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Spontaneously symmetry-broken (SSB) phases are locally ordered states of matter characterizing
a large variety of physical systems. Because of their specific ordering, their presence is usually
witnessed by means of local order parameters. Here, we propose an alternative approach based on
statistical correlations of noise after the ballistic expansion of an atomic cloud. We indeed demon-
strate that probing such noise correlators allows one to discriminate among different SSB phases
characterized by spin-charge separation. As a particular example, we test our prediction on a 1D
extended Fermi-Hubbard model, where the competition between local and nonlocal couplings gives
rise to three different SSB phases: a charge density wave, a bond-ordering wave, and an antiferro-
magnet. Our numerical analysis shows that this approach can accurately capture the presence of
these different SSB phases, thus representing an alternative and powerful strategy to characterize
strongly interacting quantum matter.

Introduction.– Symmetries play a central role in the
characterization of the microscopic properties of the large
majority of quantum systems [1–3]. In this regard, the
Mermin-Wagner-Hohenberg theorem [4, 5] demonstrates
that, under specific conditions, interacting processes can
lead to the formation of the, so called, spontaneously
symmetry-broken (SSB) phases. Here, the mechanism
of symmetry breaking manifests in the appearance of lo-
cally ordered states of matter that are captured by spe-
cific local order parameters (LOPs) [6]. While theoret-
ical analysis made an extensive use of LOPs, the ex-
perimental characterization of SSB phases represented
a more challenging task. Nevertheless, the advent of
ultracold atomic quantum simulators [7, 8] allowed for
the investigation of SSB regimes to finally flourish, as
proved by the detection of equilibrium [9] and out-of-
equilibrium [10] density waves, supersolids [11–13] and
antiferromagnets [14–16]. In this regard, two main as-
pects of ultracold experimental platforms proofed partic-
ularly important: the impressive versatility in the engi-
neering of Hamiltonians, and the highly accurate detec-
tion techniques that allows one to probe local ordering.
Specific to this last point, quantum gas microscopy [17]
represents an extremely complex and powerful method
capable of probing both density [18, 19] and spin [20, 21]
local distributions. At the same time, less demanding de-
tection schemes based on time-of-flight measurements al-
lowed to extract noise correlation measurements (NCMs)
from spatial density-density correlations after a ballistic
expansion of the gas [22]. Through such technique, dif-
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ferent states of matter have been efficiently detected [23–
27].

SSB phases are particularly interesting in one dimen-
sional fermionic systems. One of the reasons is that,
in such systems, spin and charge degrees of freedom
can exhibit exotic phenomena, such as spin-charge sep-
aration [28–30]. In this context, field theory classifica-
tions [31, 32] have shown that 1D fermionic SSB phases
are always characterized by gapped charge and spin ex-
citation spectra. As a consequence, their rigorous de-
tection requires an extremely challenging simultaneous
probing of both spin and charge local orderings. In this
regard, first fundamental results [33, 34] have been ob-
tained uniquely in the framework of quantum gas micro-
scopes.

In this paper, we demonstrate that NCMs can as
well result highly effective to reveal the presence of SSB
phases that are characterized by spin-charge separation.
Specifically, we first derive the expressions that show that
NCMs are able to capture the three possible SSB phases
occurring in 1D spinful fermionic systems at half filling.
These are a charge density wave (CDW), an antiferro-
magnet (AF) and bond-order-wave (BOW) with broken
site inversion symmetry, as represented in Fig. 1(a-c).
Notably, while the local ordering of CDW and AF ap-
pears at the level of lattice sites, in the BOW it takes
place in bond connecting consecutive lattice sites. No-
tably its detection is the subject of ongoing efforts for
quantum gas microscopy [35, 36]. Based on such a fun-
damental aspect, we then test our predictions on an ex-
tended Fermi-Hubbard model (EFH) where the afore-
mentioned regimes can be engineered. Here, our numeri-
cal analysis for system sizes similar to those of current ex-
periments [37] demonstrates that NCMs provide a ground
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FIG. 1. Illustration of the CDW (a), AF (b), BOW (c) phases.
(d) Schematic representation of the 1D EFH model (4) at half
occupation. Atoms of different spin are illustrated with dif-
ferent colors and two-point arrows indicate on-site (U) and
nearest-neighbor (V ) interactions. An additional term (Jz)
couples the spin of neighbor sites. (e) Phase diagram asso-
ciated to the ground-state of the EFH. As the value of V/J
increases, one observes the transition between the previous
SSB phases. Parameters: U = 4J , Jz = 0.5J , δ = 0.1J , and
12 sites.

