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COMPACTLY SUPPORTED A1-EULER CHARACTERISTICS OF

SYMMETRIC POWERS OF CELLULAR VARIETIES

JESSE PAJWANI, HERMAN ROHRBACH AND ANNA M. VIERGEVER

Abstract. The compactly supported A1-Euler characteristic, introduced by
Hoyois and later refined by Levine and others, is an anologue in motivic homo-
topy theory of the classical Euler characteristic of complex topological mani-
folds. It is an invariant on the Grothendieck ring of varieties K0(Vark) taking
values in the Grothendieck-Witt ring GW(k) of the base field k. The former
ring has a natural power structure induced by symmetric powers of varieties. In
a recent preprint, Pajwani and Pál construct a power structure on GW(k) and
show that the compactly supported A1-Euler characteristic respects these two
power structures for 0-dimensional varieties, or equivalently étale k-algebras.
In this paper, we define the class Symk of symmetrisable varieties to be those
varieties for which the compactly supported A1-Euler characteristic respects
the power structures and study the algebraic properties of K0(Symk). We show
that it includes all cellular varieties, and even linear varieties as introduced by
Totaro. Moreover, we show that it includes non-linear varieties such as ellip-
tic curves. As an application of our main result, we compute the compactly

supported A1-Euler characteristics of symmetric powers of Grassmannians and
certain del Pezzo surfaces.
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1. Introduction

The compactly supported A1-Euler characteristic χmot was first introduced in
work of Hoyois [Hoy14], later refined by Levine [Lev20] for smooth projective
schemes and extended to general varieties over a field in characteristic zero by
Arcila-Maya, Bethea, Opie, Wickelgren and Zakharevich [AMBO+22], and to gen-
eral varieties in characteristic not equal to 2 by Levine, Pepin-Lehalleur and Srini-
vas in [LPS24]. It is an algebro-geometric invariant that refines both the real
and complex Euler characteristic of topological manifolds, as well as some addi-
tional arithmetic data. As opposed to the classical Euler characteristic, which
takes values in Z, the compactly supported A1-Euler characteristic takes values in
the Grothendieck-Witt ring GW(k) of the base field k, so it contains “quadratic”
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information. However, unlike the classical Euler characteristic, it can be difficult
to compute χmot(X) even when X is a smooth projective variety. Papers such
as [LPS24] and [Vie23] use the motivic Gauss-Bonnet Theorem of Levine-Raksit
[LR20] to compute the compactly supported A1-Euler characteristic of hypersur-
faces in P

n and complete intersections of hypersurfaces of the same degree in P
n.

Also, Brazelton, McKean and Pauli computed the compactly supported A1-Euler
characteristics of Grassmannians in [BMP23], using A1-degrees. While this invari-
ant can be difficult to work with, it has found use in enumerative geometry since
it is analogous to the classical Euler characteristic of a manifold. We may use this
invariant to obtain enumerative geometry counts which take values in GW(k), and
papers such as [PP22] by Pajwani and Pál and [BBG24] by Blomme, Brugallé and
Garay, use the compactly supported A1-Euler characteristic to obtain arithmetic
refinements of results in complex enumerative geometry, the first over a general
base field and the second over the real numbers.

This paper is concerned with the compactly supported A1-Euler characteristic
of symmetric powers of varieties. These geometric objects are closely related to
Hilbert schemes of points via the birational Hilbert-Chow morphism. They are of
particular interest to people studying enumerative geometry, appearing for exam-
ple in the Göttsche formula for Euler characteristics of Hilbert schemes of surfaces
([Göt90, Theorem 0.1], [PP22, Corollary 8.5]). Since these varieties are almost al-
ways singular if dim(X) ≥ 2, we cannot directly apply the motivic Gauss–Bonnet
theorem of [LR20] to them, and as such their compactly supported A1-Euler char-
acteristics seem difficult to compute directly. Therefore, we instead use the power
structures defined in [PP23] for this computation. We give a formula for the com-
pactly supported A1-Euler characteristic of symmetric powers of a large class of
varieties that we call K0-étale linear, see Definition 3.1. Informally, K0-étale linear
varieties are varieties whose class in K0(Vark) decomposes into a sum with terms
[An

L], where L/k is a finite separable extension (see Definition 3.1). These form a
large class of varieties containing many widely studied varieties, such as cellular
varieties (Lemma 3.3), del Pezzo surfaces of degree ≥ 5 (Theorem 5.7), certain tori
(Example 3.2) and others. Our main result can be stated as follows:

Theorem 1.1 (Theorem 4.10). Let X be a K0-étale linear variety over a base
field k of characteristic 0 (see Definition 3.1), and for n ∈ Z≥0, write X(n) :=

Symn(X). Then χmot(X(n)) = an(χ
mot(X)) for every n, where an denotes the

function defining the power structure on GW(k) as in Definition 2.8.

