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We critically examine a broad class of explicitly polarisable soft solvent models aimed at appli-
cations in dissipative particle dynamics. We obtain the dielectric permittivity using the fluctuating
box dipole method in linear response theory, and verify the models in relation to several test cases
including demonstrating ion desorption from an oil-water interface due to image charge effects. We
additionally compute the Kirkwood factor and find it uniformly lies in the range gK ≈ 0.7–0.8,
indicating that dipole-dipole correlations are not negligible in these models. This is supported by
measurements of dipole-dipole correlation functions. As a consequence, Onsager theory over-predicts
the dielectric permittivity by approximately 20–30%. On the other hand, the mean square molecular
dipole moment can be accurately estimated with a first-order Wertheim perturbation theory.
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I. INTRODUCTION

The relative dielectric permittivity of water (ϵr ≈ 78)
is much higher than that of a typical apolar liquid such
as a hydrocarbon oil (ϵb ≈ 2). This means that aque-
ous structured liquids can have significant dielectric con-
trasts between water-rich and water-poor regions, and
this may modify the distribution of charged species. Ex-
amples of low dielectric regions include the oily cores of
surfactant micelles, oil-rich regions in microemulsions or
lyotropic liquid crystal phases, the interiors of lipid bi-
layers, and the oily centres of globular proteins. In ad-
dition, interfaces in such systems (as indeed in simple
liquids) present dielectric discontinuities which can influ-
ence the local structure, affect the interface properties,
and contribute to specific adsorption effects. For exam-
ple, repulsion of ions from the air-water interface (Fig. 1)
leads to ion desorption and a consequent increase in the
air-water surface tension [1, 2].

Coarse-grained molecular dynamics methods, such as
dissipative particle dynamics (DPD) [3, 4], are often used
to model the properties of structured liquids, and differ-
ent approaches have been taken to incorporate dielectric
effects. The simplest is to assume a static background
dielectric permittivity representative of the system as a
whole, and capture the effects of local dielectric inhomo-
geneities in the coarse-grained interaction potentials fol-
lowing a systematic top-down parametrisation strategy
[5, 6]. This does appear to have some success, for exam-
ple in modelling surfactant self assembly [7–10]. However
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the question remains whether essentially many-body di-
electric effects can be truly captured by what are often
pairwise coarse-grained interaction potentials. Further,
the transferability of these top-down parameter sets may
be limited to systems with similar microstructural motifs.
A more sophisticated approach is an implicit method

which solves the Poisson equation with an inhomoge-
neous dielectric matched to the local composition. For
example Groot [11, 12] introduced a particle-particle
particle-mesh (P3M) method, with an underlying grid
onto which the local dielectric permittivity is mapped.
Implicit methods like Groot’s P3M typically require be-
spoke numerical codes, precluding the use of standard
methods such as Ewald summation. But in addition,
as Groot remarks, in an implicit dielectric method there
must also be forces on the neutral solvent particles.
To see why this is the case, focus on Fig. 1 where a test

charge Q is embedded in a medium with a high dielectric
permittivity (e. g. water) at a distance h from an interface
with a medium with a low dielectric permittivity (e. g.
air, or oil). This textbook problem is readily solved to

+

+        +      +    +  +++  +    +      +        +

FIG. 1. Field lines and induced surface charges for a point
charge near an air-water or oil-water interface (ϵ1 ≫ ϵ2).
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find the charge is repelled from the interface with a force
QQ′/(16πϵ1ϵ0h

2), where Q′ = Q(ϵ1 − ϵ2)/(ϵ1 + ϵ2) (the
image charge) is located a distance h on the opposite
side of the interface. Of course, the image charge is just
a convenient mathematical fiction introduced to solve the
inhomogeneous electrostatic problem, and in reality the
embedded charge is repelled by induced surface charges
as shown in Fig. 1.

An implicit dielectric approach will certainly correctly
calculate the force on the embedded charge due to the
induced charges, but unless one takes into account the
induced forces on solvent particles, the back reaction on
the medium will be missed. Neglecting this leads to
a situation in which there are unbalanced forces, with
potentially disastrous consequences for the underlying
physics. Other examples make the same point. For in-
stance a well-known scientific parlour trick is to use a
plastic comb charged by friction to pick up small bits
of paper [13]. This works because the bits of paper, al-
though uncharged, are polarised by the inhomogeneous
electric field of the static charges on the comb, and as
such feel a force in this field. Now consider this from the
point of view of an implicit dielectric simulation method
where the dielectric body comprises solely neutral par-
ticles. If there are no induced forces on these particles,
there is no force on the dielectric body in an inhomoge-
neous field, and a basic physical principle is violated. To
counter this Groot argued the forces on neutral particles
(such as solvent beads) can be neglected if spatial inho-
mogeneities are weak [11]. We agree, but by the same
token the forces on the explicit charges (e. g. solute ions)
due to induced image charges are similarly weak, and can
also be neglected. If this is the case, there is no need to
worry about spatial dielectric inhomogeneities in the first
place.

Since computing the back-reaction forces in an im-
plicit method is quite onerous, this leads us to explore
a third explicit approach to modelling dielectric inhomo-
geneities, one in which we allow the dielectric properties
to emerge naturally as a consequence of having explic-
itly polarisable solvent molecules in the model [14–16].
In the models we shall explore below, the polarisability
arises from partial charges on the (net electrically neu-
tral) solvent molecules. In this approach, the static back-
ground dielectric permittivity is set to a constant (e. g.
representative of a hydrocarbon oil phase) and dielectric
inhomogeneities emerge spontaneously corresponding to
the distribution of the polar solvent molecules. Induced
charges are explicitly represented, by the disposition of
the partial charges. The partial charges interact with
other charges, such as the test charge in Fig. 1, through
the normal Coulomb law. Force balance is satisfied at all
times, and basic physical principles are fully respected.

The penalty introduced here is the need to solve the
electrostatics problem including all the partial charges of
the solvent molecules. These are of course usually much
more numerous that any explicit charges thus there is
a considerable additional computational cost. However,

(a)                                   (b)

FIG. 2. Polarisable soft solvent models: (a) molecular dimer
comprising a bound pair of solvent beads carrying equal and
opposite partial charges, (b) trimer comprising a single solvent
bead dressed with a pair of tethered partial charges.

this cost replaces the laborious and bespoke calculation
of the reaction forces on neutral solvent particles that
we have just argued is required in an implicit method.
On the other hand an immediate and clear advantage is
that a well-stocked cabinet of molecular dynamics (MD)
methods is available to deal with the electrostatics prob-
lem [3, 17]. Mesh discretisation artefacts such as might
be encountered using grid-based implicit methods are
also obviously absent, but there is no free lunch: other
artefacts may arise due to the finite size of the polar
molecules, unwanted dielectric saturation, or an unphys-
ical frequency response. Therefore a systematic approach
is required.
Our aim here is to explore the properties of a broad

class of polarisable soft solvent models in the paradigm
just described, and in the context of dissipative particle
dynamics (DPD) as a widely-used prototypical coarse-
grained MD method [4]. In the rest of this paper we
first describe the models and analysis methods, before
reporting on the basic properties in terms of dielectric
behaviour. We propose a couple of specific models which
could be used for oil-water mixtures, and demonstrate
the behaviour in test cases of increasing complexity.

II. MODELS

A. Design principles

In this work polarisable soft solvent models are built
by adding partial charges to small solvent ‘molecules’.
In constructing these models we shall attempt to mini-
mally perturb the ‘standard’ DPD solvent model, which
has seen considerable service underpinning various re-
cent systematic parameterisation efforts [5, 6]. This ba-
sic underlying model has solvent beads interacting with
the standard short-range, pairwise, soft repulsions de-
scribed by the pairwise interaction potential βϕ(r) =
A(1− r/rc)

2/2 for r ≤ rc, and ϕ(r) = 0 for r > rc, where
r is the bead-bead centre separation, A is the repulsion
amplitude, rc is a cut-off distance, and β = 1/kBT is the
inverse of the unit of thermal energy kBT . In what fol-
lows we shall use rc and kBT for the simulation units of
length and energy, and make the usual choice ρr3c = 3 for
the bead density and A = 25 for the repulsion amplitude
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[18].
Building on this, we consider two classes of polaris-

able solvent model (Fig. 2). In the dimer class (Fig. 2a),
pairs of DPD solvent beads are joined by springs and
assigned equal and opposite partial charges ±q. Given
the standard choice of bead density, the molecular den-
sity in this class is ρmr3c = 3/2. In the dressed solvent
class (Fig. 2b), we shall keep the original solvent beads
but to each solvent bead tether a pair of equal and op-
posite partial charges ±q by springs. In this class of
trimer models the central beads interact only via the
DPD soft repulsions, and partial charges only via elec-
trostatics, thus severing the springs decouples the two
systems. The molecular density in this case is ρmr3c = 3.
The dimer class has a computational advantage since

the density of partial charges is half that of the dressed
solvent class, and is favourable if one is only interested in
permittivity. However, a potential disadvantage is that
the springs may intrude upon the solvent rheology. Addi-
tionally, Gaussian springs can stretch indefinitely under
some flow conditions and FENE springs might be a bet-
ter choice. Thus, apart from computational efficiency,
one might disfavour this choice.

