next, we evaluate a linear combination of the curl-
curl and mass operator [21]: α(x) curl curl + β(x). Test and trial space are
Nédélec elements of first order and first kind [38]. We assume that α(x), β(x) ∈ K,
a discrete FE space used to approximate the coefficient function and that setting
K = P1(Tm(Ω)) yields a sufficient approximation for smooth coefficients. In the
Nédélec space ND1(Tm(Ω)), DoFs are associated with the edges of the element, yield-
ing 109 DoFs on the test cube. The corresponding basis functions are vector-valued
and ensure continuity across elements in tangential direction [38].

The associated local operator is defined as

ATm
=

[∫
Tm

α(x)(curl ϕi · curl ψj) + β(x)(ϕi ·ψj)

]
j∈IND1

Tm
,i∈IND1

Tm

.(N1)

(N1) operators exhibit vastly superior performance than those from (P1) with up
to 62% of the AVX FMA peak performance and 2.1 GDoF/s (Figure 8, left column).
The integrand is more compute-intensive, placing the best operators generally at
higher arithmetic intensities.

The standard optimizations show a familiar pattern in terms of performance,
mirroring what we observed for (P1), as visible in Figure 8, right column: a sharp
performance spike from vectorization (V), followed by a shift towards memory bound-
edness by drawing loop invariants (I) and then a return to the compute-bound region
after applying the cubes loop strategy (C). These optimizations culminate in opera-
tor N1 SVIC . At this point, tabulation (T) substantially reduces the computational
workload and enhances performance by nearly 500 MDoF/s (Figure 8, lower right).
Two tables are assembled, one for the curl-curl and mass part, respectively. This
is necessary due to the two spatially-varying coefficients in the weak form. Com-

16 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

100 101

1347

697

391

195

avx fma

scalar

m
em

bw
17
7G

B/
s

arithmetic intensity [FLOP/byte]

p
er
fo
rm

a
n
ce

[G
F
L
O
P
/
s]

optimization search

100 101

1347

697

391

195

avx fma

m
em

bw
17
7G

B/
s

S

V

U
I C

T

arithmetic intensity [FLOP/byte]

p
er
fo
rm

a
n
ce

[G
F
L
O
P
/
s]

optimization path

0 500 1,000

P2V SVUIfQ
P2V SVUICfQ
P2V SVUIfQT

P2V SVUICfQT
P2V SVUI

P2V SVUIC
P2V SVUICT
P2V SVUIT

performance [MDoF/s]

0 500 1,000 1,500

P2V
P2V S

P2V SV
P2V SVU
P2V SVUI

P2V SVUIC
P2V SVUICT

1.7×

3.2×
3.8×

1.9×

1.4×

1.1×

performance [MDoF/s]

Figure 9 Left column: Roofline (top) and MDoF/s (bottom) of the best optimization combinations
for the weak form (P2V). Right column: Roofline (top) and MDoF/s (bottom) with speed-ups of the
intermediate operators during the optimization process to obtain P2V SVUICT . The accumulated
speed-up is 58×.

bining unrolled quadrature loops and tabulation emerges as the most effective set of
optimizations with an accumulated 11× speed-up in N1 SVICT .

7.4. Variable-Coefficient Diffusion. A variable coefficient diffusion operator
∇ · (k(x)∇) using V = W = K = P2(Tm(Ω)) represents more compute-intense oper-
ators. This discretization leads to 8.9 × 109 DoFs on the test cube. A similar form
arises from the Taylor-Hood (P2 − P1) discretization of the Stokes equation in the
case of a spatially-varying viscosity [6]. The local matrix is

ATm
=

[∫
Tm

k(x)(∇ϕi · ∇ψj)

]
j∈IP2

Tm
,i∈IP2

Tm

.(P2V)

The left column of Figure 9 shows that a similar set of optimizations as for (N1),
including the standard optimizations, unrolled quadrature loops and tabulation proves
most effective also for (P2V). Operator P2V SVUICT reaches 1.3 GDoF/s and 50%
AVX FMA peak performance.

