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Computational screening is indispensable for the efficient design of high-entropy alloys (HEAs),
which hold great potential for catalytic applications. However, the chemical space of HEAs is expo-
nentially vast with respect to the number of constituent elements, and even screening calculations
using machine learning potentials can be enormously time-consuming. To address this challenge,
we propose a method to rapidly construct models that predict the properties of HEAs from data on
monometallic systems (or few-component alloys). The core of our approach is a newly-introduced
descriptor called local surface energy (LSE), which reflects the local reactivity of solid surfaces at
atomic resolution. We successfully created a model using linear regression to screen the adsorp-
tion energies of molecules on HEAs based on LSEs from monometallic systems. Furthermore, we
made high-precision model development by employing both classical machine learning and quantum
machine learning. Using our method, we were able to complete the adsorption energy calculations
of CO molecules on 1000 patterns of quinary nanoparticles consisting of 201 atoms within a few
hours. These calculations would have taken hundreds of years and hundreds of days using density
functional theory and a neural network potential, respectively. Our approach allows accelerated
exploration of the vast chemical space of HEAs facilitating the design of novel catalysts.

I. INTRODUCTION

High-entropy alloys (HEAs), composed of five or more
elemental species in concentrations ranging from 5 to 35
at%, have emerged as versatile materials with promis-
ing applications in catalysis and functionality[1–4]. Their
rich compositional diversity paves the way for the ”cock-
tail effect”, unveiling unexpected properties that often
surpass traditional single-element systems[3, 5]. Re-
cent advancements highlight their superior catalytic
performance[6–9], but the vast array of potential element
combinations poses a significant challenge for experimen-
tal exploration.

Addressing this complexity, researchers have turned
to computational methods for efficient screening[9–12].
First-principles calculations, such as density function
theory (DFT)[13–15], coupled cluster (CC) theory[16–18]
and many-body perturbation theory (MBPT)[19, 20], de-
scribe chemical reactions on solid surfaces with high accu-
racy. Volcano plots, derived from first-principles calcula-
tions, illustrate the optimal adsorption energy range for
catalytic activity, balancing between excessively strong
and weak interactions [12, 21, 22]. However, the hetero-
geneous surfaces of HEAs complicate the application of
these models due to the varied adsorption sites, rendering
conventional approaches computationally intensive.
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To circumvent these limitations, neural network poten-
tials (NNPs), which are based on the Behler-Parrinello
framework [23–27] and graph neural networks [28–31], of-
fer a promising solution. The universal NNP, capable of
encompassing extensive elemental diversity, achieves high
computational efficiency while maintaining accuracy on
par with density functional theory (DFT) [29, 30, 32–44].
Very recently, NNPs specialized for HEA have emerged
that are lightweight with transition learning [45]. Thus,
recent advancements in refining NNPs have expedited
catalytic property predictions, yet the necessity of eval-
uating all potential adsorption sites remains a computa-
tional bottleneck.

In contrast, descriptor-based machine learning mod-
els offer scalability by predicting adsorption energies
through generalized coordination numbers and d-band
centers, bypassing direct energy assessments [46–50].
Along with the coordination number descriptor, a model
is also proposed to predict the adsorption energies of the
remaining candidates by regressing the adsorption ener-
gies actually obtained from several first-principles calcu-
lations [10]. Nonetheless, their applicability to HEAs is
hampered by the complexities of alloy compositions and
the dependency on extensive first-principles calculations.

To address these challenges, we propose a methodology
for predicting molecular adsorption energies on HEAs
without direct adsorption energy computations. Our ap-
proach centers on a new descriptor, the local surface en-
ergy (LSE), reflecting the local reactivity of solid sur-
faces with atomic resolution. The LSE can be efficiently
calculated using atomic energies from NNPs, facilitating
rapid and comprehensive evaluations of catalytic proper-
ties. We validate our method through DFT comparisons,
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predicting adsorption energies for CO on IrPdPtRhRu
HEA nanoparticles (NPs). Furthermore, we present a
correction technique for adsorption energy, employing
both classical and quantum-classical hybrid algorithms,
enhancing the precision of our predictions.

