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A chaotic light source is characterized by the fact that many independent emitters radiate photons
with a random optical phase. This is similar compared to a tunnel junction where many independent
channels are able to emit photons due to a coupling to an electromagnetic environment. However, in
a recent experiment it has been observed that a tunnel junction can deviate from the expectation of
chaotic light and is able to emit strongly correlated, superbunched photons. Motivated by this, we
study the correlation of the radiation and show that the superbunching originates from the emission
of multiple photons which is possible due to the quantization of charge.

Introduction.—Electrons at low temperature that tra-
verse a constriction biased at a finite voltage V are able
to emit photons up to a frequency eV/ℏ due to a cou-
pling to an electromagnetic environment [1]. Microscopi-
cally, this radiation is emitted due to current fluctuations
arising from shot-noise caused by the partitioning at the
constriction [2]. For a quantum point contact, the elec-
tron transport is anti-bunched [3]. It has been shown
that for a single transport channel this correlation can
be transferred to the emitted photons [4–6]. The cor-
relation of the photons is encoded in the second-order
coherence [a(τ) the annihilation operator of a photon at
time τ ]

g(2)(τ) =
⟨a†(0)a†(τ)a(τ)a(0)⟩

⟨a†a⟩2
, (1)

describing the correlation between an initially emitted
photon and a photon at a later time τ , where g(2)(0) < 1
indicates anti-bunching [7].

However, due to their bosonic nature photons are typ-
ically bunched with g(2)(0) > 1. In fact, a broad class of
light sources emit so called ‘chaotic light ’ that exhibit the
special value of g(2)(0) = 2 [8]. Chaotic light is realized
in a situation where many independent emitters radiate
photons with random optical phases. At first sight, a
tunnel junction, i.e., a constriction with many channels
where all the transmission probabilities Dn ≪ 1, is ex-
pected to produce chaotic light [9, 10]. This is due to
the fact that the electron transport in different channels
are independent, the transmission of electrons is rare and
Poissonian, and the optical phase of the emitted radia-
tion is random. However, a recent experiment [11] has
shown that a tunnel junction can act as a source of highly
correlated light with g(2)(0) > 2, dubbed ‘superbunch-
ing ’ [12, 13]. Motivated by this result, we theoretically
study the correlation of the radiation emitted by a tunnel
junction.

Here, we show that a tunnel junction acts as a chaotic
light source only for weak light-matter interaction. At
stronger interaction, superbunching of photons is pre-
dicted by processes where a single electron emits a cas-
cade of multiple photons. On a fundamental level, the
emission of a cascade of photons originates from the

FIG. 1. The setup is composed of a voltage biased tunnel junc-
tion with transmission probabilities Dn ≪ 1 in series with a
microwave resonator that is capacitively coupled to a trans-
mission line for readout purposes. The microwave resonator
is at frequency Ω with characteristic impedance Z0. The vari-
able ϕ is the node flux describing the voltage (ℏ/e)ϕ̇ over the
resonator. The transmission line introduces damping; where
the photons are lost at rate γ into the detector.

quantization of charge making the transport of electrons
a point process [14, 15]. For a voltage V > nℏΩ/e, a
single electron is able to emit up to n photons in a sin-
gle event which is reflected in a large value of g(2)(0).
Note that cascade effects leading to bunching have been
studied before in the context of electron transport in
molecules [16–18]. Similar effects have been studied in
voltage biased Josephson junctions where a single Cooper
pair can emit multiple photons while tunneling [19–21].
Note, however, that in the superconducting context the
phase of the emitted photons is locked to the phase of the
superconducting condensate such that a superconducting
junction does not serve as a chaotic light source even at
weak light-matter interaction.

The article is organized as follows. We start by intro-
ducing the model and employ a Keldysh path integral
approach to take the interaction with an environment
into account. After expanding the action of the path in-
tegral in the tunnel limit Dn ≪ 1, we perform a rotating
wave approximation (RWA) and obtain a Lindblad mas-
ter equation that describes the non-unitary time evolu-
tion of the density matrix of the resonator. From this,
we determine the stationary state and the second-order
coherence. We show regimes where the second-order co-
herence exceeds the chaotic value of g(2)(0) = 2, discuss
the impact of temperature, and point out that the strong
correlations arise due to the quantization of charge.