The dressed solvent class includes models initially in-
vestigated by Peter and Pivkin [19] and Peter, Lykov and
Pivkin [20], and refined recently by Vaiwala, Jadhav and
Thaokar [21]. These models can be regarded as an evo-
lution of the Drude oscillator water model developed for
the MARTINI force field [22, 23]. The solvent dynamics
in the dressed solvent class may also differ from that of
the standard DPD solvent, but only indirectly via cou-
pling to the electrostatics.

For both classes, the springs correspond to a bond-
ing interaction potential given by βϕ(d) = 1

2kd(d − d0)
2

where d is the separation between the force centres, kd
is a spring constant, and d0 the nominal bond length
(which may be set to zero). In addition for the dressed
solvent class of models we can allow for an angular spring
βϕ(θ) = 1

2kθ(θ − θ0)
2 where θ is the angle subtended at

the central bead by the partial charges, kθ the angular
spring constant, and θ0 the nominal opening angle.

B. Length scale mapping

The partial charges ±q are expressed in terms of the
fundamental unit of charge, but before proceeding to this
step it is first necessary to map rc into physical units. To
do this, we follow the seminal lead of Groot and Rabone
[24] in introducing a solvent bead mapping number Nm

(usually a small integer, but not necessarily so), which is
the mean number of real solvent molecules represented
by one DPD solvent bead. It follows that one mole of
DPD ‘volume elements’ occupies a volume

NAr
3
c = ρr3cNmVm , (1)

where Vm is the solvent molar volume and NA is Avo-
gadro’s number; from this rc can be calculated. For ex-

Physical quantity DPD unit Example value unit

length rc 0.646 nm
electric field kBT/(erc) 3.98× 107 Vm−1

electric dipole erc 1.03× 10−28 Cm
= 31.0 D (Debye)

pressure kBT/r
3
c 15.3 MPa

surface tension kBT/r
2
c 9.9 mNm−1

kinetic time scale rc
√

m/kBT 3.01 ps

TABLE I. DPD units and physical units for relevant physical
quantities. The values in the third column correspond to the
choice Nm = 3, ρr3c = 3 and room temperature (T = 298K).

ample, with the common choice Nm = 3 to represent wa-
ter (Vm ≈ 0.018Lmol−1), we find NAr

3
c ≈ 0.162Lmol−1

assuming the solvent bead density ρr3c = 3 as above,
which corresponds to rc ≈ 0.646 nm. The identification
of rc underpins the conversion of all lengths and molecu-
lar densities. We should emphasise that we do not expect
the solvent molecular density and molecular polarisabil-
ity in the coarse-grained model to be the same as those
of the real system. Rather, the intent is that the solvent
model should appear as a featureless dielectric contin-
uum on length scales greater than rc. Any residual effects
of solvent granularity should be viewed as discretisation
artefacts.
Throughout the rest of the paper we use DPD units,

which amount to setting kBT = 1, m = 1 and rc = 1
(that is, in using the thermal energy, DPD bead mass
and radius as fundamental units). To help the reader in
better grasping the corresponding physical scales, Table I
gives the conversion for some key physical quantities, and
the values of the reference quantities in SI units for our
typical DPD mapping choice.

C. Electrostatics

Now we turn to the specification of the electrostatics.
In terms of the dielectric properties, we draw a careful
distinction between the following quantities [25]:

ϵ0 = absolute permittivity of free space (vacuum),

ϵb = static background relative permittivity,

ϵr = polarisable solvent relative permittivity.

(2)

The latter two are defined relative to free space (vacuum).
We further define, relative to background,

ϵ = ϵr/ϵb . (3)

The full permittivity of our polar solvent model for ex-
ample is thus ϵϵbϵ0.
The central problem addressed in the present work is

to design a model which achieves a desired value of ϵ.
Thus for example, for water in coexistence with water
vapour at room temperature, we should choose ϵb = 1,
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and aim for ϵ ≈ 78. We describe such pure water models
in more detail in Sec. V. For another example, in a water-
in-oil system we can choose for example ϵb = 2 for the
oil [26], and then aim for ϵ ≈ 39 so that ϵr = ϵϵb ≈
78 for the water. We note that in principle one could
always use vacuum as a background and make the oil
polarisable too, but this would increase the number of
charges required in the simulation, since both fluids (oil
and water) would comprise polar(isable) molecules, and
consequently increase the computational time.

The long-range Coulomb law between unit charges in
the static background (e. g. oil) fixes the Bjerrum length,

lB =
e2

4πϵbϵ0kBT
. (4)

In practical terms, it is the dimensionless ratio lB/rc that
should be specified, or the dimensionless coupling param-
eter Γ = 4πlB/rc. For instance if the static background
is intended to be a hydrocarbon oil we might designate
ϵb = 2 for which lB ≈ 27 nm, and then lB/rc ≈ 42
(Γ ≈ 530), assuming the Nm = 3 mapping. For an-
other example, for vacuum as background one would have
lB ≈ 55 nm and lB/rc ≈ 85 (Γ ≈ 1070).

The final part of the electrostatics specification con-
cerns charge smearing, which is required to prevent a
‘collapse’ since there are no hard cores [27]. Here we con-
sider both Gaussian charge smearing [28, 29], and Slater
charge smearing [30–32]. For Gaussian charges the inter-
action potential (between partial charges) is

βϕ(r) =
lBq

2

r
erf

( r

2σ

)
, (5)

where σ is the smearing length. For Slater partial charges
(which are used in the models described in Sec. V) we use
the approximate form

βϕ(r) =
lBq

2

r
[1− (1 + β⋆r⋆)e−2β⋆r⋆ ] , (6)

where β⋆ = rc/λ, r
⋆ = r/rc, and λ is the Slater smearing

length. In both of these the correct long-range Coulomb
law is recovered for large separations.

To summarise: the polarisable solvent models we study
are specified by the molecular parameters kd, d0, and ad-
ditionally for trimers kθ, θ0 ; the magnitude of the partial
charges q ; the charge smearing scheme and length σ or
λ ; the choice of static background ϵb which sets the Bjer-
rum length lB ; the repulsion amplitude between solvent
beads A ; the bead or molecular density ρm ; and the Nm

mapping choice which fixes rc. The key target is the ratio
ϵ = ϵr/ϵb.

D. Specific models

Before listing the specific models used in the present
work, let us make some general remarks. As mentioned,
the central aim of a mesoscale polarisable solvent model

is to provide a featureless dielectric continuum, in so
far as the solvent beads are uniformly distributed. To
achieve this we should endeavour to keep structural fea-
tures and artefacts to length scales less than rc. Following
this line of argument, in order to get a large value of ϵ
we should make the individual molecular dipoles as large
as possible, but with a bond length not larger than rc.
This thinking drives the essential choices below. Never-
theless, it shall become apparent that there are dipole-
dipole correlations in these models, which obliges care in
applications.
In the dimer (DIM) class, we fix ρmr3c = 3/2, A =

25, kd = 5, d0 = 0, and use Gaussian charge smearing
with σ = 0.5. Then lB and q are varied to match the
target system. In particular, for water in oil we suggest
(lB/rc, q) = (42, 0.463), and call the parameterisation
WinO-DIM.
In the dressed solvent (DS) class, we fix ρmr3c = 3,

A = 25, kd = 10, d0 = 0, and use Gaussian smear-
ing with σ = 0.5. Here, for water in oil we sug-
gest (lB/rc, q) = (42, 0.36), and call the parameterisa-
tion WinO-DS. Within the same class, five other mod-
els obtained by varying the partial charge are considered
(namely: lB/rc = 42 and q = 0.08, 0.1, 0.2, 0.3, 0.4). We
call these parameterisations DS-q0.08, DS-q0.1, and so
on. The dielectric properties are reported in Sec. IVA,
and for practical reasons some are used in the tests of
Sec. IVB.
In the codes the long range electrostatics part is dealt

with by Ewald summation, as discussed in Appendix B,
or in the case of dl meso optionally also by smooth par-
ticle mesh Ewald (SPME) [33]. In physical terms, nei-
ther σ nor λ should have any significance, and the actual
choice is dictated by pragmatic considerations [28, 29].
For completeness, the parameterisations WinO-DIM and
WinO-DS are reported in Table II.
A subset of the dressed solvent class includes the Peter-

Pivkin water-in-vacuum models [19, 20] with strong har-
monic bonds and the additional angle potential. Here
we would like to highlight that they do not lead to the
desired permittivity for water without modification. We
discuss this class of model, including parameterisation
challenges, more fully in Sec. V.