We observe the optimization path leading up to P2V SVUICT in Figure 9, right
column, where additional optimizations are applied together with vectorization (V),
moving loop invariants (I) and the cubes loop strategy (C). The latter cause the
familiar upwards, left and right shifts in the roofline model.

The integrand of (P2V) is a polynomial of fourth degree due to the quadratic
test, trial and coefficient space. Evaluating the integrand on 11 quadrature points
defined by Xiao-Gimbutas rule [47] bloats the AST, preventing the CSE to detect
symmetry. Explicitly exploiting symmetry in the HOG (S) eliminates 45 of the 100
entries in the local matrix (for 10 shape functions in test and trial space, respectively).

(P2V) offers the option to under-integrate (U) due to the difference in polynomial
degree in the integrand and the shape functions. By applying the Xiao-Gimbutas rule
of second order instead of fourth order, the number of quadrature points reduces from

MATRIX-FREE FINITE ELEMENT METHODS ON HYBRID TETRAHEDRAL GRIDS 17

10−1 100 101

1347

697

391

195

avx fma

scalar

L
2
bw

24
06
G
B
/s

fQ

arithmetic intensity [FLOP/byte]

p
er
fo
rm

a
n
ce

[G
F
L
O
P
/
s] L2 roofline

100 101

1347
697
391
195

scalar
mem

bw
17
7G

B/
s

arithmetic intensity [FLOP/byte]

p
er
fo
rm

a
n
ce

[G
F
L
O
P
/
s]

comparison with precomputing

L2inst [GB] (% of L2)

P2V VI 1.8× 103 (78)
P2V VIfQ 1.3 (4)

FLOP/Tm mem [GB] MDoF/s

P2V P 210 66 166
P2V VIfQT 1.6× 103 16 421

Figure 10 Left column: L2 roofline and L2 cache volume induced by loading instructions. The
fraction of the L2 instruction volume with respect to the overall L2 cache volume (load and store)
is annotated in parentheses. Right column: Roofline, FLOPS per element, main memory volume
and performance compared against precomputation of local element matrices.

11 to 4, with a corresponding speed-up. We verified that the proper convergence rate
is still achieved when solving analytical test cases on multiple refinement levels using
P2V SVU . Note that using a quadrature rule merely exact for linear polynomials
destroys the convergence order.

By various optimizations reducing the arithmetic intensity, the HOG has trans-
formed the compute-intense P2V , placed deep in the compute-bound region, into
the memory-bound P2V SVUI . The memory volume becomes the operator’s bottle-
neck, so reducing it by the cubes loop strategy provides another significant speed-up,
accumulating to 58× in the final operator P2V SVUICT .

7.4.1. Instruction Boundedness. So far, unrolling the quadrature loops and
applying CSE to the resulting statements has proved effective, entering the fastest op-
erators for all weak forms. However, during experiments we observed that as compute-
intensity of the operators increases, unrolling can cause a non-obvious bottleneck.

We generate P2V VI , which unrolls the quadrature loop, does not tabulate
and uses a quadrature rule exact for polynomials of fourth degree. To reveal the
bottleneck, we require an L2-roofline where the memory roof and arithmetic intensity
are computed using the L2-cache bandwidth. We do not under-integrate here for
demonstration purpose, as it would obscure the analysis of the bottleneck.

The L2 roofline (Figure 10, upper left) shows that the operator P2V VI lies very
close to the L2-bandwidth roof. It suffers from a very large L2 cache volume, which
does not stem from data transfers but instructions being loaded from L2 to L1 cache
(Figure 10, lower left). P2V VI is instruction-bound. Unrolling the quadrature loops
with many points and a more involved weak form bloats the number of statements
in the kernel body. Consequently, a large amount of distinct instructions has to be
fetched, causing the high L2 cache volume. Simply not unrolling the quadrature loop
reduces the number of statements in the kernel body and the instruction traffic to
negligible amounts, alleviating the instruction-boundedness with P2V VIfQ .

7.4.2. Comparison with Precomputation of Local Element Matrices.
Given that sufficient memory is available, the local matrix for each element of the

18 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

grid can be precomputed, loaded and applied during the loop [13, 12]. We compare
our generated operators against this precomputation technique for completeness and
because it seems to be commonly applied to variable-coefficient problems in FE simu-
lations. We establish a fair comparison against our implementation of precomputation
by not exploiting symmetry and using the sawtooth loop strategy in both operators.

