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Abstract

This paper introduces and studies factor risk measures. While risk measures only rely
on the distribution of a loss random variable, in many cases risk needs to be measured
relative to some major factors. In this paper, we introduce a double-argument mapping as
a risk measure to assess the risk relative to a vector of factors, called factor risk measure.
The factor risk measure only depends on the joint distribution of the risk and the factors.
A set of natural axioms are discussed, and particularly distortion, quantile, linear and
coherent factor risk measures are introduced and characterized. Moreover, we introduce a
large set of concrete factor risk measures and many of them are new to the literature, which
are interpreted in the context of regulatory capital requirement. Finally, the distortion
factor risk measures are applied in the risk-sharing problem and some numerical examples
are presented to show the difference between the Value-at-Risk and the quantile factor
risk measures.

Keywords: Distortion factor risk measures, quantile factor risk measure, linear factor risk
measure, coherent factor risk measure, CoVaR,CoES, risk sharing

1 Introduction

Risk measures have been widely used in banking and insurance for various purposes
such as regulation, optimization and risk pricing. Since the seminal paper of Artzner et
al. (1999), risk measures are commonly defined as functionals on a set of random variables
representing profit/loss of the portfolios. The commonly used risk measures are law-invariant,
only depending on the distribution of the risk. Two popular law-invariant risk measures in
regulation are the Value-at-Risk (VaR) and the Expected Shortfall (ES); one can refer to
McNeil et al. (2015) and Föllmer and Schied (2016) for more discussions on the risk measures.

From the regulatory prospective, a regulator is more concerned with the risk in stress
scenario; see e.g., Acharya et al. (2012) for more detailed discussion. In the credit rating
practice, a structured finance security is rated by the risk behavior on each economic scenario;
see e.g., Standard and Poor’s (2019), Moody’s (2023) and Guo et al. (2024). However, the
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distribution of the risk alone is not able to capture the behavior of the risk under different
scenarios. Different scenarios can be represented by some random variables. Those random
variables can be viewed as factors. The nature of the risk is more comprehensively described by
the risk together with some factors than the risk alone. Hence, different problems in insurance
and finance consider risk management relative to a set of specific risk factors. For instance,
in the systematic risk, the market risk works as the factor; in pricing, the economic factors
indexes are considered as the factors; in the systemic risk, the common shock is the variable
relative to which we do the risk management; in the catastrophic risk, specific natural indexes
such as the temperature in frost events, or Richter index in earthquake constitute the major
factors for the losses.

All the above facts motivate us to study risk functionals with double arguments: one is
the risk and the second is a vector of random variables representing the factors. We call them
factor risk measures. Recently, in Wang and Ziegel (2021), different scenarios are captured by
a set of probability measures, which is very different but also closely related to the setup in
this paper. One can also refer to Kou and Peng (2016) for the similar consideration. More
details will be discussed in Sections 2 and 3.

Since the financial crisis in 2008, systemic risk have been considered more seriously as
part of the risk management process. Co-risk measures are among the most studied systemic
risk measures. This type of risk measures conditions the risk measurement on the occurrence
of a systemic risk such as conditional Value-at-Risk (CoVaR) of Adrian and Brunnermeier
(2016), the conditional Expected Shortfall (CoES) of Mainik and Schaanning (2014), and the
marginal Expected Shortfall (MES) of Acharya et al. (2017). Recently, Dhaene et al. (2022)
have integrated all the above risk measures in one, and call them conditional distortion risk
measure. The Co-risk measures actually rely on the conditional distribution of the risk on
the event of systemic risk, which is determined by the joint distribution of the risk and the
systemic risk. This is intrinsically different from the classical law-invariant risk measures in
Föllmer and Schied (2016). In this paper, we will follow the same idea as Co-risk measures
to consider the factor risk measures solely depending on the joint distribution of the risk and
the factors. We call it law-invariant factor risk measure.

Compared with the risk measures in the literatures, the novelty of this paper stems from
the new type of law-invariance. The law-invariance considered in this paper is closely related to
the scenario-based law-invariance discussed in Wang and Ziegel (2021) and the conditional law-
invariance studied in Dela Vega and Elliott (2021) and de Castro et al. (2024). Their relation
is discussed in Proposition 1 in Section 2. The law-invariance is crucial in our characterization
as it relates the risk and the factors and allows us to evaluate the risk relative to the factors.
Hence, the main theme of this study is to assess the risk relative to a set of major factors.
This will be clear from our discussions and examples later in the paper.

Under this new law-invariance, we study factor risk measures satisfying monotonicity and
comonotonic-additivity which are called the distortion factor risk measures in Section 3. The
classical distortion risk measures have been widely applied in decision theory (Yaari (1987)),
insurance and option pricing (Wang (1996) and Wang (2000)), performance evaluation (Cherny
and Madan (2009)) and quantitative risk management (McNeil et al. (2015) and Föllmer and
Schied (2016)). Hence, its generalization to the case with factors is important from both
theoretical and practical perspective. In our characterization in Theorem 1, the distortion
factor risk measure can be represented by a Choquet integral defined by a distortion functional
on a set of Borel measurable functions, which extends the classical distortion risk measures
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given by a Choquet integral with a distortion function on the real line. Moreover, we find a
necessary and sufficient condition on the distortion functionals such that the distortion factor
risk measure is coherent. Finally, we show some concrete examples of distortion factor risk
measures such as CoES, the distortion of conditional VaR and the expectation of conditional
ES. Most of those factor risk measures are new and they offer new angles to evaluate the risk
affected by some factors. To some extend, our characterization results in Section 3 extend the
results in Wang and Ziegel (2021). It is also worth mentioning that our characterization with
the aid of the distortion functionals on a set of Borel measurable functions is very different
from Gong et al. (2022), where the axioms are state-wise and the expressions are state-wise
based.

Quantiles are one of the important tools in decision theory (Rostek (2010) and de Castro
and Galvao (2019)), statistics (Koenker and Hallock (2001)), finance (Basak and Shapiro
(2001)), risk management (Embrechts et al. (2018)) and many other fields. Its characterization
has been considered using different axioms such as elicitability in Kou and Peng (2016), tail-
relevance in Liu and Wang (2021), and ordinality in Chambers (2009) and Fadina et al.
(2023). In Section 4, we study factor risk measures satisfying law-invariance, monotonicity
and ordinality, called quantile factor risk measures. We find the expressions of the quantile
factor risk measures including CoVaR as a special case. The expressions in Theorem 2 have
the same spirit as the definition of quantiles, offering a natural extension of quantiles to the
cases with factors. Some concrete examples are given such as the VaR of conditional VaR
and the esssup of conditional VaR. Those quantile factor risk measures are interpreted in the
context of the regulatory capital requirement and they have the potential to be applied in
practice because of the simple form.

In Section 5, we characterize linear factor risk measures, which can be expressed as the
weighted average of the conditional expectation. It includes MES as a special case and has
the same form as Moody’s rating measure for credit rating (Moody’s (2023)). Coherent risk
measures and its extensions become popular in the quantitative risk management since the
seminal papers of Artzner et al. (1999), Föllmer and Schied (2002) and Frittelli and Rosazza
Gianin (2005); see also Föllmer and Schied (2016) for a comprehensive overview of coherent
risk measures. The coherent factor risk measures are studied in Section 6. It is nontrivial
to obtain its expression as it relies on an extension of the Hardy-Littewood inequality. Some
simple examples are also shown such as the ES of conditional ES and the esssup of conditional
ES.

Finally, in Section 7, we put our focus on the applications of the distortion factor risk
measures to the comonotonic risk sharing problem and on the numerical comparison of VaR
and the quantile factor risk measures in risk evaluation. Some notation and definitions are
displayed in Section 2 and all the proofs of the results in this paper are postponed to Appendix.

2 Preliminaries

Consider an atomless probability space (Ω,F ,P), where Ω is the set of the states, F is a
sigma field on Ω and P is a probability measure. Let X be a random variable, from the set
X consisting of loss variables. We suppose X = Lp, p ∈ [0,∞]. Let Y be the set of factor
random variables consisting of random vectors W = (W1, . . . ,WN ) with N ≥ 1. Typically,
we suppose Y is law-invariant, i.e., W ∈ Y implies W ′ ∈ Y if W ′ d

= W , where d
= represents
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quality in distribution. As usual, FX denotes the cumulative distribution function (CDF) of
X and F−1

X denotes the left quantile of FX , given by

F−1
X (α) = inf{x ∈ R : FX(x) ≥ α}, α ∈ (0, 1]

with the convention inf ∅ = ∞. Moreover, two regulatory risk measures Value-at-Risk (VaR)
and Expected shortfall (ES) are defined as follows: For X ∈ L0,

VaRα (X) = F−1
X (α) , α ∈ (0, 1];

For X ∈ L1,

ESα(X) =
1

1− α

∫ 1

α
F−1
X (t)dt, α ∈ [0, 1).

Another important class of risk measure is called distortion risk measure. For X ∈ L∞, the
distortion risk measure with the distortion function Λ ∈ D is given by

ϱΛ(X) =

∫ ∞

0
Λ(1− FX(x))dx+

∫ 0

−∞
(Λ(1− FX(x))− 1) dx,

where D denotes the set of all non-decreasing functions Λ : [0, 1] → [0, 1] satisfying Λ(0) = 0
and Λ(1) = 1. We refer to McNeil et al. (2015) and Föllmer and Schied (2016) for more
discussions on these risk measures.

Before we introduce the conditional VaR and ES, we need the following nation. For X and
W , by Theorem 33.3 of Billingsley (1995), there exists K : B(R)× B(RN ) such that

(i) For each w ∈ RN , K(·,w) is a probability measure on B(R);

(ii) For each B ∈ B(R), K(B,W ) is a version of P(X ∈ B|W ).

The conditional quantile is defined by VaRα(X|W ) = inf{x ∈ R : K((−∞, x],W ) ≥ α} for
α ∈ (0, 1] and VaR0(X|W ) = inf{x ∈ R : K((−∞, x],W ) > 0}. Moreover, the conditional
expected shortfall (ES) is defined by for X ∈ L1, ESα(X|W ) = 1

1−α

∫ 1
α VaRt(X|W )dt for

α ∈ [0, 1).
In Adrian and Brunnermeier (2016) and Mainik and Schaanning (2014), the CoVaR and

CoES are defined as below: For α, β ∈ (0, 1) and X,W ∈ X ,

CoVaRα,β(X,W ) = VaRβ(X|W ≥ VaRα(W )),

CoVaR=
α,β(X,W ) = VaRβ(X|W = VaRα(W )),

and

CoESα,β(X,W ) =
1

1− β

∫ 1

β
CoVaRα,t(X|W )dt,

CoES=α,β(X,W ) =
1

1− β

∫ 1

β
CoVaR=

α,t(X|W )dt.

For α ∈ (0, 1), the MES is given by MESα(X,W ) = E(X|W ≥ VaRα(W )) in Acharya et
al. (2017). Our characterization of factor risk measures in Sections 3-5 cover those Co-risk
measures as special cases.
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We next introduce the factor risk measure. Our approach following the same idea as in
the literature is to introduce axioms that are perceived to be the most appealing ones to
insurance and finance applications, and then explore the implications. The axioms that are
being presented are motivated from three major strands, a group stemming from the distortion
risk measures, a group from the quantiles, and a group stemming from coherent risk measures.

Let us consider a risk X whose risk measurement is our main objective and a vector of
factors , W = (W1, ...,WN ), that has a great influence in the risk measurement of variable
X. These factors can have different interpretations, for instance, they can be macro-economic
factors, they can be the systemic or systematic risk variable or just some random factors that
may add to the uncertainty of the model.