III. METHODS

A. Simulations

We study the properties of the models introduced
above with a combination of dissipative particle dy-
namics (DPD) using dl meso [34] [35], and Monte-
Carlo (MC) simulations using a bespoke code. Whereas
dl meso can be applied to a wide variety of interesting
problems, the MC code is limited to generating homoge-
neous solvent configurations to compute structural and
thermodynamic solvent properties, including of course
the relative permittivity ϵ = ϵr/ϵb.
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model class → dimer solvent dressed solvent

parametrisation WinO-DIM WinO-DS

rc 0.646 nm 0.646 nm
A 25 25
kd/r

−2
c 5 10

q 0.463 0.36
σ/rc 0.5 0.5
lB 27 nm 27 nm
lB/rc 42 42
ρmr3c 3/2 3

⟨∆r2⟩/r2c 0.669(1) 0.5660(5)
gC 1.02(4) 1.05(5)
ϵr/ϵb = ϵ 40(2) 42(2)
gK 0.69(3) 0.70(2)

ϵb (oil) 2 2
ϵr (water) 80(4) 84(4)

TABLE II. Parameters of the dimer solvent and dressed sol-
vent models, with the values of q and lB appropriate for water
in oil. As explained in the text, the standard DPD soft re-
pulsion acts between all beads in the dimer class, whereas
only between neutral beads in the dressed solvent class. The
dielectric properties (see Sec. II C, III C and IIID) are com-
puted here from Monte-Carlo simulations (see also Table III).
A figure in brackets here and elsewhere is an estimate of the
error in the final digit.

For the DPD simulations, unless otherwise stated, the
typical simulated volume is a cubic box of side L = 10.
The time step is always δt = 0.01, and simulations are
typically run for 5×105 time steps, after 104 equilibration
steps. Sampling is done every 100 steps. The DPD drag
coefficient is γ = 4.

Whilst dl meso is well documented, we here provide
some brief details of the MC code, which was based on
earlier work [28]. For present purposes this was config-
ured to run in an NV T ensemble, with single-particle
trial displacements. A standard Metropolis scheme is
implemented [3], with trial displacements δr = 0.25–0.4
chosen to obtain an acceptance rate of 30–50%. We typ-
ically consider cubic boxes of side L = 8, and typically
equilibrate for 3×105 trial MC moves before sampling the
configuration every 1.5× 105 trial moves. One can show
that this is sufficient to allow all the particles to move a
distance of order 1–2 rc between sampled configurations.
A large number (500–1000) of samples are required to
estimate the mean square box dipole moment with suffi-
cient accuracy. We achieve this in part by task-farming
across a 100+ node cluster (at the expense of having to
equilibrate on each node).

Benchmarking dl meso against the MC code allows
us to test for issues due to incomplete equilibration, as
well as possible artefacts coming from the DPD ther-
mostat (which, recall, is a pairwise spring-dashpot type);
no significant effects were found. Also, the independently
developed MC code uses interparticle potentials, whereas
dl meso uses interparticle forces, which provides a strin-

gent test for coding errors in the implementation of the
electrostatics, and in fact in the course of the work we
uncovered a problem with the implementation of Slater
smearing in dl meso which can be traced to an incor-
rect expression for the forces in the literature [31]; it was
obviously fixed for the present study. For completeness,
in Appendix B we document the nature of the problem
and provide some precision benchmark MC results for
the reference Slater charge plasma (see below).
To summarise, dl meso and the bespoke MC code are

found to be in excellent mutual agreement. This gives us
a high degree of confidence in the results.

B. Liquid state theory

For supporting calculations we shall occasionally use
a liquid state theory to calculate the structural proper-
ties of multicomponent charged fluids (plasmas). This
was developed for our previous work [28, 29], and uses
the hypernetted chain (HNC) approximation to close the
Ornstein-Zernike equations [36]. The HNC is known to
yield particularly accurate results for soft potentials [5],
and takes proper account of the electrostatics such as the
Stillinger-Lovett sum rules [36]. Some benchmark results
related to the present problem are included in Table VIII
in Appendix B.

C. Dielectric permittivity

To calculate the relative dielectric permittivity, we use
either dl meso or MC to generate configurations of Nm

solvent molecules in a cubic simulation box of volume
L3 = V . Then, in linear response theory, the dielectric
constant can be computed from fluctuations in the box
dipole moment as described in Frenkel and Smit [3], Allen
and Tildesley [17], and Kusalik et al. [37]. Note that
there is scope for considerable confusion over units here,
with some authors preferring Gaussian (cgs) units, and
others using bespoke reduced units. In the present work
we shall formulate the problems initially using SI units,
but switch to writing expressions in terms of the Bjerrum
length lB where practically possible.
For the most part we adopt the so-called ‘tin-foil’ or

conducting boundary conditions since this gives the most
accurate results for a given computational cost [17]. To
summarise the calculation in the present context, let the
dipole of the i-th solvent molecule be pi and the total

dipole moment in the simulation box be Pbox =
∑Nm

i=1 pi

[38]. Then [3, 17]

ϵ = 1 +
⟨P2

box⟩
3ϵbϵ0V kBT

, (7)

where, to recall, ϵ = ϵr/ϵb is the permittivity of the po-
larisable solvent relative to the static background, and
⟨. . .⟩ denotes an ensemble average. Note that the static
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FIG. 3. Geometry for molecular dipole distribution functions:
for each pair of solvent dipoles (here illustrated for the trimer
model) we define the dipole moments p1 and p2, and the
distance between the dipole centers r.

background relative permittivity features also in the de-
nominator on the right-hand side of this equation.

In terms of the Bjerrum length defined in Eq. (4), the
above expression can be written as

ϵ = 1 + 3ygC , (8)

where y = 4πlBρm⟨p2⟩/9e2 and gC = ⟨P2
box⟩/Nm⟨p2⟩,

following an established notation [17, 36]. Here ρm =
Nm/V is the number density of solvent molecules, ⟨p2⟩
is the mean square molecular dipole moment, and the
subscript ‘C’ on gC signals the choice of (conducting)
boundary conditions.

The solvent molecules in our models have equal and
opposite partial charges, so in practical terms pi = qe∆ri
where ∆ri is the vector from −q to q. We additionally

define ∆R =
∑N

i=1 ∆ri. For charge smeared models, the
charge clouds are centro-symmetric and ∆ri is measured
between the charge cloud centres. From these,

y =
4πlBq

2ρm⟨∆r2⟩
9

, gC =
⟨∆R2⟩

Nm⟨∆r2⟩
. (9)

The values of ⟨∆r2⟩ and ⟨∆R2⟩ required in these expres-
sions (in units of r2c ) can be obtained from a time series of
simulation snapshots. Care is taken to ensure the simu-
lation snapshots are uncorrelated, by measuring the time
autocorrelation function for ∆R. Errors are estimated
by block averaging, and further controlled by replicate
simulation runs.

D. Correlation functions

To quantify the structural properties we examine the
solvent bead pair distribution function, g00(r), and the
molecular dipole-dipole correlation functions following
Stell et al. [15]. For the latter we introduce a number of
radially-resolved moment correlation functions (see Fig. 3
for the geometry),

g000(r) = ⟨1⟩r , g110(r) = ⟨p1 · p2⟩r ,
g112(r) = ⟨ 32 (p1 · r̂)(p2 · r̂)− 1

2p1 · p2⟩r ,
(10)

where r = |r|, r̂ = r/r, and ⟨. . .⟩r indicates a radially-
resolved average. For normalisation we ensure g000(r) →

1 as r → ∞ so that it behaves like a standard pair distri-
bution function, and for the higher moments we ensure
that

∫
d3r g110(r) ≡ (1/Nm)

∑
i̸=j⟨pi · pj⟩ , and mutatis

mutandis for g112.
These correlation functions (involving dipole mo-

ments) should be measured under matched or ‘Kirkwood’
boundary conditions in which the dielectric permittivity
of the embedding medium is the same as that of the sys-
tem itself, otherwise there are spurious artefacts on the
length scale of the simulation box [39]. To simulate un-
der these conditions one needs to include, in addition to
the inter-particle potential, a ‘reaction field’ term [3, 17],
which in terms of the Bjerrum length is

βϕpol =
2πlBP

2
box

(2ϵ′ + 1)V e2
. (11)

The permittivity ϵ′ in here is that of the embed-
ding medium (relative to background), which should be
matched to that of the fluid (i. e. ϵ′ = ϵ). This means
that the relative permittivity ϵ of the fluid should be
pre-computed, for instance using conducting boundary
conditions as described in the preceeding section.
Under these matched (ϵ′ = ϵ) boundary conditions,

the expression in Eq. (8) for the dielectric permittivity is
replaced by the Onsager-Kirkwood expression [3, 17, 40],

