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FOURIER OPTIMIZATION, THE LEAST QUADRATIC NON-RESIDUE, AND

THE LEAST PRIME IN AN ARITHMETIC PROGRESSION

EMANUEL CARNEIRO, MICAH B. MILINOVICH, EMILY QUESADA-HERRERA,

AND ANTONIO PEDRO RAMOS

Abstract. By means of a Fourier optimization framework, we improve the current asymptotic

bounds under GRH for two classical problems in number theory: the problem of estimating the

least quadratic non-residue modulo a prime, and the problem of estimating the least prime in an

arithmetic progression.

1. Introduction

In this paper, we apply a Fourier optimization framework to study two classical problems in number

theory: (i) the problem of estimating the least quadratic non-residue modulo a prime, and (ii) the

problem of estimating the least prime in an arithmetic progression. We are interested in establishing

the strongest possible asymptotic bounds under the assumption of the Generalized Riemann Hypothesis

(GRH) for Dirichlet L-functions. Our results are inspired by the previous work of Lamzouri, Li, and

Soundararajan [25], who studied the same problems, and of Carneiro, Milinovich, and Soundararajan

[12], who developed a Fourier optimization framework to study the maximum gap between primes

assuming the Riemann Hypothesis. We provide a subtle, yet conceptually interesting, improvement

on the results in [25]. One of the key elements of our approach is a thorough study of the extremal

problems in Fourier analysis associated to these number theory problems. Throughout the paper we

adopt the following normalization for the Fourier transform of a function F ∈ L1(R):

F̂ (t) :=

∫ ∞

−∞
e−2πixt F (x) dx.

1.1. The least quadratic non-residue. Let p be an odd prime, and let np denote the least quadratic

non-residue modulo p. As a consequence of the Pólya-Vinogradov inequality, I. M. Vinogradov devel-

oped a clever trick that established the bound np ≪ p
1

2
√

e log2 p. Burgess later combined Vinogradov’s

trick with his bounds for character sums to show that np = Oε
(
p

1
4
√

e
+ε)

for all ε > 0. Vinogradov

further conjectured that np ≪ε p
ε for all ε > 0, and Vinogradov’s conjecture is now known to follow

from the generalized Lindelöf hypothesis and therefore from GRH.
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Under GRH, Ankeny [1] proved that np ≪ log2 p. The order of magnitude of this estimate has

never been improved. Bach [2] later established the asymptotic estimate np ≤ (1 + o(1)) log2 p which

was improved by Lamzouri, Li, and Soundararajan [25, 26] to np ≤ (0.794 + o(1)) log2 p.

We consider here the following constant arising from a Fourier optimization problem:

C(1) := sup
06=F∈A

2π

‖F‖1

(∫ 0

−∞
F̂ (t) eπt dt−

∫ ∞

0

∣∣F̂ (t)
∣∣ eπt dt

)
, (1.1)

where the supremum is taken over the class of functionsA = {F : R → C ; F ∈ L1(R) ; F̂ is real-valued}.
We improve the current best conditional bounds for the least quadratic non-residue by establishing

the following connection.

Theorem 1. Assume GRH. Let np be the least quadratic non-residue modulo a prime p. Then

lim sup
p→∞

np

log2 p
≤ C(1)−2 < 0.7615 .

This result is a particular case of our more general Theorem 6, below. We also note that the bound

in Theorem 5 shows that C(1)−2 > 0.7596, which shows that we have essentially arrived at the limit of

this method. In other words, assuming GRH, we prove that np <
61
80 log

2 p when p is sufficiently large,

but that replacing 61
80 by 3

4 is not possible using our method.

It is not difficult to see that the least quadratic non-residue np must be prime. Given this fact, it

is also natural to study the size of least prime quadratic residue modulo p, which we denote by rp.

Analogous to his conjecture for np, I. M. Vinogradov conjectured that rp ≪ε p
ε for any ε > 0. The

Pólya-Vinogradov inequality and Siegel’s theorem for exceptional zeros of Dirichlet L-functions imply

that rp ≪ε p
1/2+ε. Yu. V. Linnik and A. I. Vinogradov [35] used Burgess’ bounds for character sums

and Siegel’s theorem to show that rp ≪ε p
1/4+ε. The implied constants in both of these bounds are

ineffective. Assuming GRH, Ankeny [1] proved that rp ≪ log2 p and the order of magnitude of this

estimate has never been improved. We modify our proof of Theorem 1 to prove the following result.

Theorem 2. Assume GRH. Let rp be the least prime quadratic residue modulo a prime p. Then

lim sup
p→∞

rp

log2 p
≤ C(1)−2 < 0.7615 .

1.2. The least prime in an arithmetic progression. For q ∈ N and a ∈ Z with gcd(a, q) = 1, let

P (a, q) be the least prime in the arithmetic progression ≡ a (mod q). When it comes to unconditional

bounds, a classical result of Linnik establishes that P (a, q) ≪ qL for some universal constant L. Heath-

Brown [23] showed that L = 5.5 is an admissible value for Linnik’s constant, and this result was later

improved to L = 5.2 by Xylouris [36].

Under GRH, the asymptotic estimate P (a, q) ≤ (1 + o(1))(φ(q) log q)2 was established by Bach

and Sorensen [3], and the absolute bound P (a, q) ≤ (φ(q) log q)2, for q > 3, was established by

Lamzouri, Li and Soundararajan in [25]. It was suggested in [25] that a modification of their proof,

with the use of the Brun-Titchmarsh inequality, would yield an asymptotic bound of the form P (a, q) ≤
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(1 − δ + o(1))(φ(q) log q)2, for some small δ > 0. Our next result finds an explicit constant for this

inequality, by relating it to the following constant arising from a Fourier optimization problem:1

C(3) := sup
06=F∈A

2π

‖F‖1

(∫ 0

−∞
F̂ (t) eπt dt−

∫ ∞

0

F̂ (t) eπt dt− 2

∫ ∞

0

∣∣F̂ (t)
∣∣ eπt dt

)
, (1.2)

where the supremum is taken over the class of functionsA = {F : R → C ; F ∈ L1(R) ; F̂ is real-valued}.

Theorem 3. Assume GRH. Let q ∈ N and a ∈ Z with gcd(a, q) = 1. The least prime P (a, q) that is

congruent to a modulo q verifies

lim sup
q→∞

P (a, q)

(φ(q) log q)2
≤ C(3)−2 <

8

9
. (1.3)

We note in Theorem 5 that C(3)−2 > 0.8859, which shows, as in the case of Theorem 1, that we are

essentially at the limit of the method.

1.3. Fourier optimization. A Fourier optimization problem can generally be described as a problem

in which one prescribes certain constraints for a function and its Fourier transform, and wants to

optimize a certain quantity of interest. Some problems of this type turn out to be connected to

problems in number theory and other fields, and establishing such bridges is usually an interesting

part of the process. Recent examples of Fourier optimization problems arise in connection to: bounds

for the modulus and argument of the Riemann zeta-function [7, 8, 13]; bounds related to Montgomery’s

pair correlation conjecture [5, 6, 11, 21, 31]; the maximum size of gaps between primes [12, 15, 16];

the proportion of simple zeros of zeta and L-functions [14, 27, 33]; non-vanishing of L-functions at

the central point and low-lying heights [9, 20, 30]; and the recent breakthroughs in the sphere packing

problem and energy-minimizing point configurations [17, 18, 19, 22, 34].

Throughout the paper, for a real-valued function G, we let

G+(x) := max{G(x), 0} and G−(x) := max{−G(x), 0}.

Then, one plainly has G(x) = G+(x)−G−(x) and |G(x)| = G+(x)+G−(x). We consider the following

family of optimization problems parametrized by a real number 0 ≤ A <∞ or A = ∞.

