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We investigate the role of the permutationally invariant part of the density matrix (PIDM) in
capturing the properties of the ground state of the system during a quantum phase transition. In the
context of quantum state tomography, PIDM is known to be obtainable with only a low number of
measurement settings, namely O(L2), where L is the system size. Considering the transverse-field
Ising chain as an example, we compute the second-order Rényi entropy of PIDM for the ground
state by using the density matrix renormalization group algorithm. In the ferromagnetic case, the
ground state is permutationally invariant both in the limits of zero and infinite field, leading to
vanishing Rényi entropy of PIDM. The latter exhibits a broad peak as a function of the transverse
field around the quantum critical point, which gets more pronounced for larger system size. In the
antiferromagnetic case, the peak structure disappears and the Rényi entropy diverges like O(L) in
the whole field range of the ordered phase. We discuss the cause of these behaviors of the Rényi
entropy of PIDM, examining the possible application of this experimentally tractable quantity to
the analysis of phase transition phenomena.

I. INTRODUCTION

Historically, in the field of solid state physics, macro-
scopic observables have been measured to detect a phase
transition, e.g., magnetization for magnetic phase tran-
sitions [1, 2] and electrical resistance for superconductiv-
ity [3, 4]. Recently topological phases such as quantum
Hall effect [5, 6] and highly entangled phases including
spin liquid phases in the Kitaev model [7] have been at-
tracting greater attention since they evade the paradigm
of symmetry breaking and conventional order parame-
ters. Quantum information theory offers an insightful
perspective on this issue. For example, the so-called
topological entanglement entropy, which appears in the
von Neumann entanglement entropy as a universal con-
stant, characterizes topologically ordered phases [8, 9]; in
other cases, the structure of the entanglement spectrum
helps us distinguish spin liquid phase from magnetically
ordered phases [10, 11]. In modern condensed matter
physics, there is a growing demand for both theoretical
analysis and experimental measurement of quantities re-
lated to quantum information.

In artificial quantum systems such as cold atomic and
molecular gases in an optical lattice [12–15], photonic
systems [16, 17], trapped-ion systems [18, 19], Rydberg
atom arrays in optical tweezers [20–24], and supercon-
ducting circuits [25], the simulation of quantum many-
body physics can be conducted in an ideal environment,
taking advantage of its cleanness and high controllability.
Using these artificial quantum systems, the reconstruc-
tion of a density matrix has been conducted by preparing
the identical state repeatedly and measuring the expecta-
tion value of various observables [26–28]. The procedure
to reconstruct a density matrix is known as quantum
state tomography (QST) [29–32].

In the QST for L-qubit system, an arbitrary density
matrix ρ, which is a 2L by 2L matrix, can be expanded

in the basis {
⊗L

i=1 σκi} as

ρ =
1

2L

3∑
κ1=0

· · ·
3∑

κL=0

〈
L⊗

i=1

σκi

〉(
L⊗

i=1

σκi

)
, (1)

where

σ0 = 1 =

(
1 0
0 1

)
, σ1 = X =

(
0 1
1 0

)
,

σ2 = Y =

(
0 −i
i 0

)
, σ3 = Z =

(
1 0
0 −1

)
. (2)

The basis elements are mutually orthogonal and span a
4L-dimensional linear space D (see Fig. 1). The coef-
ficient in Eq. (1) are expectation values on the state
ρ, which ideally can be the results of experimental mea-
surements. Eq. (1) tells us that QST is experimentally
challenging due to the the necessity (i) to measure dif-
ferent correlation functions whose number increase expo-
nentially with respect to the system size, and (ii) to ro-
tate the local spins (local quantization axes) site by site.
QST has been limited to small systems (at most 8 qubits
so far), leaving room for the development of scalable pro-
tocols for the analysis of phase transition phenomena.
One considerable advancement against the above is-

sues is QST via compressed sensing [33, 34], in which
ρ is reconstructed with the condition that ρ is a low-
rank state. This is a relatively feasible protocol requir-
ing O(r2L(log 2L)2) measurement settings, where r =
rankρ≪ 2L, but the exponential factor remains. On the
other hand, one may consider permutationally invariant
(PI) QST [35–37], in which we recover the PI part of a
density matrix (PIDM) Π (ρ). In PIQST, we only need
O(L2) measurement settings and only global rotations of
the quantization axes. Besides, it is equivalent to full
QST in case of PI states, defined by Π (ρ) = ρ, such as
the GHZ states [38, 39], the W states [40–42], and the
Dicke states [43].
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FIG. 1. Schematic sketch of the linear spaces D and P spanned
by the orthogonal operators {

⊗L
i=1 σκi} and by the orthogo-

nal PI operators {B(n)
d } or the PI random operators {A(n)

d },
respectively. Any density matrix ρ is an element of the space
D. The PI part of an arbitrary density matrix of an L-qubit
system, Π (ρ), exist in P ⊂ D.

To obtain a scalable solution in the quantum simula-
tions, we focus on the PIQST owing to the drastically
reduced experimental cost. Although PIQST has been
demonstrated experimentally [35], it has not yet been
performed for large-size systems, especially for the ap-
plication to the analysis of phase transition phenomena.
From the theoretical side, though we generally cannot re-
construct ρ via PIQST, it has been reported that Π (ρ)
can encode the nonseparability of ρ [37]. Also, any en-
tanglement measure of Π (ρ) is suggested to be the lower
bound of that of ρ [37]. However, none has been explored
for the analysis of phase transition phenomena yet. In
this work, we study how the second-order Rényi entropy
of Π (ρ) reflects the properties of the ground state of the
system when it undergoes a quantum phase transition.
We establish a scalable procedure, in which we directly
compute the Rényi entropy of Π (ρ) from only O(L3) ex-
pectation values. We calculate it for the ground state of
the one-dimensional transverse-field Ising model [44] us-
ing the density matrix renormalization group (DMRG)
algorithm [45–47].

