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THE LOCAL-TO-GLOBAL PRINCIPLE VIA TOPOLOGICAL PROPERTIES OF THE
BALMER-FAVI SUPPORT

NICOLA BELLUMAT

ABSTRACT. Following the theory of stratification of tensor triangulated categories via Balmer-Favi support
inaugurated by Barthel, Heard and Sanders, we prove the local versions of the well-known statements that
the Balmer spectrum being noetherian or profinite scattered implies the local-to-global principle.

That is, given an object t of a tensor triangulated category 7 we show that if the Balmer-Favi support
Supp(t) is a noetherian space, then the local-to-global principle holds for ¢. In the case where the Balmer
spectrum Spc(7 €) is profinite, if the support Supp(t) is scattered then the local-to-global principle holds for
the object t.

We conclude with an application of the last result to the examination of the support of injective superde-
composable modules in the derived category of an absolutely flat ring which is not semi-artinian.

1. INTRODUCTION

Our starting point is the following question, raised in [2]:

Question ([2| Question 21.8]). Let t be an object of a rigidly-compactly generated tensor triangulated category
T. Suppose that the Balmer-Favi support Supp(t) is a noetherian subspace of the Balmer spectrum Spec(T¢).
Then, does the local-to-global principle hold for t?

This problem was motivated by [Il, Thm. 3.21], which states that in the case the whole Balmer spectrum
is noetherian then the local-to-global principle holds. This result is nothing else that the adaptation to the
setting of stratification via Balmer-Favi support presented in [I] of the analogous finding by Benson, Iyengar
and Krause demonstrated in [3, Thm. 3.6].

The answer is positive and the claim will be proved in Theorem [£.7] below. The core of the proof consists
in adapting the argument of [I0] to our situation, where the filtration given by the Krull dimension is present
only on Supp(t) but not necessarily the whole Balmer spectrum. We will need some preliminary results on
the topology of spectral spaces, to ensure that the filtration on Supp(¢) is still enough to provide the finite
localizations and the associated colocalizations which are necessary to decompose t.

Inspired by this success and [I0, Thm. 5.6], we show the following variant for tensor triangulated categories
with profinite Balmer spectra:

Theorem. Suppose Spc(T¢) is profinite. If Supp(t) is a scattered space, then the local-to-global principle
holds for t.

Even in this case, the proof relies on using a filtration on Supp(t), namely the Cantor-Bendixon rank,
which behaves well with respect to the spectral topology on Spc(7°) to decompose t.

Finally, we use this Theorem to deduce that in D(R), the derived category of a non semi-artinian absolutely
flat ring, the support of an injective superdecomposable module must be contained in the maximal perfect
subset of Spc(D(R)¢), where this Balmer spectrum is homeomorphic to the Zariski spectrum Spec(R).

We construct one of such modules so that its support coincides with the maximal perfect subset. The
construction depends on the correspondence between the Loewy series of R and the Cantor-Bendixon deriva-
tives of the Zariski spectrum Spec(R).
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2. SETUP AND NOTATION

We will mostly follow the notation and definitions of [2]. We will explicitly state when we introduce
different notation.

From now on, (7,®, 1) denotes a fixed rigid-compactly generated tensor triangulated category. We make
three assumptions on this tensor triangulated category: first, we assume its Balmer spectrum is weakly
noetherian ([T, Def. 2.3]) so that we can define the Balmer-Favi support.

Second, we assume it satisfies the detection property ([I, Def. 2.15]), i.e. if there is an object ¢t € T such
that Supp(t) = 0 then t = 0.

Third, we assume the tensor triangulated category 7 admits a model, i.e. it is the homotopy category of a
monoidal model category or of a monoidal infinity category, or it is the underlying category of a strong stable
monoidal derivator. This allows us to have a well-behaved theory of homotopy colimits. See [10, Rmk. 2.19]
for more details.

Since we will be using only the notion of Balmer-Favi support, from now on we will drop the names
Balmer-Favi and just call it support.

We introduce our own notation regarding the Rickard idempotents:

Definition 2.1. Let Y C Spe(7¢) be a Thomason subset, so we have the corresponding thick tensor ideal
of compact objects Ty by the classification theorem due to Balmer. Then we can invoke [6, Thm. 3.3.5] to
obtain from 7y an exact triangle

I'vl—-1— Lyl = X¥I'y1l

where I'y'1 € Loc(Ty¢) and Ly.1 € Loc(T:$)* are the idempotents associated respectively to the acycliciza-
tion and localization with respect to Loc(7).
In the notation of [2], we have the equalities

eyzry]]. fy:Lyc]]..

Since Spe(T°) is weakly noetherian, for any Balmer prime p € Spc(7°) there exist two Thomason subsets
Y1, Y> € Spc(7T°) such that {p} = Y1 NY>. We denote by g(p) = I'y; 1® Ly, 1 the corresponding idempotent.

We make this choice so that the subscript of an idempotent coincides with its support and to emphasize
that left and right Rickard idempotents correspond to finite colocalizations and localizations rispectively.

Remark 2.2. It is proved in [I, Lemma 2.13] that for any ¥ C Spc(7¢) Thomason subset and ¢ € T it
holds
Supp(T'yt) = Supp(t) NY Supp(Ly-<t) = Supp(t) N Y.
Using these equalities and the detection property, we can see that if Supp(t) NY ¢ = then t 2t @ 'y 1
and dually the equality Y N Supp(t) = 0 implies t 2 ¢ ® Ly<1.