Extremal Problem 1 (EP1). Given 0 ≤ A <∞, find

C(A) := sup
06=F∈A

2π

‖F‖1

(∫ 0

−∞
F̂ (t) eπt dt−

∫ ∞

0

F̂−(t) e
πt dt−A

∫ ∞

0

F̂+(t) e
πt dt

)
, (1.4)

where the supremum is taken over the class of functionsA = {F : R → C ; F ∈ L1(R) ; F̂ is real-valued}.
For A = ∞, find

C(∞) := sup
06=F∈A∞

2π

‖F‖1

(∫ 0

−∞
F̂ (t) eπt dt−

∫ ∞

0

F̂−(t) e
πt dt

)
, (1.5)

where the supremum is taken over the subclass A∞ ⊂ A given by A∞ = {F : R → C ; F ∈
L1(R) ; F̂ is real-valued ; F̂ (t) ≤ 0 for t ≥ 0}.
1The motivation for the nomenclature of the constants, C(1) in (1.1) and C(3) in (1.2), will become clear in §1.3.
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As we shall see, the problem of estimating the least character non-residue, generalizing the least

quadratic non-residue presented in Theorem 1, is connected to (EP1) in the cases A = 1/(ℓ − 1) for

ℓ ∈ N, ℓ ≥ 2, and hence we pay a closer attention to this problem in the range 0 ≤ A ≤ 1. On the other

hand, the problem of estimating the least prime in an arithmetic progression is connected to (EP1) in

the case A = 3, and we also pay attention to this case. Our next result collects some qualitative and

quantitative properties of C(A).

Theorem 4. The following propositions hold:

(i) The supremum in (1.4) - (1.5) restricted to the functions F ∈ A (or F ∈ A∞ in case A = ∞)

with F̂ ∈ C∞
c (R), still yields C(A).

(ii) The function A 7→ C(A) is continuous and non-increasing for 0 ≤ A ≤ ∞.

(iii) One has the exact endpoint values C(0) = 2 and C(∞) = 1.

(iv) For 0 ≤ A < 1, one has the bound:

C(A) ≥ max



2 +

2 (A+1) log
(

3−A
A+1

)

logA
+ 2A ; 1



 . (1.6)

Remarks. (i) Noting that the maximum of x 7→ 2 (x + 1) log
(

3−x
x+1

)
for 0 ≤ x < 1 occurs at x = 0,

from (1.6) one arrives at the weaker, yet simpler, lower bound

C(A) ≥ 2 +
2 log 3

logA
, (1.7)

which is asymptotically equivalent to (1.6) as A→ 0.

(ii) From a number theoretic viewpoint, the constant A in our extremal problem (EP1) arises from

(over)estimating the contributions of the primes beyond the least quadratic non-residue or the least

prime in an arithmetic progression. In the case of the least quadratic non-residue, we arrive at A = 1

using the Prime Number Theorem. In the case of the least prime in an arithmetic progression, we arrive

at A = 3 using the Brun-Titchmarsh Theorem. The case A = ∞ corresponds to the situation where

no analogue of the Brun-Titchmarsh Theorem exists. Such a situation arises when one attempts to

bound the least prime in the Chebotarev density theorem in a general setting. In particular, our result

that C(∞) = 1 can be used to show that the results of Bach and Sorensen [3, Theorem 3.1] concerning

the least prime in the Chebotarev density theorem assuming the Extended Riemann Hypothesis are

best possible using their method.

(iii) The Fourier analysis framework developed in this paper should be applicable to proving con-

ditional estimates to a variety of arithmetic problems which rely on input from low-lying zeros of

L-functions (once one has determined the appropriate constant A for the problem).

Although our extremal problem (EP1) can be stated in accessible terms, one quickly realizes that

the task of actually finding the exact value of the sharp constant C(A) is rather subtle in general. Our

next result presents high precision upper and lower bounds for C(A) in the most interesting cases for

our applications.
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Theorem 5. One has the following bounds:

1.31706 < C(1/4) < 1.33509;

1.27722 < C(1/3) < 1.28781;

1.22112 < C(1/2) < 1.23080;

1.14600 < C(1) < 1.14731;

1.06082 < C(3) < 1.06240.

Establishing upper bounds for C(A) is a somewhat delicate issue. Our strategy unveils a connection

with a suitable auxiliary extremal problem. Once this bridge is in place, the work to establish upper and

lower bounds in Theorem 5 is reduced to finding near-extremal test functions for both the original and

the auxiliary extremal problems, a task that is performed via suitable robust programming routines.

In principle, our method of proof of Theorem 5 could be adapted to treat, with high precision, any

other particular fixed value of A.

1.4. The least character non-residue. Proceeding slightly more generally than in §1.1, let q ∈ N

and let χ be a non-principal Dirichlet character modulo q. Set

nχ := min{n ∈ N; χ(n) 6= 0, 1} , (1.8)

known as the least character non-residue. Under GRH, Ankeny [1] showed that nχ ≪ log2 q, and

the absolute bound nχ ≤ log2 q, if q is not divisible by any prime below log2 q, was established by

Lamzouri, Li, and Soundararajan in [25]. When it comes to asymptotic results, the uniform estimate

nχ ≤
(
1 + o(1)

)
log2 q was proved by Bach [2], and later refined in [25] to nχ ≤

(
0.794 + o(1)

)
log2 q.

It was observed in [25] that one can do better if one knows, a priori, the order of the character χ. For

instance, if χ is cubic then nχ ≤
(
0.7 + o(1)

)
log2 q, and if χ is quartic then nχ ≤

(
0.66 + o(1)

)
log2 q.

Our next result provides a sharpening of these inequalities, by relating them to the solution of the

extremal problem (EP1).

Theorem 6. Assume GRH. Let q ∈ N and let χ be a non-principal Dirichlet character modulo q of

order ℓ. Then the least character non-residue nχ satisfies

lim sup
q→∞

nχ

log2 q
≤ C

(
1

ℓ−1

)−2

.

From Theorem 5 and the lower bound (1.7) we immediately have the following corollary.

Corollary 7. Under the same hypotheses of Theorem 6:

(i) If ℓ = 2, then nχ ≤
(
0.7615 + o(1)

)
log2 q.

(ii) If ℓ = 3, then nχ ≤
(
0.6707 + o(1)

)
log2 q.

(iii) If ℓ = 4, then nχ ≤
(
0.6131 + o(1)

)
log2 q.

(iv) If ℓ = 5, then nχ ≤
(
0.5765 + o(1)

)
log2 q.
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(v) For ℓ ≥ 6, one has

lim sup
q→∞

nχ

log2 q
≤ 1

4

(
1− log 3

log(ℓ−1)

)−2

. (1.9)

Remarks. (i) Theorem 5 shows that the upper bounds in Corollary 7 (i) - (iv) cannot be improved

beyond 0.7596 . . ., 0.6601 . . ., 0.6029 . . . and 0.5610 . . ., respectively, with this method.

(ii) We note that Theorem 1 is an immediate consequence of Theorem 6 and Corollary 7 upon

letting q be prime and letting χ be the Legendre symbol modulo q (so that ℓ = 2).

Our strategy to prove Theorem 6 is inspired in the asymptotic bounds of the previous work of

Lamzouri, Li, and Soundararajan in [25], with certain differences. Both here and in [25], the idea

is to consider a character sum with values 1 up to a certain point and then −1 from that point on

(after a suitable cancellation provided by the order of the character). In [25], this is done via the

Mellin transform and appropriate contour shifting, while here we alternatively work directly with the

Fourier transform and explicit formulas. If one carefully translate the arguments of [25, Section 6] to

the Fourier transform language via the appropriate changes of variables, one sees that the extremal

problem setup in [25, Proposition 6.1] reduces to our (EP1), in the case A = 1/(ℓ − 1), after certain

simplifications due to additional restrictions on the test functions. Precisely, in [25, Proposition 6.1]

one assumes that F is analytic in the strip − 1
2 − ε < Im(s) < 1

2 + ε, that |F (s)| ≪ (1 + |s|2)−1 in this

strip as |Re(s)| → ∞, and that F̂ ≥ 0 on R. The first two assumptions are harmless since we prove

in Theorem 4 (i) that F can be taken entire and Schwartz on R for (EP1). However, the additional

assumption that F̂ ≥ 0 on R makes the two problems different. It is not clear that near-extremizers

of problem (EP1) will have this property (most likely not; see the discussion in Section 5). Some of

our test functions used in Theorem 5 already show a small oscillation of the sign of F̂ , e.g. the test

function for the lower bound when A = 1.

Here we not only estimate the limit of the method in the particular situations of low order characters

(Theorem 5) but also in the regime where the order ℓ is large. This is given by (1.9), in which one

gets the constant 1/4 as the limit. The same limiting constant 1/4 was also obtained in [25, Theorem

1.3] with a slightly larger upper bound.