For the case of ferromagnetic (FM) interaction, the
Rényi entropy is zero both in the limits of zero and in-
finite field because of the permutational invariance of
the ground states. It shows a broad peak around the
quantum critical point (QCP), getting more pronounced
for larger-size systems. In the antiferromagnetic (AFM)
case, the peak structure disappears and the Rényi en-
tropy tends to diverge to infinity in the whole field range
of the ordered phase. By looking more closely at the scal-
ing of the Rényi entropy versus system size, we find that
in AFM case the Rényi entropy grows almost linearly and
its slope sharply changes around the QCP, while for the
FM case the slopes around the QCP tend to take large
values. We also analyze the behavior of the Rényi entropy
at low and high fields, according to the second-order per-
turbation theory. We conjecture that the FM, AFM, and
paramagnetic (PM) phases, which are the ground states
of the transverse-field Ising model, are characterized by
the different scaling law of the Rényi entropy of Π (ρ).
We expect that origin of these behaviors will be clarified
by the experimental measurement and theoretical analy-

sis of larger-size systems, but we consider this study an
important step in the analysis of phase transition phe-
nomena utilizing quantum information.
The remainder of this paper is organized as follows. In

Sec. II, we review the PIQST and its performance. In
Sec. III, an analytical form of the second-order Rényi
entropy of Π (ρ) is given. In Sec. IV, we show the re-
sults of the Rényi entropy of Π (ρ) of the ground state of
the transverse-field Ising chain across the quantum phase
transition. We also analyze its behavior in low- and high-
field region according to second-order perturbation the-
ory. In Sec. V, we discuss the significant change of the
Rényi entropy of PIDM around the QCP, and conjecture
that the FM, AFM, and PM phases are characterized by
its scaling law. We also present an open question about
the role of Rényi entropy of PIDM, and propose interest-
ing future works to obtain deeper insights. Section VI is
devoted to the conclusion.

II. PERMUTATIONALLY INVARIANT
QUANTUM STATE TOMOGRAPHY

PIQST was introduced as a scalable protocol to recon-
struct the density matrix of a PI state, which has been
mainly realized in photonic systems [35, 36]. In PIQST,
we construct PIDM as

Π (ρ) =
1

L!

∑
s∈SL

P̂sρP̂†
s , (3)

where SL denotes the symmetric group of degree L
and P̂s is the unitary operator representing the permu-
tation s which rearranges L qubits in a certain order:
P̂s |q1q2 · · · qL⟩ = |qs(1)qs(2) · · · qs(L)⟩. We can easily con-
firm that Π (ρ) has the fundamental properties of a den-
sity matrix: Hermicity, unit trace, and positive semi-
definiteness. An arbitrary PIDM exists in a linear space
P (see Fig. 1), and it can be expanded in the orthogonal
PI basis {B(k,l,m,n)} as

Π (ρ) =
L!

2L

∑
k+l+m+n=L

⟨B(k,l,m,n)⟩
k!l!m!n!

B(k,l,m,n), (4)

where

B(k,l,m,n) = Π
(
X⊗k ⊗ Y ⊗l ⊗ Z⊗m ⊗ 1⊗n

)
(5)

and the sum
∑

k+l+m+n=L runs over all possible combi-
nations of non-negative integers, k, l, m, and n, which
are the number of X, Y , Z, and 1 in B(k,l,m,n), respec-
tively, subject to k + l + m + n = L. By definition of
the function Π , the PI basis elements which contain ex-
actly same number of X, Y , Z, and 1 are regarded as
the same; e.g., Π (X ⊗ Y ) = Π (Y ⊗ X) for L = 2,
Π (X ⊗ X ⊗ Y ) = Π (X ⊗ Y ⊗ X) = Π (Y ⊗ X ⊗ X)
for L = 3, etc. Naively this equality of correlation func-
tions is the reason of the cost reduction in PIQST, which
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can be performed with merely DL measurement settings
with

DL ≡
(
L+ 2

2

)
=
L2 + 3L+ 2

2
. (6)

Thus the number of different expectation values to con-
struct Π (ρ) is

L∑
n=0

DL−n =
L3 + 6L2 + 11L+ 6

6
(7)

in total. This is a powerful fact, since the exponential
factor, which remains even in QST via compressed sens-
ing [33, 34], is absent here. Moreover, there exists a linear

transformation between the PI basis {B(n)µ }DL−n

µ=1 and an-

other basis {A(n)
ν }DL−n

ν=1 , namely

B(n)µ =

DL−n∑
ν=1

C(n)
µν A(n)

ν , (8)

where

A(n)
ν = Π

(
A⊗(L−n)

ν ⊗ 1⊗n
)

(9)

and Aν = ανX + βνY + γνZ, subject to (αν)
2 + (βν)

2 +
(γν)

2 = 1 (αν , βν , γν ∈ R), is a random operator acting

on a local spin. Here B(n)µ = B(kµ,lµ,mµ,n) and k, l, and
m are specified by the index µ (hence kµ, lµ, mµ). The

nontrivial single-site operators Aν that compose A(n)
ν are

identical, whereas those of B(n)µ are generally different.
Through Eq. (8), we only need to measure the spins at
all sites in the same direction to reconstruct Π (ρ) in Eq.