II. METHODS

A. Local Surface Energy

The LSE metric is defined as follows:

LSE ≡ Esurf
at − Ebulk

at , (1)

where Esurf
at and Ebulk

at denote the atomic energies in the
surface and bulk environments, respectively. The LSE
quantifies the energy loss by a single atom in the bulk
environment when exposed to a surface. This definition
enables the determination of surface stability even for
surfaces in complex environments and multicomponent
systems. The atomic energies in Equation (1) can be
evaluated using the energy density analysis (EDA) from
first-principles calculations such as DFT[52–56]. EDA is
accurate because it is based on first-principles calcula-
tions, but it is not suitable for exhaustive calculations
such as those in this study because of its high compu-
tational cost. Therefore, in this study, all LSEs were
evaluated using NNPs. In Behler-Parrinello type NNP
frameworks, the total energy Etot of a system consisting
of N atoms is evaluated as a sum of the energies of each
atom:

Etot =

N∑
i=1

Ei
at. (2)

Yoo et al. demonstrated the ability to map atomic en-
ergies obtained by NNPs onto NP and surface systems
[57]. NNP allows for a very efficient evaluation of LSEs
because the atomic energies of all adsorption sites in one
system can be obtained in a single calculation.

B. CO Molecule Adsorption on NPs

To investigate the effectiveness of LSE values in pre-
dicting surface reactions, we targeted the on-top adsorp-
tion energies of a CO molecule on various monometallic
NPs, as a precursor to developing predictive models for
high entropy alloys (HEAs). The NPs were truncated
octahedron type corresponding to Mn, n=38, 79, 116,
201. The elements were platinum-group metals (PGMs)
M = Ir,Pd,Pt,Rh,Ru. For the on-top adsorption of CO
molecule on M201, only the irreducible adsorption sites
were computed, represented by the black line in Figure
1(a).

The adsorption energy Ead was evaluated as

Ead = E
CO/Mn

tot − ECO
tot − EMn

tot , (3)

where E
CO/Mn

tot , ECO
tot , and EMn

tot denote the total energies
of CO/Mn, CO, and Mn, respectively, as shown in Figure
1(b).

C. Regression of Adsorption Energy

The LSEs were calculated from the atomic energies
of the monometallic bulk and monometallic NP surfaces,
as shown in (i) of Figure 1(c). Next, we plotted the
adsorption energy Ead as a function of LSE at each ad-
sorption site of monometallic NPs. Then, the correlation
between adsorption energy Ead and LSE was examined
through the least-squares linear regression for each type
of elemental monometallic NP, illustrated in (ii) of Fig-
ure 1(c). These regressions EM

ad(Predict.) were utilized
as predictive models to predict the adsorption energy of
CO on the IrPdPtRhRu HEA NPs, as

EM
ad(Predict.) = αM × LSE + βM. (4)

Here, αM and βM denote the regression coefficient and
constant for each element monometallic NP, respectively.
αM represents the magnitude of the adsorption energy re-
sponse to a change in LSE. βM represents the adsorption
energy of CO molecules when LSE is 0, in other word,
when the surface atom have the same energy as that in
the bulk environment.

D. Prediction of Adsorption Energy on HEA NPs

We predicted the adsorption energy of CO on IrPdP-
tRhRu HEA NPs using regressions EM

ad(Predict.). Specif-
ically, we calculated the adsorption energy of the CO
molecule using only the LSE values. In general, the LSE
of an atom at the adsorption site may be stabilized or
destabilized by the surrounding environment. Therefore,
in the complex environment involving multiple systems
and NPs, the adsorption energy has a value different from
that of a monometallic system[10, 58, 59]. We modeled
IrPdPtRhRu as a truncated octahedron IrPdPtRhRu201,
similar to those in the unitary system. The number of
atoms was set as 40 for the four elemental species and
41 for the remaining one, and the arrangement of the el-
ements was random, resulting in 20 structures of PGM-
HEA NPs. The adsorption site of the CO was on-top
only, as in the unitary system. Figure 1(c) illustrates the
on-top adsorption of CO onto a corner Ru atom as an
example.
The LSE prediction for adsorption sites in unitary

NPs and CO adsorption energy in unitary systems
through linear regression assumes a similar relationship
between atomic-level stability and adsorption energy at
the surface of HEA NPs. However, in HEAs, unexpected
nonlinear behavior may be observed. Therefore, we
constructed a corrected machine learning model for the
LSE-derived adsorption energy, which learns the nonlin-
ear relationship between the adsorption energy directly



3

(111)
(001)
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Mbulk

LSE
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(iii) Prediction
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CO/Mn MnCO

CO/HEA201

(ii) Regression

(b)

(i) LSE and Ead evaluation

EadMn

Figure 1. (a) 201 atom truncated octahedron NP and irreducible adsorption site of its surface atoms (black line). Circles,
squares, and triangles indicate facet, edge, and corner sites on HEA201, respectively. (b) On-top adsorption of CO molecules on
NPs and the corresponding isolated systems. (c) Process flow of the proposed approach: (i) calculation of LSEs and adsorption
energies, (ii) regression of adsorption energy for each atomic species on LSE, and (iii) prediction of adsorption energy using
regressions. All geometries are visualized using VESTA3 [51], with a consistent color assignment for each atom.