(ϵ− 1)(2ϵ+ 1)

9ϵ
= ygK . (12)

Here the ‘Kirkwood factor’ gK = ⟨P2
box⟩/Nm⟨p2⟩ =

⟨∆R2⟩/Nm⟨∆r2⟩ < gC , since ϕpol acts to suppress
fluctuations in the box dipole moment, making ⟨P2

box⟩
smaller than under conducting boundary conditions. On
the other hand, to O(1/Nm), ⟨p2⟩ is unaffected by the
choice of boundary conditions [16].
Since ⟨P2

box⟩ = Nm⟨p2⟩+
∑

i ̸=j⟨pi · pj⟩ , the Kirkwood

factor can also be computed from g110(r) as

gK = 1 +
1

⟨p2⟩

∫ ∞

0

dr 4πr2 g110(r) . (13)

Thus g110(r) quantifies the dipole-dipole correlations
which contribute to gK ̸= 1. For completeness, the func-
tion g112(r) is included in the list of computed correlation
functions, and the corresponding integral is, apart from
a constant of proportionality, approximately the energy
associated with the dipoles (exactly so, for true point
dipoles).
Since ⟨p2⟩ and therefore y, as defined below Eq. (8),

are unaffected by the choice of boundary conditions, elim-
inating y between Eqs. (8) and (12) obtains

gK
gC

=
2ϵ+ 1

3ϵ
. (14)

This allows us to compute the Kirkwood factor gK, given
the value of gC computed under conducting boundary
conditions and the permittivity ϵ.
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Parametrisation DS-q0.08 DS-q0.1 DS-q0.2 DS-q0.3 WinO-DS (or DS-q0.36) DS-q0.4

Method Quantity q = 0.08 q = 0.1 q = 0.2 q = 0.3 q = 0.36 [ϵ′ = 42] q = 0.4

DPD ⟨∆r2⟩/r2c 0.5926(5) 0.5898(3) 0.5785(3) 0.5709(3) 0.5669(3) 0.5648(3)
gC 1.00(2) 1.02(3) 1.08(3) 1.08(3) 1.07(3) 1.00(4)
ϵr/ϵb = ϵ 2.99(5) 4.18(9) 14.2(4) 30.3(8) 42(1) 49(2)
gK 0.78(1) 0.76(2) 0.75(2) 0.73(2) 0.72(2) 0.67(3)

Monte-Carlo ⟨∆r2⟩/r2c 0.593(1) 0.590(1) 0.579(1) 0.571(1) 0.5660(5) 0.5660(4) 0.564(1)
gC 1.03(6) 1.05(6) 1.01(6) 1.02(3) 1.04(4) 1.09(3)
ϵr/ϵb = ϵ 3.1(1) 4.3(2) 13.4(7) 29(2) 41(2) 43(2) 53(2)
gK 0.80(4) 0.78(4) 0.70(4) 0.69(2) 0.70(2) 0.72(2) 0.73(2)

pressure r3cp/kBT 23.64(2) 23.62(2) 23.50(2) 23.37(2) 23.26(1) 23.21(2)

Wertheim ⟨∆r2⟩/r2c 0.5948 0.5934 0.5874 0.5830 0.5809 0.5796
Onsager ϵr/ϵb 3.65 5.29 19.1 42.1 60.1 73.9

TABLE III. Tabulated results for all dressed solvent models as a function of partial charge. Results are shown for DPD
using dl meso and for comparison from Monte-Carlo simulations, for which we also report the pressure p. Generally, the
first two rows are computed directly from simulation, being the mean square molecular dipole length ⟨∆r2⟩, and the factor
gC = ⟨∆R2⟩/Nm⟨∆r2⟩ computed under conducting boundary conditions. These are used to calculate the relative permittivity
ϵr/ϵb (third row) from Eqs. (8) and (9), and the Kirkwood factor gK (fourth row) from Eq. (14). The penultimate row
labelled ‘Wertheim’ is from the theory in Sec. III E with the plasma reference correction; without this the entries would all
be ⟨∆r2⟩/r2c = 3/5 = 0.6. The final row utilises Onsager theory to estimate the relative permittivity from Eq. (17), which
assumes gK = 1. For the WinO-DS model (q = 0.36), an extra column is inserted for properties computed in Monte-Carlo with
a reaction field, where the embedding medium relative permittivity is set to ϵ′ = 42 to match that of the fluid (or, close enough
for present purposes).

E. Wertheim and Onsager theories

A relatively simple liquid state theory can be used to
predict the value of ⟨∆r2⟩ in the above section, and from
there the permittivity itself. The approach is rigorously
based in Wertheim perturbation theory and more details
will be presented elsewhere [41]. The first-order theory
results in an approximate expression for the probability
distribution P(∆r) for the distance ∆r between partial
charges, with

P(r) = C exp[−βϕint
+−(r)] g

ref
+−(r) . (15)

Here C is such that 4π
∫∞
0

dr r2 P(r) = 1. In Eq. (15),

ϕint
+−(r) is the intramolecular pair potential between the

partial charges arising from the bonds and gref+−(r) is the
pair distribution function between the partial charges in
a reference system in which all the bonds have been cut.
Given all this,

⟨∆r2⟩ ≈ 4π

∫ ∞

0

dr r4 P(r) . (16)

Details of the intramolecular potentials for the models
studied in the present work are given in Appendix A.

In the reference system (i. e. where the intramolecular
bonds have been cut) gref+− is the pair distribution func-
tion between unlike charges in a neutral two-component
plasma, at a total number density set by the original
molecular solvent density (ρm for the dimer case, 2ρm
for the trimer case). In the following sections, we refer
to such a reference system as a reference plasma. To cal-
culate gref+− we can therefore deploy the HNC liquid state

theory described in Sec. III B. However, since the plasma
is generally weakly coupled, one can already get quite
accurate predictions by setting gref+− = 1. This gives esti-
mates for ⟨∆r2⟩ in some cases in a closed analytic form.
In principle higher order terms can be included in the
perturbation expansion, but these are harder to calcu-
late [41].

This now allows us to compute y from the first of
Eqs. (9), and from this ϵ itself can be estimated using
Onsager theory [40] in the form (ϵ − 1)(2ϵ + 1)/ϵ = 9y,
which solves to

ϵ ≈ 1 + 9y + 3
√
(1 + 2y + 9y2)

4
. (17)

Onsager theory is equivalent to setting gK = 1 in (the ex-
act) Eq. (12), and so involves the further approximation
of the neglect of the dipole-dipole correlations. The more
familiar (but even more approximate) Clausius-Mossotti
relation, namely (ϵ − 1)/(ϵ + 2) = y, cannot be used if
y > 1 (which is usually the case here) since that lies
outside its domain of validity [40].

IV. RESULTS

In this section we report on the dielectric properties
of the proposed solvent models, then describe a series of
problems that allow us to test them. Concrete examples
are given for the class of dressed solvent (DS) model.
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FIG. 4. Dielectric properties of dressed solvent models in Ta-
ble III, as a function of q2: (a) mean square dipole length
⟨∆r2⟩, and (b) relative permittivity ϵ = ϵr/ϵb; the arrowed
point is the WinO-DS model (Table II), with q = 0.36 and
ϵ = 42 ± 2. Markers with error bars are Monte-Carlo sim-
ulations (error bars not shown in (a) as the error is smaller
than markers). Lines are liquid state theory predictions with
(dashed lines) and without (dotted lines) the plasma reference
state correction.

A. Dielectric properties

As already described, we have explored the properties
of both the dimer solvent and dressed solvent models.
Our results for the dimer solvent are similar to those for
the dressed solvents, and so we report only on the latter
in detail. The relative permittivity ϵ = ϵr/ϵb and the gC
factor are given in the second column in Table II for the
water-in-oil dimer model ‘WinO-DIM’, in Table III and
Fig. 4 for the dressed solvent models in general, and in
the third column in Table II for the water-in-oil specific
model ‘WinO-DS’. Apart from certain simulations of the
WinO-DS model, all these results are obtained using the
fluctuating box dipole method with conducting boundary
conditions as described in Sec. III C. To gain insight into
the rôle of dipole-dipole correlations, the Kirkwood factor
gK is included, calculated from ϵ and gC using Eq. (14).

For the majority, we compute these properties both us-

ing the dl meso DPD code, and separately with our be-
spoke Monte-Carlo (MC) code. We find excellent agree-
ment between these, which gives us a high degree of con-
fidence in the results.

We also report the MC pressure for the dressed solvent
models, observing that it diminishes very slightly with
increasing q because of the net cohesive effect of adding
the partial charges, but is otherwise very close to the
canonical DPD solvent (ρr3c = 3, A = 25) for which we
find the pressure in reduced units r3cp/kBT = 23.65 ±
0.02. This suggests that the addition of tethered partial
charges in these models is only minimally perturbative
to the underlying DPD solvent model.