Definition 2.3. We adopt the following abbreviations, for the sake of brevity. We set X = Spc(7°) to be
the name of the Balmer spectrum of the tensor triangulated category in exam. If ¢ is the object of T we are
studying we denote by S = Supp(t) its support.

Moreover, given a generic spectral space W and a subset V' C W we denote by V" the closure operator
with respect to the dual topology WV. That is, V" is the smallest complement of a Thomason subset of W
containing V.

3. NOETHERIAN SUPPORT: SPECIAL CASES

Our first objective is to show the claim of [2] Question 21.8] is true. That is, we show that if an object
t € T has noetherian support then the local-to-global principle holds for ¢. Before attempting the proof in full
generality, we deal with two special cases: namely when S is a Thomason subset of X or the complement of
a Thomason subset. This allows us to reduce to proving the claim for the left and right Rickard idempotents
respectively.

We start by showing the claim if S =Y is a Thomason subset.

By Remark we have t 2t ® I'y'1. Therefore, it is enough to show the claim for I'y' 1, i.e. we have to
prove

I'y1 € Locid{g(p) : p € Y).
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Lemma 3.1. Letp € Y, where Y C X is Thomason closed and noetherian. Then {p} is a Thomason subset
of X.

Proof. Since m is by definition a closed subset of the Balmer spectrum, we have to show that its complement
is quasi-compact.

Set K = {p}. Suppose X \ K C |J
Y we obtain

;1 Ui where U; are open subsets of X. If we take the intersection with

(X\K)nY=Y\K c|Juiny

where the equality comes from K C Y. Since Y is noetherian, its open subset Y \ K is quasi-compact. Thus
we can find a finite subcover Y\ K C UjeJ U; NY for some finite indexing subset J C I.
We have that X \ Y is open and quasi-compact by the Thomason property. Hence

X\vcx\kcl|Ju

and we can refine to a finite subcover for some indexing subset L C I.

It follows
X\K=x\vuv\kcl|Junul{Ju;= |J U.
leL jeJ i€ JUL
Since we found a finite subcover we proved X \ K is quasi-compact. O

Corollary 3.2. Let Y C X be a noetherian Thomason subset. Then Z C'Y is a Thomason subset of X if
and only if it is downward closed with respect to the ordering given by the inclusion of Balmer primes.

Proof. That Thomason implies downward closed is trivial. For the other direction write

Z =1}

pez

We observe that if Y can be written as Y = Uiel Y; with Y; Thomason closed, then p € Y; implies m cY;
and by Lemma B we deduce m is Thomason closed. It follows Z is Thomason. U

Proposition 3.3. Let Y C X be a noetherian Thomason subset. Then the local-to-global principle holds for
T'y1.

Proof. With the above preliminaries we can repeat almost verbatim the proof of [I, Thm. 3.21]. This time,
we have to show that

V'={peY :I'qyl € Locid(g(q) : g € Y)}

coincides with Y.

Suppose by absurd Y’ # Y, by the noetherianity of Y there exists a minimal g € Y\ Y". Set Z = {q}\{q}.
This is a downward closed subset of Y, hence it is a Thomason subset of the Balmer spectrum (Corollary B.2)
and we can form the corresponding idempotent I'z1.

As in [II (3.22)] we have an exact triangle

Izl = Tyl — g(q) = XI'z1.

Even Y/ CY is downward closed, hence Thomason. We have

Locid(I'y- 1) = Locid(TgyLl : p € Y'Y C Locid{g(q) : q € V).
We have Z C Y’ by minimality of q, hence I'z1 € Locid(I'y-1). Then the above exact triangle implies
Pyl e Locid{g(p) : p € Y). We deduce that even q € Y': a contradiction. O

Now suppose S is the complement of a Thomason subset of X. By Remark we have t =& Lgl ®t,
hence it suffices to prove the claim for Lg1.



Remark 3.4. Let Z C X be the complement of a Thomason subset. We can form the localization adjunction
L:T = LzT :j. We observe that L is a geometric morphism in the sense of [2] Terminology 13.1]: in this
case f* =L and f. =j.

In [I, Rmk. 1.23] it is explained that Spc(L) induces the identification of Spc(LzT¢) with the subspace
Z CX.

For p € Z we denote by k(p) the idempotent of [I Def. 2.7] formed in the category Lz T, to distinguish it
from g(p) the idempotent associated to the same Balmer prime in the starting category 7. It is immediate
from [2l Rmk. 13.7] that x(p) = L(g(p)).

Suppose that for an object u € Lz7T we showed

u € Locid{k(p) @ u : p € A)
for an arbitrary subset A C Z. Then we can use [2, (13.4)] to deduce
ju € Locid(g(p) @ ju : p € A).

Proposition 3.5. Suppose S C X is the complement of a Thomason subset. Then Lgl satisfies the local-
to-global principle.

Proof. We can consider Lg1 as an object of the localized category LgT. Since Spc(LgT¢) 22 S is noetherian
we can use [I, Thm. 3.21] to show

Ls1 € Locid{Lsg(p) : p € S).
Now Remark [34] allows us to conclude

Ls1 € Locid{g(p) : p € S).