obtained using the NNP for validation and the LSE-
predicted adsorption energy obtained by the scheme in
Figure 1. Kernel ridge regression (KRR) with a regu-
larization function to suppress overfitting was employed
as the nonlinear regression method. In addition, non-
linear regression using quantum machine learning, with
high expressive power and a regularization function, was
incorporated using a high-speed quantum simulator. For
regression based on quantum machine learning, we in-
troduced quantum circuit learning (QCL) proposed by
Mitarai et al [60]. QCL is known to correspond to neural
networks in conventional computers. In this study, we
refer to this regression method as quantum neural net-
work regression (QNNR). Details of KRR and QNNR are
presented in the following text, and the degree of accu-
racy of adsorption energies by both models is discussed
in Section III.

III. COMPUTATIONAL DETAILS

A. Modeling

We modeled CO adsorption on NPs, CO/Mn, using the
Atomic Simulation Environment (ASE) [61, 62]. The ini-
tial lattice constants (LCs) for Mn were determined from

bulk calculations. In the case of HEA201, the largest LC
in the bulk was used as the initial LC. A 15 Å vacuum
region was inserted in all supercells to minimize cell-to-
cell interactions. The initial structures of CO/Mn and
CO/HEA201 were derived by placing CO on the on-top
sites of the optimized structures of Mn and HEA201, re-
spectively, with the distance between the C atom and the
adsorption site metal atom M set as 2 Å.

B. NNP Calculations

The NNP was M3GNet, a pre-trained model based
on a graph neural network capable of computing pe-
riodic tables [34]. The crystal structures of the bulk
M = Ir,Pd,Pt,Rh,Ru were assumed to face-centered cu-
bic (fcc). Although Ru exhibits the hcp form at room
temperature, Ru with fcc structure can be created in NPs

Table I. Atomic energy and lattice constant of each bulk.

fcc bulk M Ir Pd Pt Rh Ru

Ebulk
at (eV) -8.941 -5.185 -6.069 -7.394 -9.305
LC (Å) 3.875 3.957 3.977 3.850 3.815
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[63]. The atomic energy of bulk fcc metal M was deter-
mined using the energy corresponding to the minimum
value obtained when varying the LC of the material in
intervals of approximately 0.01 Å. The resulting atomic
energy values and corresponding lattice constants are
summarized in Table I. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm was used for structural opti-
mizations, with a max step of 0.005 Å. In the CO/M and
CO/HEA structure optimization calculations, the M and
HEA structures were fixed as stable structures of the iso-
lated systems, respectively. Only the CO and adsorption
site atom were relaxed with the constraint that the ad-
sorbed molecules occupy the on-top site. Structural op-
timizations were performed until the force acting on each
atom was 0.001 eV/Å.

C. DFT Calculations

DFT calculations were performed using the Vienna
ab initio simulation package (VASP), version 5.4.4 [64–
66]. We employed the Perdew–Burke–Ernzerhof general-
ized gradient approximation functional as the exchange-
correlation functional[67]. Core electrons were treated
using the projector augmented wave method [68, 69].
The electronic structures were optimized using the
blocked Davidson iteration scheme within the spin-
restricted approximation. The cutoff energy for plane
wave functions was set as 400 eV. The ion geometries
were optimized using the conjugate gradient algorithm
with a convergence threshold of 0.01 eV/Å.

D. Nonlinear Regressions

KRRs were executed using scikit-learn version 1.2.2
[70]. The Gaussian kernel was chosen as the kernel func-
tion of the KRR. The hyperparameters for each model
were optimized over 100 iterations of randomized search.

QNNRs were implemented using scikit-qulacs version
0.5.0[71]. Qulacs version 0.5.6 was used as the quan-
tum circuit simulator[72]. The number of qubits in the
QNNR model was 4. The number of iterations of the
parameterized variational quantum circuit of the model
corresponding to the weights of the neural network was
6. The time step for the time-evolution operator in pa-
rameterized variational quantum circuits was set as 0.5.
The BFGS algorithm was used to update the parameters
of the QNNR model.