(4). Note that {A(n)
ν } are not required to be orthogonal

as long as they are linearly independent, otherwise the

linear space P spanned by {A(n)
ν } is not sufficiently large

to express Π (ρ). In the experiments, for a four-photon
Dicke state (PI state), it has been reported that Π (ρ)
gives high fidelity when taking an inhomogeneous distri-
bution of the vectors aν = (αν , βν , γν)

⊤ [35]; This can
be understood by taking the effect of noise into account.

The coefficients C
(n)
µν are analytically determined by the

sole information of the measurement directions {aν}. Let
us define the vectors A(n) and B(n) as

A(n) =
(
A(n)

1 ,A(n)
2 , · · · ,A(n)

DL−n

)⊤
, (10)

B(n) =
(
B(n)1 ,B(n)2 , · · · ,B(n)DL−n

)⊤
. (11)

Having fixed the number of identity matrices n, we de-

compose the matrix A(n)
ν into orthogonal basis elements

{B(n)µ }DL−n

µ=1 , namely A(n) = (C(n))−1B(n) or A(n)
ν =∑DL−n

µ=1 ((C(n))−1)νµB(n)µ , where (C(n))−1 is a DL−n by

DL−n matrix in which the entries are given by

((C(n))−1)νµ =
Tr
[
A(n)

ν B(n)µ

]
Tr

[(
B(n)µ

)2]
=

(2αν)
kµ (2βν)

lµ (2γν)
mµ (L− n)!

kµ!lµ!mµ!2L−n
.(12)

Thus we can calculate {⟨B(n)µ ⟩}DL−n

µ=1 from {⟨A(n)
ν ⟩}DL−n

ν=1

using Eqs. (8) and (12) for each n.
In this work, we focus on the second-order Rényi en-

tropy [48] of PIDM, which is directly computed from a
set of expectation values as shown in the next section.

III. SECOND-ORDER RÉNYI ENTROPY OF
THE PERMUTATIONALLY INVARIANT PART

OF A DENSITY MATRIX

Before studying the second-order Rényi entropy, let us
review the purity, P (ρ) = Tr(ρ2). Let us recall that it
takes values between 1/2L and 1, in particular P (ρ) =
1 for a pure states and P (ρ) = 1/2L for a maximally
mixed L-qubit state. In this work, we consider the purity
of PIDM P (Π (ρ)) = Tr

[
Π (ρ)2

]
. Since Π (ρ) has the

properties of a density matrix, P (Π (ρ)) also takes values
between 1/2L and 1. P (Π (ρ)) can be expressed as follows
(see also Appendix A for the derivation):

P (Π (ρ)) =
L!

2L

∑
k+l+m+n=L

⟨B(k,l,m,n)⟩2

k!l!m!n!
. (13)

The second-order Rényi entropy is easy to calculate
from P (Π (ρ)) as S2(Π (ρ)) = − logP (Π (ρ)) [48], satis-
fying 0 ≤ S2(Π (ρ)) ≤ L log 2.
We indicate a procedure for evaluating S2(Π (ρ)) in ex-

periments and numerical simulations (this work) in Fig.
2. The numerical calculation steps to obtain P (Π (ρ)) are
the following: (i) we obtain the ground state of a physi-
cal Hamiltonian as a MPS [49, 50] using the DMRG al-
gorithm [45–47], (ii) we calculate the expectation values

{⟨A(n)
ν ⟩}, (iii) we compute the purity of PIDM by Eq.

(13), converting {⟨A(n)
ν ⟩} into {⟨B(n)µ ⟩} via Eq. (8).

In optical-lattice experiments, a set of correlation func-

tions {⟨A(n)
ν ⟩} can possibly be measured using quantum-

gas microscope (QGM) [51–56], after a series of magnetic
and optical operations that rotate the quantization axes
to {aν}. This experimental protocol is scalable because
we can directly calculate the purity of PIDM from only
DL measurement settings without constructing PIDM.
In the context of the analysis of quantum entangle-

ment, the Rényi entanglement entropy S2(ρA), where
ρA = TrĀρ is a reduced density matrix, is often used to
evaluate the amount of quantum entanglement between
two complementary subsystems A and Ā [57–59]. In this
work, we treat the Rényi entropy of the whole system,
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FIG. 2. The protocols for evaluating the second-order Rényi
entropy of PIDM in the experiments and in the numerical
simulation (this work). In this work, we apply DMRG algo-
rithm to obtain the ground state of a physical Hamiltonian

and simulate the observations of A(n)
ν by calculating the ex-

pectation value of the matrix product operator Aν . The nu-
merical calculations after the measurements are the same in
the experimental protocol and on the simulations.

specifically regarding PIDM. Naively, the latter acts as a
measure of how a state ρ is close to a PI state.