Definition 1. A factor risk measure is a double-argument functional ρ : X × Y → R to
measure the risk of X given W , denoted by ρ (X,W ). The first variable X is called the risk
variable and the second variable W is called the factor variable.

We next introduce the axioms that are not only appealing in the application of insurance
and finance but also play crucial role in our characterization results later. We say X1, X2 are
comonotonic if there exist a random variable Z and two non-decreasing functions f1 and f2
satisfying f1(x) + f2(x) = x, x ∈ R such that X1 = f1(Z) and X2 = f2(Z).

1. Monotonicity (M). For any two random variables X ≤ Y , and any factor W , we have
ρ (X,W ) ≤ ρ (Y,W ).

2. Comonotonic additivity (CA). For any factor W and two comonotone random
variables X1 and X2, we have ρ (X1 +X2,W ) = ρ (X1,W ) + ρ (X2,W ) .

3. Normalization (N). For all W , ρ (1,W ) = 1.

4. Law-invariance (LI). If (X,W )
d
= (X ′,W ′), then ρ (X,W ) = ρ (X ′,W ′).

5. Ordinality (OR). For all continuous and strictly increasing functions ϕ : R → R, and
X ∈ X ,W ∈ Y, we have

ρ (ϕ(X),W ) = ϕ (ρ (X,W )) .

As one can realize axioms M, CA and N, are mainly stemmed from the theory of distortion risk
measures as it is shown in Schmeidler (1986). Axiom LI is very different from the corresponding
concept in the literature, showing that the factor risk measure solely depends on the joint
distribution of the risk and the factors. OR is a property introduced in Chambers (2007, 2009)
to the axiomatize quantiles. In the decision-theoretic setup, it means that any continuous and
strictly increasing transform on the prospects does not change the preference order; see e.g.,
Fadina et al. (2023).

We next introduce the coherent factor risk measures. For a mapping ρ : X × Y → R,
we say ρ is cash-invariant if ρ(X + c,W ) = ρ(X,W ) + c for all X ∈ X and c ∈ R; ρ is
positively homogeneous if ρ(λX,W ) = λρ(X,W ) for all λ ≥ 0 and X ∈ X ; ρ is subadditive
if ρ(X + Y,W ) ≤ ρ(X,W ) + ρ(Y,W ) for X,Y ∈ X . We say ρ is monetary if ρ is monotone
and cash-invariant; ρ is coherent if ρ is monetary, positively homogeneous and subadditive.
We refers to the monograph Föllmer and Schied (2016) for more details on the coherent risk
measures.
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Here, it is worth emphasizing that the novelty of this paper comes from LI. The law-
invariance discussed in this paper is closely related to the Q-based law-invariance introduced
in Wang and Ziegel (2021). For a collection of probability measures Q, we say ϱ : X → R is
Q-based if for X,Y ∈ X , X d

= Y under Q for all Q ∈ Q implies ϱ(X) = ϱ(Y ). The mapping
ρ considered in this paper is a double-argument mapping. However, if we fix the second
argument, it boils down to a single-argument mapping. We obtain the following conclusion on
the law-invariance defined in this paper and the Q-based law-invariance in Wang and Ziegel
(2021).

Proposition 1. Fix W ∈ Y. A mapping ρ(·,W ) : X → R is law-invariant if and only if it is
QW -based, where QW =

{
P
(
·
∣∣∣W ∈

∏N
i=1(ai, bi)

)
: P
(
W ∈

∏N
i=1(ai, bi)

)
> 0, ai, bi ∈ Q

}
;

If W is discrete, then QW can be chosen as QW =
{
P
(
·
∣∣W = w

)
: P (W = w) > 0,w ∈ RN

}
.

In Dela Vega and Elliott (2021) and de Castro et al. (2024), the mapping ϱ : X → X ′

is studied based on conditional law-invariance, where X ′ is a set of random variable. The
conditional law-invariance has the similar meaning to the LI in this paper if we fix the second
argument.

In the rest of the paper, for simplicity and consistency, we set X = L∞. Some of the results
can be easily extended to more general sets.

3 Distortion factor risk measures

In this section, we shall study the risk measures satisfying M and CA. Let us first introduce
some notation which plays a crucial role in the characterization results in this paper.

Let D∗ be the set of all Borel measurable functions f : RN → [0, 1], and GW : D∗ → [0, 1]
is a functional satisfying GW (0) = 0 and GW (1) = 1 for W ∈ Y. We say GW is monotone
if for f, g ∈ D∗, f ≥P◦W−1 g, i.e., P(f(W ) ≥ g(W )) = 1, implies GW (f) ≥ GW (g); {GW :

W ∈ Y} is law-invariant if GW = GW ′ whenever W
d
= W ′ for W ,W ′ ∈ Y. Note that for

A ∈ F and W ∈ Y, P(A|W = ·) is a Borel measurable function in D∗ and P(A|W = ·) is not
unique. We denote P(X ≤ x|W = ·) by FX|W=·(x).

Theorem 1. A mapping ρ : X × Y → R satisfies conditions M, CA, N and LI if and only if
there exists a law-invariant family of monotone functionals {GW : W ∈ Y} such that

ρ(X,W ) =

∫ ∞

0
GW

(
1− FX|W=·(x)

)
dx+

∫ 0

−∞

(
GW

(
1− FX|W=·(x)

)
− 1
)
dx. (1)

It is noteworthy thatGW provides a natural extension of distortion functions to a conditional
one, and therefore can be used to introduce the factor risk measures interpreted as the risk
measure based on the conditional distribution functions.

For a family of monotone functionals {GW : W ∈ Y}, we denote (1) by ρGW
(X,W )

and call it the distortion factor risk measure with distortion functionals GW and factor W .
Clearly, ρGW

(X,W ) satisfies M, CA and N, which can be seen from the proof of Theorem
1 in Appendix 9.2. Note that the law-invariance of {GW : W ∈ Y} is a sufficient condition
but not a necessary condition to ensure the law-invariance of ρGW

(X,W ). A sufficient and
necessary condition is weak law-invariance of {GW : W ∈ Y}: For A,A′ ∈ F ,W ,W ′ ∈ Y
satisfying (1A,W )

d
= (1A′ ,W ′), we have GW (P(A|W = ·)) = GW ′(P(A|W = ·)).

6



Proposition 2. For a distortion factor risk measure ρGW
(X,W ) with a family of monotone

functionals {GW : W ∈ Y}, it is law-invariant if and only if {GW : W ∈ Y} is weakly
law-invariant.

Note that the law-invariance of {GW : W ∈ Y} implies the weak law-invariance of
{GW : W ∈ Y}. However, the converse conclusion is not true in general. One can see a
counterexample in Example 7 in Appendix 9.7.

We say that ρ is indicator lower semicontinuous (IC) if for An, A ∈ F , An ↑ A,n → ∞,
implies that for all W ∈ Y,

ρ(1A,W ) ≤ lim inf
n→∞

ρ(1An ,W ).

The following result shows that if ρ additionally satisfies IC, then the corresponding GW

is continuous from below : For fn ∈ D∗, fn ↑ f (pointwise) implies limn→∞GW (fn) = GW (f).
This result will be used to characterize the linear factor risk measure later in Section 5.

Proposition 3. A mapping ρ : X × Y → R satisfies conditions M, CA, IC, N and LI if and
only if there exists a law-invariant family of monotone and continuous from below functionals
{GW : W ∈ Y} such that (1) holds.

If Y only contains random variables taking finite values, then Theorem 1 has a simpler
version. We say ψW : [0, 1]n → [0, 1] is an increasing function if for x,y ∈ [0, 1]n, ψW (x) ≤
ψW (y) whenever x ≤ y, i.e., xi ≤ yi for all i = 1, . . . , n; we say {ψW : W ∈ Y} is law-invariant
if ψW = ψW ′ whenever W

d
= W ′ for W ,W ′ ∈ Y.

Corollary 1. Suppose all W ∈ Y take n different values. A mapping ρ : X ×Y → R satisfies
conditions M, CA, N and LI if and only if there exists a law-invariant family of monotone
functions {ψW : W ∈ Y} such that

ρ(X,W ) =

∫ ∞

0
ψW

(
1− FX|W=w1

(x), . . . , 1− FX|W=wn
(x)
)
dx

+

∫ 0

−∞

(
ψW

(
1− FX|W=w1

(x), . . . , 1− FX|W=wn
(x)
)
− 1
)
dx.

Note that the result in Corollary 1 corresponds to Theorem 3.4 of Wang and Ziegel (2021)
with mutually singular probability measures. More precisely, Theorem 3.4 of Wang and Ziegel
(2021) states that for Q = {P1, . . . , Pn} and P = (P1, . . . , Pn), a mapping ρ : X → R is
monetary, commonotonic additive and Q-based if and only if there is a function ψ : [0, 1]n →
[0, 1] such that ψ ◦ P is standard and

ρ(X) =

∫ ∞

0
ψ ◦ P (1− FX(x)) dx+

∫ 0

−∞
(ψ ◦ P (1− FX(x))− 1) dx.

Here the mapping ψ ◦ P : F → [0, 1] is standard means that it is increasing with set inclusion
and ψ ◦ P (∅) = 1− ψ ◦ P (Ω) = 0.

For a fixed W ∈ Y, one can see from Proposition 1 that in Theorem 1, we are in fact
dealing with QW -based risk measures, where QW contains infinite many distinct probability
measures. From this perspective, our result in Theorem 1 extends Theorem 3.4 of Wang and
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Ziegel (2021). The main technical challenge of the extension of the statement in Wang and
Ziegel (2021) is that one cannot easily define a function ψ on [0, 1]N similarly as GW in our
paper. Note also that Corollary 1 has the same form as the rating measure of credit rating
criteria in Theorem 7 of Guo et al. (2024).

One natural question is what conditions are needed to guarantee that ρGW
(X,W ) is

coherent. Inspired by Proposition 3.5 in Wang and Ziegel (2021) and Theorem 3.12.2 of Müller
and Stoyan (2002), we introduce the following condition. Condition A: For f1, f2, g1, g2 ∈ D∗

satisfying g1 ≤ f1, f2 ≤ g2 and f1 + f2 = g1 + g2, we have GW (f1) + GW (f2) ≥ GW (g1) +
GW (g2) for all W ∈ Y.

Proposition 4. Suppose ρ : X × Y → R is given by (1) with a law-invariant family of
monotone functionals {GW : W ∈ Y}. Then ρ is a coherent factor risk measure if and only
if GW satisfies condition A.

Distortion factor risk measure is very fruitful as it contains many interesting factor risk
measures. We next display some examples with conditional VaR and ES as the building blocks.

Example 1. (i) For g ∈ D∗ with P(0 < g(W ) < 1) = 1, if GW (f) = Λ(P(f(W ) >
1− g(W )) for all f ∈ D∗, then

ρGW
(X,W ) =

∫ ∞

0
Λ(P(FX|W (x) < g(W )))dx+

∫ 0

−∞

(
Λ(P(FX|W (x) < g(W )))− 1

)
dx

= ϱΛ(VaRg(W )(X|W )).

(ii) For p ∈ (0, 1), if GW (f) = Λ(P(f(W ) > 1− p)) for all f ∈ D∗, then

ρGW
(X,W ) = ϱΛ(VaRp(X|W )).

(iii) For g ∈ D∗ with P(0 < g(W ) < 1) = 1, if GW (f) = P(f(W ) > 1 − g(W )) for all
f ∈ D∗, then

ρGW
(X,W ) =

∫ ∞

0
E(1{FX|W (x)<g(W )})dx+

∫ 0

−∞

(
E(1{FX|W (x)<g(W )})− 1

)
dx

= E(VaRg(W )(X|W )).