The right column of Figure 10 demonstrates the drawback of precomputing lo-
cal matrices: although P2V P does relatively few FLOPs, it suffers from a large
memory load from the local matrices, which renders it extremely memory-bound. For
reference, the (P1) operator with the lowest arithmetic intensity, P1 SVIfQ , lies at
1.5 FLOP/byte, while P2V P places at just 0.3 FLOP/byte. P2V VIfQT on the
other hand assembles on the fly, does a magnitude more computation, but places well

into the machine balance. Thereby, it runs 2.5× faster.

8. Scaling Curl-Curl to a Trillion DoFs. Finally, we demonstrate the weak
scalability of the generated operators within the HyTeG framework.

The (homogeneous) curl-curl problem

(8.1)
α curl curl u+ βu = f in Ω,

u× n = 0 on ∂Ω,

in three dimensions, with given f ∈ L2(Ω), and α, β ∈ L2(Ω), arises from Maxwell’s
equations in electromagnetic wave scattering problems [21]. We discretize the solution
u and right-hand side (RHS) f with first order, first kind Nédélec elements (ND1).
The corresponding matrix-free operator we use is N1 SVIC from Section 7.3, imple-
menting the weak form (N1).

To assess the weak scalability, we solve (8.1) on the unit cube with an equally
growing number of processes and coarse grid elements. In all runs there is a total of
eight levels in the grid hierarchy. For simplicity, the coefficients α(x) and β(x) equal
1 for all x. Nonetheless, the operators treat them as if they are spatially varying.

The system is solved using matrix-free full multigrid (FMG) with a single V(1,1)
cycle on each level. The hybrid smoother published in [21] is used due to the non-
elliptic nature of the bilinear form. In short, smoothing is split into two sub-steps.
While a standard smoother in ND1 reduces error components in N (curl)⊥, the
nullspace is handled by relaxing on Poisson’s equation in potential space, which is
discretized using P1 FEs. We choose Chebyshev smoothers of order 2 [1, 3] in both
spaces. This means that one hybrid smoothing step requires in total three matrix-
vector products in ND1, two matrix-vector products in P1, and two transfer oper-
ations between the spaces. Note that two additional P1 vectors must be allocated.
The P1 operator is generated with the same set of optimizations as the ND1 op-
erator (SVIC). On the coarsest grid the matrix is assembled, and PETSc’s [4] SOR
preconditioned CG solver solves the system up to a relative residual reduction of 10−3.

The experiment is performed on the SuperMUC-NG Phase 2 cluster [33]. Each
node comprises two Intel Xeon Platinum 8480+ (Sapphire Rapids) CPUs with 56
cores each and 512GB DDR5 memory. Note that this architecture differs from the
one used in the previous section. Weak scaling results from 1 to 192 nodes (112 to
21 504 cores) are summarized in Figure 11 (left). Near perfect scaling is seen up to
32 nodes. Starting with 64 nodes, the coarse grid solver starts to have a significant
impact on the overall solve time. Presumably this is due to, first, the growing coarse
grid size and suboptimal scaling of the CG-solver, and second, the low computational
complexity compared to the high communication cost. It is expected that for larger
problems the coarse grid solver will have a significant impact on the time to solution.

MATRIX-FREE FINITE ELEMENT METHODS ON HYBRID TETRAHEDRAL GRIDS 19

1 2 4 8 16 32 64 192
0

10

20

30

40

50
5.64× 109 1.08× 1012

nodes

so
lv
er

ru
n
ti
m
e
[s
]

degrees of freedom

total

without coarsest grid

coarse grid solver

0 1 2 3 4 5 6 7
10−5

10−4

10−3

10−2

10−1
5.29× 105 1.08× 1012

refinement level

∥e
∥ L

2

degrees of freedom

experiment

O(h)

Figure 11 Left: Weak scaling of HyTeG’s FMG solver is almost perfect from 1 to 32 nodes. In
larger runs the coarse grid solver (not optimized in this work) starts having significant impact. The
remaining parts of the multigrid solver keep scaling well. Right: L2-error grid convergence for the
largest case (192 nodes, 21 504 parallel processes, 1.08× 1012 DoFs on level 7).