IV. MODEL AND RESULTS

A. The transverse-field Ising chain

As a case study, we compute the second-order Rényi
entropy of the PIDM S2(Π (ρ)) for the ground state of
the transverse-field Ising chain [44] with open boundary
conditions, whose Hamiltonian is given by

Ĥ = J

L−1∑
i=1

ẐiẐi+1 − Γ

L∑
i=1

X̂i, (14)

where Ẑi and X̂i are Pauli matrices acting on site i. Here,
we only deal with the case of even L. In absence of Γ ,
the Hamiltonian is classical and features a trivial ground
state. For the case of FM interaction (J < 0), the ground

state is |FM⟩ = c1 |↑⟩⊗L
+ c2 |↓⟩⊗L

, and for the case of
AFM interaction (J > 0), the ground state is |AFM⟩ =
c1 |↑↓⟩⊗

L
2 + c2 |↓↑⟩⊗

L
2 , subject to |c1|2 + |c2|2 = 1. When

an infinitesimal field is added, the ground state is sym-
metric, and we get |FM⟩ and |AFM⟩ with c1 = c2 = 1/

√
2

[60]. In the limit of infinite field (Γ → ∞), we can ne-
glect the first term of Eq. (14), yielding the PM phase

which is given by the direct product of the eigenstates of
X as

|→⟩⊗L
=

1

2L/2

L∑
n=0

∑
s∈SL

P̂s

(
|↑⟩⊗(L−n) ⊗ |↓⟩⊗n

)
(L− n)!n!

, (15)

where |→⟩ = (|↑⟩+ |↓⟩)/
√
2. In the intermediate field re-

gion, both terms contribute and a phase transition occurs
at the QCP (Γ/J = 1).

B. Behaviors of the second-order Rényi entropy of
the permutationally invariant part for the ground

state

We show the plots of P (Π (ρ)) and S2(Π (ρ)) as a func-
tion of Γ/|J | in Figs. 3 and 4 for the FM and AFM
case, respectively. In the DMRG calculation, we take
the full bond dimension (the maximum bond dimension
of MPS χmax = 2L/2) up to L = 10; we then set the cutoff
of the maximum bond dimension χmax = 16, 10, 4, 4 for
L = 12, 14, 16, 18, respectively, due to the computational
cost. This truncation does not significantly affect the
results because the purity of PIDM has essentially con-
verged at χmax = 4 (see also Appendix C for the χmax

dependence of P (Π (ρ))).
In the case of FM interaction, we obtain S2(Π (ρ)) = 0

(P (Π (ρ)) = 1) at zero field. For sufficiently large field,
the values of S2(Π (ρ)) approach zero (P (Π (ρ)) → 1).
These results are trivial because the ground states are PI
states in these two limits. For intermediate fields, there
appears a broad peak around the QCP (black dashed
line), which gets more pronounced for increasing system
size. In the case of AFM interaction, S2(Π (ρ)) takes a
finite value in the limit of zero field, caused by the non-PI
ground states |AFM⟩. In the limit of large field, S2(Π (ρ))
gets closer to zero, similar to the FM case.

It is well known that the QCP in the transverse-field
Ising model can be characterized by various properties,
such as the divergence of the entanglement entropy [61]
and the maximum of next-nearest-neighbor entanglement
[62]. Here a question arises: can P (Π (ρ)) or S2(Π (ρ))
characterize the QCP in the thermodynamic limit? We
show the plots of S2(Π (ρ)) as a function of L for FM
and AFM cases in Figs. 5(a) and 5(b), respectively. (see
Appendix C for the convergence of the numerical data
as a function of χmax). We find that the data are well
represented by fitting functions of the form

fS2
(L) = p1L+ p2 +

p3
L

+ p4 logL, (16)

where p1, p2, p3 and p4 are fitting parameters (dashed
lines in Fig. 5). We show the values of the fitting pa-
rameters in Figs. 6 and 7, determined by using the data
between L = 2 and 22. The error bars in Figs. 6 and
7 represent plus/minus one standard deviation. For the
FM case, the behavior of the fitting functions are fund-
mentally different between FM and PM regions. The



5

FIG. 3. (a) The purity and (b) the second-order Rényi en-
tropy of PIDM of the ground state of the FM transverse
field Ising model as a function of the transverse-field for var-
ious system sizes. The black dashed line represents the QCP
(Γ/|J | = 1).

largest slope of S2(Π (ρ)) appears around the QCP, lead-
ing to a peak structure of p1. The peak is slightly shifted
from the QCP, but we expect that it will eventually coin-
cide with the QCP for larger-size systems. For the AFM
case, the slope of S2(Π (ρ)) sharply decreases around the
QCP for increasing Γ .

C. Perturbative approach to low- and high-field
regimes

Let us consider the behavior of the second-order Rényi
entropy under low (Γ/|J | ≪ 1) and high field (|J |/Γ ≪
1) according to the second-order perturbation theory (see
also Appendix B for detailed calculations). In the low-
field region, the second-order Rényi entropy of the ground
state is given by

S2(Π (ρ)) ≈
(
Γ

J

)2(
1

4
− 1

2L

)
(17)

for the FM case, and

S2(Π (ρ)) ≈ L log 2− 1

2
logL− log

√
2π

−
(
Γ

J

)2(
1

4
+

1

2L

)
(18)

FIG. 4. (a) The purity and (b) the second-order Rényi en-
tropy of PIDM of the ground state of the AFM transverse-
field Ising model as a function of the transverse field for var-
ious system sizes. The black dashed line represents the QCP
(Γ/J = 1).

.

for the AFM case. Thus, the fitting pa-
rameters in Eq. (16) are determined as
(p1, p2, p3, p4) = (0, 14 (

Γ
J )

2,− 1
2 (

Γ
J )

2, 0) and

(p1, p2, p3, p4) = (log 2,− log
√
2π − 1

4 (
Γ
J )

2,− 1
2 (

Γ
J )

2,− 1
2 )

for FM and AFM cases, respectively (see also blue
dashed lines in Figs. 6 and 7). In the high-field region,
the second-order Rényi entropy of the ground state is
given by

S2(Π (ρ)) ≈
(
J

Γ

)2(
L

8
− 3

8

)
(19)

for the both FM and AFM cases, leading to fitting pa-
rameters (p1, p2, p3, p4) = (18 (

J
Γ )2,− 3

8 (
J
Γ )2, 0, 0) (see also

red dashed lines in Figs. 6 and 7).
We have considered open boundary conditions so far.