state characterization that accurately agrees with the one
derived through LOPs, while not relying on spatially re-
solving the optical lattice. Our results thus provide new
important insights towards a more complete understand-
ing and characterization of SSB phases of matter.

NCM for SSB.– The NCM can be accessed by a sud-
den release of the optical trap and a posterior fluorescence
measurement once the atoms, of mass m, have expanded
beyond the characteristic size of the lattice during a finite
time τ [22]. After this ballistic expansion, each momen-
tum is associated to detection in position xν = pντ/m,
where pν = ℏp + 2νℏk, ν is an integer number and
k = 2π/λ depends on the wavelength of the lattice geom-
etry. The Pauli principle then prevents the simultaneous
detection ⟨n̂σ(x) · n̂σ(x′)⟩ at distances, d = x′ −x, which
are multiples of ℓ = (2ℏk)τ/m. After normalizing by the
case of independent detection ⟨n̂(x)⟩ ⟨n̂(x′)⟩, the NCM
writes as

N(d) = 1 −
∫
dx ⟨n̂(x+ d/2) · n̂(x− d/2)⟩∫
dx ⟨n̂(x+ d/2)⟩ ⟨n̂(x− d/2)⟩

, (1)

where the bracket notation, ⟨·⟩, indicates the statistical
averaging over the region where fluorescence is detected.
In this work, whenever we omit explicitly the spin index
we refer to the sum over both spins, n̂ = n̂↑ + n̂↓.

Interestingly, the presence of peaks in the NCM can re-
veal symmetries of the state that are associated to struc-
tural order in the chain [38], thus unveiling the presence
of SSB phases. One of these examples is the CDW, which
is characterized by a broken translational symmetry that

manifests as a perfect alternation between empty and
doubly occupied sites. Notably, charge excitations be-
come gapped due to density modulation, while the on-
site pairing also generates gapped spin excitations. In
a bipartite lattice picture, this manifests as a different
site occupation, taking values ne/o,σ on each even/odd
site for spin σ ∈ {↑, ↓}, which results in a NCM of the
form [39]

N(νℓ/2) =
∑
σ

[neσ + (−1)νnoσ]2/[
∑
σ

(neσ +noσ)]2. (2)

In analogy to measurements in 2D systems with imposed
broken symmetry [27], N(ℓ/2) is null for a homogeneous
distribution, and nonvanishing for a bipartite occupation.
Therefore, the NCM in Eq. (2) serves as a rigorous probe
that is capable of detecting translational symmetry bro-
ken phases. In the case of a spinful fermionic CDW oc-
curring in half-filled 1D lattices, we then expect neσ = 1
and noσ = 0, so that the NCM saturates to N(ℓ/2) = 0.5.

Interestingly, such analysis is also relevant for the char-
acterization of the AF SSB represented in Fig. 1(b). This
phase exhibits a finite charge gap that originates from
energetically-prevented local pairing, while the perfect
spatial alternation between ↑ and ↓ particles translates
into gapped spin excitations. For the half-filled fermionic
system described above, the AF state, no↑ = ne↓ = 1 and
no↓ = ne↑ = 0, saturates again the NCM in Eq. (2) to
the value N(ℓ/2) = 0.5.