In previous work [11] it was shown how advanced sparse direct solvers can be employed
to alleviate this problem. Alternatives include using parallel AMG methods, such as,
e.g., hypre [15] as scalable coarse grid solvers. However, the systematic analysis of
these alternatives is beyond the scope of the present article and will be studied in
future work. On the other hand, the remaining part of the solver scales very well,
even up to a trillion (1012) DoFs.

To assert that the solver finds the correct solution, the L2-error against the known
manufactured solution is computed. Figure 11 (right) shows that the error reduces at
the expected linear rate [48].

9. Conclusion. The presented code generator is a powerful tool for the rapid
development of matrix-free FE operators. A wide range of optimizations can be
applied “at the press of a button” to any weak form and a wide array of matrix-
free operations. Notable operations include matrix-vector products, the assembly
of an inverse diagonal for Chebychev smoothers and diagonally lumped operators.
Code generation is a vital tool to ensure sustainable high performance even for future
applications and hardware architectures.

Using the HOG, high node-level performance can be obtained quickly even for
complex problems on extreme scales, e.g., the simulation of whole-planet Earth mantle
convection. In such simulations, the reduction in runtime resulting from HOG’s
optimizations ultimately saves huge amounts of energy and money.

Through rigorous and systematic analysis surprisingly large speed-ups over ex-
isting production codes can be achieved. We found that traditional tools from per-
formance engineering like the roofline model are essential for the identification of
bottlenecks. Additionally, they make it possible to classify codes as “slow” or “fast”.
In combination with code generation, a multitude of optimizations and combinations
thereof can be evaluated with low effort to find an optimum.

Future extensions of the HOG include support for curvilinear boundaries, discon-
tinuous Galerkin methods, vector function spaces, surrogate operators and multigrid
grid-transfer operators. The abstract intermediate representation during generation
time enables the development of additional backends for the automated generation of
kernels for accelerators, particularly GPUs.

Acknowledgments. The authors gratefully acknowledge funding through the
joint BMBF project CoMPS3 (grant 16ME0647K). The authors would like to thank the

3https://gauss-allianz.de/en/project/title/CoMPS

https://gauss-allianz.de/en/project/title/CoMPS

20 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

NHR-Verein e.V.4 for supporting this work/project within the NHR Graduate School
of National High Performance Computing (NHR). The authors gratefully acknowledge
the scientific support and HPC resources provided by the Erlangen National High
Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU). NHR funding is provided by federal and Bavarian state
authorities. NHR@FAU hardware is partially funded by the German Research Foun-
dation (DFG) – 440719683. The authors gratefully acknowledge the Gauss Centre
for Supercomputing e.V.5 for funding this project by providing friendly user access
during the pilot operation of the GCS Supercomputer SuperMUC-NG Phase 2 at
Leibniz Supercomputing Centre6.

REFERENCES

[1] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, Parallel multigrid smoothing: Polynomial
versus Gauss–Seidel, Journal of Computational Physics, 188 (2003), pp. 593–610, https:
//doi.org/10.1016/S0021-9991(03)00194-3.

[2] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,
J. Ring, M. Rognes, and G. Wells, The FEniCS project version 1.5, Arch. Num. Soft.,
3 (2015).

[3] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, Multigrid Smoothers for
Ultraparallel Computing, SIAM J. Sci. Comput., 33 (2011), pp. 2864–2887, https://doi.or
g/10.1137/100798806.

[4] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallel-
ism in object oriented numerical software libraries, in Modern Software Tools in Scientific
Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser Press, 1997,
pp. 163–202, https://doi.org/10.1007/978-1-4612-1986-6 8.

[5] M. Bauer, J. Hötzer, D. Ernst, J. Hammer, M. Seiz, H. Hierl, J. Hönig, H. Köstler,
G. Wellein, B. Nestler, and U. Rüde, Code generation for massively parallel phase-field
simulations, in SC ’19: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE Computer Society, 11 2019, pp. 1–32,
https://doi.org/10.1145/3295500.3356186.