With periodic boundary conditions, in the low-field re-
gion the Rényi entropy of PIDM is given by

S2(Π (ρ)) ≈ 0 (20)

for the FM case and,

S2(Π (ρ)) ≈ L log 2− 1

2
logL− log

√
2π (21)
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FIG. 5. The second-order Rényi entropy of PIDM for the
ground state of the transverse-field Ising chain as a function
of L in (a) FM case and (b) AFM cases. The dashed lines
represent the fitting functions fS2(L) defined by Eq. (16)
with fitting parameters as shown in Figs. 6 and 7.

for the AFM case, leading to fitting parameters
(p1, p2, p3, p4) = (0, 0, 0, 0) and (p1, p2, p3, p4) =

(log 2,− log
√
2π, 0,− 1

2 ), respectively. Unlike open
boundary conditions, the second-order term with respect
to Γ/J does not contribute to S2(Π (ρ)), and the L−1

term vanishes. In the high-field region, the Rényi en-
tropy of PIDM is given by

S2(Π (ρ)) ≈
(
J

Γ

)2(
L

8
− 1

4

)
(22)

for the both FM and AFM cases, leading to
(p1, p2, p3, p4) = (18 (

J
Γ )2,− 1

4 (
J
Γ )2, 0, 0). The coefficient

of (J/Γ )2 in p2 is slightly different from the case with
open boundary conditions, but the behavior is almost
the same.

V. DISCUSSION

In this section, we summarize the behavior of S2(Π (ρ))
and discuss the possible application of S2(Π (ρ)) for char-
acterizing the phases of the system. First, we can see that
some properties of S2(Π (ρ)) reflects the QCP. For exam-
ple, in Fig. 5 (a) the largest slope of S2(Π (ρ)) appears
around the QCP, leading to a peak structure of p1. In
Fig. 5 (b), we can see that the slope of S2(Π (ρ)) sharply
decreases around the QCP for increasing Γ , bringing a
sharp change of p1. Not only p1, but also the other fit-
ting parameters show significant changes, which can be
associated with the criticality. The critical behavior of
the fitting parameters in Figs. 6 and 7 is slightly shifted
from the QCP, but we ascribe this to the limitation of
system size.

Secondly, we conjecture that the finite-size scaling law
of S2(Π (ρ)) characterizes the FM, AFM, and PM phase.
For instance, in Fig. 6, p1 is almost zero in the FM
phase while it takes finite values in the PM phase. In
Fig. 7, p4 takes non-zero values in the AFM phase, but
it almost vanishes in the PM phases. From the results
of the second-order perturbation theory, we expect that
in the thermodynamic limit S2(Π (ρ)) in the FM, AFM,
and PM phases scales as

S2(Π (ρ)) =


O(1) (FM),

p1L+ p4 logL+O(1) (AFM),

p1L+O(1) (PM),

(23)

respectively.
While in this work we investigate the behavior of

S2(Π (ρ)) across the quantum phase transition of the
transverse-field Ising model, the question arises whether
this behavior appears for a generic quantum phase tran-
sition. In this respect, we observe that S2(Π (ρ)) can be
interpreted as a measure of how a state ρ is close to a PI
state, which in fact vanishes for an exactly PI state. It is
then reasonable to expect that a quantum phase transi-
tion between two PI states will produce a peak structure
in S2(Π (ρ)) similar to Fig. 3 (b), whereas one between a
PI and a non-PI state will bring about a sharp, step-like,
change like in Fig. 4 (b). In order to get insights into
the case of a transition between two non-PI state, the
analysis of different models is required; however, we may
speculate that another kind of step-like behavior occurs.
We consider it particularly interesting to study whether
S2(Π (ρ)) can distinguish between two states in which no
standard order parameter can be defined, such as quan-
tum spin liquids and topological phases.
By the definition Eq. (3), Π (ρ) is the average over all

possible site permutations of a state ρ. We thus note that
recovering Π (ρ) instead of ρ leads to a loss of information
about the local properties of ρ. S2(Π (ρ)) in some way
quantifies this loss.

VI. CONCLUSION

We have studied the second-order Rényi entropy of
PIDM S2(Π (ρ)) for the ground state of the transverse-
field Ising chain. In the case of FM interaction, S2(Π (ρ))
exhibits a broad peak structure around the QCP, which
becomes more pronounced for increasing system size as
shown in Fig. 3. In the AFM case, the peak structure
disappears and S2(Π (ρ)) tends to diverge to infinity in
the whole range of the AFM phase as shown in Fig. 4.
S2(Π (ρ)) can be seen as a measure of permutational in-
variance of the (ground) state, which takes zero value for
a PI state. We have especially studied its behaviors as a
function of system size, varying the intensity of the trans-
verse field. We have fitted the data of S2(Π (ρ)) versus
L using a function containing linear, constant, L−1 and
logarithmic terms. For the FM case, the fitting function



7

FIG. 6. The fitting parameters as a function of Γ/|J | for FM
case. The blue and red dashed lines are analytical results by
the second-order perturbation theory at low-field and high-
field regions, respectively. Black dashed line represents the
QCP.