For the dielectric properties, we can see from Table III
and Fig. 4a that the mean square dipole length ⟨∆r2⟩
is relatively insensitive to the magnitude of the partial
charges, although it decreases somewhat with increas-
ing q, which is to be expected as opposite charges at-
tract. For the dressed solvent models, in the absence of
a plasma correction ⟨∆r2⟩ = 3kBT/(kd/2) by equiparti-
tion, where kd/2 is the effective spring constant, as ar-
gued in Appendix A. This results in ⟨∆r2⟩ = 3/5 since
kd = 10, which is already close to the reported results. If
the plasma reference correction is additionally included,
as in Sec. III E, then the agreement between the theory
(Wertheim) and the model improves still further, as seen
by comparing the corresponding rows in Table III.

By far the biggest controlling factor for the relative di-
electric permittivity is therefore the magnitude of q, and
this is the reason we chose this as the main adjustable pa-
rameter in our models. The dependence of ϵ = ϵr/ϵb on q
is shown in Fig. 4b, which indicates that ϵ grows approxi-
mately linearly in q2 for ϵ ≫ 1. As a design criterion, this
observation allows us to relatively easily build models to
reproduce targeted values of the dielectric permittivity.
This will be illustrated in relation to the Peter-Pivkin
water-in-vacuum models in Sec. V.

The Kirkwood factor is roughly constant across all
the models, including the dimer model WinO-DIM, and
takes the value gK ≈ 0.7–0.8. This indicates that dipole-
dipole correlations are not negligible in these models.
This is verified by the correlation functions calculated
for WinO-DS model, shown in Fig. 5. Note in particu-
lar the damped oscillatory nature of g110(r) whose inte-
gral is directly related to gK by Eq. (13). As mentioned,
these correlation functions are computed under matched
boundary conditions, by including the appropriate reac-
tion field and utilising the relative permittivity computed
under conducting boundary conditions. This allows also
a direct computation of gK and a separate estimate of
the relative permittivity, which are found to be in excel-
lent agreement with those calculated using conducting
boundary conditions (see columns labelled WinO-DS in
Table III).

Given that the Kirkwood factor gK ≈ 0.7–0.8, On-
sager theory (final row in Table III) over-predicts the
dielectric permittivity by approximately 20–30%. Never-
theless, the combination of Wertheim and Onsager allows
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FIG. 5. Correlation functions for the WinO-DS model (Table II): (a) dipole length distribution, (b) central bead pair distribution
function g00(r) and dipole-dipole centre distribution function g000(r), (c) and (d) higher order dipole-dipole correlation functions
g110(r) and g112(r). The functions in (c) and (d) are normalised by dividing by ⟨p2⟩. These functions are computed using
matched ‘Kirkwoood’ boundary conditions, with ϵ′ = 42 in the reaction field, as described in Sec. IIID (see also Table III).

a useful initial estimate of these properties, before resort-
ing to simulation.

B. Test problems

Here, various physical situations are analyzed to con-
firm that the solvent behaves as expected, i. e. as a
medium having the dielectric permittivity as determined
by the fluctuating box dipole method. DPD simulations
with models belonging to the dressed solvent class are
used for this purpose.

In the presence of an electric field, the polarisation
density from classical electrostatics is P = (ϵr − 1)ϵ0E.
For our polarisable molecular solvent with a background
relative permittivity, this generalises to the induced po-
larisation of the solvent (i. e. the response of the partial
charges),

P = (ϵ− 1)ϵbϵ0E , (18)

where, as usual and as a reminder, ϵ = ϵr/ϵb.
All three methods below can be reverse-engineered to

calculate the ratio ϵr/ϵb and the results are summarised
in Table IV, compared to the consensus results from fluc-
tuating box dipole method using DPD and MC. In gen-
eral the agreement is very good. As a practical comment,
we note that measuring the induced polarisation with an
applied electric field is the most accurate of these.

Parametrisation DS-q0.08 DS-q0.4

Method Refer to q = 0.08 q = 0.4

Fluctuating box dipole Table III 3.0(1) 51(2)
Applied field Sec. IVB1 3.021(3) 51.24(1)
Force reduction Sec. IVB2 3.03(4) 44(7)
Charge screening Sec. IVB3 3.00(7) —

TABLE IV. Values of ϵr/ϵb from various tests described in the
main text, compared to the consensus (DPD and MC) values
using the fluctuating box dipole method (FBD) reported in
Table III, for dressed solvent models with the indicated values
of the partial charge q.

1. Application of an electric field

As a first test, an electric field Ex along the x direc-
tion is applied to a simulation box containing the po-
larisable solvent molecules at the standard density, and
the resulting average polarisation is measured. In Fig. 6a
this direct response (points) is compared with the linear
response expected using the permittivity from the fluc-
tuating box dipole method (solid line).
In reduced units, Eq. (18) becomes for this problem

q∆Rxr
2
c

V
=

(ϵr
ϵb

− 1
) rc
4πlB

× ercEx

kBT
. (19)

The quantity on the left-hand side is the polarisation
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FIG. 6. Application of an external electric field. (a) Mean
polarisation under an applied field (points), compared to pre-
diction from Eq. (19) in the text (lines) using ϵr/ϵb = 2.99(5)
from the fluctuating box dipole method (Table III). (b) Rel-
ative permittivity computed from this response as a function
of the applied field. Results are from DPD simulations with
dressed solvent models having q = 0.08 and q = 0.4. The
horizontal lines are fits. For comparison, points at Ex = 0
show the prediction from the fluctuating box dipole method
in DPD (open upward triangles) and MC (filled downward
triangles).

density in the box in reduced units, and the second factor
on the right-hand side is the electric field expressed as a
force per unit charge, again in reduced units. Measuring
the slope of the response therefore allows us to compute
ϵr/ϵb, which is shown for dressed solvent models with
q = 0.08 and q = 0.4 in Fig. 6b, with the final results
reported in Table IV. In general, a good agreement is
found, confirming that the dielectric responds linearly to
the external field, for the field strengths considered, i. e.
at least up to 5kBT/(erc).
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FIG. 7. Force reduction (points) as function of the distance
between the charges, d/rc, and its best estimate for d > 2rc
(dashed lines). Results are from DPD simulations with test
charges Q = ±5 in dressed solvent models with q = 0.08 or
q = 0.4. Note that points for q = 0.4 and d > 4rc are not
shown, as Fpolar is too small to be measured. For comparison,
points at large d show the prediction from the fluctuating box
dipole method in DPD (open upward triangles) and MC (filled
downward triangles).

2. Force between two test charges

In this second test, two charges ±Q are fixed at a
distance d from each other and embedded in a sol-
vent. Passing from an apolar to a polar medium, the
force acting on each one is reduced by a factor ϵb/ϵr =
|Fpolar|/|Fnon-polar|. Since we work with simulation boxes
with periodic boundary conditions, what is actually re-
ported here is the force reduction per charge, averaged
over the three axis directions, and both ions, for a pair
of interleaved, infinite cubic arrays of equal and opposite
charges, separated by a distance d along the diagonal.

In Fig. 7 we show results for the force reduction
(points) as a function of d/rc. The polar (non-polar)
medium is represented here by the dressed solvent model
with q ̸= 0 (q = 0), and we choose Q = ±5. For large
enough d, it can be seen that the force reduction agrees
nicely with ϵr from the fluctuating box dipole method
(the ratio ϵr/ϵb extracted from fitting the large separa-
tion reduction to a constant is given in Table IV). How-
ever, at low d, Fpolar is instead stronger than predicted
by classical electrostatic theory: this lack of screening is
an artefact of the model, related to the finite size of the
solvent molecules. We note in passing that, to be able
to detect this force-reduction effect, low ϵr/ϵb and large
Q/q are needed: in the bottom part of Fig. 7, ϵr/ϵb ≃ 3,
and Q/q ≃ 63.
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FIG. 8. Solvent charge ∆Q(R) defined by Eq. (21) in the
text (solid lines), in a sphere of radius R centered on a test
charge Q = 5, in dressed solvent models with (a) q = 0.08 and
(b) q = 0.4. Also shown for comparison is ∆Q(R) for a test
charge in a reference plasma, computed by DPD (chain lines)
and compared to HNC (dotted lines). As in previous figures,
points at large R show the prediction from the fluctuating
box dipole method in DPD (open upward triangles) and MC
(filled downward triangles).