The power of the above theorem lies in the fact that it is much easier to work
with the power structure on GW(k) than it is to decompose the symmetric powers
of K0-étale linear varieties in general.

We define a variety X to be symmetrisable if χmot respects the power structure
as in our main result, i.e. χmot(X(n)) = an(χ

mot(X)) for all n, see Definition
4.1. Corollaries 6.4 and 6.6 show that the class of symmetrisable varieties contains
curves of genus 1 and that these are not K0-étale linear.

Theorem 1.2 (Corollary 6.4 and Corollary 6.6). Let C be a curve of genus 1.

Then χmot(C(n)) = an(χ
mot(C)), but [C] 6∈ K0(ÉtLink)

Additionally, we show in Theorem 4.17 that a variety over k must itself be
symmetrisable if it becomes symmetrisable after base change to a finite extension
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L/k of odd degree. We use this to show that even dimensional Severi–Brauer
varieties are symmetrisable in Corollary 4.19 even though they may not be K0-
étale linear. While we only show that curves of genus ≤ 1 are symmetrisable, in
forthcoming work, Lukas Bröring and the third author [BV24] show that all curves
are symmetrisable using different techniques.

We apply our main result in Theorem 5.8 to compute χmot(X(3)) for X a cubic
surface; a computation which we believe would be difficult to do without using the
power structure. Similarly, we use it to compute a generating series for χmot of the
symmetric powers of a Grassmannian.

Theorem 1.3 (Corollary 5.4). There is a generating series for the compactly sup-
ported A1-Euler characteristic of the symmetric power of a Grassmannian:

∞
∑

t=0

χmot(Gr(d, r)(n))tn = (1− t)−e(d,r)(1 − (〈−1〉t))−o(d,r) ∈ GW(k)[[t]],

where e(d, r) is the d-th entry in the r-th row of Losanitsch’s triangle, and o(d, r) =
(

r
d

)

− e(d, r).

The above result enriches the generating series of the classical Euler characteristic
of symmetric powers of Grassmannians, as the rank map GW(k) → Z sends the
form 〈−1〉 to 1 and the sum e(d, r) + o(d, r) is the binomial coefficient

(

r
d

)

.

In Section 2, we recall notions required for our paper. We first restate the
definition of the compactly supported A1-Euler characteristic in Definition 2.3. To
compute the compactly supported A1-Euler characteristics of symmetric powers of
varieties, we use the notion of a power structure on a ring, see Definition 2.6. We
recall the existence natural power structures on both K0(Vark) and GW(k) following
[GZLMH06] and [PP23]. We introduce the notion of a K0-étale linear variety in
Section 3 (Definition 3.1), and prove some of their basic properties. Section 4 is
concerned with proving the main theorem of this paper, using Göttsche’s lemma
for symmetric powers [Göt01, Lemma 4.4]. Section 5 then uses the main result
to compute the Euler characteristics of Grassmannians and a sizeable class of del
Pezzo surfaces. Finally in Section 6, we turn our attention to varieties which do
not become K0-étale linear over any field, but are nonetheless symmetrisable.
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Notation. Fix k to be a field of characteristic 0. For a variety X over k, i.e. a
reduced separated scheme of finite type over k, and n ∈ Z≥0, let X(n) be the nth

symmetric power of X , which is the quotient of Xn by the action of the symmetric
group on n letters permuting the co-ordinates.

2. Compactly supported A1-Euler Characteristics and Symmetric

Powers

In this section we recall results concerning compactly supported A1-Euler char-
acteristics of varieties, as well as the notion of a power structure on a ring.

2.1. The compactly supported A1-Euler characteristic.

Definition 2.1. Let Vark be the category of varieties over k. The Grothendieck ring
of varieties K0(Vark) is the free abelian group generated by isomorphism classes
[X ] of varieties X ∈ Vark modulo the relation [X ] = [Z] + [X \ Z] for every closed
immersion Z → X in Vark, together with the multiplication given on generators
by [X ][Y ] = [X ×k Y ]. Note that 1 = [Spec k] and 0 = [∅] in K0(Vark). Denote the

subring of K0(Vark) which is generated by dimension 0 varieties by K0(Étk).