IV. RESULTS

A. Correlation Between Adsorption Energy and
LSE

(b)

(a)

Figure 2. (a)Adsorption energies of CO calculated using the
NNP for each adsorbed on-top site of Mn against the local
surface energy (LSE). Solid lines represent the linear regres-
sions of the adsorption energies of a CO molecule at the on-top
sites in each element unitary system according to Equation
(4). (b) Correlation between adsorption energies calculated
directly by NNP and those predicted through regression. Cir-
cles, squares, and triangles at each datapoint represent the
facet, edge, and corner CO adsorption sites, respectively.
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The correlation between the LSE and CO adsorption
energy Ead(NNP) of the monometallic NPs obtained by
the NNP is shown in Figure 2(a). Solid lines represent
the linear regressions of the adsorption energies of a CO
molecule at the on-top sites in each element unitary sys-
tem, obtained using Equation (4). For all metal ele-
ments, the relationship between the adsorption energy
Ead(NNP) of CO molecule on-top site and LSE is lin-
ear. This outcome indicates that the adsorption energies
of CO on a monometallic NP can be predicted if the
LSE of each atom on the NP surface prior to molec-
ular adsorption is known. The LSE of all adsorption
sites for all elements ranges from approximately 0.2 to
1.2 eV. In other words, in all cases, the atomic ener-
gies are more unstable in the surface environment than
in the bulk environment, which is reasonable given the
lower coordination number in the surface environment.
The adsorption energy Ead(NNP) ranges from approxi-
mately -1.2 to -2.0 eV. Next, we focus on the adsorption
sites of the NPs. For all elements, the adsorption en-
ergy exhibits the following decreasing order: facet, edge,
and corner. Conversely, the LSE values increase in the
order of facet, edge, and corner. The LSE values and
adsorption energies are concentrated at the facet, edge,
and corner, and an energy gap exists between each group
of adsorption sites. The correlation between Ead(NNP)
and Ead(Predict.) is shown in Figure 2.(b). The RMSE
is 0.035 eV, revealing a strong correlation between LSE
and adsorption energy. Verification of this adsorption
energy via DFT calculations is described in Section III.
C.

B. Prediction of the Adsorption Energy on HEA
NPs

The LSE regressions based on Equation (4), as shown
in Figure 1, are used to predict the adsorption energies of
a CO molecule on the on-top sites of IrPdPtRhRu HEA
NPs with truncated octahedral structures (HEA201). To
this end, 1000 patterns of HEA201 NPs are generated,
and LSEs of the 122 atoms of the topmost surface layer
present in each of them are evaluated. Figure 3(a) shows
the 122,000 LSE values for each element and their total
distribution. This distribution becomes smoother and
converges as the number of NP patterns increases. The
sum of all elements shown in gray in Figure 3(a) can be
considered an indicator reflecting the reactivity of the en-
tire HEA NP surface. In the monometallic system, the
LSE ranges from approximately 0.2 to 1.2 eV. However,
in the quintic HEA environment, these values undergo
significant changes and span from approximately -0.1 to
2.4 eV. The distribution of each element exhibits two
prominent peaks. For Pt and Pd, the LSE exhibits a ma-
jor peak near 0 eV (or slightly lower energy), indicating
greater stability compared with that in the monometallic
environment. Notably, an LSE value of 0 corresponds to
the energy of the bulk environment. The second, smaller

peak remains nearly unchanged for Pd, whereas the LSE
range expands by approximately 0.3 eV for Pt. In the
case of Ir and Ru, the LSE value shifts toward higher
energies compared with those in the monometallic sys-
tems. As for Rh, a slight increase in the LSE range is
observed, lying between those for the stable Pt and Pd
groups and less stable Ir and Ru groups.
Figure 3(b) illustrates the predicted adsorption energy

of CO on all on-top sites of 1000 HEA201 NPs obtained
using Equation (4) with LSE values. The range of on-
top adsorption energy Ead for CO on the monometallic
system (Figure 2) expands by approximately 0.8 eV, from
approximately -2.0 to -1.2 eV to -2.5 to -0.9 eV. This out-
come serves as an example of how the adsorption char-
acteristics diversify within a quintic HEA environment.
The distribution of adsorption energies on each element
also exhibits two prominent peaks. Next, we examine the
differences among each elemental species. For Pd and Pt,
the LSE values are very close, but the range of adsorp-
tion energies is broader on the high-energy side by 0.2
eV for Pt. A similar trend is observed for Ir and Ru on
the low-energy side. In the case of Rh, a slight exten-
sion in the range of both high- and low-energy sides is
observed, compared with that for the monometallic sys-
tem. In particular, the adsorption energy is concentrated
in three adsorption site groups (corner, edge, and facet)
in the monometallic NP environment, but these groups
take on more diverse values in the HEA NP environment.
This representation as a distribution can help visualize
the potential cocktail effect.