(iv) For p ∈ (0, 1), if GW (f) = P(f(W ) > 1− p) for all f ∈ D∗, then

ρGW
(X,W ) = E(VaRp(X|W )).

For (i)-(iv), they can be interpreted as follows. For each scenario {W = w}, the capital
requirement is computed using VaR at level g(w), where the level varies as the scenario
changes. Then, E(VaRg(W )(X|W )) represents the average capital requirement across all
scenarios and ϱΛ(VaRg(W )(X|W )) represents the distorted average capital requirement across
all scenarios.

Next, we see some examples related to conditional ES.
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Example 2. (i) For g ∈ D∗ with P(g(W ) < 1) = 1, let GW (f) = E
(
f(W )∧(1−g(W ))

1−g(W )

)
for

all f ∈ D∗, then

ρGW
(X,W ) =

∫ ∞

0
E
(
(1− FX|W (x)) ∧ (1− g(W ))

1− g(W )

)
dx

+

∫ 0

−∞

(
E
(
(1− FX|W (x)) ∧ (1− g(W ))

1− g(W )

)
− 1

)
dx

= E
(
ESg(W )(X|W )

)
.

(ii) For p ∈ [0, 1), let GW (f) = E
(
f(W )∧(1−p)

1−p

)
for all f ∈ D∗, then

ρGW
(X,W ) = E (ESp(X|W )) .

(iii) For p ∈ [0, 1), and B ∈ B(RN ) with P(W ∈ B) > 0, where B(RN ) represents the
collection of all Borel subsets of RN , letGW (f) = E

(
f(W )∧(1−p)

1−p

∣∣∣W ∈ B
)

for all f ∈ D∗,
then

ρGW
(X,W ) =

∫ ∞

0
E
(
(1− FX|W (x)) ∧ (1− p)

1− p

∣∣∣W ∈ B

)
dx

+

∫ 0

−∞

(
E
(
(1− FX|W (x)) ∧ (1− p)

1− p

∣∣∣W ∈ B

)
− 1

)
dx

= ESp(X|W ∈ B),

which extends CoES.

(iv) For g ∈ D∗ with P(g(W ) < 1) = 1, let GW (f) = ess sup
(
f(W )∧(1−p)

1−p

)
for all f ∈ D∗,

then

ρGW
(X,W ) =

∫ ∞

0
ess sup

(
(1− FX|W (x)) ∧ (1− p)

1− p

)
dx

+

∫ 0

−∞

(
ess sup

(
(1− FX|W (x)) ∧ (1− p)

1− p

)
− 1

)
dx

= ESp(Y ),

where P(Y ≤ x) = limy↓x ess inf FX|W (y) for x ∈ R. Clearly, ESp(Y ) ≥ ess supESp(X|W ).

One can easily check that the functionals GW of the distortion factor risk measures defined
in (i), (ii) and (iv) of Example 2 satisfy condition A. By Proposition 4, they are all coherent
factor risk measures. Moreover, E

(
ESg(W )(X|W )

)
is the average value of ES under different

scenarios. In terms of capital requirement, it can be interpreted as: For each scenario {W =
w}, the requirement is calculated using ES at level g(w), where the level varies for different
scenarios. The overall capital requirement is summarized as an expected value across all
scenarios.

Note that ESp(X|W ∈ B) is in fact an extension of the CoES and it is not equal to
E
(
ESp(X|W )1{W∈B}

)
/P(W ∈ B). Note also that for p, q ∈ (0, 1), ESq(VaRp(X|W ))

is a special case of (ii) of Example 1, and the factor risk measures ess supESp(X|W ) and
ESq(ESp(X|W )) will be discussed in Section 6 as both of them are coherent factor risk
measures.
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4 Quantile factor risk measure

Next, we consider the characterization of VaR-type risk measures in terms of conditional
distribution of X on the factors W . We shall offer expressions with two different parametric
systems. We start with the following notation.

We say D ⊂ D∗ is increasing if 1 ∈ D and 0 /∈ D, and g ∈ D whenever g ≥ f for
some f ∈ D. Let µ be a probability measure on (RN ,B(RN )). The notation f ∈µ D means
there exists g ∈ D such that µ({w : f(w) = g(w)}) = 1. We say a family of subsets of D∗,
{DW : W ∈ Y}, is law-invariant if W d

= W ′ implies DW = DW ′ for W ,W ′ ∈ Y.
Let SW represent the collection of all (α,β) with α = (α1, . . . , αN ) ∈ (0, 1)N and β =

(β1, . . . , βN ) ∈ (0, 1]N such that P(VaRα(W ) ≤ W ≤ VaRβ(W )) > 0, where VaRα(W ) =

(VaRα1(W1), . . . ,VaRαN (WN )). Let D̂W represent a set of functions f : SW → [0, 1] for
W ∈ Y. We say D̂W is increasing if 0 /∈ D̂W and 1 ∈ D̂W , and g ∈ D̂W whenever g ≥ f
for some f ∈ D̂W . The law-invariance of {D̂W : W ∈ Y} is adapted as: For W ,W ′ ∈ Y,
W

d
= W ′ implies D̂W = D̂W ′ . Let P ◦W−1(B) = P(W ∈ B) for B ∈ B(RN ).

Theorem 2. A mapping ρ : X ×Y → R satisfies conditions M, OR and LI if and only if one
of the following statements holds:

(i) There exists a law-invariant family of increasing sets {DW : W ∈ Y} such that

ρ (X,W ) = inf
{
x : FX|W=·(x) ∈P◦W−1 DW

}
. (2)

(ii) There exists a law-invariant family of increasing sets {D̂W : W ∈ Y} such that

ρ (X,W ) = inf

{
x :
(
FX|VaRα(W )≤W≤VaRβ(W )(x)

)
(α,β)∈SW

∈ D̂W

}
. (3)

For a family of increasing sets {DW : W ∈ Y}, we denote ρ defined by (2) by qDW
(X,W )

and we call it quantile factor risk measure with level set DW and factor W . Note that the
classical left quantile can be expressed as VaRα(X) = inf{x : FX(x) ∈ [α,∞)}, α ∈ (0, 1] and
the classical right quantile can be expressed as VaR+

α (X) = inf{x : FX(x) ∈ (α,∞)}, α ∈
[0, 1). Clearly, if W is a constant, then qDW

(X,W ) boils down to the classical quantiles.
Hence, qDW

(X,W ) can be viewed as an extension of the classical quantiles.
Moreover, qDW

(X,W ) satisfies monotonicity and ordinality, which can be seen from the
proof of Theorem 2 in Appendix 9.3. Similarly for the distortion factor risk measure, the
law-invariance of {DW : W ∈ Y} is a sufficient but not a necessary condition to guarantee the
law-invariance of qDW

(X,W ). A sufficient and necessary condition is the weak law-invariance
of {DW : W ∈ Y}: For A,A′ ∈ F ,W ,W ′ ∈ Y satisfying (1A,W )

d
= (1A′ ,W ′), we have

either P(A|W = ·) ∈P◦W−1 DW ∩DW ′ or P(A|W = ·) /∈P◦W−1 DW ∪DW ′ .

Proposition 5. For a quantile factor risk measure qDW
(X,W ) with a family of increasing

sets {DW : W ∈ Y}, it is law-invariant if and only if {DW : W ∈ Y} is weakly law-invariant.

If N = 1, then SW in (ii) of Theorem 2 is independent of W : SW = {(α, β) : 0 < α < β ≤
1}. Hence (3) becomes

ρ (X,W ) = inf

{
x :
(
FX|VaRα(W )≤W≤VaRβ(W )(x)

)
0<α<β≤1

∈ D̂W

}
.
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If we restrict W as discrete random vectors, (i) of Theorem 2 admits a simplified expression.
Let YD be the set of all discrete random vectors W . For W ∈ YD, we denote S1

W =

{w = (w1, . . . , wN ) : P(W = w) > 0}. We say D1
W ⊊ [0, 1]S

1
W is an increasing set if

1 = (1)w∈S1
W

∈ D1
W , 0 = (0)w∈S1

W
/∈ D1

W and y = (yw)w∈S1
W

∈ D1
W if yw ≥ xw,w ∈ S1

W for

some x ∈ D1
W . The law-invariance of {D1

W : W ∈ Y}: For W ,W ′ ∈ Y satisfying W
d
= W ′,

we have D1
W = D1

W ′ .

Corollary 2. A mapping ρ : X × YD → R satisfies conditions M, OR and LI if and only if
there exists a law-invariant family of increasing sets {D1

W : W ∈ YD} such that

ρ (X,W ) = inf
{
x :
(
FX|W=w(x)

)
w∈S1

W

∈ D1
W

}
. (4)

If Y is a set of constants, then Theorem 2 boils down to the result in Chambers (2009)
and Fadina et al. (2023), which offers the characterization of the classical quantiles. Hence,
Theorem 2 defines a more general quantiles summarizing the quantiles under different scenarios
into a single value.

We next consider some special cases of Theorem 2 and Corollary 2.

Example 3. In some special cases, (2) in Theorem 2 has the following simplified representations.

(i) For q ∈ (0, 1) and g ∈ D∗ with P(0 < g(W ) < 1) = 1, let DW = {f ∈ D∗ : P(f(W ) ≥
g(W )) ≥ q}, then

qDW
(X,W ) = inf

{
x : P(FX|W (x) ≥ g(W )) ≥ q

}
= inf

{
x : P(VaRg(W )(X|W ) ≤ x) ≥ q

}
= VaRq(VaRg(W )(X|W )).

If q = 1, then

qDW
(X,W ) = ess supVaRg(W )(X|W ).

(ii) For p, q ∈ (0, 1), let DW = {f ∈ D∗ : P(f(W ) ≥ p) ≥ q}, then

qDW
(X,W ) = VaRq(VaRp(X|W )).

If q = 1, then

qDW
(X,W ) = ess supVaRp(X|W ).

For VaRq(VaRg(W )(X|W )), it can be interpreted in the context of regulatory capital
requirement as below. For each scenario {W = w}, the capital requirement is calculated using
VaR at level g(w), where the level g varies with respect to different scenarios. The overall
capital requirement is summarized by another VaR to cover the capital requirement for 100q%
different scenarios. For q = 1, ess supVaRg(W )(X|W ) guarantees the capital requirement is
satisfied for all scenarios.

The following two examples are closely related to CoVaR.

Example 4. For pα,β ∈ (0, 1), (α,β) ∈ SW , (3) can be simplified as follows.
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(i) If D̂W =
∏

(α,β)∈SW
[pα,β, 1], then

ρ (X,W ) = sup
(α,β)∈SW

VaRpα,β
(X|VaRα(W ) ≤ W ≤ VaRβ(W ));

(ii) If (α0,β0) ∈ SW and D̂W = (
∏

(α,β)∈SW \{(α0,β0)}[0, 1])× [pα0,β0
, 1], then

ρ (X,W ) = VaRpα0,β0
(X|VaRα0(W ) ≤ W ≤ VaRβ0

(W ));

(iii) If additionally β0 = 1 for (ii), then

ρ (X,W ) = VaRpα0,β0
(X|W ≥ VaRα0(W )).

Example 5. For pw ∈ (0, 1),w ∈ S1
W , and W ∈ YD, expression (4) can be reduced to the

following expressions.

(i) If D1
W =

∏
w∈S1

W
[pw, 1], then

ρ (X,W ) = sup
w∈S1

W

VaRpw(X|W = w);

(ii) If w0 ∈ S1
W and D1

W = (
∏

w∈S1
W \{w0}[0, 1])× [pw0 , 1], then

ρ (X,W ) = VaRpw0
(X|W = w0).