Definition 2.2. The Grothendieck-Witt ring of k, denoted by GW(k), is the
Grothendieck group completion of isometry classes of non-degenerate symmetric
bilinear forms on finite dimensional k-vector spaces.

By [Lam05, §2, Theorem 4.1], GW(k) is generated by elements 〈a〉 for a ∈ k×,
which are the classes of one-dimensional forms (x, y) 7→ axy, subject to the relations

(1) 〈a〉 = 〈ab2〉 for b ∈ k×,
(2) 〈a〉〈b〉 = 〈ab〉 for b ∈ k×,
(3) 〈a〉+ 〈−a〉 = 〈1〉+ 〈−1〉, and
(4) 〈a〉+ 〈b〉 = 〈a+ b〉+ 〈ab(a+ b)〉 for b, a+ b ∈ k×.

Define H := 〈1〉 + 〈−1〉, which we call the hyperbolic form. There is a canonical
homomorphism rank : GW(k) → Z, given by sending 〈a〉 7→ 1 for all a ∈ k×. Note
that for all q ∈ GW(k), q ·H = rank(q)H.

To define χmot, we follow [LR20, Corollary 8.7] and [AMBO+22, Definition 1.4,
Theorem 1.13]. For X a smooth projective scheme over k of dimension n, define a
quadratic form χHdg(X) ∈ GW(k) as follows.

• If n is odd, we set χHdg(X) = m ·H where

m =
∑

i+j<n

(−1)i+j dimk(H
i(X,Ωj

X/k))−
∑

i<j,i+j=n

dimk(H
i(X,Ωj

X/k)).

• If n = 2p is even, we set χHdg(X) = m ·H+Q where Q corresponds to the
symmetric bilinear form given by

Hp(X,Ωp
X/k)⊗Hp(X,Ωp

X/k)
∪−→ Hn(X,Ωn

X/k)
Trace−−−→ k

and

m =
∑

i+j<n

(−1)i+j dimk(H
i(X,Ωj

X/k)) +
∑

i<j,i+j=n

dimk(H
i(X,Ωj

X/k)).

By [AMBO+22, Theorem 1.13], there exists a unique ring homomorphism, the
compactly supported A1-Euler characteristic

χmot
k : K0(Vark) → GW(k),
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such that if X is a smooth projective connected variety, χmot
k ([X ]) = χHdg(X).

Definition 2.3. For a variety X over k, the compactly supported A1-Euler charac-
teristic χmot

k (X) ∈ GW(k) is the image of [X ] ∈ K0(Vark) under the above map.

Remark 2.4. When the base field is clear, we will drop the subscript k and simply
write χmot(X) to mean χmot

k ([X ]).

In [AMBO+22], this invariant is denoted by χA
1

c .

Remark 2.5. For X smooth and projective, the motivic Gauss–Bonnet Theorem
([LR20, Theorem 1.3]) implies that χmot(X) is the quadratic Euler characteristic
of X . This is an invariant coming from motivic homotopy theory which was first
studied by Hoyois in [Hoy14]. One obtains this invariant by applying the categorical
Euler characteristic construction as defined by Dold-Puppe [DP80] to the stable
motivic homotopy category SH(k) introduced by Morel-Voevodsky, see [Lev20,
Section 2] for details. The quadratic Euler characteristic above is the motivation for
the definition of the compactly supported A1-Euler characteristic in [AMBO+22].
For this paper, we define χmot

k in terms of Hodge cohomology for ease of use, however
this invariant should be thought of as one coming from motivic homotopy theory.

2.2. Power structures. In this section, we give a brief introduction to the power
structures studied by Gusein-Zade, Luengo and Melle-Hernández in [GZLMH06]
and by Pajwani and Pál in [PP23]. Informally, a power structure on a ring R is
a way to make sense of the expression f(t)r for r ∈ R and f(t) ∈ 1 + tR[[t]], see
e.g. [PP23, Definition 2.1] for a precise definition. By [GZLMH06, Proposition 1],
under some finiteness assumptions it suffices to define (1− t)−r for r ∈ R satisfying
some conditions which we specify now.

Definition 2.6. Let R be a ring. A finitely determined power structure on R is a
collection of functions ai : R → R for i ∈ Z≥0 such that:

(1) ai(0) = 0 and ai(1) = 1.
(2) a0(r) = 1, a1(r) = r for all r ∈ R.
(3) an(r + s) =

∑n
i=0 ai(r)an−i(s) for all r, s ∈ R.

For the purposes of this paper, all power structures will be finitely determined.
Suppose R and S are rings with power structures on them given by functions ai
and bi respectively, and let f : R → S be a ring homomorphism. Then we say that
f respects the power structures if f(ai(r)) = bi(f(r)) for all i > 0 and r ∈ R.