The model.— We study the setup displayed in Fig. 1.
It consists of a resonator with the resonance frequency Ω
and the characteristic impedance Z0. The voltage across
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the resonator (ℏ/e)ϕ̇ is given by the time-derivative of
the node flux ϕ(t). Due to the capacitive coupling to a
readout transmission line, the photons are lost at a rate
γ. Close to the resonance frequency |ω − Ω| ≪ Ω, the
impedance Z(ω) of the resonator is given by

Z(ω) =
Z0Ω

γ − 2i(ω − Ω)
. (2)

The resonator is in series with a tunnel junction that
is biased with a DC voltage V . The junction is modelled
by a left (L) and right (R) electronic reservoir with the
Hamiltonian

H0 = −iℏ
∑
n

vn

∫
dx

(
ψ†
L,n∂xψL,n+ψ

†
R,n∂xψR,n

)
] ; (3)

here, vn denotes the velocity of the fermionic mode ψn(x)
of the n-th transport channel [22]. The leads are coupled
by the tunneling Hamiltonian

Ht =
∑
n

[
wne

iϕψ†
R,n(0)ψL,n(0) + H.c.

]
(4)

where the coupling wn is connected to the tunneling
probability Dn = |wn|2/(2πℏ2v2n) ≪ 1 [23]. Due to the
DC voltage bias, the electrons in the leads are distributed
as fL(ϵ) = f(ϵ − eV ) and fR(ϵ) = f(ϵ) with the Fermi-
Dirac distribution f(ϵ) = [exp(ϵ/kBT ) + 1]−1 at temper-
ature T with the Boltzmann constant kB . The factor
eiϕ in the tunneling Hamiltonian Ht is due to the finite-
voltage across the resonator.

We want to derive an effective description for ϕ describ-
ing the resonator mode by integrating over the electrons
with Hamiltonian He = H0 + Ht. For this, we employ
a Keldysh path-integral approach. The time evolution
e−iHetρeiHet of the density matrix ρ of the system is given
by

∫
D[ψ+,ψ−, ψ̄+, ψ̄−] exp(iSe); here the Keldysh la-

bel + [−] refers to the forward [backward] propagation
to the left [right] of the density matrix [24]. The action
Se = S0 + St consists of a lead part

S0 =
∑
n

∫
dt

∫
dx

(
Ψ̄L,n

Ψ̄R,n

)(
G−1

L,n 0

0 G−1
R,n

)(
ΨL,n

ΨR,n

)
(5)

where Ψj,n = (ψ
(1)
j,n, ψ

(2)
j,n) and ψ(1,2) = 1√

2
(ψ+ ± ψ−).

The matrices Gj,n are given by

Gj,n =

(
0 GA

j,n

GR
j,n GK

j,n

)
. (6)

In Fourier space fω,k =
∫
dt

∫
dxf(t, x)ei(ωt−kx), the re-

tarded [advanced] Greens function read G
R/A
j,n = (ℏω −

ℏvnk ± i0+)−1 and the Keldysh Greens function GK
j,n =

(GR
j,n−GA

j,n)[1−2fj(ℏω)]. The tunneling contribution is

given by St =
∫
dt(H−

t −H+
t ).

The action Se is quadratic in ψ and, thus, it is possi-
ble to perform the Gaussian integral over the fermionic
degrees of freedom to obtain an effective action for the
bosonic field ϕ [25]. Because the tunnel probabilities in
a tunnel junction are small, we expand the action in the
first non-vanishing order |wn| ≪ ℏvn. This yields the
tunneling action [23]

SD = i
D

2

∫
dω

2π
(ω + eV/ℏ)

[
Ūq
−ωU

c
ω − Ū c

−ωU
q
ω

+ coth

(
ℏω + eV

2kBT

)
Ūq
−ωU

q
ω

]
, (7)

where we have introduced the Keldysh rotated variables
Uq = eiϕ

+ − eiϕ
−
, U c = 1

2 (e
iϕ+

+ eiϕ
−
). All transmission

channels contribute independently to the action by the
total transmission probability D =