1.5. Structure of the paper. The rest of the paper, in which we prove the main results stated in

this introduction, can be broadly divided into three independent parts:

• The analysis part. This is Section 2, where we prove Theorem 4.

• The number theory part. This is comprised of Sections 3 and 4, where we prove Theorem 6 and

Theorem 3, respectively. At the end of Section 3, we briefly indicate the changes necessary in

the proof of Theorem 3 that are needed in order to prove Theorem 2.

• The computational part. This is Section 5, where we discuss the computer-assisted proof of

Theorem 5.
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2. Extremal problems: proof of Theorem 4

Let us introduce another important tool in our conceptual framework, that shall be relevant not

only for the proof of Theorem 4 but also for the proof of Theorem 5 in the upcoming Section 5.

2.1. An auxiliary extremal problem. Let 1R−
be the characteristic function of (−∞, 0) and 1R+

be the characteristic function of (0,∞). We consider the following auxiliary problem.

Extremal Problem 2 (EP2). Given 0 ≤ A ≤ ∞, find

C∗(A) = inf
06=ψ∈BA

2π
∥∥∥ ̂1R−

eπ(·) − 1̂R+ ψ
∥∥∥
∞
,

where the infimum is taken over the class BA = {ψ : R+ → R; ψ ∈ L1(R+) and − eπt ≤ ψ(t) ≤
Aeπt for all t ∈ R+}.
Remark: If A = ∞, the last condition is understood simply as −eπt ≤ ψ(t) for all t ∈ R+.

It is clear from the definition of the extremal problem (EP2) that the map A 7→ C∗(A) is non-

increasing. We prove the following relation between our extremal problems (EP1) and (EP2).

Proposition 8. For each 0 ≤ A ≤ ∞ one has

C(A) ≤ C∗(A). (2.1)

Proof. Let 0 6= F ∈ A (or 0 6= F ∈ A∞ in case A = ∞) be given. Using the multiplication formula for

the Fourier transform, for any ψ ∈ BA we have
∫ 0

−∞
F̂ (t) eπt dt−

∫ ∞

0

F̂−(t) e
πt dt−A

∫ ∞

0

F̂+(t) e
πt dt ≤

∫ ∞

−∞
F̂ (t)

(
1R−

(t) eπt − 1R+(t)ψ(t)
)
dt

=

∫ ∞

−∞
F (x)

(
̂1R−
eπ(·) − 1̂R+ ψ

)
(x) dx ≤ ‖F‖1

∥∥∥ ̂1R−
eπ(·) − 1̂R+ ψ

∥∥∥
∞
.

This plainly leads us to (2.1). �

2.2. Approximations: proof of Theorem 4 (i). Our argument below works in both cases 0 ≤
A < ∞ and A = ∞. Note first that C(A) > 0; to see this just take any test function F ∈ A with

supp
(
F̂
)
⊂ (−∞, 0]. Start with any 0 6= F ∈ A (resp. 0 6= F ∈ A∞ if A = ∞) and define

JA(F ) :=
2π

‖F‖1

(∫ 0

−∞
F̂ (t) eπt dt−

∫ ∞

0

F̂−(t) e
πt dt−A

∫ ∞

0

F̂+(t) e
πt dt

)

(resp. with the last integral on the right removed if A = ∞). We may assume that JA(F ) > 0. Let

K(x) =
(
sin(πx)/(πx)

)2
be the Fejér kernel and recall that K̂(t) = (1 − |t|)+. For ε > 0, define

Kε(x) := ε−1K(x/ε). Since F̂ ∗Kε(t) = F̂ (t)K̂(εt), an application of dominated convergence in the

numerator, together with the fact that ‖F ∗Kε‖1 → ‖F‖1 as ε→ 0, yields limε→0 JA(F ∗Kε) = JA(F ).

We may hence assume that our test function F is bandlimited.

Let η ∈ C∞
c (R) be an even and non-negative function with supp(η) ⊂ [−1, 1] and

∫ 1

−1 η(x) dx = 1.

Again, for ε > 0, let ηε(x) := ε−1η(x/ε). Assume that supp(F̂ ) ⊂ [−Λ,Λ] and define F ε(x) :=

F (x) η̂(εx) e−2πixε. Then F̂ ε(t) = F̂ ∗ ηε(t + ε) ∈ C∞
c (R) and supp(F̂ ε) ⊂ [−Λ − 2ε,Λ] (this small
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translation by ε is just to guarantee that F ε ∈ A∞ in case F ∈ A∞). Note that ‖F ε‖1 → ‖F‖1 as

ε → 0, by dominated convergence. Since F̂ is uniformly continuous, note that F̂ ε → F̂ uniformly as

ε→ 0, and hence F̂ ε− → F̂− and F̂ ε+ → F̂+ uniformly as well. Yet another application of dominated

convergence in the numerator yields limε→0 JA(F
ε) = JA(F ). This concludes the proof of this part.

2.3. Continuity: proof of Theorem 4 (ii). From the definition of the problem, it is clear that the

function A 7→ C(A) is non-increasing. Let us show that it is continuous up to ∞ (i.e. we also want to

show that limA→∞ C(A) = C(∞)).

For a fixed 0 ≤ A < ∞, given ε > 0, let F ∈ A be such that JA(F ) ≥ C(A) − ε. Then, by the

continuity of the numerator, there exists δ = δ(ε, F ) > 0 such that if |B − A| ≤ δ then JB(F ) ≥
JA(F )− ε. Hence C(B) ≥ JB(F ) ≥ JA(F )− ε ≥ C(A)− 2ε. Since ε > 0 was arbitrary, we get

lim inf
B→A

C(B) ≥ C(A). (2.2)

Since A 7→ C(A) is non-increasing, note that (2.2) already implies that this map is continuous at A = 0.

Note also that (2.2) is trivially true for A = ∞.

Now assume that 0 < A < ∞ and let {An}n≥1 be a sequence such that An > 0 for each n and

An → A as n→ ∞. Let Fn ∈ A be normalized such that ‖Fn‖1 = 1 and JAn
(Fn) ≥ C(An)− 1

n . Since

‖F̂n‖∞ ≤ ‖Fn‖1 = 1,
∣∣∣∣
∫ 0

−∞
F̂n(t) e

πt dt

∣∣∣∣ ≤
∫ 0

−∞
eπt dt =

1

π
,

and from the fact that C(An) > 0 we obtain

An

∫ ∞

0

(
F̂n
)
+
(t) eπt dt ≤ 1

π
.

Therefore,

∣∣JA(Fn)− JAn
(Fn)

∣∣ = 2π

∣∣∣∣(A−An)

∫ ∞

0

(
F̂n
)
+
(t) eπt dt

∣∣∣∣ ≤
2 |A−An|

An
,

and note that this last quantity goes to 0 as n→ ∞. This plainly leads us to

C(A) ≥ lim sup
n→∞

JA(Fn) = lim sup
n→∞

JAn
(Fn) = lim sup

n→∞
C(An). (2.3)

The desired continuity at 0 < A <∞ then follows from (2.2) and (2.3).

The argument in the previous paragraph does not immediately work to prove the continuity at

A = ∞ since the functions Fn may not be in the class A∞. We have to be a bit more careful in

this case, and argue using the auxiliary extremal problem (EP2). We show that C∗(A) = 1 + o(1) as

A→ ∞. Recall that

2π ̂1R−
eπ(·)(x) =

2

1− 2ix
.
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The intuitive idea is the following: if we consider ψ = 1
2πδ, where δ is the Dirac delta at the origin,

we would have

2π ̂1R−
eπ(·)(x)− 2π ψ̂(x) =

2

1− 2ix
− 1 =

1 + 2ix

1− 2ix
,

and hence 2π
∥∥ ̂1R−

eπ(·) − ψ̂
∥∥
∞ = 1. With this target example in mind, we argue with a suitable

admissible approximation. For A large (and finite), let us choose a test function ψA ∈ BA for (EP2)

given by ψA(t) = A1[0,1/(2πA)](t). Then, note that

2π 1̂R+ ψA(x) =
1− e−ix/A

ix/A
.

By the mean value inequality, |1− eiθ| ≤ |θ| for θ ∈ R, and we get

∥∥2π 1̂R+ ψA(x)
∥∥
∞ ≤ 1. (2.4)

Also, note that limx→0 2π 1̂R+ ψA(x) = 1.