[6] S. Bauer, H.-P. Bunge, D. Drzisga, S. Ghelichkhan, M. Huber, N. Kohl, M. Mohr,
U. Rüde, D. Thönnes, and B. Wohlmuth, TerraNeo — Mantle Convection Beyond
a Trillion Degrees of Freedom, in Softw. Exascale Comput. - SPPEXA 2016-2019, H.-J.
Bungartz, S. Reiz, B. Uekermann, P. Neumann, and W. Nagel, eds., vol. 136 of Lecture
Notes in Computational Science and Engineering, Springer, 2020, pp. 569–610, https:
//doi.org/10.1007/978-3-030-47956-5 19.

[7] B. K. Bergen and F. Hülsemann, Hierarchical hybrid grids: Data structures and core al-
gorithms for multigrid, Numer. Linear Algebra Appl., 11 (2004), pp. 279–291, https:
//doi.org/10.1002/nla.382.

[8] J. Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355–378, https://doi.org/10.1
007/BF02238487.

[9] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer-Verlag, 2008, https://doi.org/10.1007/978-0-387-75934-0.

[10] J. Brown, Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D, Journal
of Scientific Computing, 45 (2010), pp. 48–63, https://doi.org/10.1007/s10915-010-9396-8.

[11] A. Buttari, M. Huber, P. Leleux, T. Mary, U. Rüde, and B. Wohlmuth, Block low-rank
single precision coarse grid solvers for extreme scale multigrid methods, Numerical Linear
Algebra with Applications, 29 (2022), https://doi.org/10.1002/nla.2407.

[12] G. F. Carey, E. J. Barragy, R. T. McLay, and M. Sharma, Element-by-element vector and
parallel computations, Communications in Applied Numerical Methods, 4 (1988), pp. 299–
307, https://api.semanticscholar.org/CorpusID:120879806.

[13] G. F. Carey and B.-N. Jiang, Element-by-element linear and nonlinear solution schemes,
International Journal for Numerical Methods in Biomedical Engineering (Formerly: Com-

4https://www.nhr-verein.de
5https://www.gauss-centre.eu
6https://www.lrz.de

https://doi.org/10.1016/S0021-9991(03)00194-3
https://doi.org/10.1016/S0021-9991(03)00194-3
https://doi.org/10.1137/100798806
https://doi.org/10.1137/100798806
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1145/3295500.3356186
https://doi.org/10.1007/978-3-030-47956-5_19
https://doi.org/10.1007/978-3-030-47956-5_19
https://doi.org/10.1002/nla.382
https://doi.org/10.1002/nla.382
https://doi.org/10.1007/BF02238487
https://doi.org/10.1007/BF02238487
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/s10915-010-9396-8
https://doi.org/10.1002/nla.2407
https://api.semanticscholar.org/CorpusID:120879806
https://www.nhr-verein.de
https://www.gauss-centre.eu
https://www.lrz.de

MATRIX-FREE FINITE ELEMENT METHODS ON HYBRID TETRAHEDRAL GRIDS 21

munications in Numerical Methods in Engineering; Communications in Applied Numerical
Methods), 2 (1986), pp. 145–153, https://doi.org/10.1002/cnm.1630020205.

[14] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Society for Industrial and
Applied Mathematics, 2002, https://doi.org/10.1137/1.9780898719208.

[15] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in
Computational Science — ICCS 2002, P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and
J. J. Dongarra, eds., 2002, pp. 632–641, https://doi.org/10.1007/3-540-47789-6 66.

[16] B. Gmeiner, M. Huber, L. John, U. Rüde, and B. Wohlmuth, A quantitative performance
study for Stokes solvers at the extreme scale, Journal of Computational Science, 17 (2016),
pp. 509–521, https://doi.org/10.1016/j.jocs.2016.06.006.

[17] B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth, Performance and Scal-
ability of Hierarchical Hybrid Multigrid Solvers for Stokes Systems, SIAM J. Sci. Comput.,
37 (2015), pp. C143–C168, https://doi.org/10.1137/130941353.