∑
nDn. It connects

to the DC current through the device via the Landauer
formula I = D(e2/h)V , i.e., the conductance is given
by De2/h. Note that the current through the tunnel
junction is Poissonian such that no intrinsic electronic
correlations can be transferred to the photons.
The last term of the action SD is due to the shot-noise

with the noise-power

S(ω) = D
∑
s=±

ω + seV/ℏ
2

coth

(
ℏω + seV

2kBT

)
. (8)

at frequency ω [3, 26, 27]. The origin is the granularity of
the electron charge, as realized by Schottky [28], which is
the vital ingredient that allows to produce superbunched
radiation, see below.
For the dynamics of the resonator, we assume a

large quality factor Ω ≫ γ which allows a RWA with
ϕ(t) = Re[φ(t)e−iΩt] where φ(t) = |φ(t)|eiθ(t) is a slowly
varying complex variable with phase θ(t). To perform
the RWA, we make use of the Jacobi-Anger expansion
eiϕ = ei|φ| cos(θ−Ωt) =

∑∞
n=−∞ inJn(|φ|)einθe−inΩt with

the Bessel functions of the first kind Jn(x). After the
RWA, it is possible to show [29] that the Keldysh action
is equivalent to a Lindblad master equation ρ̇ = LDρ
with the Liouvillian

LD = e−α
∞∑

n=1

αn

(n!)2

{
B(nΩ)J [b†n] +B(−nΩ)J [bn]

}
,

(9)
,dissipators J [L]ρ = LρL† − 1

2 (L
†Lρ + ρL†L), and α =

(e2/ℏ)Z0 describes the strength of the light-matter cou-
pling, see [30] for details. The rates B(Ω) = D(Ω +
eV/ℏ)nB(ℏΩ+ eV ) +D(Ω− eV/ℏ)nB(ℏΩ− eV ) depend
on the Bose-Einstein distribution nB(ϵ) = [exp(ϵ/kBT )−
1]−1 and describe the unsymmetrized shot-noise power,
connecting to (8) via S(Ω) = 1

2 [B(Ω) + B(−Ω)]. For
Ω > 0 [Ω < 0] they describe emission [absorption] of en-
ergy by the conductor [1, 31, 32]. At zero temperature,
B(nΩ) > 0 only if eV > nℏΩ. At finite temperature the
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rate can be non-zero also for eV < nℏΩ. But, this is
suppressed because B(nΩ) ∝ exp[−(nℏΩ− eV )/kBT ] in
this case. Note that in Refs. [33, 34], it has been shown
that over-bias emission of photons is also possible at zero
temperature. However, this is due to co-tunneling and
thus a higher-order process that scales with D2 [35].
The jump operators bn are given by (1F1 is the conflu-

ent hypergeometric function)

bn = n! :
Jn

(
2
√
αa†a

)
(αa†a)

n
2

an: = 1F1(−a†a;n+1;α)an (10)

where the colons denote normal ordering (all creation op-
erators a† to the left of the annihilation operators a). To
lowest order in the light-matter coupling α = (e2/ℏ)Z0,
the jump operators are given by bn = an and thus de-
scribe the creation [absorption] of n photons b†n [bn] in
the resonator by a cascade.

Besides the creation and annihilation of n photons, the
jump operators also include higher order dynamics due
to 1F1 that appear at elevated light-matter interaction
α. Physically, these corrections arise due to the backac-
tion of the resonator onto the tunnel junction when the
voltage across the resonator (ℏ/e)ϕ̇ becomes finite and
impacts the voltage across the junction. This backaction
can be exploited to achieve a single photon source with
g(2)(0) < 1[15, 36, 37]. Note, however, that due to the
chirality of quantum hall edge channels it is possible to
suppress the backaction such that bn = an for all α [38].
This is beneficiary for the oberservation of superbunch-
ing, see below.