4. NOETHERIAN SUPPORT: THE GENERAL CASE

We now deal with the general case. Our strategy will be to construct a filtration of S by defining on it
a Krull dimension function. Using this filtration we can prove the local-to-global principle by arguing by
transfinite induction.

We will need later the following result

Proposition 4.1. Let K C W be a quasi-compact subset of a generic spectral space, then
K' =Gen(K)={weW:3keK ke {w}
Proof. This is an immediate consequence of [4, Thm. 4.1.5]. O

We will need an adaptation of the notion of Krull dimension in the sense of [10, Def. 4.1] which can be
defined on noetherian spectral spaces.

Definition 4.2. Let K be a noetherian Tj space. We denote by Ord the class of all ordinals. We define a
function
dimg: K — Ord

by transfinite recursion.

Given k € K we set dimg (k) = 0 if and only if {k} is closed in K. We denote by K<q the subset of these
points and by K~q its complement.

Let a4 1 be the successor of the ordinal number a and suppose we already defined K<, the subset of K
given by the points of dimension lesser or equal to a. We define K+, as the complement of K<, then we
say that a point k € K has dimension « + 1 if and only if k € K<, and {k} is closed in K~,.

If A is a limit ordinal we do not assign dimension A to any element of K. Consequently, we define
KS)\ g Ua<>\ KSQ.

We name this function the (Krull) dimension function on K. We call the (Krull) dimension of K the
least ordinal «v such that K = K<,.

If the ambient space is clear from the context, we drop it from the subscript and write the dimension
function just dim.



Remark 4.3. While Definition is exactly the same of the Krull dimension of [10, Def. 4.1], we cannot
immediately deduce that it is well defined from the results of [I0] because we are not assuming the base
space to be spectral. We observe that by [4, Cor. 8.1.7] a noetherian Ty space is spectral if and only if it is
sober.

Lemma 4.4. Let K be a noetherian Ty space. The dimension function on K of Definition[]-2 is well defined.

Proof. We define the following relation on the elements of K: we set x < y if and only if x € m The Ty
assumption implies that this relation is a partial ordering.

Since K is noetherian we have that it has minimal elements with respect to this order: otherwise we have
a descending sequence of distinct elements k1 > ko > ks > ..., but this would imply that the sequence of
closed subsets

{kr} 2 {ka} 2 {ks} 2 ...

does not stabilize. This is a contradiction with the noetherianity of K.

By definition, these minimal points have dimension 0 and they form the subset K<o.

Now let & be an ordinal and assume that K<, has been defined. We set K+, = K \ K<,. Since it is a
subset of K even this is noetherian and Tj. Using the argument of before, it admits minimal elements with
respect to the partial order: these elements by definition are the elements of dimension o + 1 of K. We set
K<o+41 as the union of K<, and the set of this elements.

If we defined K<, for any a < A with A a limit ordinal, we set K<x =, K<a-

Now we have to show that any element of K has a dimension assigned. Suppose we have z € K with
dim(x) not defined. Then we can define the following subset {k € K : k < x, dim(k) not defined}. As
before, noetherianity implies this subspace has a minimal element. Therefore, without loss of generality we
can assume dim(k) is defined for all k£ < z.

If there are no elements of K such that £ < z it follows = is a minimal point, hence it has dimension 0.
If instead there are elements different from x contained in the closure of {2} we can verify that dim(z) =
supy,dim(k) + 1. Therefore, the function dim: K — Ord is well defined.

We conclude by noticing that, once established each point of K has a dimension assigned, the existence
of a dimension for the whole K follows from the fact that K is a set and the class of ordinals is well-ordered.
Thus there exists a minimal ordinal ¢ such that K<s = K. O

Remark 4.5. Since S C X is a noetherian subset of a spectral space, it satisfies the assumptions of
Lemma [£4] hence the Krull dimension function is defined on it.

By its very definition, the Krull dimension of Definition satisfies the properties (i), (ii) and (iii) of
[10, Def. 3.1]. However, since we are not considering a noetherian space which is necessarily spectral, this
dimension function will not be spectral in the sense of [10, Def. 3.1]. That is, we are not guaranteed that
S<q will be a Thomason subspace of S. More importantly, even if S were a spectral subspace of X (i.e. a
proconstructible subspace, see [10, Prop. 2.5]) we cannot guarantee that S<, are Thomason subsets of the
ambient space X.

Nevertheless, we will remedy that by constructing appropriate Thomason subsets using Proposition 11

Example 4.6. If K is a noetherian spectral space then its dimension is a successor ordinal. By [4]
Thm. 8.1.11 (ix)] the space K has finitely many irreducible components. Since K is sober it follows that each
one of such components is the closure of a point, which is clearly maximal with respect to the specialization
ordering.

By the properties defining spectral dimensions ([I0, Def. 3.1]) it follows that the dimension of K coincides
with the maximum of the dimensions of these maximal points. But by definition the dimension of one point
is a successor ordinal, thus their maximum must also be a successor ordinal.

If instead K were not spectral, it could happen its dimension is a limit ordinal. We provide an explicit
example. Consider the spectral space (w + 1)V, the dual of the linearly ordered set w + 1 endowed with the
coarse lower topology (4, A.8 (ii)]). This has a basis of open quasi-compact subsets given by {y € w + 1 :
y > x} for x ranging among all the elements of w + 1. It follows easily that y € m if and only if y < z and
the space (w4 1)V is noetherian.