[18] G. Hager and G. Wellein, Introduction to High Performance Computing for Scientists and
Engineers, CRC Press, 1 ed., July 2010, https://doi.org/10.1201/EBK1439811924.

[19] D. A. Ham, P. H. J. Kelly, L. Mitchell, C. J. Cotter, R. C. Kirby, K. Sagiyama,
N. Bouziani, S. Vorderwuelbecke, T. J. Gregory, J. Betteridge, D. R. Shapero,
R. W. Nixon-Hill, C. J. Ward, P. E. Farrell, P. D. Brubeck, I. Marsden, T. H. Gib-
son, M. Homolya, T. Sun, A. T. T. McRae, F. Luporini, A. Gregory, M. Lange, S. W.
Funke, F. Rathgeber, G.-T. Bercea, and G. R. Markall, Firedrake User Manual, Im-
perial College London and University of Oxford and Baylor University and University of
Washington, first edition ed., 5 2023, https://doi.org/10.25561/104839.

[20] J. Hammer, J. Eitzinger, G. Hager, and G. Wellein, Kerncraft: A Tool for Analytic
Performance Modeling of Loop Kernels, Springer International Publishing, 2017, pp. 1–22,
https://doi.org/10.1007/978-3-319-56702-0 1.

[21] R. Hiptmair, Multigrid Method for Maxwell’s Equations, SIAM J. Numer. Anal., 36 (1998),
pp. 204–225, https://doi.org/10.1137/S0036142997326203.

[22] A. Hosangadi, F. Fallah, and R. Kastner, Optimizing polynomial expressions by algebraic
factorization and common subexpression elimination, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25 (2006), pp. 2012–2021, https://doi.
org/10.1109/TCAD.2006.875712.

[23] T. J. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for
computational fluid dynamics: V. circumventing the Babuška-Brezzi condition: a stable
Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpola-
tions, Computer Methods in Applied Mechanics and Engineering, 59 (1986), pp. 85–99,
https://doi.org/10.1016/0045-7825(86)90025-3.

[24] R. C. Kirby and A. Logg, A compiler for variational forms, ACM Transactions on Mathe-
matical Software, 32 (2006), https://doi.org/10.1145/1163641.1163644.

[25] R. C. Kirby and L. Mitchell, Solver composition across the pde/linear algebra barrier, SIAM
Journal on Scientific Computing, 40 (2018), p. C76–C98, https://doi.org/10.1137/17m113
3208.

[26] N. Kohl, D. Bauer, F. Böhm, and U. Rüde, Fundamental data structures for matrix-free
finite elements on hybrid tetrahedral grids, Int. J. Parallel Emergent Distrib. Syst., 39
(2024), pp. 51–74, https://doi.org/10.1080/17445760.2023.2266875.

[27] N. Kohl, M. Mohr, S. Eibl, and U. Rüde, A Massively Parallel Eulerian-Lagrangian Method
for Advection-Dominated Transport in Viscous Fluids, SIAM J. Sci. Comp., 44 (2022),
pp. C260–C285, https://doi.org/10.1137/21M1402510.

[28] N. Kohl and U. Rüde, Textbook Efficiency: Massively Parallel Matrix-Free Multigrid for the
Stokes System, SIAM J. Sci. Comput., 44 (2022), pp. C124–C155, https://doi.org/10.113
7/20M1376005.

[29] N. Kohl, D. Thönnes, D. Drzisga, D. Bartuschat, and U. Rüde, The HyTeG finite-
element software framework for scalable multigrid solvers, International Journal of Parallel,
Emergent and Distributed Systems, 34 (2019), pp. 477–496, https://doi.org/10.1080/1744
5760.2018.1506453.

[30] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element
operator application, Computers and Fluids, 63 (2012), pp. 135–147, https://doi.org/10.1
016/j.compfluid.2012.04.012.

[31] M. Kronbichler and K. Kormann, Fast Matrix-Free Evaluation of Discontinuous Galerkin
Finite Element Operators, ACM Trans. Math. Softw., 45 (2019), pp. 1–40, https://doi.or
g/10.1145/3325864.