3. Screening around a test charge

The electric field around a test charge Q embedded in
our polarisable solvent is partially screened by the dielec-
tric response to E = Qr/4πϵrϵ0r

3. Using Eq. (18) again,
this implies an induced polarisation P = (ϵ−1)Qr/4πϵr3.
Since ∇ · (r/r3) = 4π δ3(r), this corresponds to an in-
duced polarisation charge located exactly on top of the
test charge, of magnitude and sign

∆Q = −
(
1− ϵb

ϵr

)
Q . (20)

As another test therefore, we compute the solvent charge
(i. e. from the partial charges) contained in a sphere of ra-
dius R centered on a positive ion Q. Microscopically, this
can be written in terms of the pair distribution functions
between the test charge and the partial solvent charges,

as

∆Q(R) = 4πρmq

∫ R

0

dr r2 [gQ+(r)− gQ−(r)] . (21)

We expect this to saturate to the value given in Eq. (20)
as R → ∞ (i. e. beyond the dipole-dipole correlation
length).
In Fig. 8 we show the solvent charge ∆Q(R) computed

as a function of the sphere radius R around a test charge
Q = 5 , for dressed solvent models with small (q = 0.08)
and large (q = 0.4) permittivities [42]. In addition, we
also show results for a test charge embedded in the refer-
ence plasma of Sec. III E (i. e. the solvent with the partial
charges cut loose), and compare this to HNC calcula-
tions of the same (i. e. using a three-component system
with a vanishingly small density of test charges). For all
cases it can be seen that after a few damped oscillations
∆Q(R) becomes constant, attaining the expected value
from Eq. (20) in the solvent (partial screening) and −Q in
the plasma (total screening). The damped oscillations,
which persist in the reference plasma and are corrobo-
rated by HNC results, reflect the charge ordering taking
place in a strong dielectric: see, for example, Keblinski
et al. [43]. Note that in the negative arms of the oscil-
lations the charge compensation is larger than the test
charge itself, |∆Q| > Q, indicating overscreening locally.
We can use Eq. (21) in the limit of large R, with

Eq. (20), to back out the ratio ϵ = ϵr/ϵb. This only
really works for the case where ϵ is not too large oth-
erwise we cannot distinguish between partial screening
and total screening (cf. Fig. 8b) which is also the limit of
Eq. (20) as ϵr → ∞. Such a situation determines ϵr/ϵb
very imprecisely, and we therefore report only the result
for q = 0.08 in Table IV.

C. Ion desorption from oil/water interface

We now turn to a less trivial example demonstrating
that our model shows ion desorption from an oil/water
interface of the kind alluded to in the introduction. We
recall from that discussion that a point charge of any
sign, embedded in a certain medium, is repelled from
an interface with a medium of lower ϵr. In the limit of
infinite dielectric contrast, it effectively sees an identical
image charge across the interface.
Accordingly, as a fourth test, we consider two immis-

cible solvents, oil and water, and add ions at various
concentrations in the water phase. The DPD repulsion
parameter is tuned to ensure immiscibility and to pre-
vent the ions from leaving the water phase: A = 40 be-
tween water and oil and between ions and oil (for water
and oil, we intend between their neutral beads), whereas
for intra-solvent interactions and between ions we keep
A = 25. To reproduce the real dielectric permittivity
mismatch between water and oil, we use the dressed sol-
vent model with q = 0.36 (for water) and with q = 0 (for
oil).
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FIG. 9. Desorption of ions from an oil/water interface. Re-
sults are from DPD simulations with ions of charge ±1 and
the dressed solvent model with q = 0.36 or q = 0. See text
for more details.

We then observe the ionic density profiles and com-
pare them with controls in which there is no dielectric
mismatch, by arranging for the oil and water permittiv-
ities to be equal (with both set to the water value). For
these controls, we either set q = 0 for both oil and water,
with a static background lB = 1 ; or set q = 0.36 for
both, with a static background lB = 42.
The simulation box is 24 × 6 × 6 and the interface is

perpendicular to the x-axis, being approximately located
at x = 0. The ions have charges ±1 to minimize clus-
tering effects. To improve the statistics, for each case we
average over 24 runs with different initial spatial config-
urations.

In Fig. 9 we show (a) the density profiles for oil (stars),
water (crosses) and ions (tilted crosses), for a concentra-
tion of 20% of ions, and (b) a summary of the relative
abundance of ions for the four concentrations considered
(solid lines), together with the reference results in the
polarisable (dot-dashed lines) and static (dotted lines)
implementation. It can be clearly seen that ions are re-
pelled from the oil/water interface when ϵoilr /ϵwater

r < 1
(as compared to ϵoilr /ϵwater

r = 1). Also, it can be seen
that the two controls give very similar results.
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a concentration of ions of 20%. Left panel: real case, with
dielectric mismatch; right panel: control (static) case, with
no dielectric mismatch.

To quantify this let us suppose Gibbs dividing surfaces
are inserted at x1 and x2 such that 0 ≤ x1 < x2 ≤ Lx,
with the ion-containing water phase occupying the region
x1 ≲ x ≲ x2, and the oil phase occupying the remain-
der. Then, noting there are two interfaces in the simu-
lation box, the interfacial excess Γi (not to be confused
with the dimensionless coupling parameter introduced in
Sec. II C) for the i-th species is given by

2Γi =
Ni

A
− ρ

(1)
i x1 − ρ

(2)
i (x2 − x1)− ρ

(1)
i (Lx − x2) , (22)

where Ni is the total number of molecules of species i in

the simulation box, of cross sectional area A, and ρ
(1)
i and

ρ
(2)
i are the mean densities in the bulk regions of the two

phases. Anticipating that the interfaces are a distance of
the order Lx/2 apart, and defining ∆x = x2−x1−Lx/2,
this rewrites as

2Γi = Ai +Bi ∆x , (23)

where

Ai =
Ni

A
− Lx

2
(ρ

(1)
i + ρ

(2)
i ) , Bi = ρ

(1)
i − ρ

(2)
i . (24)

This demonstrates that Γi depends only on the separation
of the Gibbs dividing surfaces and not on their absolute
positions, and furthermore is a linear function of the rel-
ative separation, here expressed as ∆x. To calculate the
coefficients in Eq. (23) we only need to measure the den-
sities of the various species in the bulk regions and insert
them into Eq. (24).
We do this first for the most concentrated ion solution

(20%), and plot the resulting straight lines in Fig. 10 as
a function of ∆x, comparing the case where we have a di-
electric discontinuity and a fully implemented polarisable
water model (on the left) with a ‘control’ case where there
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c (%) Γ∗
ions control (static) control (polarisable)

5 −0.05(1) −0.007(8) −0.015(4)
10 −0.088(7) −0.013(9) −0.026(8)
15 −0.107(8) −0.02(1) −0.03(1)
20 −0.125(8) −0.020(9) −0.05(1)

TABLE V. Ion surface excesses Γ∗
ions relative to water (see

text) as a function of the concentration in the water phase
(total mole fraction of ions, as a percentage). Note desorption
where there is dielectric mismatch (first column), compared to
controls (second and third columns). This is further analysed
in Table VI.

is no dielectric discontinuity (on the right). We first note
that there is no unique definition of ∆x which makes the
water and oil interfacial excesses simultaneously vanish.
This corresponds to the ‘dip’ in the total bead concentra-
tion seen in Fig. 9a. However, most striking is that the
line for the ions lies below the intersection of the water
and oil lines in the left hand plot, but above it in the
right hand plot. This is a clear indication that ions are
desorped from the interface in the case where there is a
dielectric mismatch, compared to the control.

To further quantify this, let us define ∆x∗ as the point
where Γwater = 0 (i. e. where the dashed water lines in the
plots cross the zero axis). We can then use this to define
the relative surface excess for the ions Γ∗

ions = Γions(∆x∗)
[44]. This eliminates the dependence on ∆x and facili-
tates the propagation of errors in the calculation, how-
ever it is still arbitrary to some extent. Table V reports
the results for a number of cases, clearly confirming ion
desorption is significantly present only where there is a
dielectric mismatch.

Finally, for the latter case, we define a (negative) ad-
sorption length by dividing the surface excess by the bulk
concentration in the water phase, Γ∗

ions/ ρions (we omit
the superscript denoting the phase), and compare it to
the Debye length λD calculated from λ−2

D = 4πlBρions,
being sure to use the Bjerrum length for water. Results
are given in Table VI [45]. We see that the adsorption
length is decreasing in magnitude as the concentration
increases, and Γ∗

ions/ ρions ≈ −λD/2. This latter observa-
tion is a little puzzling, since we are in a concentration
regime (see, e. g., second column in Table VI) where λD

should cease to have a physical meaning. Moreover, the
adsorption length is smaller than the charge smearing
length, and indeed likely smaller than the width of the
interface itself (Fig. 9a). Further analysis is beyond the
scope of the present study, but this is all highly intriguing
and further work to explore this phenomenon is planned.
We can also investigate the effect on the surface tension
γ itself [46].

c (%) c/M ρions Γ∗
ions/ ρions λD Γ∗

ions/(λDρions)

5 0.5 0.158(2) −0.33(9) 0.71(2) −0.5(1)
10 1.0 0.313(1) −0.28(2) 0.50(1) −0.56(6)
15 1.4 0.465(1) −0.23(2) 0.41(1) −0.55(6)
20 1.9 0.617(1) −0.20(1) 0.359(9) −0.56(5)

TABLE VI. Adsorption length for ions and the Debye length
in the salt solution, and their ratio, for the dielectric mis-
match case study (first column in Table V). The second col-
umn indicates the approximate salt concentration in molar
units, calculated using the length scale mapping in Sec. II B.