Now let ε > 0 be given, and let N = N(ε) be large so that
∣∣∣∣

2

1− 2ix

∣∣∣∣ ≤ ε (2.5)

if |x| ≥ N . Fix A0 = A0(ε,N), so that if A ≥ A0 we have
∣∣∣∣
1− e−ix/A

ix/A
− 1

∣∣∣∣ ≤ ε (2.6)

if |x| ≤ N . Hence, if A ≥ A0 and |x| ≤ N , we use the triangle inequality and (2.6) to get

∣∣∣2π ̂1R−
eπ(·)(x) − 2π 1̂R+ ψA(x)

∣∣∣ ≤
∣∣∣∣

2

1− 2ix
− 1

∣∣∣∣+
∣∣∣∣1−

1− e−ix/A

ix/A

∣∣∣∣ ≤ 1 + ε. (2.7)

On the other hand, if |x| > N , we use the triangle inequality, with (2.4) and (2.5), to get

∣∣∣2π ̂1R−
eπ(·)(x)− 2π 1̂R+ ψA(x)

∣∣∣ ≤
∣∣∣∣

2

1− 2ix

∣∣∣∣+
∥∥2π 1̂R+ ψA(x)

∥∥
∞ ≤ 1 + ε. (2.8)

Inequalities (2.7) and (2.8) plainly lead us to (recall that A 7→ C∗(A) is non-increasing)

lim
A→∞

C∗(A) ≤ 1 + ε.

Since ε > 0 is arbitrary, and in light of Proposition 8 and the fact that the map A 7→ C(A) is non-

increasing, we conclude that

C(∞) ≤ lim
A→∞

C(A) ≤ lim
A→∞

C∗(A) ≤ 1. (2.9)

Once we prove that C(∞) = 1, which we shall do in the next subsection, the continuity at A = ∞
plainly follows from (2.9) (and so does the fact that C∗(∞) = 1).

2.4. Endpoint values: proof of Theorem 4 (iii).
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2.4.1. The value of C(0). If A = 0 and F ∈ A, using the fact that ‖F̂‖∞ ≤ ‖F‖1 note that

J0(F ) ≤
2π

‖F‖1

∫ 0

−∞
F̂ (t) eπt dt ≤ 2π

∫ 0

−∞
eπt dt = 2.

This implies that C(0) ≤ 2. To show that we indeed have equality, consider again the Fejér kernel

K(x) =
(
sin(πx)/(πx)

)2
and recall that K̂(t) = (1− |t|)+. For ε > 0, define Kε(x) := ε−1K(x/ε) and

hence K̂ε(t) = K̂(εt). Then

J0(Kε) = 2π

∫ 0

−∞
(1 − |εt|)+ eπt dt → 2π

∫ 0

−∞
eπt dt = 2

as ε→ 0, by dominated convergence. This shows that C(0) = 2.

Remark: Since 2 = C(0) ≤ C∗(0), the test function ψ = 0 in the problem (EP2) yields C∗(0) = 2.

2.4.2. The value of C(∞). Consider the function F ∈ A∞ given by

F (x) =
2

π(1 + 2ix)2
.

Note that ‖F‖1 = 1 and F̂ (t) = −2πt eπt 1R−
(t). Then

C(∞) ≥ J∞(F ) = 2π

∫ 0

−∞
(−2πt) e2πt dt = 1. (2.10)

From (2.9) and (2.10) we conclude that C(∞) = 1.

2.5. Lower bound near A = 0: proof of Theorem 4 (iv). Fix 0 < A < 1 and we keep the

notation for Kε as in §2.4.1. The idea is to consider a translated function of the form F̂ (t) = K̂ε(t+c),

for suitable ε > 0 and c ≥ 0 that depend on A. Note that for such F one has ‖F‖1 = ‖Kε‖1 = 1.

Assuming that 0 ≤ c ≤ 1
ε one proceeds with the explicit computation:

JA(F ) = 2π

(∫ 0

−∞
K̂ε(t+ c) eπt dt−A

∫ ∞

0

K̂ε(t+ c) eπt dt

)

= 2πe−πc
(∫ c

−1/ε

K̂ε(y) e
πy dt−A

∫ 1/ε

c

K̂ε(y) e
πy dy

)

= 2− 4εe−πc

π
− 2ε(πc− 1)

π
+

2εe−πc−
π
ε

π
+ 2A

(
1− εe−πc+

π
ε

π
− ε(πc− 1)

π

)
.

(2.11)

We now take ε = π/ log
(
1/A

)
, and the last line of (2.11) becomes

= 2− 2

log
(
1
A

) ((3 −A)e−πc + (A+ 1)(πc− 1)
)
+ 2A. (2.12)

The maximum of (2.12) over c > 0 occurs at c = 1
π log

(
(3−A)/(A+ 1)

)
(note that 0 ≤ c ≤ 1

ε in this

case). With these particular choices, (2.11) and (2.12) yield the desired lower bound

C(A) ≥ JA(F ) = 2−
2(A+ 1) log

(
3−A
A+1

)

log
(
1
A

) + 2A.
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Naturally, one also has the alternative bound C(A) ≥ C(∞) = 1. This concludes the proof.

3. Character non-residues: proof of Theorem 6

3.1. Explicit formula. We start by recalling the classical Guinand-Weil explicit formula, in the

context of Dirichlet L-functions associated to primitive Dirichlet characters. The proof of the next

result can be established by modifying the proof of [24, Theorem 12]; see for instance [10, Lemma 5].

Lemma 9 (Guinand-Weil explicit formula). Let h(s) be analytic in the strip |Im s| ≤ 1
2 + ε for some

ε > 0, and assume that |h(s)| ≪ (1+ |s|)−(1+δ) for some δ > 0 when |Re s| → ∞. Let χ be a primitive

Dirichlet character modulo q. Then

∑

ρχ

h

(
ρχ − 1

2

i

)
= ĥ(0)

log(q/π)

2π
+

1

2π

∫ ∞

−∞
h(u)Re

Γ′

Γ

(
2− χ(−1)

4
+
iu

2

)
du

− 1

2π

∑

n≥2

Λ(n)√
n

{
χ(n) ĥ

(
logn

2π

)
+ χ(n) ĥ

(
− logn

2π

)}
,

(3.1)

where the sum on the left-hand side runs over the non-trivial zeros ρχ of L(s, χ), and Λ(n) is the von

Mangoldt function defined to be log p if n = pk, p a prime and k ≥ 1, and zero otherwise.

Throughout the proof below, for χ a Dirichlet character modulo q, we let χ∗ denote the unique

primitive Dirichlet character that induces χ.

3.2. Setup. Now let χ be a non-principal Dirichlet character modulo q of order ℓ, and let nχ be the

least character non-residue as defined in (1.8). Throughout the proof below we set

∆ := lognχ/(2π),

and hence nχ = e2π∆. From the work of Lamzouri, Li, and Soundararajan [25], one has nχ ≤(
0.794 + o(1)

)
log2 q, and hence we may assume without loss of generality that q is large and that

nχ ≤ log2 q.

Let F ∈ A with F̂ ∈ C∞
c (R) be fixed, say with supp

(
F̂
)
⊂ [−N,N ]. Let

ĥ(t) :=
F̂ (t−∆) + F̂ (−t−∆)

2
(3.2)

and assume, without loss of generality, that ∆ ≥ N . For each j = 1, 2, . . . , ℓ− 1 we apply the formula

(3.1) for the primitive character (χj)∗ and the test function h given by (3.2). Assuming GRH for

Dirichlet L-functions, we may write the non-trivial zeros as ρ(χj)∗ = 1
2 + iγ(χj)∗ , with γ(χj)∗ ∈ R.

Adding and subtracting the sum over primes with χj , and rearranging terms we get (below we let qj

be the modulus of (χj)∗)

−
∑

γ(χj)∗

h
(
γ(χj)∗

)
+ ĥ(0)

log(qj/π)

2π
+

1

2π

∫ ∞

−∞
h(u)Re

Γ′

Γ

(
2− (χj)∗(−1)

4
+
iu

2

)
du

=
1

2π

∑

n≥2

Λ(n)√
n

{
χj(n) ĥ

(
logn

2π

)
+ χj(n) ĥ

(
− logn

2π

)}
(3.3)
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+
1

2π

∑

n≥2

Λ(n)√
n

{(
(χj)∗(n)− χj(n)

)
ĥ

(
log n

2π

)
+
(
(χj)∗(n)− χj(n)

)
ĥ

(
− logn

2π

)}
.