Remark 2.7. Gusein-Zade, Luengo and Melle-Hernández [GZLMH06, Page 3]
proved that there is a canonical power structure on K0(Vark), given on the level of
quasiprojective varieties by functions Sn such that Sn([X ]) = [X(n)]. Their paper
works over base field C, however the construction works over a general base field of
characteristic zero.

This paper is concerned with the following power structure on GW(k) from
[PP23, Corollary 3.25].

Definition 2.8. For every n ≥ 0, define functions an : GW(k) → GW(k) such that
for α ∈ k×

an(〈α〉) = 〈αn〉+ n(n− 1)

2
tα,

where tα = 〈2〉 + 〈α〉 − 〈1〉 − 〈2α〉. Note that tα is 2-torsion in GW(k). These
functions uniquely define a power structure on GW(k) by [PP23, Corollary 3.25].
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In fact it is shown that if there is a power structure bn on GW(k) such that
χmot(X(n)) = bn(χ

mot(X)) forX = Spec(L) where L/k is a quadratic étale algebra,
then bn = an for all n. The power structure on GW(k) given by these an functions is
therefore of interest for computing the compactly supported A1-Euler characteristic
of symmetric powers of varieties, since it predicts that χmot(X(n)) = an(χ

mot(X))
for every variety X/k. It is currently an open question whether this is true for
all varieties, however [PP23, Corollary 4.30] shows that this is true whenever X is
dimension 0. We extend this result to K0-étale linear varieties in Theorem 4.10.

Remark 2.9. We have that tα = 0 if and only if [α]∪[2] = 0 ∈ H2
Gal(k,Z/2Z), so in

particular, t1 = t−1 = 0. Corollary 3.28 of [PP23] therefore tells us if −∪ [2] is the
zero map, then an(〈α〉) = 〈αn〉 for all n. In particular, the power structure defined
by the an functions will agree with the non factorial symmetric power structure on
GW(k) as defined by McGarraghy in [McG05, Definition 4.1].

We will use the following results about this power structure later.

Lemma 2.10. Let m ∈ Z and let n be odd. Then an(mH) is hyperbolic.

Proof. Since mH = m〈1〉 +m〈−1〉 and t1 = t−1 = 0, we see an(mH) = Sn(mH),
where Sn is the non factorial symmetric power structure on GW(k) as in [McG05,
Definition 4.1] so when m ≥ 0 this follows by [McG05, Corollary 4.13]. For m < 0,

0 = an(mH+ (−m)H) =
n
∑

i=0

ai(mH)an−i((−m)H),

so the result follows by induction using that qH = rank(q)·H for any q ∈ GW(k). �

Lemma 2.11. Let q ∈ GW(k), and let n be a positive integer. Then

an(〈−1〉 · q) = 〈(−1)n〉 · an(q).
Proof. The result is true for q = 〈α〉 by a simple computation, and so the result
holds by the additive formulae for the an functions. �

3. K0-étale linear varieties

In this section, we define K0-étale linear varieties and show that varieties of this
class generalise cellular varieties in the sense of [Lev20], and linear varieties in the
sense of Joshua’s paper [Jos01].

Definition 3.1. Let K0(ÉtLink) be the subring of K0(Vark) generated by [A1
k] and

classes of the form [SpecL] where L is a finite étale algebra over k. We say a variety

X is K0-étale linear if the class [X ] ∈ K0(Vark) lies in K0(ÉtLink).

Since [A1]n = [An], we see that An is K0-étale linear. More generally X is
K0-étale linear if and only if we can write

[X ] =

n
∑

i=0

mi[A
i] · [Spec(Li)]

where Li/k is a finite étale algebra over k.

Example 3.2. We give examples of some K0-étale linear varieties.
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(1) Since there exists an open embedding A1 →֒ P1 with compliment Spec(k),
we have that [P1] = [A1] + [Spec(k)] ∈ K0(Vark), therefore P1 is K0-étale
linear. More generally, Pn is K0-étale linear since [Pn] =

∑n
i=0[A

i].
(2) Let G be a one dimensional torus, defined by the vanishing set of the

equation x2−αy2 = 1 ⊆ A
2. Then G admits a compactification isomorphic

to P1
k, with compliment Spec(L), where L = k[x]/(x2 − α). Therefore,

[G] = [P1]− [Spec(L)], and since L/k is a finite étale algebra, we see that G
is K0-étale linear. Similarly, any torus which is a product of 1-dimensional
tori is K0-étale linear.