[32] M. Kronbichler and W. A. Wall, A Performance Comparison of Continuous and Discon-
tinuous Galerkin Methods with Fast Multigrid Solvers, SIAM J. Sci. Comput., 40 (2018),

https://doi.org/10.1002/cnm.1630020205
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1016/j.jocs.2016.06.006
https://doi.org/10.1137/130941353
https://doi.org/10.1201/EBK1439811924
https://doi.org/10.25561/104839
https://doi.org/10.1007/978-3-319-56702-0_1
https://doi.org/10.1137/S0036142997326203
https://doi.org/10.1109/TCAD.2006.875712
https://doi.org/10.1109/TCAD.2006.875712
https://doi.org/10.1016/0045-7825(86)90025-3
https://doi.org/10.1145/1163641.1163644
https://doi.org/10.1137/17m1133208
https://doi.org/10.1137/17m1133208
https://doi.org/10.1080/17445760.2023.2266875
https://doi.org/10.1137/21M1402510
https://doi.org/10.1137/20M1376005
https://doi.org/10.1137/20M1376005
https://doi.org/10.1080/17445760.2018.1506453
https://doi.org/10.1080/17445760.2018.1506453
https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1145/3325864
https://doi.org/10.1145/3325864

22 BÖHM, BAUER, KOHL, ALAPPAT, THÖNNES, MOHR, KÖSTLER, RÜDE

pp. A3423–A3448, https://doi.org/10.1137/16M110455X.
[33] Leibniz-Rechenzentrum (LRZ), Pilot operation SuperMUC-NG Phase 2, https://doku.lrz.d

e/pilot-operation-supermuc-ng-phase-2-403079197.html (accessed 2024-03-02).
[34] C. Lengauer, S. Apel, M. Bolten, S. Chiba, U. Rüde, J. Teich, A. Größlinger, F. Han-

nig, H. Köstler, L. Claus, et al., Exastencils: Advanced multigrid solver generation,
in Software for Exascale Computing - SPPEXA 2016-2019, Cham, 2020, Springer Interna-
tional Publishing, pp. 405–452, https://doi.org/10.1007/978-3-030-47956-5 14.

[35] D. May, J. Brown, and L. le pourhiet, PTatin3D: High-Performance Methods for Long-
Term Lithospheric Dynamics, in SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, 11 2014, https:
//doi.org/10.1109/SC.2014.28.

[36] D. May, J. Brown, and L. Le Pourhiet, A scalable, matrix-free multigrid preconditioner for
finite element discretizations of heterogeneous Stokes flow, Computer Methods in Applied
Mechanics and Engineering, 290 (2015), pp. 496–523, https://doi.org/10.1016/j.cma.2015
.03.014.

[37] A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B. Kirpichev, M. Rocklin, A. Ku-
mar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P.
Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry,
A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Sco-
patz, Sympy: symbolic computing in python, PeerJ Computer Science, 3 (2017), p. e103,
https://doi.org/10.7717/peerj-cs.103.

[38] J. C. Nedelec, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315–341, https:
//doi.org/10.1007/bf01396415.

[39] NHR@FAU, Fritz Parallel Cluster. https://hpc.fau.de/systems-services/documentation-instr
uctions/clusters/fritz-cluster. Accessed: 2024/01/12.

[40] J. Rudi, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. J. Staar, Y. Ineichen,
C. Bekas, A. Curioni, and O. Ghattas, An extreme-scale implicit solver for complex
pdes: highly heterogeneous flow in earth’s mantle, in SC ’15: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis,
2015, pp. 1–12, https://doi.org/10.1145/2807591.2807675.

[41] N. Schlömer, N. Papior, D. Arnold, J. Blechta, and R. Zetter, nschloe/quadpy: None
(v0.16.10). Zenodo, https://doi.org/10.5281/zenodo.5541216.

[42] H. Stengel, J. Treibig, G. Hager, and G. Wellein, Quantifying performance bottlenecks of
stencil computations using the execution-cache-memory model, in ICS ’15: Proceedings of
the 29th ACM on International Conference on Supercomputing, 2015, p. 207–216, https:
//doi.org/10.1145/2751205.2751240.