For each j, let us call the left-hand side of (3.3) by (LHS)j and the right-hand side of (3.3) by (RHS)j .

The idea is to sum (3.3) over j = 1, 2, . . . , ℓ− 1 and proceed with an asymptotic analysis as q → ∞.

3.3. Asymptotic analysis. We analyze the right and the left-hand sides of (3.3) separately.

3.3.1. Analysis of
∑ℓ−1

j=1 (RHS)j. Since F̂ is real-valued, note that ĥ is real-valued and even. Through-

out the rest of the proof below, p denotes a prime number. First note that, for each j,
∣∣∣∣∣∣
1

2π

∑

n≥2

Λ(n)√
n

{(
(χj)∗(n)− χj(n)

)
ĥ

(
log n

2π

)
+
(
(χj)∗(n)− χj(n)

)
ĥ

(
− logn

2π

)}∣∣∣∣∣∣

≤ 1

π

∑

p|q

∑

k≥1

log p

pk/2

∣∣∣∣ĥ
(
log pk

2π

)∣∣∣∣ = OF

(√
log q

)
. (3.4)

The last estimate comes from the bounds
∑

p

∑

k≥3

log p

pk/2
≪ 1 ;

∑

p|q

log p

p
≤
∑

p|q

log p√
p

≪
√
log q. (3.5)

For the final estimate in (3.5), we split the sum at height log q and note that

∑

p≤log q

log p√
p

≪
√
log q and

∑

p|q
log q≤p

log p√
p

≤ 1√
log q

∑

p|q
log p ≤

√
log q.

Recall the orthogonality relation

ℓ−1∑

j=1

χj(n) =




ℓ− 1 , if χ(n) = 1;

−1 , if χ(n) 6= 0, 1.

Letting χ0 be the principal character modulo q, and recalling the definition of nχ and the fact that ĥ

is real-valued and even, we have

ℓ−1∑

j=1

1

2π

∑

n≥2

Λ(n)√
n

{
χj(n) ĥ

(
logn

2π

)
+ χj(n) ĥ

(
− logn

2π

)}

=
(ℓ−1)

π

∑

n≥2
χ(n)=1

Λ(n)√
n
ĥ

(
logn

2π

)
− 1

π

∑

n≥2
χ(n) 6=0,1

Λ(n)√
n
ĥ

(
logn

2π

)
(3.6)

=
(ℓ−1)

π

∑

2≤n<nχ

Λ(n)χ0(n)√
n

ĥ

(
logn

2π

)
+
ℓ

π

∑

n≥nχ

χ(n)=1

Λ(n)√
n
ĥ

(
logn

2π

)
− 1

π

∑

n≥nχ

Λ(n)χ0(n)√
n

ĥ

(
logn

2π

)

=
(ℓ−1)

π

∑

2≤n<nχ

Λ(n)√
n
ĥ

(
logn

2π

)
+
ℓ

π

∑

n≥nχ

χ(n)=1

Λ(n)√
n
ĥ

(
logn

2π

)
− 1

π

∑

n≥nχ

Λ(n)√
n
ĥ

(
logn

2π

)
+OF

(
ℓ
√
log q

)
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≥ (ℓ−1)

π

∑

2≤n<nχ

Λ(n)√
n
ĥ

(
logn

2π

)
− ℓ

π

∑

n≥nχ

Λ(n)√
n
ĥ−

(
logn

2π

)
− 1

π

∑

n≥nχ

Λ(n)√
n
ĥ

(
logn

2π

)
+OF

(
ℓ
√
log q

)
.

The removal of the principal character χ0 in the fourth line above at the expense of a small error term

is justified as in (3.4). We now analyze the three sums over primes in the last line of (3.6). Recall

that, under RH, we have

ψ(x) :=
∑

n≤x
Λ(n) = x+O

(√
x log2 x

)
. (3.7)

Summation by parts yields

1

π

∑

2≤n<nχ

Λ(n)√
n
ĥ

(
logn

2π

)
=

1

π

∫ nχ

2

ĥ

(
log x

2π

)
dx√
x
+OF

(
(log log q)2

)

= 2

∫ ∆

0

ĥ(t) eπt dt+OF
(
(log log q)2

)
,

(3.8)

and note that

2

∫ ∆

0

ĥ(t) eπt dt =

∫ ∆

0

(
F̂ (t−∆) + F̂ (−t−∆)

)
eπt dt =

∫ ∆

0

F̂ (t−∆) eπt dt

= eπ∆
∫ 0

−∞
F̂ (y) eπy dy ,

(3.9)

from the assumptions that supp
(
F̂
)
⊂ [−N,N ] and ∆ ≥ N . Similarly,

1

π

∑

n≥nχ

Λ(n)√
n
ĥ−

(
logn

2π

)
= eπ∆

∫ ∞

0

F̂−(y) e
πy dy +OF

(
(log log q)2

)
, (3.10)

and

1

π

∑

n≥nχ

Λ(n)√
n
ĥ

(
logn

2π

)
= eπ∆

∫ ∞

0

F̂ (y) eπy dy +OF
(
(log log q)2

)
. (3.11)

Plugging (3.8), (3.9), (3.10), and (3.11) back into (3.6), and recalling (3.4), we arrive at

ℓ−1∑

j=1

(RHS)j ≥ eπ∆
(
(ℓ−1)

∫ 0

−∞
F̂ (y) eπy dy −

∫ ∞

0

(
ℓ F̂−(y) + F̂ (y)

)
eπy dy

)
+OF

(
ℓ
√
log q

)

= eπ∆(ℓ−1)

(∫ 0

−∞
F̂ (y) eπy dy −

∫ ∞

0

F̂−(y) e
πy dy − 1

(ℓ−1)

∫ ∞

0

F̂+(y) e
πy dy

)
+OF

(
ℓ
√
log q

)
.

(3.12)

3.3.2. Analysis of
∑ℓ−1

j=1 (LHS)j. Start by noting that ĥ(0) = 0, since supp
(
F̂
)
⊂ [−N,N ] and ∆ ≥ N .

Note also that

h(u) = 1
2

(
e2πiu∆F (u) + e−2πiu∆F (−u)

)
. (3.13)

Using Stirling’s formula for Γ′/Γ, we get
∣∣∣∣
∫ ∞

−∞
h(u)Re

Γ′

Γ

(
2− (χj)∗(−1)

4
+
iu

2

)
du

∣∣∣∣≪
∫ ∞

−∞
|h(u)| log(2 + |u|) du = OF (1). (3.14)
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It remains to analyze the sum over the zeros, and we are interested in an upper bound for it. Let η

modulo q̃ momentarily denote one of our primitive characters (χj)∗ modulo qj . For T > 0, let N(η, T )

be the number of zeros ρη = βη + iγη of L(s, η) with 0 < βη < 1 and 0 ≤ γη ≤ T (any zeros with

γη = 0 or γη = T should be counted with multiplicity 1
2 ). Letting

S(T, η) =
1

π
argL

(
1
2 + iT, η

)
,

we have the unconditional identity [28, Corollary 14.6]

N(T, η) =
T

2π
log

q̃ T

2π
− T

2π
+ S(T, η)− S(0, η)− η(−1)

8
+O

(
1

T+1

)
. (3.15)

Note also that if ρη = βη + iγη is a zero of L(s, η), with −T ≤ γ ≤ 0, then ρη = βη − iγη is a zero of

L(s, η).

Under GRH, Selberg [32] proved that

|S(T, η)| ≪ log
(
q̃(T+3)

)

log log
(
q̃(T+3)

) ≤ log
(
q(T+3)

)

log log
(
q(T+3)

) ≤ log q

log log q
+ log(T+3). (3.16)

Recalling that F is a Schwartz function, using (3.13) and summation by parts with (3.15) and (3.16),
∣∣∣∣∣∣
∑

γη

h(γη)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

γη

Re
(
e2πi∆γηF (γη)

)
∣∣∣∣∣∣
≤
∑

γη

∣∣F (γη)
∣∣

=

∫ ∞

0−
|F (t)| dN(t, η) +

∫ ∞

0−
|F (−t)| dN(t, η)

=
log q̃

2π
‖F‖1 +OF

(
log q

log log q

)
≤ log q

2π
‖F‖1 +OF

(
log q

log log q

)
.