(3) Consider C = {xy = 0} ⊆ A2. Note that C \ {(0, 0)} ∼= Gm,k ∐ Gm,k, so
[C] = 2[Gm,k] + [Spec(k)], so is K0-étale linear.

(4) Let C denote the curve y2z = x3 ⊆ P2
[x:y:z]. We see that

(C \ {[0 : 0 : 1]}) ∼= A
1

via the isomorphism [x : y : z] 7→ x
y . Therefore in K0(Vark) we may write

[C] = [A1]+ [Spec(k)], so C is K0-étale linear. In particular, K0-étale linear
varieties do not need to have smooth irreducible components.

Lemma 3.3. Let X/k be a cellular variety in the sense of [Lev20, Page 2189].
Then X is K0-étale linear.

Proof. As in [Lev20, Page 2189], X is cellular implies that there exists a filtration

∅ = X0 ⊆ X1 ⊆ X2 . . . ⊆ Xn = X

such that Xi+1 \Xi is a disjoint union of copies of Ai
k. Let mi denote the number

of disjoint copies of Ai
k in Xi+1 \Xi. In K0(Vark), we may write

[X ] =
n
∑

i=0

[Xi+1 \Xi] =
n
∑

i=0

mi[A
i],

and the claim is now clear. �

Remark 3.4. The curve {xy = 0} ⊆ A2 is not cellular, even though its irreducible
components are cellular and their intersection is cellular, so the class of K0-étale
linear varieties is strictly larger than the class of cellular varieties.

Remark 3.5. In [MS23, Section 2], Morel and Sawant use a more general defini-
tion of cellular varieties by relaxing the condition on the stratification so that we
only require that Xi+1 \Xi is a disjoint union of cohomologically trivial varieties.
Using this definition, A1-contractible varieties are cellular, e.g. Hoyois, Krishna and
Østvær have proven that Koras–Russell threefolds are A

1-contractible [HKØ16] so
these would be cellular. However, due to the obtuse structure of K0(Vark), it is
unclear to the authors whether such varieties are K0-étale linear.

Definition 3.6. Following Section 3 of Totaro’s paper [Tot14] and [Jos01, Section
2], we say a variety X over k is 0-linear if it is isomorphic to Am

k for some m ∈ N.
A variety X over k is n-linear for n ≥ 1 if there exists an open embedding U → V
with complement Z, such that X ∈ {U, V, Z} and the other two are (n− 1)-linear.
A variety X over k is linear if it is n-linear for some n ∈ N. Let Link ⊆ Vark be
the full subcategory of Vark of linear varieties over k.
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The class of linear varieties includes any variety which admits a stratification
into linear varieties. In particular, it includes all projective spaces, Grassmannians,
flag varieties, and blowups of projective spaces in linear subvarieties.

Lemma 3.7. Let X/k be a linear variety. Then X is K0-étale linear.

Proof. The result is trivial if X is 0-linear, so suppose all m linear varieties are
K0-étale linear for m < n for an induction. Let X be an (n+ 1)-linear variety. By
assumption, there exists an open embedding U →֒ V with compliment Z such that
X is isomorphic to either U, V or Z and the other two are n-linear. In particular,
since [U ]+[V ] = [Z], and K0(ÉtLink) is a subring of K0(Vark), if any two of [U ], [V ]

and [Z] are in K0(ÉtLink), the third is also, so X is K0-étale linear. �

Remark 3.8. The class of K0-étale linear varieties is strictly bigger than the class
of linear varieties. For example, when L/k is a quadratic field extension, Spec(L)
does not admit a stratification as in Definition 3.6.

When k is algebraically closed, that the class of K0-étale linear varieties are
those whose class in K0(Vark) lie in the subring generated by A1. Clearly all linear
varieties lie in this subring. It is unclear if all K0-étale linear varieties over an
algebraically closed field are linear. That is, there may exist varieties X/k that do

not admit stratifications as above, but nevertheless the class [X ] lies in K0(ÉtLink).

The class of K0-étale linear varieties is closed under natural geometric construc-
tions: clearly they are closed under products and scissor relations, but we also have
the following.

Lemma 3.9. Let X be K0-étale linear, and let p : E → X be a Zariski locally
trivial fibre bundle whose fibre F is K0-étale linear. Then E is K0-étale linear.

Proof. Since E → X is Zariski locally trivialisable, we see [E] = [X ][F ] for example

by Remark 4.1 of [Göt01]. Since K0(ÉtLink) is a ring and [X ], [F ] ∈ K0(ÉtLink)
by assumption, the result follows. �

Lemma 3.10. Let X be a smooth variety, and let Z be a smooth closed subvariety
of X such that Z is K0-étale linear. Then the blow up, BlZ(X) is K0-étale linear
if and only if X is K0-étale linear.