C. Verification of the LSE Predictions

The adsorption energy predicted using LSE is com-
pared with the adsorption energies of CO on HEA201

directly calculated using the NNP and DFT. We limit
the comparison to 2440 sites, encompassing all on-top
sites across the 20 structures. In general, calculating the
adsorption sites for all 1000 HEA201 configurations is a
computationally intensive task, even with the assistance
of NNP. The computation times using NNP and DFT are
summarized in Table II. In the computing environment
used in this study, the computation time per structural
optimization step is approximately 1000 times less with
NNP than that with DFT. However, the time required
to perform direct structural optimization of the 122,000-
site adsorption structure shown in the previous section
with NNP would take 171 days, with DFT calculations
expected to take 188 years. In contrast, the adsorption
energy prediction using LSE takes only 1.4 days.
Figures 4(a) and (b) show the adsorption energies cal-

culated directly by NNP and their predicted values. The
RMSE is 0.150 eV, larger than that in the unitary sys-
tem. However, a strong correlation can be observed be-
tween the LSE and adsorption energy in HEA, indicating
that the adsorption energy in the multicomponent envi-
ronment can be effectively predicted, as shown in Figure
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(a)

(b)

Figure 3. (a)Distributions of 122,000 LSE values of all top-
most layer atoms of the 1000 structure-optimized HEA201 for
each element and their sum, respectively. (b) Distributions
of adsorption energies of CO for all on-top adsorption sites
predicted using LSEs in (a) and Equation (4).

4(b). This finding suggests that the LSE can efficiently
and accurately predict adsorption energies not only for
unitary systems but also for complex multi-systems such
as HEAs. Notably, when using the adsorption energy
range of -2.0 to -1.2 eV in the unitary system as the in-
terpolation region for Ead(Predict.), the predictions are

more reliable than those with other ranges. In the ex-
trapolation region of Ead(Predict.), the difference with
Ead(NNP) increase, and a maximum shift of approxi-
mately 0.5 eV can be observed.

Next, we explore the results for each elemental species.
For all elemental species, the predicted adsorption en-
ergies become less accurate toward the low-energy side

(b)

(a)

Figure 4. (a)Comparison and (b) correlation between the pre-
dicted adsorption energy via LSE and directly calculated ad-
sorption energy of CO/HEA201 by the NNP. We limit the
comparison to 2440 sites, encompassing all on-top sites across
the 20 structures.
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facet
(a)

(b)

(c)

edge

corner

RMSE  0.234 eVRMSE  0.425 eVRMSE  0.445 eV

1 2 3
4 5 6 7

8 9 10 11 12
13 14 15 16
17 18 19

6-Rh 11-Ru

selected plane LSE DFT direct

NNP direct LSE predict. I-LSE predict.

5-Ir 9-Pd*15-Pt 14-Pd 10-Ru

2-Pd 16-Pd*13-Rh 4-Ir 18-Ru 7-Rh

3-Ru 12-Rh 1-Ir 19-Ir 17-Rh8-Ru

(d)

Figure 5. Bar graphs in (a), (b), and (c) show the evaluated adsorption energies of CO on the (111) plane of a randomly
selected HEA201 at each on-top site of the facet, edge, and corner, respectively. The atoms of the selected plane are numbered
as shown in (d). For each adsorption site, from left to right, the bar graph represents the adsorption energy obtained by
direct evaluation using NNP (NNP direct), LSE prediction (LSE predict.), DFT, and LSE prediction parameterized by DFT
data (I-LSE predict.). (d) illustrates the mapping of the LSE values of the atoms on the selected plane and corresponding
adsorption energies shown in (a), along with the RMSE values relative to the DFT results. The asterisk indicates that the
results of the structural optimization converge on the bridge site rather than the on-top site.

(Figure 4(a)). Figure 4(b) shows that for all elemental
species, the adsorption energies are nonlinearly estimated
toward the low-energy side. Additionally, the nonlinear
region is dominated by the facet site adsorptions. Com-
pared with sites with a low coordination number, such
as corner and edge sites, the atoms on the facets are
coordinated with eight or nine atoms. This increased co-
ordination number renders them more sensitive to the
surrounding environment compared to unitary systems.
Consequently, the complex environment of HEA may in-
troduce unexpected nonlinearity in the predictions. A
potential solution to this problem is discussed in the sub-
sequent section.

Finally, the accuracy of adsorption energy predictions
is verified using NNP and LSE with DFT calculations,
while seeking to enhance the prediction accuracy. In
our computing environment, the computation cost of the
adsorption energy evaluation by DFT is approximately
103 times that based on NNP, as indicated in Table
II. Therefore, we randomly select one of the 20 struc-
tures of HEA201 discussed above and evaluate the ad-
sorption energy for 19 sites on the (111) plane shown
on the right side of Figure 5. The selected HEA201 is
Ir40Pd40Pt41Rh40Ru40. First, the inherent performance
differences between NNP and DFT are compared based
on direct NNP and DFT calculations without LSE pre-

dictions. The RMSE of adsorption energy for all sites
obtained by NNP and DFT is 0.445 eV. The RMSE value
of the LSE prediction based on DFT is 0.425 eV, corre-
sponding to a slightly reduced accuracy (0.020 eV) com-
pared with direct evaluation by NNP. However, the per-
formance is comparable to the evaluation based on the
NNP. Because this error is an order of magnitude larger
than the chemical accuracy of 0.027 eV, methodologies
and guidelines are needed to reduce the prediction error.