Ref. 19 Ref. 20 *** †††
rc 0.646 nm
A 25
kd/r

−2
c 105

d0/rc 0.2 0.2 0.5 0.5
kθ/rad

−2 1 7.5 0 0
θ0 0
q 0.2 0.75 0.38 0.4
λ/rc = 1/β⋆ 0.7
lB 55.0 nm
lB/rc 85.9
Γ (coupling) 1080
ρmr3c 3

MC ⟨∆r2⟩/r2c 4.08× 10−2 6.41× 10−3 0.412 0.406
gC 1.06(2) 1.07(3) 1.20(3) 1.25(7)
ϵr/ϵb 2.87(4) 5.1(1) 78(2) 89(5)
gK 0.83(2) 0.78(2) 0.80(2) 0.84(4)

Wert. ⟨∆r2⟩/r2c 4.24× 10−2 8.10× 10−3 0.447 0.444
Ons. ϵr/ϵb 3.39 7.94 104.9 115.7

TABLE VII. Parameters of Peter-Pivkin models designed for
water relative to vacuum, and dielectric properties computed
from Monte-Carlo simulations, compared to liquid state the-
ory (cf. Table II and Table III). The first two columns show
parameters for the two published versions of the model. The
third column (***) shows proposed parameters to recover the
dielectric permittivity of water (in bold). Included for com-
pleteness, the fourth column (†††) is a trial (see text).

V. WATER-IN-VACUUM MODELS

We now return to a class of polarisable solvent models
which use a vacuum as reference, thus ϵb = 1. These in-
clude the two Peter-Pivkin models[19, 20], both of which
are based upon the Drude oscillator water model devel-
oped for the MARTINI force field [22] and are equivalent
to the dressed solvent model studied in this work with
an additional bond angle potential. As we will discuss in
the following, we believe these do not lead to the desired
permittivity, therefore also we propose a third corrected
version, which is an opportunity to demonstrate our ap-
proach to design a model with a desired permittivity.
The three models are summarised in Table VII, together
with a fourth trial one (see below).
All the models were studied using the same techniques
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and codes as for the dimer and dressed solvent models,
albeit with some modifications. While the dissipative
particle dynamics (DPD) code in dl meso required no
modification, a reduction in time step size to δt = 0.001
was needed to explicitly implement the stiff harmonic ra-
dial spring forces. The stiffness of these forces required a
different approach from the standard Metropolis scheme
for the Monte-Carlo (MC) code. In this case, we re-
place the radial springs by rigid arms of length d0. These
arms are free to rotate about the central bead, subject
to the additional angular spring (which being soft causes
no problems). To make a MC move with these rigid-arm
trimers, we first select a bead or partial charge at ran-
dom. If it is one of the solvent beads, we make a trial
linear displacement of the whole molecule. If it is one of
the partial charges we make a trial rotation of the arm,
keeping the central bead and other arm fixed in position.
The overall scheme is such that detailed balance is sat-
isfied. No significant differences were observed between
the DPD calculations with stiff harmonic bonds and MC
calculations with rigid arms.

As shown in Table VII, the original Peter-Pivkin mod-
els proposed in Refs. [19] and [20] have a dielectric per-
mittivity which is nowhere near as large as reported, and
we urge caution in using these models for aqueous sys-
tems, recommending alternative values for d0 and q to
obtain the dielectric permittivity of water. Our confi-
dence in these results is bolstered by the generally good
alignment we find between the MC and dl meso simu-
lation results, and the Wertheim and Onsager theories
applied to the present situation.

Given that the Bjerrum length is fixed by the choice of
background (vacuum), the basic reason why the dielec-
tric permittivity of the original models is too small in the
original Peter-Pivkin models is that the dipole moment is
too small. Our proposed remedy is therefore to increase
the dipole moment, both by increasing the magnitude of
the partial charges and lengthening the distance between
them. If we limit ourselves to the case where the max-
imum separation between the partial charges 2d0 ≤ rc,
this suggests for maximum effectiveness the arm length
d0 = rc/2. We also propose to drop the angular poten-
tial as that can only have the effect of reducing the dipole
moment. Then, we only have to adjust the magnitude of
the partial charges to get the desired permittivity.

We start by injecting ϵ = 78 and gK = 0.8 into Eq. (12),
and utilising the first of Eqs. (9) with lB/rc = 85.9 and
ρmr3c = 3, to find we should target q2⟨∆r2⟩ ≈ 0.0598 r2c .
We cannot immediately deconvolute this since q enters
the plasma correction which affects the Wertheim the-
ory prediction for ⟨∆r2⟩. However, one iteration here
will suffice since the error will be corrected in the simu-
lation stage. Starting from the simple analytic estimate
⟨∆r2⟩ = 2d20 = 0.5 r2c from Appendix A, our initial guess
is q ≈ 0.345. We can now go back and incorporate the
plasma correction in the Wertheim theory with this value
of q. This improves the estimate to ⟨∆r2⟩ ≈ 0.451 r2c ,
which now implies (first iteration) q ≈ 0.365. Since we

know this is unlikely to be exactly correct, let us round
this up to q = 0.4. If we simulate this (Table VII, fi-
nal column), we find that ϵ ≈ 89 which is about 15%
larger than what we want. Since we expect ϵ ∝ q2 for
ϵ ≫ 1 (Fig. 4a), we now adjust the magnitude of the par-
tial charges to q = 0.38 (rounding again). Checking this
revised model, we find that its properties are (perhaps
slightly fortuitously) exactly what we want (Table VII,
third column).
This approach combines theoretical estimates using

Wertheim and Onsager theory, with the assumption gK ≈
0.8, to build an initial model which is then simulated to
provide a concrete result with a single-step heuristic re-
finement. If we did not want to assume gK ≈ 0.8 in these
models, we could also proceed by first supposing that
gK = 1, and then measuring the dielectric permittivity
and gC in the initial model to compute a better estimate
for gK from Eq. (14), that could be fed back into the
calculation. It seems likely that such a procedure should
converge after at most one or two iterations.

VI. DISCUSSION

In this work we motivated the use of explicitly polar-
isable solvent models for mesoscale modelling of aqueous
structured liquids, and interfaces in aqueous systems. We
have examined two broad classes of such models, with ap-
plicability to the well-establised dissipative particle dy-
namics (DPD) mesoscale simulation methodology. For
water in oil systems (ϵr/ϵb ≈ 40) we propose a specific
dressed DPD solvent model ‘WinO-DS’ (Table II) which
we confirm behaves as expected in a number of test sit-
uations, including capturing ion desorption from an oil-
water interface. Amongst other interesting and worth-
while applications, such as the use of the model to explore
ions at solvent interfaces, one can include the self assem-
bly of ionic surfactants [10], and the effect of a reduced
dielectric permittivity in the micelle cores.

Our approach to design these solvent models has been
to make sure that the partial charges are only weakly
correlated on length scales ≳ rc (representing the solvent
granularity), so that above this length scale the solvent
appears as a uniform, featureless dielectric continuum.
This motivates the use of molecular dipoles in which the
separation of the partial charges is of the order rc. Then,
the magnitude q of the partial charges is tuned as the
final step to set ϵr/ϵb. In all the systems studied, the
Kirkwood factor gK ≈ 0.7–0.8. If we assume that this
holds true generally, then a good estimate of the system
parameters needed to attain a target relative permittiv-
ity could be made via a combination of Wertheim and
Onsager theory. This can be used as a starting point to
iterate towards a final target value of the permittivity,
with hopefully only a single calibration run required to
fine-tune q to get the desired ratio ϵr/ϵb. We therefore
anticipate this approach is generically useful, for building
mesoscale polarisable solvent models.
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The models examined in the present work are all based
on molecular dipoles with explicit (smeared) partial point
charges. An intriguing opportunity exists though to
make a polarisable solvent model in which true dipoles
are embedded into DPD solvent beads. Most of the
technical apparatus for this has already been developed.
Ewald summation methods for computing forces and
torques on dipoles [47–49] can presumably be adapted
to accommodate charge smearing; and likewise the nec-
essary tools exist to deal with the rotational dynamics of
the dipoles, and angular momentum conservation [50]. If
such a solvent model is combined with many-body DPD
[51], in principle one can simulate vapour-liquid inter-
faces with dielectric liquids, with possible applications
for example to the electrical behaviour of nano-droplets
in aerosols. We leave development along these lines for
future work.
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Appendix A: Intramolecular potentials

We give details for the intramolecular potentials that
can be used to calculate ⟨∆r2⟩ in Sec. III E, for the mod-
els discussed in the main text. Recall βϕint

+−(r) is the in-
tramolecular potential between the partial charges sep-
arated by r and arising from the bonded interactions,
after integrating out all the other molecular degrees of
freedom.