[43] T. Sun, L. Mitchell, K. Kulkarni, A. Klöckner, D. A. Ham, and P. H. J. Kelly, A study
of vectorization for matrix-free finite element methods, Int. J. of High Perf. Comp. App.,
(2019), https://doi.org/10.1177/1094342020945005.

[44] D. Thönnes and U. Rüde, Model-based performance analysis of the HyTeG finite element
framework, in Proceedings of the Platform for Advanced Scientific Computing Conference,
PASC ’23, New York, NY, USA, 2023, Association for Computing Machinery, https://do
i.org/10.1145/3592979.3593422.

[45] J. Treibig, G. Hager, and G. Wellein, LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments, in Proceedings of PSTI2010, the First International
Workshop on Parallel Software Tools and Tool Infrastructures, San Diego CA, 2010, https:
//doi.org/10.1109/ICPPW.2010.38.

[46] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance
model for multicore architectures, Commun. ACM, 52 (2009), pp. 65–76, https://doi.org/
10.1145/1498765.1498785.

[47] H. Xiao and Z. Gimbutas, A numerical algorithm for the construction of efficient quadrature
rules in two and higher dimensions, Computers and Mathematics with Applications, 59
(2010), pp. 663–676, https://doi.org/10.1016/j.camwa.2009.10.027.

[48] L. Zhong, S. Shu, G. Wittum, and J. Xu, Optimal error estimates for Nédélec edge elements
for time-harmonic Maxwell’s equations, J. Comp. Math., 27 (2009), pp. 563–572, https:
//doi.org/10.4208/jcm.2009.27.5.011.

[49] K. B. Ølgaard and G. N. Wells, Optimizations for quadrature representations of finite
element tensors through automated code generation, ACM Transactions on Mathematical
Software, 37 (2010), https://doi.org/10.1145/1644001.1644009.

https://doi.org/10.1137/16M110455X
https://doku.lrz.de/pilot-operation-supermuc-ng-phase-2-403079197.html
https://doku.lrz.de/pilot-operation-supermuc-ng-phase-2-403079197.html
https://doi.org/10.1007/978-3-030-47956-5_14
https://doi.org/10.1109/SC.2014.28
https://doi.org/10.1109/SC.2014.28
https://doi.org/10.1016/j.cma.2015.03.014
https://doi.org/10.1016/j.cma.2015.03.014
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/bf01396415
https://doi.org/10.1007/bf01396415
https://hpc.fau.de/systems-services/documentation-instructions/clusters/fritz-cluster
https://hpc.fau.de/systems-services/documentation-instructions/clusters/fritz-cluster
https://doi.org/10.1145/2807591.2807675
https://doi.org/10.5281/zenodo.5541216
https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1177/1094342020945005
https://doi.org/10.1145/3592979.3593422
https://doi.org/10.1145/3592979.3593422
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1016/j.camwa.2009.10.027
https://doi.org/10.4208/jcm.2009.27.5.011
https://doi.org/10.4208/jcm.2009.27.5.011
https://doi.org/10.1145/1644001.1644009

	Introduction
	Contribution
	Related Work
	Structure

	Hybrid Tetrahedral Grids
	Code Generation for FEM on Hybrid Tetrahedral Grids
	Matrix-Free Finite Elements
	Optimizing Cache-Locality: Loop Strategies
	Sawtooth Loop Strategy
	Cubes Loop Strategy
	Memory Volume and Layer Conditions
	Memory Study

	Optimizing Computations
	Automatic Identification of Loop Invariants
	Inter-element Vectorization
	Integration
	Common Subexpression Elimination
	Quadrature Loops
	Tabulation of Factors of the Weak Form
	Symmetry
	Precomputation of Local Element Matrices

	Performance Analysis
	Test Case and Machine
	Constant Diffusion
	Curl-Curl and Mass
	Variable-Coefficient Diffusion
	Instruction Boundedness
	Comparison with Precomputation of Local Element Matrices

	Scaling Curl-Curl to a Trillion DoFs
	Conclusion
	References