(3.17)

From (3.14) and (3.17) we arrive at

ℓ−1∑

j=1

(LHS)j ≤
(ℓ−1) log q

2π
‖F‖1 +OF

(
ℓ log q

log log q

)
. (3.18)

3.4. Conclusion. Summing (3.3) over j = 1, 2, . . . , ℓ− 1, and using (3.12) and (3.18) we get

eπ∆
(∫ 0

−∞
F̂ (y) eπy dy −

∫ ∞

0

F̂−(y) e
πy dy − 1

(ℓ−1)

∫ ∞

0

F̂+(y) e
πy dy

)
≤ log q

2π
‖F‖1 +OF

(
log q

log log q

)
.

Recalling that nχ = e2π∆, this yields

lim sup
q→∞

√
nχ

log q
≤ 1

2π

‖F‖1(∫ 0

−∞ F̂ (y) eπy dy −
∫∞
0
F̂−(y) eπy dy − 1

(ℓ−1)

∫∞
0
F̂+(y) eπy dy

) , (3.19)

where we assume that the denominator on the right-hand side of (3.19) is positive. At this stage we

can take the infimum of the right-hand side of (3.19) over F ∈ A with F̂ ∈ C∞
c (R) and, by Theorem

4 (i), such an infimum is indeed C
(

1
(ℓ−1)

)−1

. This concludes the proof of Theorem 6.
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3.5. Proof of Theorem 2. We now indicate how to appropriately modify the ideas in the proof of

Theorem 6 in order to prove Theorem 2. Suppose that p is prime and that χ is the Legendre symbol

modulo p. Then χ is primitive and, assuming GRH, Lemma 9 yields

− 1

2π

∑

n≥2

Λ(n)χ(n)√
n

{
ĥ

(
log n

2π

)
+ ĥ

(
− logn

2π

)}

=
∑

ρχ

h(γχ)− ĥ(0)
log(p/π)

2π
− 1

2π

∫ ∞

−∞
h(u)Re

Γ′

Γ

(
2− χ(−1)

4
+
iu

2

)
du.

Now set ∆ := log rp/(2π) so that rp = e2π∆, and let ĥ(t) be defined as in (3.2). With these choices,

we still have ĥ(0) = 0, the bound in (3.14) still holds, and the bound in (3.17) still gives
∣∣∣∣∣∣
∑

γχ

h(γχ)

∣∣∣∣∣∣
≤ log p

2π
‖F‖1 +OF

(
log p

log log p

)
.

For each prime ℓ < rp, we have χ(ℓ) = −1, hence arguing as in §3.3.1 and using Ankeny’s result that

rp = O(log2 p) assuming GRH, we deduce that

− 1

2π

∑

n≥2

Λ(n)χ(n)√
n

{
ĥ

(
logn

2π

)
+ ĥ

(
− logn

2π

)}

= − 1

π

∑

n≥2

Λ(n)χ(n)√
n

ĥ

(
logn

2π

)

≥ 1

π

∑

n<rp

Λ(n)√
n
ĥ

(
logn

2π

)
− 1

π

∑

n≥rp

Λ(n)√
n

∣∣∣∣ĥ
(
logn

2π

)∣∣∣∣+OF (log log p)

= eπ∆
∫ 0

−∞
F̂ (t) eπt dt− eπ∆

∫ ∞

0

∣∣F̂ (t)
∣∣ eπt dt+ OF

(
(log log p)2

)
.

Recalling that rp = e2π∆, combining estimates, and arguing as in §3.4, we conclude that

lim sup
p→∞

√
rp

log p
≤ 1

C(1) .

Theorem 2 now follows upon squaring both sides of this inequality.

4. Primes in arithmetic progressions: proof of Theorem 3

4.1. Setup. Throughout the proof below we set

∆ := logP (a, q)/(2π),

and hence P (a, q) = e2π∆. We may assume without loss of generality that q is large and that

1

2
(φ(q) log q)2 ≤ P (a, q) ≤ (φ(q) log q)2.

The upper bound is true under GRH, for all q > 3, from the work of Lamzouri, Li and Soundararajan

[25] and, for the cases where the lower bound does not hold, our Theorem 3 is trivially true. In
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particular we have, as q → ∞,

π∆ = logφ(q) +O(log log q) =
(
1 + o(1)

)
log q. (4.1)

As before, let F ∈ A with F̂ ∈ C∞
c (R) be fixed, say with supp

(
F̂
)
⊂ [−N,N ], and define ĥ by

(3.2). Assume without loss of generality that ∆ ≥ N . From the orthogonality relations between the

Dirichlet characters modulo q we have

φ(q)
∑

n≥2
n≡a (mod q)

Λ(n)√
n
ĥ

(
logn

2π

)
=
∑

n≥2

Λ(n)χ0(n)√
n

ĥ

(
logn

2π

)
+
∑

χ6=χ0

χ(a)
∑

n≥2

Λ(n)χ(n)√
n

ĥ

(
logn

2π

)
,
(4.2)

where χ0 is the principal character modulo q. The strategy is to proceed with an asymptotic analysis

of each of the three sums in (4.2). Part of the required work for the two sums on the right-hand side

of (4.2) has already been discussed in Section 3, and we take advantage of that. For the sum on the

left-hand side of (4.2), the idea is to use the definition of P (a, q) together with the Brun-Titchmarsh

inequality to provide a suitable upper bound.

4.2. Asymptotic analysis.

4.2.1. The sum with the principal character. Reducing matters to the Riemann zeta-function and

applying summation by parts with (3.7),

∑

n≥2

Λ(n)χ0(n)√
n

ĥ

(
logn

2π

)
=
∑

n≥2

Λ(n)√
n
ĥ

(
logn

2π

)
−
∑

p|q

∑

k≥1

log p

pk/2
ĥ

(
log pk

2π

)

=
∑

n≥2

Λ(n)√
n
ĥ

(
logn

2π

)
+OF

(√
log q

)
(4.3)

= πeπ∆
∫ ∞

−∞
F̂ (y) eπy dy +OF

(
log2 q

)
,

where these error terms were already discussed in §3.3.1. In this case, the error term coming from the

summation by parts is OF (∆
2) = OF

(
log2 q

)
, which supersedes the OF

(√
log q

)
in the preceding line.

4.2.2. The sum over the non-principal characters. For each χ 6= χ0 let us define the function hχ by

ĥχ(t) :=
χ(a) F̂ (t−∆) + χ(a) F̂ (−t−∆)

2
.

Since supp
(
F̂
)
⊂ [−N,N ] and ∆ ≥ N , note that ĥχ(0) = 0 and

ĥχ(t) =




χ(a) ĥ(t), for t ≥ 0;

χ(a) ĥ(t), for t ≤ 0.
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Since the sum is real-valued and ĥ is even, we have

∑

χ6=χ0

χ(a)
∑

n≥2

Λ(n)χ(n)√
n

ĥ

(
logn

2π

)

=
1

2

∑

χ6=χ0

∑

n≥2

Λ(n)√
n

{
χ(n)χ(a) ĥ

(
logn

2π

)
+ χ(n)χ(a) ĥ

(
− logn

2π

)}

=
1

2

∑

χ6=χ0

∑

n≥2

Λ(n)√
n

{
χ(n) ĥχ

(
logn

2π

)
+ χ(n) ĥχ

(
− logn

2π

)}
.