We can consider its subspace 2N given by the ordinal numbers which are even natural numbers. This
is a noetherian subspace of a spectral space and it is easy to see that dimay(2n) = n. It follows that the
dimension of 2N is w.

Importantly, we observe that (2N)<; is a Thomason subset of (w + 1) only for the starting case i = 0.

Theorem 4.7. Let Supp(t) C Spc(T€) be a noetherian subset, then the local-to-global principle holds for
teT.

Proof. We first observe that since S is noetherian, each of its subsets is quasi-compact. Thus by Proposi-
tion D] we have S° = Gen(S) and similarly for any ordinal o we have S>av = Gen(Ssq)-
We prove by induction that for every ordinal a the following inclusion holds

LGen(8a)et € Locid(t @ g(p) : p € S<a).

Taking « to be the dimension of S allows us to conclude.

We begin with the starting case & = 0. By Remark it follows t = ¢ ® Lgen(s)1, hence we can consider
Cgen(s=0)e Laen(s)t- This can be interpreted as an object of the the localized category Lgen(s)7T whose Balmer
spectrum coincides with Gen(S). Observe that the minimal points of Gen(S) are given by the elements of S<g.
Since these points are closed and contained in a noetherian subset it follows they are visible (Corollary B2)),
thus S<¢ is a Thomason subset of Gen(S). Hence we have I'gen(s. )c Lgen(s)t = [s_,t, where I's_, refers to
the colocalization in the category Lgen(s)7T - By the case when S is Thomason (Proposition B.3), we deduce
[s_yt € Locid(Lgen(s)g(p) @t : p € S<o). Now Remark 3.4] implies

LGen($20)ct € Locid(t @ g(p) : p € S<o).
We now argue how to prove the claim for o + 1, assuming it has been showed for . We invoke the exact
triangle
Faen(ssa)et = Daen(Ssar1)et = Laen(Ssa)l Gen(Ssas1)ct = 2l Gen(Ss0)et

We consider Lgen(s..)'Gen(Soa 1)t @s an object of the localization Lgen(s..)7- We observe that the
minimal elements of Gen(Ss,) coincide with the points of S<q+1 N S>. Again these points are closed
and contained in a noetherian subset, hence they are visible by Corollary and we deduce S<q+1 M Ssq
is a Thomason subset of Gen(S~,). It follows we have Lgen(s. )l 'Gen(ssa1)et = I's_. ins..t, Where the
last functor refers to the colocalization in the category Lgen(s.,)7- By the case with Thomason support
(Proposition B3]) we have

Ls_,,1nss.t € Locid(Lgen(s. ,)9(p) @t : p € S<at1 N Sxa)
which implies by Remark [3.4]

LGen(S>a)FGen(S>a+1)Ct S LOCid<g(p) QRt:pe Sga+1 N S>a>.

Recalling the previous exact triangle, this inclusion together with the one coming from the induction as-
sumption imply
LGen(Ssayii)et € Locid(t ® g(p) : p € S<at1).

We now prove the claim for a limit ordinal A, assuming it has been proved for all ordinals o < A.
Using an adaptation of [10, Lemma 3.8], exchanging the subspaces X<, in the reference for the subspaces
Gen(Ss, )¢ employed here, we have

FGcn(S>>\)Ct = ho_h}m FGcn(S>Q)Ct
a<

and the inductive assumption easily implies

ho_li)ml"c;cn(sw)ct € Locid<t ®g(p):pe U Sga>
a< a<A

but since there are no points of S with dimension exactly A it follows that this last localizing ideal coincides
with Locid(t ® g(p) : p € S<i). a



5. SCATTERED SUPPORT IN A PROFINITE BALMER SPECTRUM

The nature of [2, Question 21.8] was to weaken the assumption guaranteeing the local-to-global principle
to just the support of the examined object. We apply this reasoning to [I0, Thm. 5.6] and prove that if the
Balmer spectrum X is profinite and the support S is scattered then the local-to-global principle holds for ¢.

Remark 5.1. By [4, Thm. 1.3.4] and [4, Prop. 1.3.20] for a spectral space the following conditions are
equivalent:

(i) it is a profinite space (also said Boolean or Stone space);

(ii) it is Hausdorff;

(i) it is Th;

(iv) it has the constructible topology.

Remark 5.2. We will adopt the notation of [4, §4.3] regarding Cantor-Bendixon derivatives and the defini-
tions of scattered and perfect spaces.

We warn the reader that in this convention a perfect space is a space with no isolated points. A different
choice, often found in the literature, is to call a space with no isolated points by dense-in-itself and to use
perfect to denote the closed dense-in-itself subset of a space, which coincides with the maximal dense-in-itself
subset of the space.

We start by providing a crucial lemma regarding the topology of the Balmer spectrum. Since X has the
constructible topology its open subsets coincide with the Thomason subsets. As in [I0, Def. 5.1], for an
ordinal o and a scattered set C' we set C<,, to be the subset of C' given by the points with Cantor-Bendixon
rank lesser or equal to a.

Lemma 5.3. Let W be a T space and C' C W a scattered subspace. Then for any ordinal o we have that
C\ C<q

is a closed subset of W. Alternatively, C<,, is an open subset of C.
As a consequence, C<qoi1 \ C<q is an open discrete subset of C'\ C<,.