5 Linear factor risk measures

In this section, we consider linear factor risk measures, which includes MES as a special case.
We say a family of probability measures on (RN ,B(RN )), {QW : W ∈ Y}, is law-invariant if
QW = QW ′ whenever W

d
= W ′ for W ,W ′ ∈ Y; we say ρ : X × Y → R is additive (AD) if

ρ(X + Y,W ) = ρ(X,W ) + ρ(Y,W ) for all X,Y ∈ X .

Theorem 3. A mapping ρ : X ×Y → R satisfies conditions M, AD, IC, N and LI if and only
if there exists a law-invariant family of probability measures {QW : W ∈ Y} on (RN ,B(RN ))
such that QW << P ◦W−1, and

ρ(X,W ) = EQW (E(X|W = ·)) =
∫
RN

E(X|W = w)dQW . (5)

Note that if QW = P ◦ W−1, then (5) boils down to the law of iterated expectation.
Hence Theorem 3 can be viewed as an extension of the law of iterated expectation. Moreover,
as E(X|W = w) is the so-called conditional expectation, (5) can be demonstrated as the
weighted average of the conditional expectation. It will be more clear for the discrete random
vector W . Let us see some examples as below.

(i) If P(W = wi) > 0, i = 1, . . . , n and
∑n

i=1 P(W = wi) = 1, then (5) becomes

ρ(X,W ) =

n∑
i=1

ciE(X|W = wi)

with ci ≥ 0 and
∑n

i=1 ci = 1. Note that ρ(X,W ) has the same form as Moody’s rating
measure for credit rating in Moody’s (2023).
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(ii) For B ∈ B(RN ) with P ◦W−1(B) > 0, let QW (·) = P◦W−1(·∩B)

P◦W−1(B)
. Then (5) is reduced to

ρ(X,W ) = E(X|W ∈ B),

which extends MES.

6 Coherent factor risk measure

In this section, we aim to find the expression of coherent factor risk measures. We start with
an extension of the Hardy-Littewood inequality, which is inspired by Proposition 4.6 in Dela
Vega and Elliott (2021) and Lemma 3.3 of de Castro et al.(2024). This extension is crucial
to characterize the coherent factor risk measure and it is also of interest independently. For
X ∈ X and W ∈ Y, let L(X,W ) = {Z ∈ X : (Z,W )

d
= (X,W )}. In this section, we suppose

that for any W ∈ Y, there exists U ∼ U(0, 1) that is independent of W .

Lemma 1. For X ∈ X , W ∈ Y and Y ∈ L1, we have

sup
Z∈L(X,W )

E (ZY ) = E
(∫ 1

0
VaRt(X|W )VaRt (Y |W ) dt

)
,

inf
Z∈L(X,W )

E (ZY ) = E
(∫ 1

0
VaR1−t(X|W )VaRt (Y |W ) dt

)
.

Let us next introduce some notation and properties. We denote by µ1(P) the set of all
probability measures on (Ω,F) that are absolutely continuous with respect to P. We say a
family of subsets of µ1(P), {QW : W ∈ Y}, is law-invariant if for W ,W ′ ∈ Y, W d

= W ′

implies {FZ,W : Z = dQ
dP , Q ∈ QW } = {FZ,W ′ : Z = dQ

dP , Q ∈ QW ′}. For a mapping
ρ : X ×Y → R, we say ρ is continuous from above if ρ(Xn,W ) ↓ ρ(X,W ) whenever Xn ↓ X.

In what follows, we characterize the coherent factor risk measure.

Theorem 4. A mapping ρ : X ×Y → R is coherent, continuous from above and law-invariant
if and only if there exists a law-invariant family of sets of probability measures {QW : W ∈ Y}
such that

ρ (X,W ) = sup
Q∈QW

E
(∫ 1

0
VaRt(X|W )VaRt

(
dQ

dP

∣∣∣W)
dt

)
. (6)

For the case of discrete W taking only finite values, Theorem 4 boils down to Theorem
3.8 of Wang and Ziegel (2021). This can be seen from the following result.

Corollary 3. Under the assumption of Theorem 4, if Y is a set of discrete random variables,
then (6) is reduced to

ρ (X,W ) = sup
Q∈QW

∑
w∈S1

W

P(W = w)

∫ 1

0
VaRt(X|W = w)VaRt

(
dQ

dP

∣∣∣W = w

)
dt.

Alternatively, we can construct coherent factor risk measures as follows. Using Proposition
11.9 of Föllmer and Schied (2016), we immediately arrive at the following result.
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Proposition 6. Let ϱ : X → R be a law-invariant coherent risk measure. Then the mapping
(X,W ) 7→ ϱ(ESp(X|W )) with (X,W ) ∈ X×Y is a law-invariant coherent factor risk measure.

Example 6. For p, q ∈ (0, 1), ess supESp(X|W ) and ESq(ESp(X|W )) are two families of
law-invariant coherent factor risk measures.

7 Risk management applications

In this section, we consider the application of our main results to risk sharing problem and
the evaluation of the risk with factors.

7.1 Risk sharing

In this subsection, we consider the risk sharing problem among multiple agents with the
preference represented by the distortion factor risk measures. Risk sharing problem with risk
measures has been widely studied in the literature. We refer to Barrieu and El Karoui (2005)
and Filipović and Svindland (2008) for risk sharing with convex risk measures, and Embrechts
et al. (2018) and Liu et al. (2022) for risk sharing problem with quantile-based risk measures.
Our interest here is the comonotonic risk sharing problem, which is widely applied in optimal
insurance and reinsurance contract design; see e.g., Arrow (1963), Albrecher et al. (2017) and
Cai and Chi (2020) and the references therein.

For X ∈ X , we denote all the comonotonic allocations by

A+
n (X) = {(X1, . . . , Xn) : Xi and X are comonotonic, i = 1, . . . , n, and

n∑
i=1

Xi = X}.

The risk sharing problem is defined as

⊞n
i=1ρi(X,W i) = inf

{
n∑

i=1

ρi(Xi,W i) : (X1, . . . , Xn) ∈ A+
n (X)

}
.

We say an allocation (X1, . . . , Xn) ∈ A+
n (X) is an optimal allocation if

∑n
i=1 ρi(Xi,W i) =

⊞n
i=1ρi(X,W i).

Proposition 7. For continuous from below distortion functionals GW i , i = 1, . . . , n, we have

⊞n
i=1ρGW i

(X,W i) =

∫ ∞

0
GW 1,...,Wn,X(x)dx+

∫ 0

−∞
(GW 1,...,Wn,X(x)− 1) dx,

where GW 1,...,Wn,X(x) = mini=1,...,nGW i(1− FX|W i=·(x)). Moreover, the optimal allocations
are Xi = hi(X), i = 1, . . . , n with hi(x) =

∫ x
0 ri(t)dt, where ri are non-negative measurable

functions satisfying ri(x) = 0 if GW i(1 − FX|W i=·(x)) > GW 1,...,Wn,X(x), and
∑n

i=1 ri(x) =
1, x ∈ R.

Using Proposition 7 and the expressions in Examples 1-2, we immediately arrive at the
following results.
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Corollary 4. (i) For left-continuous Λi ∈ D and pi ∈ (0, 1), let ρi(X,W i) = ϱΛi(VaRpi(X|W i)).
Then we have

⊞n
i=1ρi(X,W i) =

∫ ∞

0
min

i=1,...,n
Λi(P(FX|W i

(x) < pi))dx

+

∫ 0

−∞

(
min

i=1,...,n
Λi(P(FX|W i

(x) < pi))− 1

)
dx;

(ii) For pi ∈ (0, 1), let ρi(X,W i) = E (ESpi(X|W i)). Then we have

⊞n
i=1ρi(X,W i) =

∫ ∞

0
min

i=1,...,n
E
(
(1− FX|W i

(x)) ∧ (1− pi)

1− pi

)
dx

+

∫ 0

−∞

(
min

i=1,...,n
E
(
(1− FX|W i

(x)) ∧ (1− pi)

1− pi

)
− 1

)
dx;

(iii) For pi, qi ∈ (0, 1), let ρi(X,W i) = VaRqi(VaRpi(X|W i)). Then we have

⊞n
i=1ρi(X,W i) =

∫ ∞

0
min

i=1,...,n
1{P(FX|W i

(x)<pi)>1−qi}dx

+

∫ 0

−∞

(
min

i=1,...,n
1{P(FX|W i

(x)<pi)>1−qi} − 1

)
dx

= min
i=1,...,n

VaRqi(VaRpi(X|W i)).

7.2 Evaluation of risk using VaRq(VaRp(X|W ))

In this subsection, we evaluate the risk using a factor risk measure VaRq (VaRp (X|W )) and
then compare it with VaRp(X). A standard approach in economics is that we regress X, over
W and use the model. Hence, let us consider the following model:

X = β0 + βW + σϵ,

where ϵ is an independent idyosyncratic risk with standard normal distribution, σ > 0 and
β = (β1, . . . , βN ). By implementing this into our risk measure, we have

ρ (X,W ) = β0 +VaRq (VaRp (βW + σϵ|W ))

= β0 +VaRq (βW ) + σVaRp (ϵ) = β0 +VaRq (βW ) + σN−1 (p) ,

where N is the CDF of the standard normal random variable. For non-factor risk measure,
we consider

ρ (X) = VaRp (β0 + βW + σϵ) .

For each scenario {W = w}, p represents the confidence level of the capital requirement and
q represents the overall emphasis we want to put on the systematic risk. From the capital
requirement point of view p = 0.95 or 0.975, are standard choices, however, for q we can have a
wide range from q = 0.5 to q = 0.99. Let us check the percentage change of VaRq(VaRp(X|W ))
compared to VaRp(X), i.e.,

Diff = ρ (X,W ) /ρ (X)− 1 =
VaRp(σϵ)−VaRp (βW −VaRq (βW ) + σϵ)

VaRp (β0 + βW + σϵ)
.

Note that the numerator can be interpreted as the risk contribution of the q-centralized factors
i.e., βW −VaRq (βW ).
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7.2.1 Data

Here we describe the data set we use in this chapter. The data are on a monthly basis: a set
of 642 months, from February 1952 to August 2012. We use almost the same data as in van
den Goorbergh et al. (2003). The data consists of seven different securities, which work as the
factors in our risk evaluation:

1. Risk Free, three-month T-bill rate (as a proxy), denoted by (RF);

2. Market , Market Risk minus Risk Free, denoted by (RM-RF);

3. Size, Small Minus Big, denoted by (SMB);

4. Book-to-market value, High Minus Low, denoted by (HML);

5. Momentum, Up Minus Down, denoted by (UMD);

6. Term factor, the difference between a long-term government bond return and the three-
month T-bill rate, denoted by (TERM);

7. Default factor, the difference between the return on a portfolio of long-term corporate
bonds and a long-term government bond return, denoted by (DEF).

Items 1,2,3,4,5 are taken from the Fama and French Library. Items 2,3,4 are the usual three
Fama and French factors in Fama and French (1992) and item 5 is used in Carhart (1997). The
first five factors explain the premiums on stocks. Factors 6 and 7 are known as bond-market
factors. The TERM factor is the difference between long-term government bond, provided by
BGFRS1, and the short-term government or Treasury Bonds (T-Bill) which is the same as risk
free. As for DEF, we took the Moody’s Aaa rated corporation bonds, provided by BGFRS.

In FRED2, it has a set of six macro-economic risk variables. We consider the following two
risk variables as the risk that will be evaluated later:

1. Real Interest rate, the monthly return on a three-month T-bill, denoted by (RI);

2. Dividend yield, the monthly dividend yield on the S&P 500, denoted by (DIV).

7.2.2 Numerical results

In the following, we set the range of p as [0.95, 0.99] and the range of q as [0.5, 0.99] and consider
economic risk. We present the heatmaps of the value of VaRq(VaRp(X|W )) in Figure 1 and
the heatmaps of Diff to show the difference between VaRq(VaRp(X|W )) and VaRp(X) in
percentage in Figure 2. The regression model is obtained in Table 1.