Proof. Let Y := BlZ(X) and let E denote the exceptional divisor of the blow up.

Note that [Z] ∈ K0(ÉtLink). As Z → X is a regular closed immersion, E is given
by the projectivization of the conormal bundle NZ/X and is therefore a projective

bundle over Z. It follows from Lemma 3.9 that [E] ∈ K0(ÉtLink). By Bittner’s
theorem [Bit04, Theorem 3.1], we see that

[X ]− [Z] = [X \ Z] = [Y \ E] = [Y ]− [E] ∈ K0(Vark),

and therefore [Y ] ∈ K0(ÉtLink) if and only if [X ] ∈ K0(ÉtLink), since K0(ÉtLink)
forms a subring of K0(Vark). �

4. Symmetrisable varieties

In this section, we prove the main result of this paper, namely that K0-étale
linear varieties are symmetrisable, see Definition 4.1. We also show that K0(Symk)

is a K0(ÉtLink)-submodule of K0(Vark).
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4.1. Properties of symmetrisable varieties.

Definition 4.1. A varietyX is symmetrisable if χmot(X(m)) = am(χmot(X)) for all
m. Let Symk ⊂ Vark be the full subcategory consisting of symmetrisable varieties.

Informally, symmetrisable varieties are varieties that are compatible with our
power structures on K0(Vark) and GW(k) under the morphism χmot. Let K0(Symk)
be the subset of K0(Vark) consisting of elements s such that

χmot(Sm(s)) = am(χmot(s))

for allm ∈ Z≥0, where Sm is the power structure on K0(Vark) induced by symmetric
powers as in Definition 2.7. It is an abelian subgroup of K0(Vark) by [PP23, Lemma
2.9]. Note that a variety X is symmetrisable if and only if [X ] ∈ K0(Symk), and
we later see in Corollary 4.11 that K0(Symk) is the sub-abelian group of K0(Vark)
generated by symmetrisable varieties, which justifies this notation.

This paper studies the structure of K0(Symk) ⊆ K0(Vark), and can therefore
be thought of as a geometric extension of the purely arithmetic results of [PP23].
Indeed, [PP23, Corollary 4.30] shows that Symk contains all zero-dimensional va-

rieties, so K0(Étk) ⊆ K0(Symk). A slight modification of the arguments in [PP23]
gives us the following.

Theorem 4.2. Let X be symmetrisable. Then χmot
k ((XL)

(n)) = an(χ
mot
k (XL)) for

all n and for all finite extensions L/k.

Proof. This follows by an identical argument to [PP23, Subsection 4.3], which we
sketch here for convenience. By [PP23, Corollary 4.24], X is symmetrisable implies
that X ×k Spec(K) is also symmetrisable for K /k a quadratic étale algebra. By
repeatedly applying this result, for any multiquadratic étale algebra A/k we have
X ×k Spec(A) ∈ Symk. As in [PP23, Lemma 4.27], for any positive integer n the
assignments A 7→ an(χ

mot(X×kA)) and A 7→ χmot((X×kA)
(n)) both define Witt-

valued invariants, and the above shows they take the same values whenever A is
a multiquadratic étale algebra, so the result [GMS03, Theorem 29.1] of Garibaldi,
Merkurjev and Serre gives the result. �

Corollary 4.3. The group K0(Symk) is a K0(Étk)-submodule of K0(Vark).

Proof. Note that K0(Symk) is a K0(Étk)-module if and only if for all symmetrisable
varieties X and finite separable field extensions L/k, [Spec(L)][X ] ∈ K0(Symk),
which is precisely the above theorem. �

Remark 4.4. It is an open question to determine whether K0(Symk) = K0(Vark).
For some base fields k, it is true that K0(Symk) = K0(Vark). When k = C, there
is a canonical isomorphism GW(C) ∼= Z and [Lev20, Remark 1.3 (1)] allows us to
compute χmot(X) = ec(X(C)), where ec denotes the compactly supported Euler
characteristic of the topological space X(C). We may then apply MacDonald’s
Theorem ([Mac62b]) to obtain χmot(X(n)) = an(χ

mot(X)), so when k = C, we
have K0(SymC) = K0(VarC), and we may argue as in [PP22, Theorem 2.10] to
show the same is true when k is algebraically closed.

Similarly, when k = R, [Lev20, Remark 1.3(2)] gives

sign(χmot(X)) = ec(X(R)).