approximately at the QCP has the largest slope. We
ascribe this slight shift to the limitation of system size
and expect the fitting function at the QCP to be the
upper bound of S2(Π (ρ)) for sufficiently large L. For
the AFM case, we have found that the fitting param-
eters sharply change around the QCP. We expect that
the the fitting function at the QCP will be a boundary
between AFM and PM phases. We also analyze the be-
havior of S2(Π (ρ)) under low and high fields according

FIG. 7. The fitting parameters as a function of Γ/J for AFM
case. The blue and red dashed lines are analytical results by
the second-order perturbation theory at low-field and high-
field regions, respectively. Black dashed line represents the
QCP.

to the second-order perturbation theory. We conjecture
that the FM, AFM, and PM phases are distinguished by
the scaling law of S2(Π (ρ)) as shown in Eq. (23).
Lastly, let us emphasize that, while our simulations are

practically limited to L = 22 by the explicit calculation
of Π (ρ) from ρ, the prospective experimental protocols
and subsequent calculation of purity via Eqs. 8, 12, and
13 would be in principle scalable to a much larger sys-
tem size, being dependent upon the measurement of only
O(L3) correlations (corresponding to only O(L2) experi-
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mental settings). We hope that future efforts will clarify
the properties of S2(Π (ρ)) through both experimental
measurements and theoretical analysis of other physical
models, possibly acquiring some insights into the con-
nection with symmetry breaking, conformal field theory,
topological orders, etc.
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Appendix A: ANALYTICAL CALCULATION OF
THE PURITY OF THE PIDM EXPRESSED IN

THE B(k,l,m,n) BASIS

In this appendix, we briefly give the derivation of Eq.
(13). First, let us consider the trace of (B(k,l,m,n))2 =
Π (X⊗k ⊗ Y ⊗l ⊗ Z⊗m ⊗ 1⊗n)2.

Tr
[
(B(k,l,m,n))2

]
=

1(
L!

k!l!m!n!

)2Tr
∑

s∈S̃L

P̂s(X
⊗k ⊗ Y ⊗l ⊗ Z⊗m ⊗ 1⊗n)P̂†

s

 ∑
s′∈S̃L

P̂s′(X
⊗k ⊗ Y ⊗l ⊗ Z⊗m ⊗ 1⊗n)P̂†

s′


=

1(
L!

k!l!m!n!

)2Tr
 ∑
s∈S̃L

P̂s

(
(X2)⊗k ⊗ (Y 2)⊗l ⊗ (Z2)⊗m ⊗ (12)⊗n

)
P̂†
s


=

1(
L!

k!l!m!n!

)2 ∑
s∈S̃L

Tr
[
P̂s

(
1
⊗L
)
P̂†
s

]
=

1(
L!

k!l!m!n!

)2 × L!

k!l!m!n!
× (Tr1)L =

k!l!m!n!

L!
2L, (A1)

where
∑

σ∈S̃L
denotes the summation over all the non-

trivial permutations. Subsequently, we calculate Π (ρ)2
as follows:

Π (ρ)2 =

{ ∑
k+l+m+n=L

⟨Π
(
X⊗k ⊗ Y ⊗l ⊗ Z⊗m ⊗ 1⊗n

)
⟩

Tr [(Π (X⊗k ⊗ Y ⊗l ⊗ Z⊗m ⊗ 1⊗n))2]
Π
(
X⊗k ⊗ Y ⊗l ⊗ Z⊗m ⊗ 1⊗n

)}

×

{ ∑
k′+l′+m′+n′=L

⟨Π (X⊗k′ ⊗ Y ⊗l′ ⊗ Z⊗m′ ⊗ 1⊗n′
)⟩

Tr [(Π (X⊗k′ ⊗ Y ⊗l′ ⊗ Z⊗m′ ⊗ 1⊗n′))2]
Π (X⊗k′

⊗ Y ⊗l′ ⊗ Z⊗m′
⊗ 1⊗n′

)

}
. (A2)

There are
(∑L

n=0DL−n

)
×
(∑L

n′=0DL−n′

)
terms in to-

tal, but after taking the trace most of them do not con-

tribute and only
∑L

n=0DL−n terms are left due to the
orthogonality

Tr
[
B(k,l,m,n)B(k

′,l′,m′,n′)
]

= Tr
[
(B(k,l,m,n))2

]
δk,k′δl,l′δm,m′δn,n′

=
k!l!m!n!

L!
2Lδk,k′δl,l′δm,m′δn,n′ . (A3)

Eventually we obtain the following formula:

Tr
[
Π (ρ)2

]
=

∑
k+l+m+n=L

⟨B(k,l,m,n)⟩2

Tr
[
(B(k,l,m,n))2

]
=

L!

2L

∑
k+l+m+n=L

⟨B(k,l,m,n)⟩2

k!l!m!n!
. (A4)
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Appendix B: SECOND-ORDER PERTURBATION
THEORY

In this appendix, we show the analytical calculation of
S2(Π (ρ)) at low and high field, according to the second-
order perturbation theory. We focus on the transverse-
field Ising chain with open boundary conditions for even
L.