1Board of Governors of the Federal Reserve System
2Federal Reserve Economic Data
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(a) The heatmap for T-bill (b) The heatmap for Dividend

Figure 1: The heatmaps for VaRq(VaRp(X|W ))

Table 1: Standard Regression Results of T- bill and Dividend yield

coef std err t P> |t| [0.025 0.975]

T-bill

const 0.1413 0.061 2.322 0.021 0.022 0.261
RF -0.2686 0.124 -2.161 0.031 -0.513 -0.025
RM-RF -0.0155 0.004 -4.021 0.000 -0.023 -0.008
SMB -0.0051 0.006 -0.916 0.360 -0.016 0.006
HML -0.0207 0.006 -3.433 0.001 -0.033 -0.009
UMD -2.031e-05 0.004 -0.005 0.996 -0.008 0.008
TERM 0.0303 0.013 2.265 0.024 0.004 0.057
DEF 0.1532 0.033 4.694 0.000 0.089 0.217

Dividend yield

const 0.0325 0.017 1.891 0.059 -0.001 0.066
RF -0.1273 0.035 -3.631 0.000 -0.196 -0.058
RM-RF 0.0022 0.001 2.060 0.040 0.000 0.004
SMB -0.0002 0.002 -0.124 0.901 -0.003 0.003
HML -0.0005 0.002 -0.299 0.765 -0.004 0.003
UMD 0.0025 0.001 2.293 0.022 0.000 0.005
TERM 0.0119 0.004 3.159 0.002 0.005 0.019
DEF 0.0369 0.009 4.005 0.000 0.019 0.055

In Figure 1, we present the values of VaRq(VaRp(X|W )) of T-Bill and Dividend for
different values of p and q. In Figure 2, we present the Diff(T-Bill) and Diff(Dividend) for
different values of p and q.

As it is clear that for larger values of q, Diff(T-Bill) and Diff(Dividend) are more positive,
which indicates for larger q the value of the factor risk measure is larger. For smaller q, Diff(T-
Bill) and Diff(Dividend) become more negative, which indicates the value of the factor risk
measure is smaller than VaRp(X) for smaller q. We can expect that there is a q0 ∈ (0, 1)
such that VaRq0(VaRp(X|W )) = VaRp(X). This means that VaRp(X) can satisfy the capital
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(a) The heatmap of Diff(T-bill) (b) The heatmap of Diff(Dividend)

Figure 2: The heatmaps for Diff

requirement for 100q0% of different scenarios. We can also see that VaRq(VaRp(X|W )) is
more flexible than VaRp(X) as it has one additional parameter to adjust the values.

While the values of Diff for T-bill ranges in [−0.13, 0.5], Diff for Dividend yield ranges in
[−0.1, 0.38]. This shows that the contribution of the factors to the risk causes larger percentage
change for T-bill compared with Dividend yield.

8 Concluding remarks

In this paper we motivated and introduced factor risk measures, to evaluate the risk with
regards to a factor vector. The main contribution of this paper is to characterize the distortion,
quantile, linear and coherent factor risk measures by deriving the explicit expressions for the
factor risk measures satisfying some desirable properties. We have introduced many concrete
examples of factor risk measures such as ϱΛ(VaRp(X|W )), E(VaRp(X|W )), VaRq(VaRp(X|W )),
ess supVaRp(X|W ), E (ESp(X|W )), ess supESp(X|W ) and ESq(ESp(X|W )). Those factor
risk measures have potential to be applied in quantitative risk management and other fields,
and need further investigation. We have shown how distortion factor risk measures can be
naturally applied in risk-sharing and how quantile factor risk measures are applied in risk
evaluation.
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9 Appendix

In this section, all the proofs of the results in Sections 2-6 will be displayed.

9.1 Proof of results in Section 2

Proof of Proposition 1. For X,Y ∈ X , clearly, (X,W )
d
= (Y,W ) implies X d

= Y under Q
for all Q ∈ QW . Conversely, X d

= Y under Q for all Q ∈ QW implies that for A ∈ B(R),

P

(
{X ∈ A} ∩ {W ∈

N∏
i=1

(ai, bi)}

)
= P

(
{Y ∈ A} ∩ {W ∈

N∏
i=1

(ai, bi)}

)

for all ai, bi ∈ Q. Note that
{∏N

i=1(ai, bi) : ai, bi ∈ Q
}

is a π-system and it can generate

B(RN ). Hence, applying Dynkin’s π-λ theorem (e.g., Theorem 3.2 of Billingsley (1995)), we
have P ({X ∈ A} ∩ {W ∈ B) = P ({Y ∈ A} ∩ {W ∈ B}) for all B ∈ B(RN ). This implies
(X,W )

d
= (Y,W ).

9.2 Proof of results in Section 3

Let us first show a new version of the characterization of Choquet integral in Schmeidler (1986),
which plays an important role in the proofs of Theorems 1- 2 and Proposition 5 later. We say
c : F → R is a capacity if c is monotone: c(A) ≤ c(B) for A ⊂ B, and 0 = c(∅) ≤ c(Ω) < ∞.
We say ρ : X × Y → R is comonotonic monotone (CM) if for any two comonotonic random
variables X,Y ∈ X satisfying X ≤ Y , and any factor W ∈ Y, we have ρ (X,W ) ≤ ρ (Y,W ).

Proposition 8. For a mapping ρ : X ×Y → R, it satisfies CM and CA if and only if ρ admits
the following expression:

ρ(X,W ) =

∫ ∞

0
cW (X > x)dx+

∫ 0

−∞
(cW (X > x)− cW (Ω))dx, (7)

where cW : F → R is a capacity. Moreover, ρ additionally satisfies LI if and only if
cW (A) = cW

′
(A′) whenever (IA,W )

d
= (IA′ ,W ′). As a by-product, we have that CM and

CA is equivalent to M and CA.

Proof of Proposition 8. Note that the "if" part is obvious. We next fix a W ∈ Y to
show the "only if" part. By CA, we have ρ(mnX,W ) = m

n ρ(X,W ) for X ∈ X and n,m ∈ N.
For r > 0, there exist two sequence mk

nk
↑ r and m′

k
n′
k
↓ r as k → ∞. For X ≥ 0, by CM, we have

mk

nk
ρ(X,W ) = ρ

(
mk

nk
X,W

)
≤ ρ(rX,W ) ≤ ρ

(
m′

k

n′k
X,W

)
=
m′

k

n′k
ρ(X,W ).

Letting k → ∞, we obtain ρ(rX,W ) = rρ(X,W ). One can similarly show that ρ(rX,W ) =
rρ(X,W ) for r < 0 and for X ≤ 0 and r ∈ R. Note that X1{X>0} and X1{X≤0} are
comonotonic. Hence for X ∈ X ,

ρ(rX,W ) = ρ(rX1{X>0},W ) + ρ(rX1{X≤0},W )

= r(ρ(X1{X>0},W ) + ρ(X1{X≤0},W )) = rρ(X,W ).
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By Proposition 1 of Schmeidler (1986), we have for X taking only finite number of values

ρ(X,W ) =

∫ ∞

0
cW (X > x)dx+

∫ 0

−∞
(cW (X > x)− cW (Ω))dx,

where cW (A) = ρ(IA,W ). Note that A ⊂ B implies that IA ≤ IB, and IA and IB are
comonotonic. Hence cW (A) = ρ(IA,W ) ≤ ρ(IB,W ) = cW (B). Moreover, cW (∅) =
ρ(0,W ) = 0. We next show that the above expression holds for all X ∈ X . Let Xn =
⌊nX⌋
n , where ⌊·⌋ represents the floor function. Note that Xn and X are comonotonic and

Xn ≤ X ≤ Xn + 1
n . Hence ρ(Xn,W ) ≤ ρ(X,W ) ≤ ρ(Xn,W ) + ρ(1,W )

n . This implies

ρ(X,W ) = lim
n→∞

ρ(Xn,W )

= lim
n→∞

∫ ∞

0
cW (Xn > x)dx+ lim

n→∞

∫ 0

−∞
(cW (Xn > x)− cW (Ω))dx

=

∫ ∞

0
cW (X > x)dx+

∫ 0

−∞
(cW (X > x)− cW (Ω))dx.

We establish the first claim. For the second claim, note that LI of ρ and cW (A) = ρ(IA,W )

imply cW (A) = cW
′
(A′) whenever (IA,W )

d
= (IA′ ,W ′). Now we show the converse conclusion.

For (X,W )
d
= (X ′,W ′), let Xn = ⌊nX⌋

n and X ′
n = ⌊nX′⌋

n . Then Xn ≤ X ≤ Xn + 1
n

and X ′
n ≤ X ′ ≤ X ′

n + 1
n . We can write Xn =

∑mn
i=0 xiIAi and X ′

n =
∑mn

i=0 xiIA′
i
, where

A0 = A′
0 = Ω, Ai ⊋ Ai+1 and A′

i ⊋ A′
i+1, x0 ∈ R and xi > 0, i = 1, . . . , n. Without loss of

generality, we suppose x0 ≥ 0. Applying (7) and noting that (IAi ,W )
d
= (IA′

i
,W ′), we have

ρ(Xn,W ) =

mn∑
i=0

xic
W (Ai) =

mn∑
i=0

xic
W ′

(A′
i) = ρ(X ′

n,W
′).

Moreover, it follows from (7) that ρ(Xn,W ) ≤ ρ(X,W ) ≤ ρ(Xn,W )+ρ(1,W )
n and ρ(X ′

n,W
′) ≤

ρ(X ′,W ′) ≤ ρ(X ′
n,W

′)+ ρ(1,W ′)
n . Hence, we obtain ρ(X,W ) = ρ(X ′,W ′) by letting n→ ∞.

We establish the second claim.

Proof of Theorem 1. We first show the "if" part. If X ≤ Y , then for any x ∈ R, we
have FX|W=·(x) ≥P◦W−1 FY |W=·(x). It follows from the monotonicity of GW that

GW

(
1− FX|W=·(x)

)
≤ GW

(
1− FY |W=·(x)

)
for all x ∈ R, leading to ρ(X,W ) ≤ ρ(Y,W ). Hence, M of ρ is verified. For two comonotonic
random variables X and Y , there exist increasing and Lipschitz continuous functions ϕ1 and
ϕ2 satisfying ϕ1(x) + ϕ2(x) = x, x ∈ R such that X = ϕ1(X + Y ) and Y = ϕ2(X + Y ). It
follows that

ρ(X,W ) =

∫ ∞

0
GW

(
1− Fϕ1(X+Y )|W=·(x)

)
dx+

∫ 0

−∞

(
GW

(
1− Fϕ1(X+Y )|W=·(x)

)
− 1
)
dx

=

∫ ∞

0
GW

(
1− FX+Y |W=·(ϕ

−1
1 (x))

)
dx+

∫ 0

−∞

(
GW

(
1− FX+Y |W=·(ϕ

−1
1 (x))

)
− 1
)
dx

=

∫ ∞

0
GW

(
1− FX+Y |W=·(x)

)
dϕ1(x) +

∫ 0

−∞

(
GW

(
1− FX+Y |W=·(x)

)
− 1
)
dϕ1(x),
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where ϕ−1
1 (x) = inf{y : ϕ1(y) > x} with the convention that inf ∅ = ∞. Analogously, we have

ρ(Y,W ) =

∫ ∞

0
GW

(
1− FX+Y |W=·(x)

)
dϕ2(x) +

∫ 0

−∞

(
GW

(
1− FX+Y |W=·(x)

)
− 1
)
dϕ2(x).