In these two SSB phases, local order is present at
the level of lattice sites. In contrast to this, the BOW
phase occurring in different fermionic chains [31, 40, 41],
is characterized by the ordering of local bonds, brσ =〈
ĉ†rσ ĉr+1σ + h.c.

〉
, which results in a spontaneously gen-

erated lattice dimerization [see Fig. 1(c)]. In analogy to
AF, the charge gap in the BOW reflects in a uniform
distribution of singly occupied lattice sites, while the lat-
tice dimerization gives rise to the formation of singlets in
neighboring sites causing spin gapped excitations. Inter-
estingly, the local ordering in the bonds translates into
additional terms in the NCM [39],

N(νℓ/2) =

∑
σ [
∑

r(−1)νrnrσ]
2

+ 0.5
∑

σ [
∑

r(−1)νrbrσ]
2

(
∑

σr nrσ)2 − 0.5(
∑

σr brσ)2
.

(3)
In particular, in the SSB BOW we expect a different
occupation of even/odd bonds, ne/o,σ = 0.5, beσ = 1,
boσ = 0, one obtains N(ℓ/2) = 0.5. Therefore, a non-
zero value of N(ℓ/2) in a fermionic chain can correspond
to any of three possible symmetry breakings depicted in
Fig. 1, which poses a challenge on the detection of these
phases. In the following, we apply these results to a
minimal model where the three SSB phases appear, and
illustrate how NCMs can still be used to rigorously detect
each of them individually.
SSB in the 1D EFH model.– We consider a 1D EFH

model describing a chain of length L where N spinful
fermions, labeled by σ =↑, ↓, interact through local U
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FIG. 2. (a) Black line follows the LOP associated to charge order (Sc) for different values of nearest-neighbor interaction
strength, V/J . Blue lines indicate indicate the final value of Sc after one adiabatically introduces the on-site dimerized energy
shift in Eq. (8). Blue continuous line corresponds to the symmetry sector that is compatible with the initial sector of the
ground-state, and the dashed line corresponds to the opposite sector. Panels (b) and (c) indicate the evolution of Sc and
N(ℓ/2) (respectively) for a fixed V/J = 5 (yellow line). In (d) we focus on the LOP associated to antiferromagnetic order
(Sz), represented in black. Continuous and dashed green lines show the final value of Sz for the even and odd adiabatic paths
in Eq. (9). Panels (e) and (f) indicate Sz and N(ℓ/2) (respectively) for V/J = 0 (yellow line). In (g) we follow the same
approach for the LOP associated to bond order (B), represented in black. Continuous and dashed red lines show the final value
of B after an adiabatic frustration of the tunneling in the bonds corresponding to the transformation (10) compatible with the
ground-state, or the opposite one, respectively. Panels (h) and (i) indicate the evolution of B and N(ℓ/2) (respectively) for
V/J = 2.2 (yellow line). Parameters: U = 4J , Jz = 0.5J , δ = 0.1J , ∆ = 20J , 12 sites, and TJ = 50

and nearest-neighbor V interactions [42], and are subject
to an antiferromagnetic coupling Jz > 0 [see Fig. 1(d)]:

Ĥ = − J
∑
⟨ij⟩,σ

(ĉ†iσ ĉjσ + H.c.) + V
∑
⟨ij⟩

n̂in̂j

+ U

L−1∑
i=0

n̂i↑n̂i↓ + Jz
∑
⟨ij⟩

Ŝz
i Ŝ

z
j ,

(4)

where J parametrizes the nearest neighbor hopping, and
Ŝz
i = (n̂i↑− n̂i↓)/2. Here, we fix both the system density

N/L = 1 and the total magnetization
∑

i Ŝ
z
i = 0. For

weak V , the on-site interaction dominates and the finite
value of Jz turns out to be responsible for the breaking of
the SU(2) spin rotational symmetry, giving rise to the ap-
pearance of an AF phase [43]. A strong non-local repul-
sion V causes that fermions in neighboring sites become
energetically unfavorable, which results in the formation
of a CDW with broken translational symmetry [31, 44].
For low enough Jz, the effective frustration generated in
the regime U ≈ 2V turns out to be responsible for an
effective Peierls instability that results in the formation
of a SSB BOW [31].