The last ingredient of the modelling is the coupling of
the resonator to the detector with rate γ and at tem-
perature T . It leads to the absorption and emission of
photons given by the Liouvillian

LΩ = γ(n0 + 1)J [a] + γn0J [a†] (11)

with n0 = nB(ℏΩ), see e.g. [39]. The time-evolution
of the density matrix of the resonator is thus given by
L = LD + LΩ. It incorporates both the interaction of
the resonator with the tunnel junction and the detector.
Note that the phase of the emitted photons of the res-
onator is arbitrary which is due to the U(1)-symmetry of
the Liouvillian a 7→ aeiν [40]. In this sense, the system
consists of many independent sources given by the differ-
ent channels that emit radiation with a random optical
phase. Still, we will observe superbunching of the radia-
tion due to the fact that the electronic charge is granular.

Second-order coherence.—The second-order coherence
quantifies the correlation of photons. For chaotic light,
it can be shown that g(2)(0) = 2 [8]. Such light sources
include blackbody radiation and emission from an Ohmic
resistor, see below. We determine the value of the second-
order coherence for our system by solving for the sta-
tionary density matrix ρs, fulfilling ρ̇s = Lρs = 0.

The second-order coherence can then be obtained by
g(2)(0) = ⟨a†2a2⟩s/⟨a†a⟩2s with ⟨O⟩s = Tr(Oρs).

Results for the second-order coherence obtained by
a numerical simulation are shown in Fig. 2 for differ-
ent parameters. It can be seen that especially at low-
temperature, D small, and large voltages superbunched
radiation with g(2)(0) > 2 is produced. The smallness of
the transmission D is required such that the superbunch-
ing events are rare and separate in time. Additionally,
the light-matter interaction has to be sufficiently large
such that multi-photon processes are present at all [19].

We would like to obtain further analytical insights into
the superbunching effect. For the following, we concen-
trate on zero temperature (n0 = 0) and choose a voltage
with 2ℏΩ < eV < 3ℏΩ such that only one- and two-
photon cascade events corresponding to b†1, b

†
2 are rele-

vant. First, we focus on the one-photon dynamics. In
this situation, single photons are lost with a rate γ while
they are predominantely generated by the jump operator
b†1 with the rate γg = αe−αB(Ω) ≃ αe−αDΩ. For conve-
nience, we assume that αe−αD ≪ γ/Ω and α small which
is fulfilled in the relevant part of Fig. 2. In this regime,
we have that γg ≪ γ and thus the mean photon number
in the resonator n̄ = ⟨a†a⟩s = 1/(γ/γg − 1) ≈ γg/γ ≪ 1.
Additionally for small α, we have 1F1 ≈ 1 which yields
b†1 ≈ a† from (10). The approximate Liouvillian in this
case is given by L ≈ L1 = γJ [a] + γgJ [a†] which yields
the Gaussian contribution since it is quadratic in a and
a†. The stationary state is an effective thermal state
with average occupation n̄. Because of this, we have
g(2)(0) = 2 to this order. Note that the Liouvillian L1

is also obtained for the situation of an Ohmic resistor
when the discreteness of charge can be neglected such
that eiϕ 7→ 1 + iϕ. This shows that the superbunched
radiation is a property of the quantization of charge such
that a single electron emits a cascade of photons.

To obtain the cascade effect, we have to calculate the
next order correction in αe−αD ≪ γ/Ω. There are two
new contributions in this order. The first arises due to
the expansion of the hypergeometric function 1F1 in b†1 ≈
a†(1− 1

2αa
†a). The second process that is important to

this order is the two photon cascade described by b†2 ≈
a†2. As shown in [30], the average photon number in this
approximation is given by

⟨a†a⟩s ≈ n̄+
α2e−2αD2(eV − ℏΩ)2

ℏ2γ2
[
1− 2α+ 3κ

]
(12)

where κ = α(eV − 2ℏΩ)/(eV − ℏΩ). The higher order
terms originate from higher orders of the Gaussian con-
tribution n̄ = 1/(γ/γg −1) ≈ γg/γ+(γg/γ)

2, the nonlin-

earity of b†1 ≈ a†(1− 1
2αa

†a), and the two-photon cascade

process b†2.
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FIG. 2. Second-order coherence g(2)(0) as a function of the light-matter coupling α and conductance D for eV = 2.2ℏΩ (up to
2 photon process possible) in (a) and (b) and for eV = 4.2ℏΩ (up to 4 photon process possible) in (c) and (d); with γ = 0.1Ω
and n0 = 0.01 [n0 = 0.1] in (a),(c) [in (b),(d)]. The superbunched region is indicated in red. Note that in (c) values up to 5.8

are present (the colorbar is maxed out at 4 for better visibility). The black line in (a) indicates the transition line g(2)(0) = 2
at zero temperature; at finite temperature, the region of superbunching is larger. In general for larger voltages, both the region
of superbunching as well as the values of g(2)(0) are increased.