Hence ρ(X,W ) + ρ(Y,W ) = ρ(X + Y,W ), meaning that ρ satisfies CA. Direct computation
shows

F1|W=·(x) =P◦W−1

{
0, x < 1
1, x ≥ 1

,

which implies

ρ(X,W ) =

∫ 1

0
GW (1) dx+

∫ ∞

1
GW (0)dx+

∫ 0

−∞
(GW (1)− 1) dx = 1.

Hence N of ρ is satisfied. Finally, we show LI of ρ. For X,X ′ ∈ X and W ,W ′ ∈ Y satisfying
(X,W )

d
= (X ′,W ′), we have for any x ∈ R, (1{X≤x},W )

d
= (1{X′≤x},W

′). It follows from
the law-invariance of {GW : W ∈ Y} that GW (1 − P(X ≤ x|W = ·)) = GW ′(1 − P(X ′ ≤
x|W ′ = ·)). Hence by (1), we have ρ(X,W ) = ρ(X ′,W ′). The LI of ρ is verified.

We next show the "only if" part. In light of Proposition 8, M, CA, N and LI imply that ρ
has the following representation:

ρ(X,W ) =

∫ ∞

0
cW (X > x)dx+

∫ 0

−∞
(cW (X > x)− 1)dx, (8)

where cW is a capacity with cW (Ω) = 1 satisfying cW (A) = cW
′
(A′) whenever (IA,W )

d
=

(IA′ ,W ′). For f ∈ D∗, define GW (f) = sup{cW (A) : A ∈ F such that f ≥P◦W−1 P(A|W =
·)}. Direct computation gives GW (0) = sup{cW (A) : P(A) = 0} = 0 and GW (1) =
sup{cW (A) : A ∈ F} = 1. Moreover, it follows from the definition that f ≥P◦W−1 g implies
GW (f) ≥ GW (g). Hence GW is monotone over D∗.

Next, we show that GW (P(A|W = ·)) = cW (A) for all A ∈ F . By the definition,
we have GW (P(A|W = ·)) ≥ cW (A). For any B ∈ F satisfying P(A|W = ·) ≥P◦W−1

P(B|W = ·), we have P(A|W ) ≥ P(B|W ) a.s.. Note that there exist W ′ and U such
that W ′ d

= W and U ∼ U [0, 1] is independent of W ′. Then (F−1
IA|W ′(U),W ′)

d
= (IA,W )

and (F−1
IB |W ′(U),W ′)

d
= (IB,W ), where F−1

X|w is the quantile function of FX|W=w. Note
that F−1

IA|W ′(U) ≥ F−1
IB |W ′(U) a.s., and both of them are indicator functions. We denote

A′ = {F−1
IA|W ′(U) = 1} and B′ = {F−1

IB |W ′(U) = 1}. Then we have B′ ⊂ A′ a.s. and
F−1
IA|W ′(U) = IA′ , F−1

IB |W ′(U) = IB′ a.s.. By LI, we have cW (A) = ρ(IA,W ) = ρ(IA′ ,W ′)

and cW (B) = ρ(IB,W ) = ρ(IB′ ,W ′). By M, we have cW (A) ≥ cW (B), which implies
GW (P(A|W = ·)) ≤ cW (A). Hence GW (P(A|W = ·)) = cW (A) for all A ∈ F . Replacing
cW (X > x) by GW (P(X > x|W = ·)) in (8), we obtain (1). Note that there exist W ′ ∈ Y
and U ∼ U(0, 1) such that W ′ d

= W and U is independent of W ′. Hence, for any X ∈ X ,
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there exists X ′ ∈ X such that (X,W )
d
= (X ′,W ′). By LI of ρ, we have

ρ(X,W ) = ρ(X ′,W ′)

=

∫ ∞

0
GW ′

(
1− FX′|W ′=·(x)

)
dx+

∫ 0

−∞

(
GW ′

(
1− FX′|W ′=·(x)

)
− 1
)
dx

=

∫ ∞

0
GW ′

(
1− FX|W=·(x)

)
dx+

∫ 0

−∞

(
GW ′

(
1− FX|W=·(x)

)
− 1
)
dx.

This implies that GW can be chosen as GW = GW ′ . Hence, we can choose a law-invariant
family of {GW : W ∈ Y} such that (1) holds.

Proof of Proposition 2. We first show the "if" part. For X,X ′ ∈ X and W ,W ′ ∈ Y
satisfying (X,W )

d
= (X ′,W ′), we have for any x ∈ R, (1{X≤x},W )

d
= (1{X′≤x},W

′). It
follows from the weak law-invariance of {GW : W ∈ Y} that GW (1 − P(X ≤ x|W = ·)) =
GW ′(1− P(X ′ ≤ x|W ′ = ·)). Hence by (1), we have ρGW

(X,W ) = ρGW ′ (X
′,W ′).

Next, we focus on the "only if" part. The LI of ρGW
(X,W ) implies that for A,A′ ∈

F ,W ,W ′ ∈ Y satisfying (1A,W )
d
= (1A′ ,W ′), we have ρGW

(1A,W ) = ρGW ′ (1A′ ,W ′),
which implies GW (P(A|W = ·)) = GW ′(P(A′|W ′ = ·)) = GW ′(P(A|W = ·)). Hence {GW :
W ∈ Y} is weakly law-invariant.

Proof of Proposition 3. We first show the "if" part. By Theorem 1, ρ satisfies M, CA, N
and LI. We next show that ρ satisfies IC. For An ↑ A,n→ ∞, we have P(An|W ) ↑ P(A|W ) a.s.
as n→ ∞. We choose fn ∈ D∗, n ≥ 1 such that fn(W ) = P(An|W ) a.s.. Let gn = maxni=1 fi
and g = sup∞i=1 fi. Then gn ↑ g and gn(W ) = P(An|W ) a.s. and g(W ) = P(A|W ) a.s..
Direct computation shows

1− F1An |W=w(x) =


1, x < 0

P(An|W = w), 0 ≤ x < 1
0, x ≥ 1

.

By (1), we have ρ(1An ,W ) =
∫ 1
0 GW (gn) dx = GW (gn) and ρ(1A,W ) = GW (g). Using

the fact that gn ↑ g and the continuity from below of GW , we have limn→∞ ρ(1An ,W ) =
limn→∞GW (gn) = GW (g) = ρ(1A,W ), implying IC of ρ.

Next, we focus on the "only if" part. By Theorem 1, we have (1) holds for a law-invariant
family of monotone functionals {GW : W ∈ Y}. It suffices to show the continuity from below
for GW . For fn ∈ D∗, suppose fn ↑ f . Note that there exist W ′ and U such that W ′ d

= W
and U ∼ U [0, 1] is independent of W ′. Using the law-invariance of {GW : W ∈ Y}, we have
GW ′(fn) = GW (fn) and GW ′(f) = GW (f). Hence, we only need to show limn→∞GW ′(fn) =
GW ′(f). Let A′

n = {U ≤ fn(W
′)}. Then we have P(A′

n|W ′) = fn(W
′) a.s.. The fact that

fn ↑ f implies P(∪∞
n=1A

′
n|W ′) = f(W ′) a.s.. It follows from (1) that GW ′(fn) = ρ(1A′

n
,W ′)

and GW ′(f) = ρ(1∪∞
n=1A

′
n
,W ′). Hence, by M and IC of ρ and the fact A′

n ↑ ∪∞
n=1A

′
n, we have

limn→∞GW ′(fn) = limn→∞ ρ(1A′
n
,W ′) = ρ(1∪∞

n=1A
′
n
,W ′) = GW ′(f).

Proof of Corollary 1. Note that the proof of the "if" part is similar to the proof of
Theorem 1. Hence, it is omitted. We next show the "only if" part. By Theorem 1, there exists
a law-invariant family of monotone functionals {GW : W ∈ Y} such that

ρ(X,W ) =

∫ ∞

0
GW

(
1− FX|W=·(x)

)
dx+

∫ 0

−∞

(
GW

(
1− FX|W=·(x)

)
− 1
)
dx.
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For x ∈ [0, 1]n, define ψW (x) = GW (f), where f(wi) = xi for i = 1, . . . , n, and W takes
values w1, . . . ,wn. If W ′ d

= W , then the values w1, . . . ,wn will be arranged in the same
order. Clearly, {ψW : W ∈ Y} is a law-invariant family of monotone functions. Moreover,
by the definition, ψW

(
1− FX|W=w1

(x), . . . , 1− FX|W=wn
(x)
)
= GW (1−FX|W=·(x)) for all

x ∈ R. This implies the desired expression in Corollary 1.

Proof of Proposition 4. By Theorem 1, a mapping ρ defined by (1) with a law-invariant
family of monotone functionals {GW : W ∈ Y} satisfies M, CA and N. Hence, in light
of Theorem 4.94 in Follmer and Schied (2015), ρ is coherent if and only if ρ(1A∪B,W ) +
ρ(1A∩B,W ) ≤ ρ(1A,W ) + ρ(1B,W ) holds for all A,B ∈ F and W ∈ Y. We first focus on
the "if" part. We could find g1, g2, f1, f2 ∈ D∗ such that P(A∩B|W ) = g1(W ), P(A∪B|W ) =
g2(W ), P(A|W ) = f1(W ) and P(B|W ) = f2(W ) hold almost surely. One can easily check
that g1(W ) ≤ f1(W ), f2(W ) ≤ g2(W ) and f1(W )+f2(W ) = g1(W )+g2(W ) almost surely.
We can choose a version of f1, f2, g1, g2 ∈ D∗ such that g1 ≤ f1, f2 ≤ g2 and f1+ f2 = g1+ g2.
Hence, by (1) and Condition A, we have

ρ(1A∪B,W ) + ρ(1A∩B,W ) = GW (P(A ∪B|W = ·)) +GW (P(A ∩B|W = ·))
= GW (g1) +GW (g2) ≤ GW (f1) +GW (f2)

= GW (P(A|W = ·)) +GW (P(B|W = ·))
= ρ(1A,W ) + ρ(1B,W ).

This implies ρ is a coherent risk measure.
We next focus on the "only if" part. As ρ is coherent, we have ρ(1A∪B,W )+ρ(1A∩B,W ) ≤

ρ(1A,W ) + ρ(1B,W ) holds for all A,B ∈ F and W ∈ Y. It follows from (1) that

GW (P(A ∪B|W = ·)) +GW (P(A ∩B|W = ·)) ≤ GW (P(A|W = ·))
+GW (P(B|W = ·)) (9)

holds for all A,B ∈ F and W ∈ Y. We choose a W ∈ Y such that there exists U ∼ U [0, 1] that
is independent of W . For f1, f2, g1, g2 ∈ D∗ such that g1 ≤ f1, f2 ≤ g2 and f1 + f2 = g1 + g2,
we set B1 = {U ≤ g1(W )}, A1 = {U ≤ f1(W )}, A2 = B1 ∪ {f1(W ) < U ≤ g2(W )} and
B2 = {U ≤ g2(W )}. It follows that P(Ai|W ) = fi(W ) and P(Bi|W ) = gi(W ) almost surely
for i = 1, 2 and B1 = A1 ∩ A2 and B2 = A1 ∪ A2. By (9), we have GW (g1) + GW (g2) ≤
GW (f1)+GW (f2). In light of the law-invariance of {GW : W ∈ Y}, this conclusion holds for
all W ∈ Y.