Proof. We work by transfinite induction on a. We first show that C<q is open in C. By definition, for any
w € C<p there is an open subset U of C such that UNC = {w}. Since W is a T} space, the singleton {w} is
closed, hence U N {w}¢ is an open subset contained in C'\ C. But because C is dense in C, the set difference
C'\ C has empty interior. We deduce U = {w}, consequently C<q is an open discrete subset of C.

Now suppose we dealt the case C<,,. We work in the subspace C'\ C<,. We observe that C'\ C<,, is dense
in C'\ C<,. Indeed, their difference coincides with

(C\C<a)\ (C\C<a) =C\C
which as empty interior since C' is dense in C. Arguing as in the previous case, we have that C<o11 \ C<a
is an open discrete subset of 6\ C<q. Thus
(6 \ Oéa) \ (CSaJrl \ Oéa) =C \ O§a+1

is a closed subset of C, hence it is also closed in W.
If o= A is a limit ordinal we have that C<x = [Js_, C<p and consequently

C\C<x=[)C\Css.
B<A
Being this an intersection of closed subsets, it is a closed subset of W. O

Theorem 5.4. Assume Spc(T°) is a profinite space. Let Supp(t) C Spc(T¢) be a scattered subset, then the
local-to-global principle holds for t € T.

Proof. Using Remark [3.4] it is enough to show the local-to-global principle holds for Lgt in the category
LsT.
We prove by transfinite induction that for any ordinal « it holds

Is_, Lgt € Locid(t ® g(p) : p € S<a),
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where I's_ denotes the colocalization functor associated with (Lg7)§_ . This exists since Lemma 53]

implies that S<, is a Thomason subset of the profinite Balmer spectrum S 2 Spc(LgT°).
If & = 0, S<p is an open and discrete subset of S. Hence, we can use the argument of [10, Lemma 3.13]
to prove that we have a decomposition

Ts st [[ DIzt J] t@ab)
peES<o pES<o

and the claim immediately follows.
Now suppose the claim has been verified for an ordinal «, we show it must follow for the successor o + 1.
We invoke the exact triangle

FsgaLgt — FSSaJrngt — L?\Sgarsga+1L§t — EFSSaLgt.

If we prove the local-to-global principle holds for Lg\ 5. Uscqy gt we are done. Again, we can use Re-
mark[3.4]to reduce to showing the principle for this object as an object of the localizing subcategory Lg\ 5o T.
In this category, we have an isomorphism -

L?\SSQFSgaHL?t = F55a+1\55aL§\S§at
where on the right hand side we are invoking the colocalization functor associated with S<q11 \ S<o which
is a Thomason subset of S\ S<, by Lemma[5.3l To be more precise, S<q+1\ S<q is an open discrete subset
of the profinite Balmer spectrum S\ S<, = Spc(Lg\S<aTc), hence we can argue as in the case a = 0 to
obtain a decomposition -
FS§a+1\S§aL§\SSQt = H t® g(p).
pPES<ati\S<a
Finally, we consider the case when « is a limit ordinal A. We can adapt the argument of [10, Lemma 3.8],
exchanging the subspaces X<, in the reference for the subspaces S<s used here, to obtain the isomorphism

Ts., Lst = holim s, Lgt.
B<A

Now the claim easily follows from the inductive assumption: the fact that I's_, Lgt € Locid(t®@g(p) : p € S<p)
for all ordinals 5 < A implies

s, Lgt € Locid<t ®gp):pe U S§ﬂ> = Locid(t ® g(p) : p € S<i)-
B<A

The claim taken for o equal to the Cantor-Bendixon rank of S is the local-to-global principle for Lgt. [

Example 5.5. Suppose that 7 does not satisfy the local-to-global principle. By [2 Thm. 6.4], this is
equivalent to the subcategory
Locid(g(p) : p € X)*
not being zero. If X is profinite, we claim that the support of any non zero object of such subcategory must
be a perfect subspace of the Balmer spectrum.
Indeed, let ¢ be one of such objects with S = Supp(t) and assume the Cantor-Bendixon derivative 45 is
a proper subset of S. Then we can repeat the argument of Theorem [5.4] to obtain the exact triangle

[T smet—st-ige == [] swet
pES<o pES<o
By the definition of ¢, the first morphism must be trivial, hence the triangle splits giving us
Ly t=te [ s et
pES<o

Observe that for any p € S<q, this prime belongs to the support of the object on the right hand side, while
it does not belong to the support of the object on the left hand side. This is an absurd, hence we conclude

S =45.



6. INJECTIVE SUPERDECOMPOSABLE MODULES OVER NON SEMI-ARTINIAN ABSOLUTELY FLAT RINGS

In this last section, we apply Theorem [5.4] to the study of the support of injective superdecomposable
modules over non semi-artinian absolutely flat rings. We refer the reader to [9] for the importance these
objects have in the theory of tensor triangular geometry: they provide examples of objects not satisfying the
local-to-global principle.

From now on, all rings which we consider will be unital and commutative.

Let R be an absolutely flat ring which is not semi-artinian. In [0, Thm. 4.7] it is proved that any injective
superdecomposable R-module is right orthogonal to the idempotents g(p). Therefore, Example implies
that its support must be a perfect subset of Spc(D(R)¢).