The second-order coherence is given by

g(2)(0) = 2− α(eV + 2ℏΩ)
2(1 + κ)3(eV − ℏΩ)

+
eαℏγ(eV − 2ℏΩ)

2D(1 + κ)2(eV − ℏΩ)2
,

(13)
see [30] for details. The first term [g(2)(0) = 2] arises
due to the chaotic Gaussian contribution L1 as described
above. At elevated α and due to the emission of a cas-
cade of photons, additional non-Gaussian contributions
appear. The second term, partially, stems form the back-
action expressed by the nonlinearity of the hypergeomet-
ric function of b†1 = a† 1F1(−a†a, 2, α). Note that it lowers
the second-order coherence and counteracts the observa-
tion of superbunching.

The superbunching in this parameter regime arises
due to the two-photon cascade effects described by b†2.
It yields a large positive contribution expressed in the
last term of (13) [41]. The cascade events scale with
g(2)(0) ∝ D−1 such that the superbunching effect is
strongest when the transmission events are separated
in time due to a small conductance. Then, the super-
bunched photons can be emitted by the resonator before
a new bunch is created. This fact remains true also at
voltages where higher order cascades are possible.

The superbunching persists to finite temperatures. In
this case, the divergence in the limit D → 0 is cured and
the systems occupies a thermal state with the average
occupation n0 and g(2)(0) = 2 [42]. At elevated con-
ductance D, the behavior (13) remains unchanged. For
small temperature, the superbunching is maximal at the
crossover scale with n0 = n̄ ≈ αe−αD(eV −ℏΩ)/ℏγ. As a
result, for the two-photon cascade with 2ℏΩ < eV < 3ℏΩ
a maximal value of g(2)(0) ≈ α(eV − 2ℏΩ)/[2n0(eV −
ℏΩ)] ≃ α/n0 can be found at D∗ ≈ ℏγn0/[αe−α(eV −
ℏΩ)].
The results obtained in this work can be measured in

setups, Fig. 1, operating at microwave frequencies that
are already available. Today’s experiments can achieve

resonators with a characteristic impedance Z0 ≈ 1 kΩ,
frequency Ω ≈ 33GHz, operated at temperatures T ≈
50mK [38]. This yields α ≈ 0.24 for the light-matter cou-
pling and an Bose-Einstein occupation of n0 ≈ 5× 10−3.
For these parameters at the optimal value D∗, we obtain
g(2)(0) ≈ 8 for the two-photon cascade. Note that our
findings provide insights into the intriguing experiment
of Ref. [11] which measured g(2)(0) ≈ 70 at optical fre-
quencies. For optical wavelengths, the zero temperature
result (13) is applicable which explains the large values of
the second-order coherence at smallD with g2(0) ∝ D−1.
Due to the absence of a cavity in Ref. [11], for an esti-
mate, we set γ ≃ Ω and obtain g(2)(0) ≃ 100 at the
experimental value D ≃ 10−3.

Conclusion.—To conclude, we have studied the corre-
lation of the emitted radiation by a tunnel junction. In-
tuitively, it is expected that the tunnel junction acts as a
chaotic light source because many independent channels
emit photons with a random optical phase. However, we
have shown that the quantization of charge yields non-
Gaussian dynamics and makes the emission of multiple
photons in a cascade during a single transmission event
possible. Because of this, the photons are highly cor-
related and superbunching with g(2)(0) > 2 can be ob-
served [11]. Additionally, we have analyzed the effect of
temperature on the correlation, studied the emission of
photon pairs analytically, and provided numerical results
for higher order processes. The correlations peaks at a
crossover between the thermal occupation of the envi-
ronment and the effective thermal state due to the tunnel
junction at D∗ = ℏγn0/[αe−α(eV −ℏΩ)]. While emitters
with g(2)(0) > 1 are typically considered as classical light
sources, we have shown that the strong correlations arise
due to quantum effects, in particular the quantization of
charge.
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SUPPLEMENTAL MATERIAL