9.3 Proof of results in Section 4

Proof of Theorem 2. (i) We first show the "if part". By (2), we have that M follows from
the monotonicity of DW . For any strictly increasing and continuous function ϕ, we have

ρ (ϕ(X),W ) = inf{x : Fϕ(X)|W=·(x) ∈P◦W−1 DW }
= inf{x : FX|W=·(ϕ

−1
R (x)) ∈P◦W−1 DW }

= inf{ϕ(x) : FX|W=·(x) ∈P◦W−1 DW }
= ϕ (ρ (X,W )) ,
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where ϕ−1
R (x) = inf{y : ϕ(y) > x} with the convention that inf ∅ = ∞. Hence OR is satisfied.

Moreover, the LI of ρ is implied by the expression (2) and the law-invariance of {DW : W ∈ Y}.
We next show the "only if" part. In light of Corollary 1 of Chambers (2007), and by M

and OR, we have

ρ (X,W ) =

∫ ∞

0
cW (X > x)dx+

∫ 0

−∞
(cW (X > x)− 1)dx, (10)

where cW is a capacity taking values from {0, 1}. By Proposition 8, we have ρ satisfies
CA. Hence it follows from Theorem 1 that there exists a law-invariant family of monotone
functionals {GW : W ∈ Y} such that (1) holds. For any strictly increasing and continuous
function ϕ with ϕ(0) = 0 and ϕ(1) = 1, we have ϕ(1A) = 1A. Hence we have ρ(1A,W ) =
ϕ(ρ(1A,W )), implying ρ(1A,W ) = 0 or 1 for all A ∈ F . Using (1), we have GW (P(A|W =
·)) = ρ(1A,W ) = 0 or 1. We let

D0
W = {f ∈ D∗ : f ≥P◦W−1 P(A|W = ·) for some A ∈ F such that ρ(1A,W ) = 1}.

By monotonicity of GW , we have GW (f) = 1 for all f ∈ D0
W . It follows from (1) that

ρ (X,W ) =

∫ ∞

0
GW (1− FX|W=·(x))dx+

∫ 0

−∞

{
GW (1− FX|W=·(x))− 1

}
dx

= inf{x ∈ R : GW (1− FX|W=·(x)) = 0}
= inf{x ∈ R : 1− FX|W=·(x) ∈P◦W−1 D∗ \D0

W }
= inf{x ∈ R : FX|W=·(x) ∈P◦W−1 DW },

where DW = 1 − D∗ \ D0
W . Note that 1 ∈ D0

W , 0 /∈ D0
W and g ∈ D0

W if g ≥ f for some
f ∈ D0

W . Hence 1 ∈ DW , 0 /∈ DW and g ∈ DW if g ≥ f for some f ∈ DW , which implies
DW is an increasing set. Next, we show {DW : W ∈ Y} can be chosen to be law-invariant.
We fix W ′ ∈ Y such that there exists U ∼ U [0, 1] that is independent of W ′. Let W

d
= W ′.

For any X ∈ X , there exists X ′ ∈ X such that (X,W )
d
= (X ′,W ′). By LI of ρ and the above

conclusion, we have

ρ (X,W ) = ρ(X ′,W ′) = inf{x ∈ R : FX′|W ′=·(x) ∈P◦W−1 DW ′}
= inf{x ∈ R : FX|W=·(x) ∈P◦W−1 DW ′}.

Hence, DW can be chosen as DW = DW ′ .
(ii) The proof of "if" part is similar to that of case (i). Next, we only show the "only if"

part. Let Qα,β be the conditional probability measure P(·|VaRα(W ) ≤ W ≤ VaRβ(W ))
for (α,β) ∈ SW . Define fA : SW → [0, 1] by fA(α,β) = Qα,β(A). In light of Corollary
1 of Chambers (2007), and by M and OR, we have (10) holds. We denote the set of all
f : SW → [0, 1] by D∗

W and let

D0
W = {f ∈ D∗

W : f ≥ fA for some A ∈ F such that cW (A) = 1}.

It follows from (10) that cW (A) = ρ (IA,W ) for any A ∈ F . Define GW : D∗
W → {0, 1} such

that GW (f) = 1 for f ∈ D0
W and otherwise GW (f) = 0. Note that ρ (X,W ) is law-invariant.

Hence for A,B ∈ F , if fA = fB, then (IA,W )
d
= (IB,W ), which implies cW (A) = cW (B).
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Next we show that cW (A) = 1 if and only if fA ∈ D0
W . It is obvious that cW (A) = 1

implies fA ∈ D0
W . For the converse direction, note that fA ∈ D0

W implies there exists B ∈ F
such that cW (B) = 1 and fA ≥ fB. Hence we have P(A∩{W ∈ (a,b]}) ≥ P(B∩{W ∈ (a,b]})
for all a = (a1, . . . , aN ) and b = (b1, . . . , bN ) with ai ≤ bi, i = 1, . . . , N . Define two measures
µA and µB on (RN ,B(RN )) by µA(B) = P(A ∩ {W ∈ B}) and µB(B) = P(B ∩ {W ∈ B}).
Note that C := {(a,b], a ≤ b} is a semiring and µA(B) ≥ µB(B) for B ∈ C. It follows from
Theorem 11.3 of Billingsley (1995) that

µE(B) = inf

{ ∞∑
i=1

µE(Ci) : Ci ∈ C and B ⊂ ∪∞
i=1Ci

}

holds for E = A or B. Hence in light of the fact µA(B) ≥ µB(B) for all B ∈ C, we have
µA(B) ≥ µB(B) for all B ∈ B(RN ). This implies P(A|W ) ≥ P(B|W ) a.s.. Moreover,
there exist W ′ and U ∼ U [0, 1] such that W ′ d

= W and U is independent of W ′. Then
(F−1

IA|W ′(U),W ′)
d
= (IA,W ) and (F−1

IB |W ′(U),W ′)
d
= (IB,W ), where F−1

X|w is the quantile
function of FX|W=w. Note that F−1

IA|W ′(U) ≥ F−1
IB |W ′(U) a.s., and both of them are indicator

functions. We let A′ = {F−1
IA|W ′(U) = 1} and B′ = {F−1

IB |W ′(U) = 1}. Then we have B′ ⊂ A′,

(1A′ ,W ′)
d
= (1A,W ) and (1B′ ,W ′)

d
= (1B,W ). By LI, we have cW (A) = ρ(IA,W ) =

ρ(IA′ ,W ′) and cW (B) = ρ(IB,W ) = ρ(IB′ ,W ′). It follows from M and LI that cW (A) =
ρ(IA′ ,W ′) ≥ ρ(IB′ ,W ′) = cW (B) = 1. Consequently, cW (A) = GW (fA) for A ∈ F . Note
that GW (f{X>x}) is decreasing with respect to x. It follows from (10) that

ρ (X,W ) =

∫ ∞

0
GW (f{X>x})dx+

∫ 0

−∞

{
GW (f{X>x})− 1

}
dx

= inf{x ∈ R : GW (f{X>x}) = 0}

= inf{x ∈ R : f{X>x} ∈ D∗
W \D0

W } = inf{x ∈ R : f{X≤x} ∈ D̂W }

= inf

{
x :
(
FX|VaRα(W )≤W≤VaRβ(W )(x)

)
(α,β)∈SW

∈ D̂W

}
, (11)

where D̂W = 1 − D∗
W \ D0

W . Note that 1 ∈ D0
W , 0 /∈ D0

W and g ∈ D0
W if g ≥ f for some

f ∈ D0
W . Hence 1 ∈ D̂W , 0 /∈ D̂W and g ∈ D̂W if g ≥ f for some f ∈ D̂W , which implies

D̂W is an increasing set. Similarly as in (i), we can show that {D̂W , W ∈ Y} can be chosen
to be law-invariant.

Proof of Proposition 5. We first show the "if" part. If (IA,W )
d
= (IA′ ,W ′), then we

have P ◦W−1 = P ◦W ′−1 and

FIA|W=w(x) = FIA′ |W ′=w(x) =


0, x < 0

P(Ac|W = w), 0 ≤ x < 1
1, x ≥ 1

(12)

a.s. under P ◦ W−1. Direct computation gives ρ(IA,W ) = ρ(IA′ ,W ′) = 0 if P(Ac|W =
·) ∈P◦W−1 DW ∩DW ′ , and ρ(IA,W ) = ρ(IA′ ,W ′) = 1 if P(Ac|W = ·) /∈P◦W−1 DW ∪DW ′ .
Hence, we have ρ(IA,W ) = ρ(IA′ ,W ′). Moreover, by the proof of Theorem 2, ρ satisfies CM
and CA. Hence, in light of the second statement of Proposition 8, we obtain LI of ρ.
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Next, we consider the "only if" part. For (1A,W )
d
= (1A′ ,W ′), using (2), we have

ρ(1Ac ,W ) = inf{x ∈ R : F1Ac |W=·(x) ∈P◦W−1 DW } and ρ(1(A′)c ,W
′) = inf{x ∈ R :

F1(A′)c |W ′=·(x) ∈P◦W−1 DW ′}. Direct computation shows ρ(1Ac ,W ) = 0 if P(A|W =

·) ∈P◦W−1 DW and otherwise ρ(1Ac ,W ) = 1; ρ(1(A′)c ,W
′) = 0 if P(A′|W ′ = ·) ∈P◦W−1 DW ′

and otherwise ρ(1Ac ,W ′) = 1. Hence, the weak law-invariance of {DW , W ∈ Y} is implied
by the fact that ρ(IAc ,W ) = ρ(I(A′)c ,W

′).

9.4 Proof of results in Section 5.

Proof of Theorem 3. We first show the "if" part. First, we show (5) is well-defined.
Let f, g ∈ D∗ such that f(W ) = E(X|W ) a.s. and g(W ) = E(X|W ) a.s., which imply
f =P◦W−1 g. As QW << P ◦ W−1, we have f =QW

g. Consequently, EQW (f) = EQW (g),
implying (5) is well-defined.

Next we show the properties of (5). Clearly, ρ satisfies M, AD and N. For (X,W )
d
=

(X ′,W ′), we have E(X|W )
d
= E(X ′|W ′) and P ◦W−1 = P ◦W ′−1. Moreover, it follows from

the law-invariance of {QW : W ∈ Y} that QW = QW ′ . Note that E(X|W = ·) =P◦W−1

E(X ′|W ′ = ·) implies E(X|W = ·) =QW
E(X ′|W ′ = ·). Hence, EQW (E(X|W = ·)) =

EQW ′ (E(X ′|W ′ = ·)), implying the law-invariance of ρ. For An ↑ A, we have E(1An |W ) ↑
E(1A|W ) a.s.. It follows from the monotone convergence theorem that limn→∞ EQW (E(1An |W =
·)) = EQW (E(1A|W = ·)). Hence the IC is satisfied.

Next, we show the "only if" part. It follows from Proposition 3 that (1) holds with a
law-invariant family of monotone and continuous from below functionals {GW : W ∈ Y}.
By (1), we have ρ(1A,W ) = GW (P(A|W = ·)) for all A ∈ F . For any W ∈ Y, there
exists W ′ ∈ Y and U ∼ U [0, 1] such that W ′ d

= W and W ′ is independent of U . By
the law-invariance of {GW : W ∈ Y}, we have GW ′ = GW . For f, g ∈ D∗ satisfying
f + g ∈ D∗, define A = {U ≤ f(W ′)}, B = {f(W ′) < U ≤ f(W ′) + g(W ′)} and C = A ∪B.
Then the additivity of ρ implies ρ(1C ,W

′) = ρ(1A,W
′) + ρ(1B,W

′), which is equivalent to
GW ′(f +g) = GW ′(f)+GW ′(g). Hence, we have GW (f +g) = GW (f)+GW (g) holds for all
f, g ∈ D∗ satisfying f + g ∈ D∗ and W ∈ Y. Moreover, by the additivity and monotonicity of
GW , we have GW (af) = aGW (f) for a ≥ 0, f ∈ D∗ and af ∈ D∗.