1. High-field regime

Let us consider the Hamiltonian of the transverse-field
Ising chain with a perturbation parameter λ = J/Γ as

Ĥ/Γ = Ĥ(0) + λĤ′, (B1)

where

Ĥ(0) = −
L∑

i=1

X̂i, (B2)

Ĥ′ =

L−1∑
i=1

ẐiẐi+1 (B3)

are the unperturbed Hamiltonian and the perturbation,
respectively. Ĥ(0) provides the nondegenerate ground

state |→⟩⊗L
, where |→⟩ = (|↑⟩ + |↓⟩)/

√
2 , and the

ground state of Ĥ/Γ , denoted |HF⟩, is given by

|HF⟩ ≃ 1

N

(
|→⟩⊗L − λ

4

L−2∑
m=0

|ψm⟩

)
, (B4)

where |ψm⟩ = |→⟩⊗m⊗|←⟩⊗2⊗|→⟩⊗(L−m−2)
with |←⟩ =

Ẑ |→⟩ = (|↑⟩ − |↓⟩)/
√
2, and N =

(
1 + 1

16λ
2(L− 1)

)1/2
is a normalization factor. Note that the O(λ2) term of
|HF⟩ is zero. PIDM of |HF⟩ ⟨HF| is given by

Π (|HF⟩ ⟨HF|) = 1

N 2

1

L!

[
L! |→⟩⊗L ⟨→|⊗L − λ

4

∑
s∈SL

L−2∑
m=0

(
|→⟩⊗L ⟨ψm| P̂†

s +H.c.
)]

, (B5)

which is sufficient to include up to O(λ2) terms in the
second-order Rényi entropy of PIDM. The purity and

second-order Rényi entropy of PIDM up to second order
in the perturbation parameter are calculated as follows:

P (Π (|HF⟩ ⟨HF|)) =
1

N 4

1

(L!)2

(L!)2 + 2× λ2

16

∑
s,s′∈SL

L−2∑
m,m′=0

Tr
(
|→⟩⊗L ⟨ψm| P̂†

s P̂s′ |ψm′⟩ ⟨→|⊗L
)

=
1

N 4

1

(L!)2

[
(L!)2 + 2× λ2

16
(L− 2)!2!L!(L− 1)2

]
≃ 1− λ2

(
L

8
− 3

8

)
, (B6)

S2(Π (|HF⟩ ⟨HF|)) = − log

[
1− λ2

(
L

8
− 3

8

)]
≃ λ2

(
L

8
− 3

8

)
. (B7)

2. Low-field regime

In order to analyze the behavior of the Rényi entropy
of PIDM in the low-field region, we consider the following

Hamiltonian

Ĥ/|J | = Ĥ(0) + λĤ′, (B8)



10

where

Ĥ(0) = sgn(J)

L−1∑
i=1

ẐiẐi+1, (B9)

Ĥ′ = −
L∑

i=1

X̂i. (B10)

Here we redefine the perturbation parameter as λ =
Γ/|J |. Let us begin with the FM case (J < 0). The

ground state of Ĥ(0) is two-fold degenerate, namely |↑⟩⊗L

and |↓⟩⊗L
, and the Lth-order perturbation gives a small

energy split between symmetrized and antisymmetrized

combinations, which favors (|↑⟩⊗L
+ |↓⟩⊗L

)/
√
2. Here we

define

|ψm⟩ = |↑⟩⊗m ⊗ |↓⟩ ⊗ |↑⟩⊗(L−m−1)
, (B11)

|ϕm⟩ = |↓⟩⊗m ⊗ |↑⟩ ⊗ |↓⟩⊗(L−m−1)
. (B12)

The ground state of Ĥ/|J |, denoted |LFFM⟩, is given by

|LFFM⟩ ≃
1

N

(
|↑⟩⊗L

+ |↓⟩⊗L

√
2

− λ

2

(
|ψ0⟩+ |ϕ0⟩√

2
+
|ψL−1⟩+ |ϕL−1⟩√

2

)
− λ

4

L−2∑
m=1

|ψm⟩+ |ϕm⟩√
2

)
, (B13)

where N =
[
1 + λ2

(
1
2 −

1
16 (L− 2)

)]1/2
is a normaliza- tion factor. Note that the O(λ2) term of |LFFM⟩ is zero.

PIDM of |LFFM⟩ ⟨LFFM| is given by

Π (|LFFM⟩ ⟨LFFM|) =
1

N 2

1

L!
(A+ (B + C +H.c.)), (B14)

where

A =
L!

2

(
|↑⟩⊗L

+ |↓⟩⊗L
)(
⟨↑|⊗L

+ ⟨↓|⊗L
)
, (B15)

B = −λ
4

∑
s∈SL

(
|↑⟩⊗L

+ |↓⟩⊗L
)
(⟨ψ0|+ ⟨ϕ0|+ ⟨ψL−1|+ ⟨ϕL−1|) P̂†

s , (B16)

C = −λ
8

∑
s∈SL

L−2∑
m=1

(
|↑⟩⊗L

+ |↓⟩⊗L
)
(⟨ψm|+ ⟨ϕm|) P̂†

s . (B17)

The purity and second-order Rényi entropy of PIDM within second-order perturbation theory are calculated
as follows:

P (Π (|LFFM⟩ ⟨LFFM|))

=
1

N 4

1

(L!)2
Tr(A2 + 2BB† + 2BC† + 2CB† + 2CC†)

=
1

N 4

1

(L!)2

{
(L!)2 + 2× λ2

4
4(L− 1)!L! + 4× λ2

8
2(L− 2)(L− 1)!L! + 2× λ2

16
(L− 2)2(L− 1)!L!