To address this accuracy problem, we determine the

Table II. Computational costs for 19 geometry opti-
mizations of CO adsorption on the (111) plane on
Ir40Pd40Pt41Rh40Ru40 HEA NP by NNP and DFT.

total time[s] total step[step] s/step
NNPa 2314 10480 0.22
DFTb 925518 5008 184.81

NNP/DFTc 3 × 10−3 2 1 × 10−3

a NNP calculations with M3GNET were performed using an
AMD EPYC 7532 32-core Processor with 64 CPUs.

b DFT calculations with VASP were performed using 10 Intel(R)
Xeon(R) Platinum 9242 CPUs with 96 CPUs in mpi parallel,
resulting in 960 CPUs.

c NNP/DFT represents the ratio of values obtained using the
NNP to that calculated using DFT.
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Table III. Atomic energy and lattice constant of each bulk.

Ir Pd Pt Rh Ru
α(DFT) -0.639 -0.446 -1.073 -0.345 -0.041
α(NNP) -0.617 -0.692 -1.131 -0.441 -0.515
β(DFT) -1.782 -1.305 -1.521 -1.755 -2.012
β(NNP) -1.289 -1.165 -0.983 -1.234 -1.240

linear regression parameters of Equation (4), as in the
previous section, using the adsorption energy obtained
from the DFT calculation. The determined regression
parameters are shown in Table III. Comparing the ad-
sorption energy values from the DFT-parametrized LSE
(I-LSE) prediction with those from the direct DFT cal-
culation reveals a significant improvement in prediction
performance, with an RMSE of 0.234 eV, representing a
reduction in energy error by half. This outcome demon-
strates the potential of improving adsorption energy pre-
diction performance with LSE. In the next section, we
discuss methodologies and guidelines for enhancing the
accuracy of forecasts using LSE. Figure 5 (d) shows
a color map of the LSE value, adsorption energy com-
puted from DFT, and adsorption energy predicted by
each method. Although the RMSE values deviate sig-
nificantly from DFT prediction, the qualitative energy
relationship is accurately captured. This suggests that
LSE prediction can also be used as an efficient modeling
tool for accurate computations.

D. Solution to the nonlinearity problem

We introduce linear regression to predict the adsorp-
tion energy of the CO molecule on the on-top sites in
the monometallic system as a function of the LSE in-
dex derived from the atomic energy. As shown in Figure
3, the adsorption energy exhibits nonlinear behavior on
the high-energy side, suggesting that the adsorption en-
ergy of the CO molecule does not solely depend on the
atomic energy. This behavior can be attributed to the
coordination number per adsorption site, where corners
and edges exhibit a coordination number of 6 and 7, re-
spectively, and facets exhibit a value of 8 or 9. Higher co-
ordination numbers are more susceptible to the influence
of the surrounding environment. One possible solution
to address this non-trivial nonlinearity is to incorporate
the results of direct adsorption energy calculations for
binary and multiple systems into the regression analysis.
More reliable predictions can be achieved using nonlinear
regressions based on kernel learning and neural network
methods, incorporating certain direct evaluations of ad-
sorption energies of CO on the HEA environment.

To learn the nonlinearity, we applied KRR and QNNR
[60] to construct an adsorption energy correction model
for each elemental species at the adsorption site of HEA
NP. This model takes the LSE-predicted adsorption en-
ergy as the input and outputs an adsorption energy close

to the correct value. Figure 6 shows the correlation plot
between the corrected values and correct values for the
adsorption energies of CO on 14 patterns of HEA NPs by
the regression model using KRR and QNNR. The RMSEs
of the adsorption energy predictions for all adsorption
sites by the KRR and QNNR models are 0.0580 eV and

(b)

(a)

Figure 6. Correlation plots of CO adsorption energies for each
element (Ir, Pd, Pt, Rh, Ru) for 14 patterns of IrPdPtRhRu
HEA201 NPs. The energies are corrected using nonlinear re-
gression models based on (a) KRR and (b) QNNR. These
values are plotted against directly obtained values by NNP,
which serve as the standard for accuracy.
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0.0579 eV, respectively, indicating comparable nonlinear
regression performance. Compared with the uncorrected
LSE predictions, the RMSE values improve by approxi-
mately three times.