In the dimer class, there are no internal degrees of
freedom and the intramolecular potential is trivially
βϕint

+−(r) =
1
2kd(r−d0)

2, where we currently consider the
case d0 = 0. Note that unlike many molecular dynam-
ics force fields [52], it is conventional in DPD modeling
to retain the pairwise soft repulsions between all beads,
including bonded pairs.

For the trimer class, one has to integrate out the cen-
tral bead degrees of freedom. In general this leads to an-
alytically intractable convolutions of Boltzmann factors,
but conveniently for us analytic solutions can be given
for the two specific models that we have focussed on in
the present work. The first is the case where there are
Hookean springs with d0 = 0 and no angular potential.
In that case the convolution also gives rise to an effective
Hookean spring, with an effective spring constant which
is the harmonic mean of the two original spring constants
(Hookean springs in series), thus specifically in this case
the effective spring constant is kd/2 and the intramolecu-

lar potential βϕint
+−(r) = kdr

2/4. For this, neglecting the
plasma correction yields ⟨∆r2⟩ = 3kBT/(kd/2).
The other case is the Peter-Pivkin model with rigid

arms (of length d0) where the only internal degree of
freedom of the molecule is the opening angle θ. Formally

4πr2 exp[−βϕint
+−(r)] =

∫ π

0

dθ
sin θ

2
exp[− 1

2kθ(θ− θ0)
2]

× δ(r − 2d0 sin
1
2θ) . (A1)

The factors in the integrand are the density of states
associated with the angular integration, the Boltzmann
weight of the angular potential, and a δ-function con-
straining the separation between the partial charges to r
(see Fig. 2b for geometry).
We make a change of variable to u = 2d0 sin

1
2θ. The

integral can now be done to get

4πr2 exp[−βϕint
+−(r)] =

r

2d20
exp[− 1

2kθ(θ − θ0)
2] , (A2)

where θ = 2 sin−1(r/2d0). One application of this is
to the case where there is no angular potential and the
plasma correction is neglected. Then 4πr2P(r) = r/2d20
for r ≤ 2d0, and vanishes for r > 2d0, so that ⟨∆r2⟩ =∫ 2d0

0
dr r3/2d20 = 2d20.

Appendix B: Charge smearing models

For completeness we report here details of the charge
smearing models used in the simulations, and comment
on the link to the Ewald method for dealing with elec-
trostatics in periodic simulation boxes [3, 28, 31, 32]. We
also report in Table VIII some precision MC results for
Slater charges as a benchmark for this problem. Excel-
lent agreement is found with the HNC liquid state theory,
with deviations only becoming apparent in the pressure
for the largest q value.
The Ewald method is based on the following summa-

tion identity [3, 53]

∑
i>j

qiqj
rij

=
2π

V

∑
k

Ak|Qk|2 +
∑
i>j

qiqj
rij

erfc(αrij)

− α√
π

∑
i

q2i , (B1)

where Ak = e−k2/4α2

/k2 and Qk =
∑

i qi e
−ik·ri . Here α

is the Ewald ‘splitting parameter’.
For charge smeared models this becomes

∑
i>j

qiqj
rij

[1− f(rij)] =
2π

V

∑
k

Ak|Qk|2

+
∑
i>j

qiqj
rij

[erfc(αrij)− f(rij)]−
α√
π

∑
i

q2i , (B2)
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q = 0.2 → lBq
2 = 3.436 rc

α rcut kcut p e

HNC 5.1262 −13.316

MC 0.75 3.0 4.5 5.12 −13.3
1.0 3.0 5.5 5.13 −13.3

q = 0.52 → lBq
2 = 23.2274 rc

α rcut kcut p e

HNC 3.0266 −95.584

MC 0.75 3.0 4.5 3.03 −95.6
1.0 3.0 5.5 3.04 −95.6

q = 0.75 → lBq
2 = 48.3188 rc

α rcut kcut p e

HNC 1.4927 −201.372

MC 0.75 3.0 4.5 1.69 −201.6
1.0 3.0 5.5 1.67 −201.6

TABLE VIII. Precision Monte-Carlo (MC) results (dimen-
sionless pressure p and energy density e) supported by HNC
calculations, for a Slater charge plasma under the stated con-
ditions, with lB/rc = 85.9 (coupling parameter Γ = 1080),
A = 0, ρr3c = 6, λ/rc = 1/β⋆ = 0.7. MC results are reported
with an estimated accuracy of 3 significant figures. The HNC
pressure is the virial pressure.

where f(r) = erfc(r/2σ) for Gaussian charges [28], and
f(r) = (1 + β⋆r⋆)e−2β⋆r⋆ for Slater smearing [30]. We
note the latter is an approximation for the interaction
between Slater charges [29], but it is the one that is com-
monly used in the literature [30–32]. The three terms on
the right hand side of Eq. (B2) are the reciprocal space
term, the real space term, and the self energy term. The
last is a constant but should be retained to compare with
HNC calculations of the energy density.

It is clear that choosing 2ασ = 1 for Gaussian charges
makes the real space term vanish [28, 54]. This can be
convenient albeit at the expense of losing the ability to
tune α for computational efficiency [3]. The final results
should be insensitive to the choice of α (Table VIII).

The reciprocal and real space sums in Eq. (B2) need
cut-offs, kcut and rcut respectively, and care should be
taken with this. For Slater charges with 1/β⋆ = 0.7,
examination of the real space contribution suggests α = 1
leads to the smallest rcut, however this is a compromise
since a larger α requires a larger kcut (essentially, this is
controlled by the form of Ak).

The MC results in Table VIII were generated for two
choices of α, with the corresponding rather conservative
choices for kcut. All simulations were done with same
real space cut-off rcut = 3.0 (in units of rc) which is un-
doubtedly also rather conservative. Note that to use the
minimum image convention in periodic boundary condi-
tions the box size should be ≥ 2rcut (the results in Ta-
ble VIII were computed in an 83 box). We note that the
pressure is quite sensitive to kcut as a consequence of an
extra factor k2 in the reciprocal space contribution (see
Eq. (12) in Ref. [28]). The real space term contributes to
the virial pressure in the usual way [55].

Finally, we report the force law that derives from the
above Ewald methodology. The general expression for
the electrostatic force acting on particle j due to recip-
rocal and real space contributions is

Fi

lBqi
= −4π

V

∑
k

ike−ik·riAkQk

+
∑
j ̸=i

qj
r2ij

[2αrij√
π

e−α2r2ij + erfc(αrij)

+ rij f
′(rij)− f(rij)

]rij
rij

,

(B3)

where f ′(r) = df/dr, and noting that no contribution
arises from the self-energy term. As with the potential,
the choice of α = 1/(2σ) for Gaussian charges cancels out
the real space force contribution. In the case of Slater
charge smearing, the expression for the force is correctly
given in Ref. [32]. A previous expression for the force
in the literature [31] was based on the derivative of an
incorrect form of the second (real space) term in Eq. (B2):∑

i>j(qiqj/rij) erfc (αrij) [1− f(rij)].
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[30] M. González-Melchor, E. Mayoral, M. E. Velázquez, and

J. Alejandre, J. Chem. Phys. 125, 224107 (2006).
[31] C. Ibergay, P. Malfreyt, and D. J. Tildesley, J. Chem.

Theory Comput. 5, 3245 (2009).
[32] R. Vaiwala, S. Jadhav, and R. Thaokar, J. Chem. Phys.

146, 124904 (2017).
[33] U. Essmann et al., J. Chem. Phys. 103, 8577 (1995).
[34] M. A. Seaton, R. L. Anderson, S. Metz, and W. Smith,

Mol. Simul. 39, 796 (2013).
[35] Software utilities for dl meso developed in the context

of this work and the E-CAM project are avail-
able at https://e-cam.readthedocs.io/en/latest/

Meso-Multi-Scale-Modelling-Modules/index.html.
Note that the notation is slightly different from the
present manuscript (please refer to the project docu-
mentation for details). For the present work, dl meso

v2.6 and the corresponding utilities were used.
[36] J.-P. Hansen and I. R. McDonald, Theory of Simple

Liquids (Academic Press, Amsterdam, The Netherlands,
2006).

[37] P. G. Kusalik, M. E. Mandy, and I. M. Svishchev, J.
Chem. Phys. 100, 7654 (1994).

[38] We use the subscript ‘box’ to distinguish this quantity
from the polarisation density, introduced in Sec. IVB.

[39] We have investigated the effect of the choice of boundary
conditions on g110(r) and plan to publish this separately.
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