The presence of the aforementioned SSB phases can be
characterized by their respective LOP,

Sc =
1

L

∑
i

(−1)i ⟨n̂i↑ + n̂i↓⟩ /2 , (5)

Sz =
1

L

∑
i

(−1)i
〈
Ŝz
i

〉
, (6)

B =
2

L

∑
iσ

(−1)ibiσ , (7)

capturing the CDW, AF and BOW phases, respectively.
For fixed values U = 4J and Jz = 0.5J , our calculations
of the LOPs in Fig. 1(e) confirm that the variation of V
result in the appearance of the discussed SSB phases in
the ground-state of the EFH model (4) [45].
Discriminating among the different SSB through

NCMs.– So far, we have discussed that NCMs based
on TOF measurements can probe the three SSB phases
that appear in Eq. (4), but cannot directly discriminate
among them in the reciprocal space where they oper-
ate. To circumvent this situation, we introduce a strat-
egy where NCMs, in combination with tunable superlat-
tices, can be used to reveal the presence of each SSB.
For the ground state |ψ0⟩ of Ĥ and a symmetry of inter-
est, we induce a time-dependent superlattice to reduce
the energy of either of the possible charge or spin sectors
associated to the symmetries of study. We will use the
notations C○, B○, and A○ for the superlattice modulation
compatible with the order that spontaneously appear in
the CDW, AF, and BOW phase, respectively:

ĤC○e
o
(t) = −∆C(t)

∑
σ,i∈even

odd

n̂iσ , (8)

ĤA○e
o
(t) = −∆A(t)

∑
i∈even

odd

(
n̂i↑ − ni↓)

)
, (9)

ĤB○e
o
(t) = ∆B(t)

∑
σ

∑
i∈even

odd

[
ĉ†2i,σ ĉ2i+1,σ + H.c.

]
. (10)

Here, we have defined ∆C,A(t, T ) = (t/T )2∆, and
∆B(t, T ) = (t/T )2J , and the index e/o indicates whether
the modulated Hamiltonian favours the occupation of
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FIG. 3. (a) Schematic representation of the superlattices in-
duced by the adiabatic transformations (8-10). (b) Difference
in the NCM reached after the even or odd sector of those
transformations reveal the presence of the CDW, AF and
BOW phases of the EFH model (4), respectively (see main
text). Parameters: U = 4J , Jz = 0.5J , δ = 0.1J , ∆ = 20J ,
12 sites, and TJ = 50

even/odd sites [or bonds in the case of B○].

Let us now illustrate in greater detail how this strat-
egy can assist distinguishing the discussed SSB phases.
Starting with the CDW phase, in Fig. 2(b,c) we show the
evolution of Sc and the noise correlator (respectively),
as one starts from the ground-state of the EFH model
for a fixed value of V = 5J , where the CDW phase is
present. The initial values N(ℓ/2) ≈ 0.5 and Sc ≈ 0.5
indicate the presence of SSB phase where even sites are
initially occupied. As we now shape the lattice to de-
crease the energy-cost of occupying even sites, we ob-
serve at final time TJ = 50 no change in those values
along the adiabatic evolution through the ground-state
manifold of Ĥ+ĤC○,e (continuous lines), which indicates
that the SSB is unaltered. However, along the evolu-
tion with Ĥ + ĤC○,o (dashed line) where the occupation
of odd sites is favoured, we observe that the state fails
to reach adiabatically the state with opposite parity due
to the closing of the gap along that path. As a conse-
quence, the final values of the LOP and NCM do not
saturate to 0.5, indicating that a state with broken sym-
metries has not been reached in this occasion. When
looking into the final values of Sc after these two differ-
ent paths in Fig. 2(a), we observe that this behaviour
holds for V ≳ 2.5J (where the CDW phase is present)
while, for V ≲ 2.5J , the evolution along the even (con-
tinuous lines) and odd (dashed) adiabatic paths result
into the same absolute values of Sc. Remarkably, this