(4.4)

If χ is a non-principal Dirichlet character modulo q, and χ∗ modulo q∗ is the unique primitive

Dirichlet character that induces χ (we include the possibility of χ∗ = χ, if χ is primitive) we rewrite

∑

n≥2

Λ(n)√
n

{
χ(n) ĥχ

(
logn

2π

)
+ χ(n) ĥχ

(
− logn

2π

)}

=
∑

n≥2

Λ(n)√
n

{
χ∗(n) ĥχ

(
logn

2π

)
+ χ∗(n) ĥχ

(
− logn

2π

)}

+
∑

n≥2

Λ(n)√
n

{(
χ(n)− χ∗(n)

)
ĥχ

(
logn

2π

)
+
(
χ(n)− χ∗(n)

)
ĥχ

(
− logn

2π

)}

=
∑

n≥2

Λ(n)√
n

{
χ∗(n) ĥχ

(
logn

2π

)
+ χ∗(n) ĥχ

(
− logn

2π

)}
+OF

(√
log q

)
,

(4.5)

with the error term as discussed in (3.4)-(3.5). Note that

hχ(u) =
1

2

(
χ(a)e2πiu∆F (u) + χ(a)e−2πiu∆F (−u)

)

is real-valued. For the primitive character χ∗, we use the explicit formula (Lemma 9) and proceed

exactly as in §3.3.2 to get
∣∣∣∣∣∣
∑

n≥2

Λ(n)√
n

{
χ∗(n) ĥχ

(
logn

2π

)
+ χ∗(n) ĥχ

(
− logn

2π

)}∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫ ∞

−∞
hχ(u)Re

Γ′

Γ

(
2− χ∗(−1)

4
+
iu

2

)
du− 2π

∑

γχ∗

hχ(γχ∗)

∣∣∣∣∣∣
(4.6)

≤ (log q) ‖F‖1 +OF

(
log q

log log q

)
.

From (4.4), (4.5), (4.6) and the triangle inequality, we arrive at
∣∣∣∣∣∣
∑

χ6=χ0

χ(a)
∑

n≥2

Λ(n)χ(n)√
n

ĥ

(
logn

2π

)∣∣∣∣∣∣
≤ φ(q) log q

2
‖F‖1 +OF

(
φ(q) log q

log log q

)
. (4.7)
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4.2.3. The sum over the arithmetic progression: an upper bound via Brun-Titchmarsh. We continue

to reserve below the letter p for a prime number. From the definition of ĥ and P (a, q), we have

∑

n≥2
n≡a (mod q)

Λ(n)√
n
ĥ

(
logn

2π

)
=

1

2

∑

2≤n<e2π(∆+N)

n≡a (mod q)

Λ(n)√
n
F̂

(
logn

2π
−∆

)

=
1

2

∑

e2π∆≤p<e2π(∆+N)

p≡a (mod q)

log p√
p
F̂

(
log p

2π
−∆

)
+OF (log q).

(4.8)

The error term above follows from the fact that
∑

p

∑

k≥3

log p

pk/2
≪ 1 ;

∑

p≤
√
e2π(∆+N)

log p

p
≪ π(∆ +N) ≪ log q.

We now break the sum on the right-hand side of (4.8) into intervals Ik of size |Ik| = e2π∆

∆ by writing

1

2

∑

e2π∆≤p<e2π(∆+N)

p≡a (mod q)

log p√
p
F̂

(
logn

2π
−∆

)
=

1

2

M∑

k=0

∑

p∈Ik
p≡a (mod q)

log p√
p
F̂

(
log p

2π
−∆

)
,

where Ik :=
[
e2π∆ + k e

2π∆

∆ , e2π∆ + (k + 1) e
2π∆

∆

)
and M := ⌊∆(e2πN − 1)⌋.

Letting π(x, q, a) be the number of primes p ≤ x with p ≡ a (mod q), Montgomery and Vaughan [29,

Theorem 2] established the following version of the Brun-Titchmarsh inequality: for any real numbers

x > 0 and y > q, one has

π(x + y, q, a)− π(x, q, a) <
2y

φ(q) log(y/q)
. (4.9)

Let us momentarily shorten the notation and write

G(x) :=
1√
x
F̂

(
log x

2π
−∆

)
. (4.10)

Using that log p ≤ 2π(∆ +N) in our range, inequality (4.9) plainly leads us to

∑

p∈Ik
p≡a (mod q)

(log p)G(p) ≤
(
sup
x∈Ik

G+(x)

) (
2π(∆ +N)

) 2|Ik|
φ(q) log(|Ik|/q)

,

and hence

1

2

M∑

k=0

∑

p∈Ik
p≡a (mod q)

(log p)G(p) ≤
(

2π(∆ +N)

φ(q) log(|Ik|/q)

) M∑

k=0

(
sup
x∈Ik

G+(x)

)
|Ik|

=

(
2 + oF (1)

)

φ(q)

M∑

k=0

(
sup
x∈Ik

G+(x)

)
|Ik|,

(4.11)

where we have used (4.1).
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Let I = ∪Mk=0Ik. The last sum in (4.11) is a Riemann sum, and the idea is to compare with the

integral of the function G+(x) over I. Let xk ∈ Ik be such that supx∈Ik G+(x) = G+(xk). The

functions F̂+ and G+ are absolutely continuous and hence we have the classical derivative

(G+)
′(t) = − 1

2 t3/2
F̂+

(
log t

2π
−∆

)
+

1

2π t3/2
(
F̂+)

′
(
log t

2π
−∆

)
.

for almost every t. Since t ≥ e2π∆ in our interval I, we get

∣∣(G+)
′(t)
∣∣≪F

1

e3π∆
for a.e. t ∈ I. (4.12)

Then, if x ∈ Ik, we use the fundamental theorem of calculus and (4.12) to get

∣∣G+(xk)−G+(x)
∣∣ =

∣∣∣∣
∫ xk

x

(G+)
′(t) dt

∣∣∣∣≪F
|Ik|
e3π∆

. (4.13)

Using (4.13) we get
∣∣∣∣∣
M∑

k=0

(
sup
x∈Ik

G+(x)

)
|Ik| −

∫

I

G+(x) dx

∣∣∣∣∣ =
∣∣∣∣∣
M∑

k=0

∫

Ik

(
G+(xk)−G+(x)

)
dx

∣∣∣∣∣

≤
M∑

k=0

∫

Ik

∣∣G+(xk)−G+(x)
∣∣ dx

≪F (M + 1)
|Ik|2
e3π∆

≤ e2πNeπ∆

∆
,

and therefore

M∑

k=0

(
sup
x∈Ik

G+(x)

)
|Ik| ≤

∫

I

G+(x) dx+OF

(
eπ∆

∆

)

= 2πeπ∆
(∫ ∞

0

F̂+(y) e
πy dy + oF (1)

)
,

(4.14)

after an appropriate change of variables and the use of (4.1).

Combining (4.8), (4.10), (4.11) and (4.14) we arrive at

∑

n≥2
n≡a (mod q)

Λ(n)√
n
ĥ

(
logn

2π

)
≤ 4π eπ∆

φ(q)

(∫ ∞

0

F̂+(y) e
πy dy + oF (1)

)
. (4.15)

4.3. Conclusion. From (4.2) we have

∑

n≥2

Λ(n)χ0(n)√
n

ĥ

(
logn

2π

)
− φ(q)

∑

n≥2
n≡a (mod q)

Λ(n)√
n
ĥ

(
logn

2π

)
≤

∣∣∣∣∣∣
∑

χ6=χ0

χ(a)
∑

n≥2

Λ(n)χ(n)√
n

ĥ

(
logn

2π

)∣∣∣∣∣∣
,

and then (4.3), (4.7) and (4.15) imply that

πeπ∆
(∫ ∞

−∞
F̂ (y) eπy dy − 4

∫ ∞

0

F̂+(y) e
πy dy + oF (1)

)
≤ φ(q) log q

2

(
‖F‖1 + oF (1)

)
. (4.16)
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Recalling that P (a, q) = e2π∆, when we send q → ∞ in (4.16) we arrive at the inequality

lim sup
q→∞

√
P (a, q)

φ(q) log q
≤ 1

2π

‖F‖1(∫ 0

−∞ F̂ (y) eπy dy −
∫∞
0
F̂−(y) eπy dy − 3

∫∞
0
F̂+(y) eπy dy

) , (4.17)

where we assume that the denominator on the right-hand side of (4.17) is positive. At this point we

can take the infimum of the right-hand side of (4.17) over F ∈ A with F̂ ∈ C∞
c (R) and, by Theorem

4 (i), such an infimum is indeed C(3)−1. This concludes the proof of Theorem 3.

5. Computer-assisted techniques: proof of Theorem 5

With Proposition 8, the problem of finding upper bounds for C(A) is reduced to finding good test

functions for the extremal problem (EP2). Intuitively speaking, if F is a near-extremizer for (EP1),

the function ψ(t) = eπt
(
−1{F<0}(t)+A1{F>0}(t)

)
tends to be a near-extremizer for (EP2), although

it may not lie in the class BA. Motivated by this intuition, our choices of test functions for (EP2) will

be suitable truncations of these, namely

ψ(t) = eπt
N−1∑

n=0

((
−1+(−1)n

2

)
+A

(
1+(−1)n

2

))
1(Tn,Tn+1) , (5.1)

with 0 = T0 < T1 < T2 < . . . < TN .