V. DISCUSSION

We utilize the atomic energy obtained from the NNPs
and introduce a metric named LSE, representing the sur-
face energy per atom. Using the LSE, we determine
the adsorption energy of CO molecules on the on-top
site of IrPdPtRhRu HEA201 NPs with a large number of
atomic combinations as a distribution, as shown in Fig-
ure 3(b). This approach offers a novel means of analyzing
atomic energies to evaluate various adsorption energies in
multicomponent systems such as the vast number of of
atomic configurations found in HEA environments. In
other words, the adsorption energy distribution obtained
by LSE prediction can help effectively visualize the un-
expected cocktail effects induced by the complex envi-
ronment of HEA NPs.

Notably, our calculations solely consider the adsorp-
tion energies on monometallic NPs and isolated multi-
component NPs, without the need for direct evaluation
of the CO molecular adsorption energy on the HEA it-
self. This approach enables the evaluation of adsorption
energies approximately 105 times faster than DFT direct
evaluations, facilitating the visualization of the cocktail
effect. In terms of accuracy (Figure 5), a comparison
with DFT calculations reveals that the predictions by
LSE are nearly an order of magnitude larger than the
chemical accuracy, although they are not quantitatively
accurate. Nonetheless, the relative energies exhibit a sim-
ilar trend, indicating that qualitative comparisons that
consider the influence of the surrounding environment
for each element are feasible. Consequently, this method
can be employed as a screening tool prior to applying
DFT calculations or high-level quantum chemical meth-
ods such as CC or MBPT.

Figure 4(b) shows a parity plot between the LSE
predicted- and directly evaluated adsorption energies.
The prediction is highly accurate, with an RMSE of 0.150
eV relative to the correct values, despite its low cost com-
pared with those of direct evaluations. However, nonlin-
earity relative to the correct values is observed, indicating
nonlinear behavior with respect to LSE. We introduce a
naive method to capture this nonlinearity: nonlinear re-
gression between the directly evaluated CO adsorption
energy and the predictions. We model nonlinear regres-
sion with KRR and the classical quantum hybrid algo-
rithm QNNR. Learning the adsorption energies for only
732 sites for NPs in six patterns of structures improves
the resulting LSE predictions by three times for the re-
maining 14 patterns tested for 1708 sites. The constraint
that the norm of the parameters in QNNR must be 1
is expected to act as a regularization. Results of the
KRR and QNNR models demonstrate their similar reg-

ularization capabilities. Although our adsorption energy
correction model does not inherently requires quantum
computing, its utility may extend to a wider chemical
space and the construction of models encompassing the
entire periodic table.
Finally, we discuss the potential applications of the

proposed method for chemical reaction design for cata-
lyst and device development. Previous studies have ex-
amined the role of atomic energy in improving the accu-
racy and efficiency of NNPs and validated atomic energy
mapping results [57, 73–76]. More recently, researchers
have attempts to gain chemical insights from atomic en-
ergies [77]. However, to the best of our knowledge, the
LSE prediction method proposed in this study is the
first to provide evidence that atomic energy can serve
as a descriptor for efficiently evaluating chemical quanti-
ties. Moreover, unlike atomic energies, which are abso-
lute quantities, LSEs are relative quantities and are thus
expected to be less sensitive to differences in computa-
tional methods, such as the treatment of basis functions
and inner-shell electrons. Therefore, this approach can
facilitate chemical reaction design for machine-learning-
based material design, which has garnered significant in-
terest in recent years [78–80].

VI. CONCLUSION

In this work, we have introduced a computational
methodology to predict molecular adsorption energies on
HEAs using the LSE descriptor, derived from atomic en-
ergies calculated by NNPs. This method addresses the
challenge of evaluating the vast chemical space of HEAs
due to their compositional diversity and the computa-
tional expense associated with direct DFT and NNP cal-
culations. The LSE descriptor efficiently captures the
local reactivity of surface atoms, allowing for the rapid
and accurate prediction of adsorption energies across a
wide range of HEA configurations.
Our approach significantly accelerates the computa-

tional process, reducing the time from hundreds of years
with DFT and hundreds of days with NNP to just a few
hours, making it a practical tool for material discovery
and catalyst design. The adoption of nonlinear regres-
sion techniques, combined with advanced machine learn-
ing models such as KRR and QNNR, has improved the
accuracy of adsorption energy predictions, even in the
face of nonlinearity inherent in multicomponent systems.
The successful application of the newly introduced

LSE descriptor in this study showcases its potential for
material simulation, offering a scalable and efficient way
to explore the catalytic properties of HEAs. This re-
search not only paves the way for rapid and accurate
computational screening of catalytic materials but also
sets the stage for the development of new computational
tools that can handle the complexities of modern ma-
terial science, particularly in the realm of high-entropy
materials.
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V. Cărare, J. P. Darby, S. De, F. D. Pia, V. L. De-
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G. Csányi, A foundation model for atomistic materials
chemistry (2023), arXiv:2401.00096 [physics.chem-ph].