We will present an injective superdecomposable R-module whose support coincides with the maximal
perfect subset of Spc(D(R)®).

Before starting, we recall some basic facts which we will use through this section:

(a) as consequence of [ITl Thm. 4.1], there is a homeomorphism between the Zariski spectrum Spec(A)
of the ring A and the Balmer spectrum Spc(D(A)¢) given by

Spec(A) = Spc(D(A))
P—p={MeD(A)°: Mp ~0}

where Mp denotes the localization at the prime ideal P.

In the case of a general ring, one should be careful because this map is inclusion reversing.
However, in the case of absolutely flat rings there are no proper inclusion of prime ideals. Under
this identification we denote X = Spec(R) for the absolutely flat, non semi-artinian ring R we are
considering.

(b) For an absolutely flat ring A, given a generic element a € A it is possible to concoct an idempotent
element a’ € A such that (a) = (a’). Thus, all the principal ideals of A are generated by idempotents.
See [7, Lemma 2].

(c) Given an ideal T C A of an absolutely flat ring, the quotient A/I is also absolutely flat. This
guarantees that all the rings we will construct later will remain absolutely flat.

Lemma 6.1. Let A be an absolutely flat ring. Then there is a bijection
{non-zero minimal ideals of A} <+ {isolated points of Spec(A)}.

Proof. Suppose we start with a simple ideal I, this can be written as (a) for an idempotent element a € A.
Thus 1—a is the orthogonal idempotent, we set J = (1—a) and claim this is a maximal ideal. By construction
we have A = I + J, now we show I NJ = 0. An element of I N J can be written as z = Aa = p(1 — a), but
using the fact that a is idempotent we have © = ax = pa(l — a) = 0. Hence we proved A =1 J.

We now show J is maximal. Suppose we have J C M for another ideal M, then taking the intersection
of M with A we get M = IM & JM. Since J C M it must follow IM # 0, thus there exists x € M such
that ax # 0. By minimality of I it follows (a) = (ax) hence IM = I. We have both a and 1 — a belong to
M, thus M = A. This shows J must be a maximal ideal.

By construction, we have J € U(a). If we prove U(a) = {J} this proves the prime is isolated in the
Zariski spectrum. Let M be a maximal ideal different from J. My taking the intersection of M with the
decomposition A =1@J weget M =IM ®JM, if IM =0 we deduce M C J contradicting the maximality
of M. Hence IM # 0, this mean there exists x € M with axz # 0. By minimality of I = (a), we deduce
(a) = (ax) € M, thus M € V(a). Therefore the only prime ideal in U(a) is J.

Suppose now we start from P an isolated prime ideal. The Zariski spectrum has a basis given by U(z) for
x € A. Since U(z) NU(y) = U(zy), we have that P is isolated iff {P} = U(a) for some a € A. Since U(a)
depends only on the ideal generated by a and A is absolutely flat, we can assume a is idempotent. Observe
that R = (a) ® (1 — a) as before. Moreover, a(1 —a) =0 € P and P being prime implies 1 —a € P. Thus
(1—a)CP.

We now prove (a) NP = 0. First observe that for any maximal ideal M different from P it holds (a) C M.
Indeed, if U(a) = {P} then V(a) = {M € Spec(A) : M # P}. Therefore, we have

(@c (| M
M#P
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and it follows
@nPc () M.
MeSpec(A)

But the intersection of all prime ideals coincides with the nilradical of A, this ring is reduced being absolutely
flat hence the nilradical is 0. We conclude (a) N P = 0.

Thus (1 —a) = P, since Vp € P we have p = pa + p(1 — a) = p(1 — a). From the maximality of P it
follows (a) is minimal. Indeed, suppose I C (a) is not zero, then P + I is an ideal of A which is strictly
bigger than P, thus I + P = A. It follows ¢« € I + P, i.e. a = ax + p with ax € I and p € P. But

a=a®=a’z + ap = azx € I and we conclude I = (a). Thus (a) is non-zero minimal. 0

We give the following notation for the socle filtration of modules over a ring. It is not the standard one,
but it will be useful for our purpose.

Definition 6.2. Let B be an arbitrary ring and let M be a B-module. We set sM to be the socle of M.
Recall that the socle is defined to be the sum of all simple submodules of the module in question. We set
soM =0 and s M = sM. Now we define recursively s, M, a submodule of M, for every ordinal a.

Suppose we defined s, M, then we set s4+1M to be the submodule of M such that sq+1M/sqM is the
socle of M/sqaM. Le. sq11M/saM = s(M/saM).

If A is a limit ordinal, then we set sxM = J,.y sa M.

This sequence of submodules is called Loewy series of M. The Loewy length of M is defined to be the
minimal ordinal § such that ssM = M, if such an ordinal exists.

The ring B being semi-artinian is equivalent to the existence of the Loewy length for B, considered as
B-module.

Lemma 6.3. Let A be an absolutely flat ring. Then we have
Spec(A/sA) = {P € Spec(A) : sA C P} = §Spec(A).

Proof. We have to show that sA C P iff P is not isolated in Spec(A).

Suppose we have P an isolated prime. Then in Lemma we saw there is a decomposition A = P& [
with I a simple module. Since I C sA it follows sA & P.