different evolution along the even and odd paths (8-10)
can also be sensed purely from NCMs. In the green line
of Fig. 3(b), we calculate the difference ∆N between the
values of N(ℓ/2) reached after each of those paths, which
is null for V ≲ 2.5J , while it is nonvanishing in the region
V ≳ 2.5J , thus revealing the presence of the CDW phase
without any need of LOPs or single-site resolution.

The applicability of this method is not restricted to
CDWs, but it can also be used to detect AF and BOW
phases, as we illustrate in Fig. 2(d-f) and 2(g-i), by
repeating the same analysis for the adiabatic passages
ĤA○(t), and ĤB○(t), respectively. In the first case, we
observe that the unequal evolution of Sz and the NCM
[panels (e) and (f)] under the two parities of the path in
Eq. (9) reveal the presence of an AF phase for V/J ≲ 2.5.
Starting from the ground-state of the EFH model for the
latter case and V/J = 2.2, the BOW phases manifests
from the different values of the bond-order LOP, and
NCMs [panels (h) and (i)] reached by the system after
the adiabatic suppression of tunneling in even or odd
bonds (indicated with red continuous and dashed lines
respectively), following Eq. (10).

The presence of a specific SSB phase in the Hamilto-
nian thus manifests as a discrepancy ∆N(ℓ/2) ̸= 0, be-
tween the final value of the NCM reached by the two pos-
sible paths [e) and o)] associated to that symmetry, which
we illustrate in Fig. 3(a). One should note that, in an
experiment, the SSB will be decided by an uncontrolled
pinning potential and will be different in each realiza-
tion. Therefore, the symmetry breaking will manifest as
a bimodal distribution of measurement outcomes, where
the separation ∆N between the two peaks is the rele-
vant measure. Remarkably, this magnitude, represented
in Fig. 3(b), allows one to reconstruct the same phase
diagram as the one obtained from LOP, [see Fig. 1(e)].

Discussion & outlook.– We have shown that noise cor-
relation measurements can represent a fundamental tool
in order to probe spontaneously symmetry broken phases
with spin-charge separation. Specifically, we derived an
alternative detection scheme that combines tailored lat-
tice designs with time-of-flight probings. The latter al-
lowed to accurately reveal the presence of each of the
three SSB phases that can occur in 1D fermionic sys-
tems. It is worth to underline that proposals aimed to ex-
plore the SSB, CDW and BOW phases have been mainly
based on trapping magnetic atoms into 1D optical lat-
tices [46, 47]. In order to achieve the regime where non-
local interactions are sizeable, such engineering requires
the use of lattices with ultrashort lattice spacing. Al-
though interesting proposals are present [48, 49], this as-
pect might drastically limit the effectiveness of quantum
gas microscopes to detect these phases. In this regard,
our proposed scheme, combined with the recently intro-
duced technique of quantum gas magnifier [50], might
thus represent a more feasible and flexible detection tech-
nique. As a future direction, we believe that extend-
ing our results to phases of matter with different fea-
tures would represent an exciting topic. Specifically,
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symmetry-protected-topological regimes can be found in
a large variety of 1D fermionic systems [51–57]. Al-
though, these phases do not allow for a description in
terms of local order parameters, they are still character-
ized by the phenomenon of symmetry breaking that our
proposed method might detect efficiently. In conclusion,
our results open up new avenues in the comprehension
and detection of spontaneously symmetry-broken states
of matter.
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SUPPLEMENTAL MATERIAL

The fermionic statistics of the simulating atoms can manifest as an interference in the atomic density distribution
when the optical lattice is suddenly removed. Atoms are allowed to expand ballistically over a fixed time, τ , that we
consider sufficient to neglect the initial size of the lattice.