We may then apply MacDonald’s theorem ([Mac62b]) and [McG05, Proposition
4.14] to see K0(SymR) = K0(VarR). Moreover, we may argue as in [PP22, Theorem
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2.16] to obtain the same result whenever k is a real closed field. If we let J denote
the kernel of the rank, signature and discriminant morphisms out of GW(k), then
[PP22, Lemma 8.4] guarantees that for char(k) = 0, these power structures are
compatible modulo the ideal J . In particular, K0(Symk) = K0(Vark) for all fields
such that J = 0, which are precisely fields k such that the 2-primary virtual coho-
mological dimension vcd2(k) ≤ 1 by the n = 2, l = 2 case of the Milnor Conjecture,
see the result [Mer81, Theorem 2.2] of Merkurjev. For this class of fields, the map

− ∪ [2] : H1(k,Z/2Z) −→ H2(k,Z/2Z)

is zero. In particular, in every known example where K0(Vark) = K0(Symk), the
power structure on GW(k) from Definition 2.6 agrees with the non factorial sym-
metric power structure of [McG05]. It is unknown whether the non-vanishing of
this map provides an obstruction to the compatibility of these power structures,
and if so, whether this obstruction would be the only one to this compatibility.

4.2. Göttsche’s lemma for symmetric powers. We give a detailed account of
[Göt01, Lemma 4.4], as it will play a crucial role in the proof of Corollary 4.12, which
is one of the main results of the paper. For n ∈ N, let X [n] be the Hilbert scheme of
n-points on X and let ωn : X [n] → X(n) be the Hilbert-Chow morphism, given by
sending a subscheme Z to its support with multiplicities. There are stratifications
of both X [n] and X(s) by partitions α ∈ P (n), where α = (n1, . . . , nr), and also

n =
n
∑

i=1

aii,

where ai is the number of i’s in the partition (n1, . . . , nr). We call |α| = r the
length of the partition. A partition α ∈ P (n) defines the locally closed strata

X(n)
α = {ξ =

r
∑

i=1

nixi | xi ∈ X distinct}

X [n]
α = ω−1

n (X(n)
α )red

of X(n) and X [n], respectively. Let X
|α|
∗ = Xr

∗ ⊂ Xr be the subscheme of points

(x1, . . . , xr) ∈ Xr for which the xi are disjoint. There is a natural map X
|α|
∗ → X

(n)
α

sending a point (x1, . . . , xr) to

r
∑

i=1

nixi ∈ X(n)
α .

Remark 4.5. By the fundamental theorem of symmetric polynomials and the
definition of the symmetric power of an affine variety, we have

(A1)(n) = Spec(k[x1, . . . , xn]
Sn) = Spec(k[e1, . . . , en]) = A

n.

Here, the ei are the elementary symmetric polynomials in the variables xi.

The following appears as [Göt01, Lemma 4.4]. For the convenience of the reader,
we present the proof here, with some additional details.

Lemma 4.6. Let X be a variety and n ∈ N. Let p : (X × A1)(n) → X(n) be

the projection map. Then p : p−1(X
(n)
α ) → X

(n)
α is a Zariski locally trivial vector

bundle of rank n for all α ∈ P (n).
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Proof. Let n ∈ N and α ∈ P (n). The key observation is that the square

X
|α|
∗ ×∏n

i=1((A
1)(i))ai X

|α|
∗

p−1(X
(n)
α ) X

(n)
α

φ

is cartesian. Indeed, a point of the cartesian product p−1(X
(n)
α )×

X
(n)
α

X
|α|
∗ is a pair

(
n
∑

i=1

(xi, ti), (y1, . . . , yr))

such that
n
∑

i=1

xi =

r
∑

j=1

njyj,

and it follows that the choice of tuple (t1, . . . tn) ∈ ∏n
i=1((A

1)(i))ai is free. By

Remark 4.5,
∏n

i=1((A
1)(i))ai ∼= An. As φ is surjective and étale by construction, we

have that p : p−1(X
(n)
α ) → X

(n)
α is an étale locally trivial vector bundle, trivialized

by the étale cover φ. By Hilbert’s Theorem 90 [Ser58, Théorème 2], this map is
étale locally trivial if and only if it is Zariski locally trivial. This implies that p is
also Zariski locally trivial, as required. �

The following appears as the second half of [Göt01, Lemma 4.4], which again we
present with additional details for convenience of the reader.

Corollary 4.7. Let X be a variety over k and let l, n ∈ N. Then in K0(Vark), we
have [(X × Al)(n)] = [X(n) × Anl].