Now suppose the prime P does not contain sA. By definition, sA =), simple I hence there must exit a
simple module I such that I Z P. In Lemma [6.1] we saw that I = (a) with a € A idempotent and there is a
decomposition A = (a) & (1 —a). Again P = (1 — a) and {P} = U(a), thus P is isolated. O

This result allows us to produce a correspondence between Loewy series and Cantor-Bendixon derivatives.
Proposition 6.4. Let A be an absolutely flat ring. Then for any ordinal o we have
Spec(A/sqA) =2 6“Spec(A).

Proof. The argument is a basic transfinite induction, using Lemma [6.3]
If @ = 0 the claim is trivial. Suppose we showed the claim for a general ordinal . Then we have

5°T1Spec(A) = §6“Spec(A) = dSpec(A/s, A) =
= Spec((A/SQA)/(SQHA/SQA)) 2 Spec(A/sq4+14)

where the second equality comes from the induction assumption, the third relies on Lemma and the
definition of s441A.

Now suppose A is a limit ordinal. By definition 6*Spec(A4) = (N, ., 0*Spec(A), using the inductive
assumption we deduce 6*Spec(A4) =, ., Spec(A4/sqaA). Observe that the filtration

0=50ACs51AC - CsqAC5441AC---CTspAC...
induces the sequence of embeddings of spectral spaces
Spec(A) <= Spec(A/s1A) += -+ += Spec(A/sqA) += Spec(A/sq414) <= -+ <> Spec(A/s A) « ...

and recall we have the identification Spec(A/sqA) = {P € Spec(A) : s A C P}.
10



We conclude

m Spec(A/sqA) = {P € Spec(A) : sAC PVa <A} = {P € Spec(4) : U sa A C P} =
a< a<
= {P € Spec(A) : sxA C P} = Spec(A4/s)A).

The immediate consequence of this result is the following;:
Corollary 6.5. Let A be an absolutely flat ring. Then it is semi-artinian if and only if Spec(A) is scattered.

To conclude the correspondence between the Loewy series of an absolutely flat ring A and the topology
of its Zariski spectrum, we provide an explicit description of s, A in terms of the prime ideals filtered by the
Cantor-Bendixon rank.

Lemma 6.6. Let A be an absolutely flat ring. Then we have

SA = ﬂ P.
PeéSpec(A)
Proof. We first prove that @ € Spec(A4) is not isolated if and only if ﬂpeéspeC(A) PCQ.

For the non-trivial implication we need to show @ isolated implies [ 5Spec(A) PZQ.

Given @ € Spec(A) an isolated prime, we set I € A to be non-zero minimal ideal of A associated to @ by
the correspondence of Lemma Observe that for a prime ideal P # @ we have I N P is either 0 or I, by
the minimality of I. If this intersection were 0, it would follow that P C @, which is an absurd since P is
maximal. We conclude PNI=1,ie. I C P.

Varying P among all elements of dSpec(A) we deduce I C mPeéSpcc(A) P. If it held mPeéSpcc(A) PCQ
we would get I C @, an absurd since A = Q ® I by construction.

This equivalence together with Lemma[6.3 implies that the subsets of Spec(A) given by V' ( ﬂpeéspec(m P)
and V(sA) coincide. This means that the radicals of the ideals (. sspec(a) I and sA coincide, but since A
is absolutely flat all ideals are radical. This proves the claim. O

Proposition 6.7. Let A be an absolutely flat ring. Then for any ordinal o it holds
Sa A = ﬂ P.
Peé>Spec(A)

Proof. We argue by transfinite induction on a.
If o = 0 we have s9A = 0 by definition, while (Vps05,0ca P = [pespeca - But the intersection of all
maximal ideals of a ring coincides with the nilradical, in our case A is reduced hence its nilradical is zero.
The case a = 1 is Lemma [6.6]
Now suppose the claim has been proved up to an ordinal «, then we show the claim is true for a + 1.
Applying Lemma [6.6] to the ring A/s, A we obtain

Sa+14/30A = s(A/saR) = ﬂ Q.
Q€edSpec(A/saA)
Under the identification of Proposition [6.4] this set can be described as
ﬂ Q= ﬂ P/s,A.
QedSpec(A/sa A) Peéat1Spec(A)

Observe it holds the inclusion

( ﬂ P) /SaA C ﬂ P/saA = sat14/5,A.
(A4)

Pes>t1Spec Pes>t1Spec(A)
However, a priori the first inclusion could be proper, hence we can only deduce ﬂpeéaﬂspec(m P C sq11A.
Observe that the equality
Sa+14/50A = m P/sq A

Peéot1Spec(A)
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implies sq411A4/504 C P/saA for all P € §2T1Spec(A), thus sa+1A C P. This gives us the inverse inclusion
Sat1A C ﬂP€5a+1SpCC(A) P and we conclude these two ideals coincide.

Let A be a limit ordinal and suppose we showed the claim for all a < A. By definition sxA4 = J, ., sa4
and we have saA = (\pesagpec(a) - Observe that for 8 < v we have the inclusion (\pessgpecia) P
Mpessspec(a) P Thus, it follows that

UsaA=U< N P)zli_r)n N P= N r= (1 P

a<A a<A \ Ped>Spec(A) a<) P€s>Spec(A) PeN, 5 0%Spec(A) Peé>Spec(A)

This concludes the induction argument. 0

Corollary 6.8. Let R be an absolutely flat ring which is not semi-artinian. Let o be the minimal ordinal
such that so R stabilizes. Hence the ring R/ (\pcso x P is an absolutely flat ring with trivial socle and its
Zariski spectrum corresponds to the maximal perfect subspace of X.