After this expansion, measurable correlations in the density distribution,

N(d) = 1 −
∫
dx ⟨n̂(x+ d/2) · n̂(x− d/2)⟩τ∫
dx ⟨n̂(x+ d/2)⟩τ ⟨n̂(x− d/2)⟩τ

, (S11)

are proportional to the initial momentum distribution before expansion,

⟨n̂τ (x)⟩τ ≈ m/(hτ)
〈
n̂q(x)

〉
0
, (S12)

following the relation, q(x) = mx/(ℏτ), where m is the atomic mass. In the following, we will omit the subindex, 0,
to indicate the initial time before ballistic expansion. At long times, one can then express N(d) in terms of the initial

annihilation(creation) operators ĉ
(†)
r,σ of a fermionic atom with internal state, σ, placed at site, r, of the optical lattice

before the expansion.
The density correlations in Eq. (S11) write as [22, 23],

⟨n̂σ(x)⟩τ ≈ 1

W

∑
rs

ei(r−s)Q(x)
〈
ĉ†r,σ ĉs,σ

〉
, (S13)

⟨n̂σ(x) · n̂σ′(x′)⟩τ ≈ 1

W 2

∑
rsr′s′

ei(r−s)Q(x)+i(r′−s′)Q(x′)
〈
ĉ†r,σ ĉs,σ ĉ

†
r′,σ′ ĉs′,σ′

〉
, (S14)

where Q(x) = q(x)λ/2, and W = ℏτ/(ma0) approximates a Gaussian envelope for the expansion of the initial Wannier
functions in one-dimension.

Exchanging the order of integration in Eq. (S11), one sees that,∫
dx ⟨n̂σ(x+ d/2)⟩ ⟨n̂σ′(x− d/2)⟩ ≈ 2π

W 2

∑
rsr′s′

eiQ(d)(r−s)
〈
ĉ†r,σ ĉs,σ

〉 〈
ĉ†r′,σ′ ĉs′,σ′

〉
δ[(r − s) + (r′ − s′)] , (S15)

and for the calculation of
∫
dx ⟨n̂σ(x+ d/2) · n̂σ′(x− d/2)⟩ , we can simplify Eq. S14 as,

∑
rsr′s′

〈
ĉ†r,σ ĉs,σ ĉ

†
r′,σ′ ĉs′,σ′

〉
eiQ(d/2)[(r−s)−(r′−s′)]

∫
dxeiQ(x)[(r−s)+(r′−s′)]

=
∑
rsr′s′

eiQ(d)(r−s)
〈
ĉ†r,σ ĉs,σ ĉ

†
r′,σ′ ĉs′,σ′

〉
δ[(r − s) + (r′ − s′)]] .

(S16)

In the case of a Fock state, one can further simplify,〈
ĉ†r,σ ĉs,σ ĉ

†
r′,σ′ ĉs′,σ′

〉
=

〈
ĉ†r,σ ĉs,σ

〉 〈
ĉ†r′,σ′ ĉs′,σ′

〉
−

〈
ĉ†r,σ ĉs′,σ

〉 〈
ĉ†r′,σ ĉs,σ

〉
δσ,σ′ +

〈
ĉ†r,σ ĉs′,σ

〉
δs,r′δσ,σ′ , (S17)

and,

N(d) ≈
−δ(d)L

∑
rσ ⟨n̂rσ⟩ +

∑
σ

∑
rsr′s′ e

iQ(d)(r−s)
〈
ĉ†r,σ ĉs′,σ

〉 〈
ĉ†r′,σ ĉs,σ

〉
δ[(r − s) + (r′ − s′)]∑

σσ′
∑

rsr′s′ e
iQ(d)(r−s)

〈
ĉ†r,σ ĉs,σ

〉〈
ĉ†r′,σ′ ĉs′,σ′

〉
δ[(r − s) + (r′ − s′)]

, (S18)

where L is the number of sites. In order to get some insights, one can look into two particular scenarios.