Here, we show detailed calculations on how to obtain the results of this paper. In the first part of this
supplement, we demonstrate how to use Keldysh path integrals to obtain the tunnel action SD. Afterwards,
we perform the rotating wave approximation (RWA) to obtain the Liouvillian LD. Continuing form the
Liouvillian, we calculate the second-order coherence by determining the stationary state in the second part
of the supplement.

Tunneling action

In the following, we will show how to integrate out the fermionic degrees of freedom to obtain the tunneling action
SD given in Eq. (7) and further perform the rotating wave approximation (RWA) to arrive at the Liouvillian LD.
To keep the notation simple, we derive the action in the single channel case. However, the generalization to multiple
channels is straightforward. As stated in the main text, the action of the tunnel junction is given by Se = S0 + St

with

S0 =

∫
dt

∫
dx

(
Ψ̄L

Ψ̄R

)(
G−1

L 0
0 G−1

R

)
︸ ︷︷ ︸

Ŝ0

(
ΨL

ΨR

)
(S1)

where Ψj = (ψ
(1)
j , ψ

(2)
j ) and ψ(1,2) = 1√

2
(ψ+ ± ψ−). The matrices Gj are given by

Gj =

(
0 GA

GR GK
j

)
(S2)

with the retarded (advanced) Greens function GR/A = (ℏω − ℏvk ± i0+)−1 and the Keldysh Greens function GK
j =

(GR − GA)[1 − 2fj(ℏω)], in Fourier space fω,k =
∫
dt

∫
dxf(t, x)ei(ωt−kx). The electron distribution in each lead is

given by fL(ℏω) = f(ℏω − eV ) and fR(ℏω) = f(ℏω) with the Fermi-Dirac distribution f(ϵ) = [exp(ϵ/kBT ) + 1]−1.
The tunneling contribution is given by St =

∫
dt[H−

1 −H+
1 ]. More explicitly,

St =

∫
dt

(
Ψ̄L

Ψ̄R

)(
0 W †(t)

W (t) 0

)
︸ ︷︷ ︸

Ŝ1

(
ΨL

ΨR

)
(S3)

where

W = −w
(
U c 1

2U
q

1
2U

q U c

)
(S4)

with the Keldysh rotated fields Uq = eiϕ
+ − eiϕ

−
and U c = (eiϕ

+

+ eiϕ
−
)/2. Now, we integrate out the fermionic

fields and obtain
∫
D[ψ1, ψ2, ψ̄1, ψ̄2]e

iSe = eTr ln(iŜe) with Tr =
∫
dx

∫
dt tr and tr the matrix trace. Expanding the

action to quadratic order in |w| ≪ ℏv yields

SD = i|w|2
∫
dt

∫
dt′

∫
dx

∫
dx′

1

2
Ū c(t)Uq(t′)A(t− t′, x, x′)+ 1

2
Ūq(t)U c(t′)B(t− t′, x, x′)+ 1

4
Ūq(t)Uq(t′)C(t− t′, x, x′)

(S5)
where we keep t > t′ without loss of generality and the Ū c(t)U c(t′) contribution vanishes due to trace preservation, see
e.g. [29]. In the following we will compute the different contributions A, B and C. To do so, we move into Fourier space
with fω,k =

∫
dt

∫
dxf(t, x)ei(ωt−kx) and make use of the convolution theorem hω = fωgω for h(x) =

∫
dyf(y)g(x−y).

We keep track of the Keldysh Greens functions GK
j = (GR −GA)[1 − 2fj(ϵ)] of the left and right lead because they

depend on the fermionic distribution in the respective leads. The retarded and advanced Greens functions are given
by GR/A = (ℏω − ℏvk ± i0+)−1 independent of the lead.