Proof. We have just to put together the results proved above. Proposition 6.7 states that s, R = [ pcgo x P
and Proposition tells us that Spec(R/s,R) coincides with 6°X. Since s,R = s,+1R we have 67X =
51X, hence this subspace coincides with the maximal perfect subset of X. Since the spectrum of R/s, R
has no isolated points Lemma [6.1] implies that this ring has no minimal non-zero ideals. O

Example 6.9. Let k be any field and set R = [[ k which is an absolutely flat ring. In this case Spec(R) is
homeomorphic to SN, the Stone-Cech compactification of the natural numbers. This space can be subdivided
in its set of isolated points, corresponding to the principal ultrafilters on N, and its maximal perfect subset,
given by the non-principal ultrafilters.

For i € N, we set e; to be the element of R with entry 1 at its i-th coordinate and 0 otherwise. Then
(1 — e;) is the isolated prime ideal corresponding to the principal ultrafilter induced by i. We have a
decomposition R = (1 — ¢;) ® (e;) as in Lemma [6I It follows s; R = @;(e;) = >k, coherently with the
usual computations in the literature. The direct sum being the intersection of the prime ideals associated
to the non-principal ultrafilters corresponds to the known fact that the cofinite filter coindices with the
intersection of all non-principal ultrafilters.

In this situation, the ring invoked in Corollary [6.8is [y %/ >y k which is known to have trivial socle.

We are finally ready to construct the injective superdecomposable module we wanted.

Theorem 6.10. Let R be an absolutely flat ring which is not semi-artinian. Let o be the minimal ordinal
such that s, R stabilizes. Let E denote the injective hull of R/ (\pesox P. Then E is an injective superde-
composable module and as an element of D(R) its support coincides with 67 X, the maximal perfect subset of
X.

Proof. We first show F is superdecomposable. By [5, Lemma 5.14] this is equivalent to proving that R/s, R
does not admit uniform submodules, i.e. for any non-zero ideal I C R/s,R there exist non-zero ideals
Jl, J2 g I such that Jl n J2 =0.

Let us consider a generic non-zero ideal I and take ¢ € I\ {0,1}. Since we are interested only in the
associated principal ideal (i) C I we can assume ¢ is idempotent. Using the orthogonal idempotent 1 — i we
obtain the decomposition R/s,R = (i) ® (1 —1).

First consider the case (1 —4)NI = 0, which would imply I = (7). We showed in Corollary 6.8 that R/s, R
has no non-zero minimal ideals. Hence (i) must have a proper non-zero submodule, say (xi) C (i) where
again we can assume the element x to be idempotent. The fact that ix # ¢ implies (1 — x) # 0. Therefore,
(iz) and (i(1 — z)) provide two non-zero submodules of T with trivial intersection.

Now consider the case (1 — ) NI # 0, i.e. there exits some idempotent x such that (z(1 —¢)) C J and
(x(1 —14)) # 0. If it held i = 0, this would imply 0 # (z) C I. In this situation the ideals (z) and (i)
are non-zero submodules of I such that (i) N () = 0, just as we need. Thus, we assume xi # 0 and in this
instance (z7) and (2(1 — i)) are the non-zero submodules of I doing the job.

We finally show that Supp(F) = §°X. We recall two important facts about the tensor-triangulated
category D(R). First, since all R-modules are flat, the tensor product of modules is an exact functor, thus
the derived tensor product on D(R) coincides with the non-derived tensor product of chains. Second, since
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the spectrum X is T} we have that the idempotent g(P) associated to the prime P coincides with Lpl = Rp,
the localization at P. Furthermore, it is easy to prove that the localization morphism R — Rp is surjective
and its kernel coincides with P, thus we deduce g(P) = R/P.

We have that the support of the ring R/s, R coincides with 67 X. Indeed, for any prime @ € X we can
compute

R/s;R® g(Q) = R/se R® R/Q = R/(sc R+ Q).

Since s, R = (pegox P, if @ € 07X it follows s,R+ Q = Q and R/s,R ® g(Q) # 0. If instead Q ¢
67X, by Proposition 6.7 and Proposition 6.4l we have (\pcsox P ¢ Q. Thus Q + (\pesox P is an ideal
strictly containing the maximal ideal @), hence it must coincide with the whole ring R and consequently
R/s;R® g(Q) = 0.

If we tensor the inclusion R/s,R — FE with g(P) we still have an inclusion since g(P) is flat. Therefore,
it follows that Supp(R/ssR) C Supp(F). Example and [9) Thm. 4.7] give us the inverse inclusion
Supp(F) C 0°X and we conclude. O

Remark 6.11. One could wonder if the ring R/s, R is already injective, so that it is not necessary to form
its injective hull. Unfortunately, this seems too optimistic: if we consider R =[] k as in Example then
the main theorem of [§] implies that [[k/ > % is not an injective R-module.

Since this is one of the simplest examples of non semi-artinian absolutely flat rings, this should indicate
we should not expect R/s,R to be injective in general.
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