}
≃ 1− λ2

(
1

4
− 1

2L

)
, (B18)

S2(Π (|LFFM⟩ ⟨LFFM|)) = − log

[
1− λ2

(
1

4
− 1

2L

)]
≃ λ2

(
1

4
− 1

2L

)
. (B19)

For the AFM case (J > 0), the ground state of the un- perturbed Hamiltonian Eq. (B9) is two-fold degenerate,
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namely |↑↓⟩⊗
L
2 and |↓↑⟩⊗

L
2 , and the Lth-order pertur-

bation gives a small energy split between symmetrized

and antisymmetrized states of them, selecting (|↑↓⟩⊗
L
2 +

|↓↑⟩⊗
L
2 )/
√
2. Here let us define |ψ(↑)

m ⟩ , |ψ(↓)
m ⟩ , |ϕ(↑)m ⟩, and

|ϕ(↓)m ⟩ as

|ψ(↑)
m ⟩ = |↑↓⟩⊗m ⊗ |↑↑⟩ ⊗ |↑↓⟩⊗(L

2 −m−1)
, (B20)

|ψ(↓)
m ⟩ = |↑↓⟩⊗m ⊗ |↓↓⟩ ⊗ |↑↓⟩⊗(L

2 −m−1)
, (B21)

|ϕ(↑)m ⟩ = |↓↑⟩⊗m ⊗ |↑↑⟩ ⊗ |↓↑⟩⊗(L
2 −m−1)

, (B22)

|ϕ(↓)m ⟩ = |↓↑⟩⊗m ⊗ |↓↓⟩ ⊗ |↓↑⟩⊗(L
2 −m−1)

. (B23)

The ground state of Eq. (B8), denoted |LFAFM⟩, is given
by

|LFAFM⟩ ≃
1

N

 |↑↓⟩⊗L
2 + |↓↑⟩⊗

L
2

√
2

+
λ

4
√
2

L
2 −2∑
m=0

(
|ψ(↑)

m ⟩+ |ϕ(↓)m ⟩
)
+

L
2 −1∑
m=1

(
|ψ(↓)

m ⟩+ |ϕ(↑)m ⟩
)

1

1
+

λ

2
√
2

(
|ψ(↑)

L
2 −1
⟩+ |ϕ(↓)L

2 −1
⟩+ |ψ(↓)

0 ⟩+ |ϕ
(↑)
0 ⟩
)]
, (B24)

where N =
[
1 + λ2

(
L
16 + 3

8

)]1/2
is a normalization fac- tor. Note that O(λ2) term of |LFAFM⟩ is zero. PIDM of

|LFAFM⟩ ⟨LFAFM| is given by

Π (|LFAFM⟩ ⟨LFAFM|) =
1

N 2

1

L!
(A+ (B + C +H.c.)), (B25)

where

A =
1

2

∑
s∈SL

P̂s

(
|↑↓⟩⊗

L
2 + |↓↑⟩⊗

L
2

)(
⟨↑↓|⊗

L
2 + ⟨↓↑|⊗

L
2

)
P̂†
s , (B26)

B =
λ

8

∑
s∈SL

P̂s

(
|↑↓⟩⊗

L
2 + |↓↑⟩⊗

L
2

)L
2 −2∑
m=0

(
⟨ψ(↑)

m |+ ⟨ϕ(↓)m |
)
+

L
2 −1∑
m=1

(
⟨ψ(↓)

m |+ ⟨ϕ(↑)m |
) P̂†

s

 , (B27)

C =
λ

4

∑
s∈SL

[
P̂s

(
|↑↓⟩⊗

L
2 + |↓↑⟩⊗

L
2

)(
⟨ψ(↑)

L
2 −1
|+ ⟨ϕ(↓)L

2 −1
|+ ⟨ψ(↓)

0 |+ ⟨ϕ
(↑)
0 |
)
P̂†
s

]
. (B28)

The purity and second-order Rényi entropy of PIDM within second-order perturbation theory are calculated
as follows:
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P (Π (|LFAFM⟩ ⟨LFAFM|))

=
1

N 4

1

(L!)2
Tr(A2 + 2BB† + 2BC† + 2CB† + 2CC†)

=
1

N 4

1

(L!)2

{
2

(
L

2

)
!

(
L

2

)
!L! + 2× λ2

4

(
L

2

)
!

(
L

2
− 1

)
!L!

(
L

2
− 1

)2

+4× λ2

2

(
L

2

)
!

(
L

2
− 1

)
!L!

(
L

2
− 1

)
+ 2× λ2

(
L

2

)
!

(
L

2
− 1

)
!L!

}
≃

2
(
L
2

)
!
(
L
2

)
!

L!
+ λ2

(
−
2
(
L
2

)
!
(
L
2

)
!

L!

(
L

8
+

3

4

)
+

(
L
2

)
!
(
L
2 − 1

)
!

L!

(
L2

8
+
L

2
+

1

2

))
, (B29)

S2(Π (|LFAFM⟩ ⟨LFAFM|))

= − log

[
2
(
L
2

)
!
(
L
2

)
!

L!
+ λ2

(
−
2
(
L
2

)
!
(
L
2

)
!

L!

(
L

8
+

3

4

)
+

(
L
2

)
!
(
L
2 − 1

)
!

L!

(
L2

8
+
L

2
+

1

2

))]

≃ L log 2− 1

2
logL− log

√
2π − λ2

(
1

4
+

1

2L

)
(B30)

Here we have used the Stirling’s formula to obtain Eqs.
B30.

Appendix C: MAXIMUM BOND DIMENSION
DEPENDENCE OF THE PURITY OF PIDM

In this appendix, we show the plots of the purity of
PIDM for the ground state of the transverse-field Ising
chain as a function of the maximum bond dimension of
MPS χmax in Fig. C. We can see that the purity suffi-
ciently converges at χmax ≃ 4.
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