[42] A. Musaelian, S. Batzner, A. Johansson, L. Sun, C. J.
Owen, M. Kornbluth, and B. Kozinsky, Learning local
equivariant representations for large-scale atomistic dy-
namics, Nature Communications 14, 579 (2023).

[43] Y.-L. Liao, B. Wood, A. Das, and T. Smidt,
Equiformerv2: Improved equivariant transformer for
scaling to higher-degree representations, arXiv preprint
arXiv:2306.12059 (2023).

[44] A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol,
G. Cheon, and E. D. Cubuk, Scaling deep learning for
materials discovery, Nature 624, 80 (2023).

[45] C. M. Clausen, J. Rossmeisl, and Z. W. Ulissi, Adapting
oc20-trained equiformerv2 models for high-entropy ma-
terials, arXiv preprint arXiv:2403.09811 (2024).

[46] J. Dean, M. G. Taylor, and G. Mpourmpakis, Unfolding
adsorption on metal nanoparticles: Connecting stability
with catalysis, Science advances 5, eaax5101 (2019).

[47] Y. Nanba and M. Koyama, An element-based generalized
coordination number for predicting the oxygen binding
energy on pt3m (m= co, ni, or cu) alloy nanoparticles,
ACS omega 6, 3218 (2021).

[48] Z. Lu, Z. W. Chen, and C. V. Singh, Neural network-
assisted development of high-entropy alloy catalysts: de-
coupling ligand and coordination effects, Matter 3, 1318
(2020).

[49] Z. Yang and W. Gao, Applications of machine learning in
alloy catalysts: rational selection and future development
of descriptors, Advanced Science 9, 2106043 (2022).

[50] M. Tamtaji, S. Chen, Z. Hu, W. A. G. III, and G. Chen, A
surrogate machine learning model for the design of single-
atom catalyst on carbon and porphyrin supports towards
electrochemistry, The Journal of Physical Chemistry C
10.1021/acs.jpcc.3c00765 (2023).

[51] K. Momma and F. Izumi, VESTA3 for three-dimensional
visualization of crystal, volumetric and morphology data,
Journal of Applied Crystallography 44, 1272 (2011).

[52] H. Nakai, Energy density analysis with kohn–sham or-
bitals, Chemical Physics Letters 363, 73 (2002).

[53] Y. Kikuchi, Y. Imamura, and H. Nakai, One-body en-

https://doi.org/10.1063/1.3553717
https://doi.org/10.1039/c6sc05720a
https://doi.org/10.1039/c6sc05720a
https://doi.org/10.1016/j.cpc.2019.04.014
https://doi.org/10.1016/j.cpc.2019.04.014
https://arxiv.org/abs/1704.01212
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://doi.org/10.1103/physrevlett.120.145301
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1021/acs.chemmater.9b01294
https://arxiv.org/abs/2206.14331
https://arxiv.org/abs/2206.14331
https://doi.org/10.1038/s43588-022-00349-3
https://doi.org/10.1038/s43588-022-00349-3
https://doi.org/10.1038/s42256-023-00716-3
https://arxiv.org/abs/2401.00096
https://doi.org/10.1021/acs.jpcc.3c00765
https://doi.org/10.1107/s0021889811038970
https://doi.org/10.1016/s0009-2614(02)01151-x


12

ergy decomposition schemes revisited: Assessment of
mulliken-, grid-, and conventional energy density anal-
yses, International Journal of Quantum Chemistry 109,
2464 (2009).

[54] M. Yu, D. R. Trinkle, and R. M. Martin, Energy den-
sity in density functional theory: Application to crys-
talline defects and surfaces, Physical Review B 83,
10.1103/physrevb.83.115113 (2011).

[55] Y. Huang, J. Kang, W. A. Goddard, and L.-W. Wang,
Density functional theory based neural network force
fields from energy decompositions, Physical Review B 99,
10.1103/physrevb.99.064103 (2019).

[56] J. J. Eriksen, Mean-field density matrix decompositions,
The Journal of Chemical Physics 153, 214109 (2020).

[57] D. Yoo, K. Lee, W. Jeong, D. Lee, S. Watanabe, and
S. Han, Atomic energy mapping of neural network po-
tential, Physical Review Materials 3, 10.1103/physrev-
materials.3.093802 (2019).

[58] H. An, H. Ha, M. Yoo, and H. Y. Kim, Understanding
the atomic-level process of co-adsorption-driven surface
segregation of pd in (aupd) 147 bimetallic nanoparticles,
Nanoscale 9, 12077 (2017).

[59] L. Vega, J. Garcia-Cardona, F. Viñes, P. L. Cabot, and
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