• In the case of a Fock state,
〈
ĉ†r,σ ĉs,σ′

〉
= δrsδσσ′nrσ, and Eq. (S18) simplifies as,

N(d) ≈ − δ(d)

N/L
+

1

N2

∑
σ

∑
rs

eiQ(d)(r−s)nrσnsσ ,



2

where N =
∑

rσ nrσ is the total number of atoms. We can consider the case of a charge density wave with
occupation ne/o,σ on even/odd sites. One obtains [27],

N(d) ≈ − δ(d)∑
σ 0.5(neσ + noσ)

+

∑
σ[n2eσ + n2oσ + 2neσnoσ cos(Q(d))]

[
∑

σ(neσ + noσ)]2
, (S19)

finding a periodic correlation at multiples of the reciprocal lattice distance, ℓ/2 = 2π
λ

ℏτ
m ,

N(νℓ/2) ≈
∑

σ[neσ + (−1)νnoσ]2

[
∑

σ(neσ + noσ)]2
, (S20)

for ν ∈ N.

A particular example is the purely antiferromagnetic state, | ↑↓↑ . . .⟩, where, no↑ = ne↓ = 1 and no↓ = ne↑ = 0,
so that Eq. (S20) reduces to N(ℓ/2) = 1/2. Interestingly, this is the same result one obtains for the case of
a charge density wave, where noσ = 1 and neσ = 0. Intuitively, as the two spin states do not anticommute
with each other and a one-site spatial displacement between the two ordered chains is not resolved in reciprocal
space, the antiferromagentic chain is analogous to a purely charge-ordered state.

We should highlight that the simplified form in Eq. (S20) only applies to a Fock state. As an example, if one
blindly applied that equation to a superposition of the degenerate space |ψ⟩ = a| ↑↓↑ . . .⟩+b| ↓↑↓ . . .⟩, the result,

N(ℓ/2) =
(
|a|2 − |b|2

)2
/2 , is null for an equal superposition a = b. However, a direct calculation of Eq. (S16)

reveals that the noise correlator matches the result N(ℓ/2) = 0.5 associated to | ↑↓↑ . . .⟩.

• Going beyond on-site occupations, one can look into the case of a bond-ordered state,
〈
ĉ†r,σ ĉs,σ′

〉
=

δσσ′ [δ(s, r)nrσ +0.5δ(s, r+1)brσ +0.5δ(s, r−1)br−1,σ], where we index by r the bonds connecting sites (r, r+1).
Eq. (S18) simplifies as,

N(d) ≈ 1

N2 + 0.5B2 cos[Q(d)]

[
− LNδ(d) +

∑
σ

∑
rs

eiQ(d)(r−s)(nrσnsσ + 0.5brσbsσ)
]
,

where B =
∑

rσ brσ ≤ N denotes the total number of occupied bonds. For a distance of the form, d = νℓ/2, for
ν ∈ N, this reduces to,

N(νℓ/2) ≈
∑

σ [
∑

r(−1)νrnrσ]
2

+ 0.5
∑

σ [
∑

r(−1)νrbrσ]
2

(
∑

σr nrσ)2 − 0.5(
∑

σr brσ)2
.

Considering now a state with a different occupation of even/odd bonds, be/o,σ, and sites, ne/o,σ, one finds,

N(νℓ/2) ≈
∑

σ [neσ + (−1)νnoσ]
2

+ 0.5
∑

σ [beσ + (−1)νboσ]
2

[
∑

σ (neσ + noσ)]
2 − 0.5 [

∑
σ beσ + boσ]

2 ,

which reduces to Eq. (S20) when no bonds are occupied.
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