5.1. Upper bound numerics. When taking this family of test functions, (EP2) is now a restricted

minimization problem on RN , over the parameters (T1, . . . , TN ). For each given value of A, we attempt

to solve this problem numerically. Our search routine first takes initial random values of 0 = T0 <

T1 < T2 < . . . < TN , and for each random initialization, attempts to find a nearby local minimum

with standard numerical optimization methods. This is carried out iteratively, starting with N = 1

and then using the best example found for a given N to take nearby random initializations for N + 1,

until no significant improvements are found. In this way, for each value of A, we find the examples

and upper bounds given by Table 1.

A Bound T1 T2 T3 T4 T5 T6 T7
1
4 1.33509 0.3530083 0.3780727 0.3925238 0.3928645 0.4072127 0.4073054 -
1
3 1.28781 0.3184544 0.3597874 0.4171521 0.4208919 - - -
1
2 1.23080 0.2490362 0.2972170 0.3313443 0.3330512 0.3375152 - -
1 1.14731 0.1509068 0.2090402 0.2318820 0.2409230 0.2629189 0.2789340 0.2820042
3 1.06240 0.0561589 0.1037093 0.1133532 0.1234334 0.1257599 0.1362797 0.1375030

Table 1. Upper bounds for C∗(A) for each A, and the parameters to define the
corresponding test functions for (EP2), defined as in (5.1).

The computations were carried out in floating point arithmetic, using sufficient precision to justify

the decimal digits shown in this section, in the sense that the digits shown in Table 1 remain stable

after increasing precision. To carefully compute the numerical bound in (EP2) given the respective
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values of A and Ti, we proceed as follows. We explain the computation in more detail in the case

A = 1, and the bounds for the other values of A are verified similarly.

For A ∈
{
1
4 ,

1
3 ,

1
2 , 1, 3

}
, consider the function

gA(t) := 2π
(

̂1R−
eπ(·) − 1̂R+ ψ

)
(t), (5.2)

where ψ is given by (5.1), and Ti are given by the corresponding values in Table 1. Then, in (EP2)

we have that C∗(A) ≤ ‖gA‖∞. Let us compute ‖gA‖∞ in the case A = 1. See Figure 1 for a plot of

the test function g1. One can check that g1(t) has three local maxima in the interval [0, 1.1], namely

around t = 0, t = 0.2902 . . ., and t = 1.0410 . . .; see Figure 2. It is straightforward to numerically

compute the maximum values to arbitrary precision for each of the three local maxima, and we find

that the maximum of the three occurs at t = 0, with the value g1(0) = 1.1473077 . . .. One can also

clearly see that, for instance, g1(t) < 1.1 for t > 1.1. Therefore, ‖g1‖∞ = 1.1473077 . . ., giving the

upper bound shown in Table 1. Similarly, we see that for A = 1
4 , gA has two local maxima near

t = 0 and t = 0.2287 . . . on the interval [0, 1] and is smaller beyond it, with the global maximum being

near t = 0 and giving the desired bound. For A = 1
3 , there are two local maxima near t = 0 and

t = 0.2648 . . . on the interval [0, 1], with the global maximum near t = 0 giving the desired bound. For

A = 1
2 , there are two local maxima near t = 0.0940 . . . and t = 0.5101 . . . on the interval [0, 1], with

the global maximum near t = 0.5101 . . . giving the desired bound. Finally, for A = 3, there are three

local maxima near t = 0, t = 0.3550 . . ., and t = 2.1464 . . . on the interval [0, 4], and the maximum of

these near t = 0 gives the stated bound.

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1. The function g1 de-
fined in (5.2) on the interval [0, 15].

0.2 0.4 0.6 0.8 1.0

1.1455

1.1460

1.1465

1.1470

Figure 2. The function g1 de-
fined in (5.2) on the interval
[0, 1.1].

5.2. Lower bound numerics. Consider the Fourier transform pairs

Fn(x) =
(2n− 1)!

π(1 + 2ix)2n
; F̂n(t) = −(πt)2n−1 eπt 1R−

(t), (5.3)

and note that Fn(x) ∈ A∞ for all positive integers n. In §2.4.2, we showed that the function F1(x)

yields the extremal value C(∞) = 1. We now consider the following family of test functions, composed
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by dilations and translations of linear combinations of functions as in (5.3), defined in terms of their

Fourier transform:

F̂ (t) = g

(
πt− c

a

)
, where g(t) =

N∑

n=1

bn t
2n−1 et 1R−

(t). (5.4)

Here, bn, c ∈ R and a > 0. Taken over this family of functions, (EP1) is an unrestricted optimization

problem over RN+2 on the variables b1, . . . , bN , a, c. The functional to maximize involves a numerical

computation of the several integrals that appear in the formulation of (EP1) in (1.4). It is also not

smooth, since the integrands involve taking L1-norms of complex-valued functions and positive and

negative parts of real-valued functions. As before, we compute the integrals in floating point arithmetic,

using sufficient precision to justify the decimal digits shown in this section, in the sense that the digits

that we will show remain stable after successively increasing precision. To optimize such a functional,

we use the principal axis method of Brent [4], which searches for a local maximum of an unrestricted,

non-smooth problem.

In Table 2, we give our lower bound for C(A) for each value of A, together with the parameters

necessary to construct the test function as defined in (5.4).

A 1
4

1
3

1
2 1 3

Bound 1.31706 1.27722 1.22112 1.14600 1.06082

a 0.856 0.727 0.587 0.1135 0.209
c 1.082 0.922 0.758 0.626 0.201
b1 0.151 0.14 0.1135 −1.562 ∗ 1020 0.042
b2 2 2 2 2 2
b3 -0.0961 -0.0636 0.0000 1.983 ∗ 1021 0.0119
b4 0.00233 0.00142 0.0000 −7.316 ∗ 1018 0.00495
b5 -0.0000228 −9.542 ∗ 10−6 0.0000 5.360 ∗ 1017 -0.000592
b6 7.0009 ∗ 10−8 −2.224 ∗ 10−8 0.0000 1.561 ∗ 1015 1.122 ∗ 10−6

b7 1.132 ∗ 10−10 3.962 ∗ 10−10 0.0000 −1.340 ∗ 1013 −5.946 ∗ 10−9

b8 −6.493 ∗ 10−13 −1.0272 ∗ 10−12 0.0000 1.107 ∗ 1011 2.41 ∗ 10−11

b9 2.053 ∗ 10−16 8.035 ∗ 10−16 0.0000 1.522 ∗ 108 −1.688 ∗ 10−14

b10 0.0000 −6.439 ∗ 10−19 0.0000 −1.178 ∗ 106 −3.199 ∗ 10−17

b11 0.0000 0.0000 0.0000 2391.83 1.087 ∗ 10−19

b12 0.0000 0.0000 0.0000 -0.698149 4.339 ∗ 10−23

Table 2. Lower bounds for C(A) for each A, and the parameters to define the corre-
sponding test functions for (EP1), defined as in (5.4).

In Figures 3 and 4 we plot the functions F̂ (t)/F̂ (0), defined as in (5.4) for A = 1 and A = 3

(respectively), and where we normalized by dividing by F̂ (0) for a better comparison between the two

plots.
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-2.0 -1.5 -1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3. The function
F̂ (t)/F̂ (0) defined in (5.4) for
A = 1, with the corresponding
parameters from Table 2.

-2.0 -1.5 -1.0 -0.5 0.5 1.0

1

2
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6

Figure 4. The function
F̂ (t)/F̂ (0) defined in (5.4) for
A = 3, with the corresponding
parameters from Table 2.

Remark: Recent works have used strong computational techniques, in particular semidefinite pro-

gramming, to find numerical bounds for Fourier optimization problems associated to some number

theoretic quantities of interest (see, for instance, [14, 15, 31]). The fact that we must necessarily work

with complex-valued functions F ∈ L1(R) is an important difference to the Fourier analysis frameworks

in the aforementioned works (which use even, real-valued functions), and it is not clear if a similar

approach with semidefinite programming may be applied in our situation.
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