To determine A, B, and C, we make use of
∫
dω′GR(−ω′)GR(ω − ω′) =

∫
dω′GA(−ω′)GA(ω − ω′) = 0 and∫

dk
∫
dk′GR(k′)GA(k) = 2π2

ℏ2v2 . The first contribution A is evaluated by

Aω =
1

8π3

∫
dω′

∫
dk

∫
dk′GR(−ω′, k′)GK

R (ω − ω′, k) +GK
L (−ω′, k′)GA(ω − ω′, k′). (S6)
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Employing the identities from above and 1−2f(ϵ) = tanh(ϵ/2kBT ), we obtain Aω = −(ℏω+eV )/(2π2ℏ2v2). Similarly

Bω =
1

8π3

∫
dω′

∫
dk

∫
dk′GK

L (−ω′, k′)GR(ω − ω′, k) +GA(−ω′, k′)GK
R (ω − ω′, k) = −Aω. (S7)

The last contribution of the action is given by

Cω =
1

8π3

∫
dω′

∫
dk

∫
dk′GK

L (−ω′, k′)GK
R (ω−ω′, k)+2GR(−ω′, k′)GA(ω−ω′, k) =

1

πℏ2v2
(ℏω+eV ) coth

(
ℏω + eV

2kBT

)
.

(S8)
Then, the tunneling action reads

SD = i
D

2

∫
dω

2π
(ℏω + eV )

[
Ūq
−ωU

c
ω − Uq

ωŪ
c
−ω + coth

(
ℏω + eV

2kBT

)
Ūq
−ωU

q
ω

]
(S9)

as it is given in the main text.
Continuing from this expression, we show how to derive the Liouvillian LT . The goal is to find a local in time action

such that exp(iSD/ℏ) = exp(
∫
dtLD). For the following, we define Mω = (ℏω + eV ) and Nω = (ℏω + eV ) coth[(ℏω +

eV )/2kBT ] = (ℏω+eV )[2nB(ℏω+eV )+1] with the Bose-Einstein distribution nB(ϵ) = [exp(ϵ/kBT )−1]−1. We write
ϕ(t) = Re(φ(t)e−iΩt) where φ(t) = |φ(t)|eiθ(t) is a slowly varying complex variable with phase θ(t). Then, we employ

the Jacobi-Anger expansion eiϕ = ei|φ| cos(θ−Ωt) =
∑∞

n=−∞ inJn(|φ|)einθe−inΩt =
∑∞

n=−∞ inJn(|φ|) φn

|φ|n e
−inΩt ≡∑∞

n=−∞ inφne
−inΩt. As an example, we will perform the RWA for the term S̃ =

∫
dω
2πMω(e

−iφ−
)−ω(e

−iφ+

)ω that is
part of the action SD. The other terms are calculated straightforwardly.
First, we insert the Jacobi-Anger expansion to obtain

S̃ =

∫
dω

2π
Mω(e

−iφ−
)−ω(e

−iφ+

)ω =

∫
dω

2π

∫
dt

∫
dt′Mω

(∑
n

i−nφ−
n e

−i(ω−nΩ)t
)(∑

m

imφ+
me

i(ω−mΩ)t′
)
. (S10)

To obtain a local in time action, we approximate Mω ≈ MnΩ. Then, the ω integration results in a delta function
δ(t′ − t) which in turn solves the t′ integral. Then,

S̃ ≈
∫
dt

∑
n,m

im−nMnΩφ
−
nφ

+
me

iΩt(n−m). (S11)

Here, we perform the RWA by neglecting the fast-oscillating off-resonant terms with n ̸= m that average out due to
the integration over time. We obtain S̃ =

∫
dtMnΩφ

−
nφ

+
n . Doing the procedure for every term of the action SD yields

SD = −iD
2

∫
dt

∞∑
n=−∞

MnΩCn −NnΩQn (S12)

with Cn = φ+
nφ

−
n − φ−

nφ
+
n , Qn = φ+

nφ
+
n + φ−

nφ
−
n − (φ+

nφ
−
n + φ−

nφ
+
n ), C−n = −Cn, and Q−n = Qn. After defining

φ = 2
√
αa, the action is equivalent to the Liouvillian

LD = e−α
∞∑

n=1

αn

(n!)2

{
B(nΩ)J [b†n] +B(−nΩ)J [bn]

}
(S13)

by the identification exp(iSD/ℏ) = exp(
∫
dtLD), a+ρ = aρ, and a−ρ = ρa. The additional factor e−α results from

the Baker-Campbell-Hausdorff formula due to the normal ordering of the operators. The operators have to be normal
ordered to employ the path integral formulation [29].