Define QW (B) = GW (1B) for all B ∈ B(RN ). The finite-additivity of QW is implied by
the additivity of GW and infinite-additivity of QW is implied by the continuity from below
of GW . Hence, QW is a probability measure. Note that for B ∈ B(RN ), if P(W ∈ B) = 0,
then QW (B) = GW (1B) = GW (0) = 0, which implies QW << P ◦W−1. The law-invariance
of {GW : W ∈ Y} implies the law-invariance of {QW : W ∈ Y}. Let fn = ⌊2nf⌋/2n, n ≥ 1.
Then one can easily check that GW (fn) = EQW (fn). Letting n → ∞, we have fn ↑ f . It
follows from the continuity from below for GW that limn→∞GW (fn) = GW (f). Moreover,
the monotone convergence theorem implies limn→∞ EQW (fn) = EQW (f). Consequently, we
have GW (f) = EQW (f) for all f ∈ D∗.

Next, we show (5) holds. Note that ρ(1A,W ) = GW (P(A|W = ·)) = EQW (E(1A|W =
·)) as E(1A|W ) = P(A|W ) a.s.. Using the additivity and monotonicity of both ρ and
EQW (E(X|W = ·)), we can show that (5) holds for Xn = ⌊2nX⌋/2n, n ≥ 1. Note that
0 ≤ X − Xn ≤ 2−n. Hence, limn→∞ ρ(Xn,W ) = ρ(X,W ) and limn→∞ EQW (E(Xn|W =
·)) = EQW (E(X|W = ·)), leading to the conclusion that (5) holds for all X ∈ X .
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9.5 Proof of results in 6

Proof of Lemma 1. In light of Lemma 3.3 of de Castro et al. (2024), we have

ess supZ∈L(X,W )E (ZY |W ) =

∫ 1

0
VaRt(X|W )VaRt (Y |W ) dt,

where ess sup is defined e.g., in Definition A.38 of Föllmer and Schied (2016). This implies

sup
Z∈L(X,W )

E (ZY ) = sup
Z∈L(X,W )

E (E (ZY |W )) ≤ E
(∫ 1

0
VaRt(X|W )VaRt (Y |W ) dt

)
.

We next show the inverse inequality by following the same idea as in the proof of Lemma 3.3 of
de Castro et al.(2024). If FY |W (x) is a continuous function with respect to x ∈ R on Ω1 ∈ F
with P(Ω1) = 1, then for t ∈ (0, 1), P(FY |W (Y ) ≥ t|W ) = P(Y ≥ VaRt(Y |W )|W ) =
1 − t a.s.. Hence, P(FY |W (Y ) ∈ ·|W ) ∼ U(0, 1) a.s.. Let V = FY |W (Y ). It follows
that P(VaRV (X|W ) ≤ x|W ) = P(V ≤ FX|W (x)|W ) = FX|W (x) a.s. for all x ∈ R.

Hence, (VaRV (X|W ),W )
d
= (X,W ) implying VaRV (X|W ) ∈ L(X,W ). By definition,

Y ≥ VaRV (Y |W ) a.s.. Moreover, direct computation shows

E(Y ) = E(E(Y |W )) = E
(∫ 1

0
VaRt(Y |W )dt

)
= E(VaRV (Y |W )).

Hence, we have Y = VaRV (Y |W ) a.s.. Using the above conclusion, we obtain

E (VaRV (X|W )Y |W ) = E (VaRV (X|W )VaRV (Y |W )|W ) =

∫ 1

0
VaRt(X|W )VaRt (Y |W ) dt.

Hence,

sup
Z∈L(X,W )

E (ZY ) = E
(∫ 1

0
VaRt(X|W )VaRt (Y |W ) dt

)
.

Without loss of generality, we suppose X ≥ 0 in the following proof. For Y ∈ L1, there exists
a sequence of discrete random variables Yn ∈ L1 such that Yn ≥ Y and |Yn − Y | ≤ 1/n. Let
U ∼ U(0, 1) be independent of W . It follows that P(U ∈ ·|W ) ∼ U(0, 1) a.s.. One can easily
check that P(Yn + U/n ≤ x|W ) is continuous over R on some Ω2 ∈ F with P(Ω2) = 1. Using
the above conclusion, there exists Xn ∈ L(X,W ) such that

E (Xn(Yn + U/n)|W ) =

∫ 1

0
VaRt(X|W )VaRt (Yn + U/n|W ) dt a.s..

Consequently,

E
(∫ 1

0
VaRt(X|W )VaRt (Y |W ) dt

)
≤ E

(∫ 1

0
VaRt(X|W )VaRt (Yn + U/n|W ) dt

)
= E (Xn(Yn + U/n))

≤ sup
Z∈L(X,W )

E (ZY ) + E(Xn)/n+ E (XnU) /n.
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Letting n→ ∞, we obtain

E
(∫ 1

0
VaRt(X|W )VaRt (Y |W ) dt

)
≤ sup

Z∈L(X,W )
E (ZY ) ,

which is the desired inverse inequality.
Note that

inf
Z∈L(X,W )

E (ZY ) = inf
Z∈L(−X,W )

E (−ZY ) = − sup
Z∈L(−X,W )

E (ZY ) .

Hence, using the above conclusion, we have

inf
Z∈L(X,W )

E (ZY ) = −E
(∫ 1

0
VaRt(−X|W )VaRt (Y |W ) dt

)
= E

(∫ 1

0
VaR1−t(X|W )VaRt (Y |W ) dt

)
.

Proof of Theorem 4. It follows from Corollary 4.38 of Föllmer and Schied (2016) that
ρ is coherent and continuous from above if and only if

ρ (X,W ) = sup
Q∈QW

E
(
X

dQ

dP

)
for some QW ⊂ µ1(P). Next, we only need to show that ρ is additionally law-invariant
if and only if (6) holds. The "if" part is obvious. In light of (6) and the law-invariance of
{QW : W ∈ Y}, (X,W )

d
= (X ′,W ′) implies ρ(X,W ) = ρ(X ′,W ′). Hence, ρ is law-invariant.

We next show the "only if" part. Using the law-invariance of ρ, we have

ρ (X,W ) = sup
Z∈L(X,W )

ρ(Z,W ) = sup
Q∈QW

sup
Z∈L(X,W )

E
(
Z
dQ

dP

)
.

By Lemma 1, we have

ρ (X,W ) = sup
Q∈QW

E
(∫ 1

0
VaRt(X|W )VaRt

(
dQ

dP

∣∣∣W)
dt

)
.

Suppose W ′ ∈ Y such that W ′ d
= W . Then for X ′ ∈ X , there exists X ∈ X such that

(X ′,W ′)
d
= (X,W ). Hence,

ρ(X ′,W ′) = ρ(X,W ) = sup
Q∈QW

E
(∫ 1

0
VaRt(X|W )VaRt

(
dQ

dP

∣∣∣W)
dt

)
= sup

Q∈QW ′
E
(∫ 1

0
VaRt(X

′|W ′)VaRt

(
dQ

dP

∣∣∣W ′
)
dt

)
if {FZ,W ′ : Z = dQ

dP , Q ∈ QW ′} = {FZ,W : Z = dQ
dP , Q ∈ QW }. Hence, {QW : W ∈ Y} can

be chosen to be law-invariant.
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9.6 Proof of results in Section 7

Proof of Proposition 7. Fix U ∼ U [0, 1] such that U andX are comonotonic. Let Λi(1−x) =
GW i(P(U > x|W i = ·)) for x ∈ [0, 1]. Clearly, Λi : [0, 1] → [0, 1] is an increasing function with
Λi(0) = 0 and Λi(1) = 1. Since GW i is continuous from below, then Λi is left-continuous. For
(X1, . . . , Xn) ∈ A+

n (X), there exist increasing and Lipschitz continuous functions h1, . . . , hn
such that X1 = h1(X), . . . , Xn = hn(X) and h1(x) + · · · + hn(x) = x, x ∈ R. Direct
computation gives GW i(P(hi(X) > x|W i = ·)) = Λi(1− Fhi(X)(x)) for all x ∈ R. Hence, we
have

n∑
i=1

ρGW i
(Xi,W i) =

n∑
i=1

(∫ ∞

0
Λi(1− Fhi(X)(x))dx+

∫ 0

−∞

(
Λi(1− Fhi(X)(x))− 1

)
dx

)

=
n∑

i=1

(∫ ∞

0
Λi(1− FX(x))h′i(x)dx+

∫ 0

−∞
(Λi(1− FX(x))− 1)h′i(x)dx

)
≥
∫ ∞

0
GW 1,...,Wn,X(x)dx+

∫ 0

−∞
(GW 1,...,Wn,X(x)− 1) dx.

The above inequality becomes equality if h′i(x) = 0 whenGW i(1−FX|W i=·(x)) > GW 1,...,Wn,X(x),
and

∑n
i=1 h

′
i(x) = 1, x ∈ R. We establish the claim.

9.7 A counterexample

Example 7. Let ([0, 1],B([0, 1]), λ) be the probability space, where B([0, 1]) is the set of all
Borel subsets of [0, 1] and λ is the Lebesgue measure. Moreover, let X = L∞ and Y = {U :
U ∼ U [0, 1]}. Let U0(x) = x, x ∈ [0, 1]. For U ∈ Y \ {U0}, define GU (f) = 1DU

(f) for
all f ∈ D∗, where DU = {f ∈ D∗ : λ(f(U) ≥ 1/2) = 1}. Moreover, let GU0(f) = 1DU0

(f)
with DU0 = {f ∈ D∗ : λ(f(U0) > 1/2) = 1}. One can easily check that for U ∈ Y, GU

is monotone. For (1A, U)
d
= (1A′ , U ′), there exists g ∈ D∗ such that g(U) = λ(A|U) and

g(U ′) = λ(A′|U ′) a.s.. Hence, GU (g) = GU ′(g) if U,U ′ ∈ Y \ {U0} or U = U ′ = U0. Now
we consider the case U ̸= U0 and U ′ = U0. If λ(g(U ′) > 1/2) = 1, then λ(g(U) ≥ 1/2) = 1,
implying GU (g) = GU ′(g) = 1. Suppose λ(g(U ′) > 1/2) < 1 and λ(g(U) ≥ 1/2) = 1.
Then λ(g(U ′) = 1/2) = λ(g(U) = 1/2) > 0, which implies there exists B ∈ B([0, 1]) such
that λ(A′|U ′) = 1/2 over {U ′ ∈ B} with λ(B) > 0. It follows that λ(A′ ∩ {U ′ ∈ C}) =
1
2λ({U

′ ∈ C}) for all C ∈ B([0, 1]) and C ⊂ B. Using the fact that {U ′ ∈ C} = C for
C ∈ B([0, 1]), we have λ(A′ ∩ C) = 1

2λ(C) for all C ∈ B([0, 1]) and C ⊂ B. Choosing
C = A′ ∩ B, we have λ(A′ ∩ B) = 1

2λ(A
′ ∩ B). Thus we have λ(A′ ∩ B) = 0. However, for

C = B, λ(A′ ∩ B) = 1
2λ(B) > 0, leading to a contradiction. Hence, if λ(g(U ′) > 1/2) < 1,

then λ(g(U) ≥ 1/2) < 1, implying GU (g) = GU ′(g) = 0. Consequently, we conclude that
{GU : U ∈ Y} is weakly law-invariant. Note that GU (1/2) = 1 if U ̸= U0 and GU0(1/2) = 0.
Hence, {GU : U ∈ Y} is not law-invariant.
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