Second-order coherence

Here, we want to derive the result (13) for the second-order coherence from the main text. For the following, we
focus on the zero temperature limit and include the relevant terms for the two-photon cascades as described in the
main text. We write L ≈ L1 + L2, see below. As we are interested in the stationary state ρ̇ = Lρ = 0, we write the
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density matrix in the photon number basis ρ =
∑

n Pn|n⟩⟨n| to obtain a difference equation for the Pn with Ṗn = 0.
This yields

L1Pn = −[γn+ γg(n+ 1)]Pn + γ(n+ 1)Pn+1 + γgnPn−1 (S14)

and

L2Pn

α2e−α
= −

[
B(2Ω)

4
(n+ 1)(n+ 2)−B(Ω)n(n+ 1)

]
Pn −B(Ω)n(n− 1)Pn−1 +

B(2Ω)

4
(n+ 1)(n+ 2)Pn+2, (S15)

where γg = αe−αB(Ω) and B(Ω) = D(eV/ℏ − Ω) at zero temperature. To solve the difference equation, we treat

L2 as a perturbation. Then, the probability distribution is given by Pn ≈ P
(0)
n + P

(1)
n where P

(0)
n and P

(1)
n are

solutions of the difference equations L1P
(0)
n = 0 and L1P

(1)
n = −L2P

(0)
n . Fortunately, both can be solved. The first

difference equation L1P
(0)
n = 0 can be solved by P

(0)
n = (1 − z)zn with z =

γg

γl
and

∑
n P

(0)
n = 1. We can write

L2P
(0)
n = γg(1− z)znFn with

Fn =
αe−α

γg

[
B(2Ω)

4z2
n(n− 1)− B(2Ω)

4
(n+ 1)(n+ 2) +B(Ω)n(n+ 1)− B(Ω)

z
n(n− 1)

]
. (S16)

The solution of L1P
(1)
n = −γg(1− z)znFn is given by

P (1)
n = (1− z)zn

n∑
m=0

[
Fm

m∑
k=0

zk

n+ 1− k

]
+ (1− z)

[ ∞∑
m=n+1

Fmz
m
][ n∑

m=1

zm

n+ 1−m

]
. (S17)

The full solution reads Pn = (1 +N )P
(0)
n + P

(1)
n where N = −

∑
n P

(1)
n such that

∑
n Pn =

∑
n P

(0)
n = 1.

We want to obtain the second-order coherence in leading order of αe−αD ≪ γ/Ω. Thus, we need to evaluate
⟨a†a⟩ =

∑
n nPn and ⟨a†2a2⟩ =

∑
n n(n− 1)Pn to second order. We obtain

⟨a†a⟩ ≈ αe−αD(eV − ℏΩ)
ℏγ

+
α2e−2αD2(eV − ℏΩ)2

ℏ2γ2
[
1− 2α+ 3κ

]
(S18)

with κ = αB(2Ω)/B(Ω) = α(eV − 2ℏΩ)/(eV − ℏΩ), see Eq. (12) in the main text, and

⟨a†2a2⟩ ≈ α2e−αD(eV − 2ℏΩ)
2ℏγ

+
α2e−2αD2(eV − ℏΩ)2

ℏ2γ2

[
2− 2α+

13

2
κ

]
. (S19)

Together, this yields the second order coherence

g(2)(0) = 2− α(eV + 2ℏΩ)
2(1 + κ)3(eV − ℏΩ)

− 5κ2

2(1 + κ)3
− 2κ3

(1 + κ)3
+

eαℏγ(eV − 2ℏΩ)
2D(1 + κ)2(eV − ℏΩ)2

, (S20)

where we have neglected the third and fourth term for the main text.
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