Proof. Let n ∈ N and α ∈ P (n). Let p : (X × Al)(n) → X(n) be the projection
map. The proof is by induction on l. First, let l = 1. Then, by Lemma 4.6,

[(X × A
l)(n)] =

∑

α∈P (n)

[p−1(X(n))
α ]

=
∑

α∈P (n)

[X(n)
α × A

n]

= [X(n) × A
n]

as required. Now suppose the statement holds for all l′ ≤ l for some l ∈ N. By
consecutive applications of the induction hypothesis for l′ = 1 and l′ = l,

[(X × A
l+1)(n)] = [(X × A

l × A
1)(n)]

= [(X × A
l)(n) × A

n]

= [X(n) × A
nl × A

n]

= [X(n) × A
n(l+1)],

as was to be shown, and the proof is done. �

Using Göttsche’s results above, we may quickly deduce the following.

Corollary 4.8. There is an equality [(Am)(n)] = [Amn] in K0(Vark).

Proof. Immediate, by taking X = Spec(k) in the above Corollary. �
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Corollary 4.9. If X is a K0-étale linear variety, then X(n) is K0-étale linear.

Proof. For [X ] = [An], this is immediate by the above. For [X ] = [Spec(L) × An]
where L/k is a finite étale algebra, this follows by Corollary 4.7, and for general

[X ] ∈ K0(ÉtLink) this follows since we can write [X ] =
∑

i mi[Spec(Li)]A
i then

apply the formulae for the functions defining power structures from Definition 2.6.
�

Theorem 4.10. Let X be a K0-étale linear variety over k. Then X is symmetris-
able.

Proof. Recall that χmot(Am) = 〈(−1)m〉. Then by Corollary 4.8 and Lemma 2.11
we have

χmot((Am)(n)) = χmot(Amn) = 〈(−1)mn〉 = an(〈(−1)m〉),
where we use that χmot(A1) = 〈−1〉. Therefore, Ad is symmetrisable. Corollary 4.3
then tells us that [Ad]·[Spec(L)] is symmetrisable for any L/k a finite separable field
extension. Since K0(Symk) is a finite abelian subgroup of K0(Vark), any variety X
such that [X ] =

∑n
i=0 mi[A

i][Spec(Li)] is also symmetrisable, which are all K0-étale
linear varieties by Definition 3.1. �

The above theorem allows us to justify the notation K0(Symk).

Corollary 4.11. The abelian group K0(Symk) is the abelian subgroup of K0(Vark)
generated by classes of symmetrisable varieties.

Proof. Let s ∈ K0(Symk). Since K0(Vark) is generated as an abelian group by
smooth projective varieties by Bittner’s Theorem [Bit04, Theorem 3.1], we may
write s = [X ]− [Y ] where both X and Y are smooth projective varieties.

Since Y is projective, it admits a closed embedding Y →֒ Pm for some m. Let
U := Pm \ Y . Then s + [Pm] = [X ] + [Pm] − [Y ] = [X ] + [U ] = [X ∐ U ]. Since
Pm is K0-étale linear, it is symmetrisable by the above theorem. Therefore, since
K0(Symk) is closed under addition, we see that s + [Pm] lies in K0(Symk). In
particular, X∐U is a symmetrisable variety, since [X∐U ] = s+[Pm] ∈ K0(Symk).
Rewriting s = [X ∐ U ]− [Pm] shows that s can be written as a linear combination
of the classes of symmetrisable varieties, as required. �

Corollary 4.12. The subset K0(Symk) is a K0(ÉtLink)-submodule of K0(Vark).

Proof. LetX be a symmetrisable variety. Note that χmot(X×Al) = 〈(−1)l〉χmot(X)
by multiplicativity of χmot. Corollary 4.7 gives us

χmot((X × A
l)(n)) = χmot(X(n) × A

ln) = 〈(−1)ln〉an(χmot(X)).

Applying Lemma 2.11 gives

〈(−1)ln〉 · an(χmot(X)) = an(〈(−1)l〉χmot(X)) = an(χ
mot(Al ×X)),

and so Al×X is also symmetrisable. Combining this with Corollary 4.3 and [PP23,
Lemma 2.12] tells us that [X ] · ∑n

i=0 mi[A
i] · [Spec(Li)] ∈ K0(Symk) for integers

mi and finite étale algebras Li. Since any element of K0(ÉtLink) can be written as
∑n

i=0 mi[A
i]·[Spec(Li)], this means K0(Symk) is a submodule over K0(ÉtLink). �

Corollary 4.13. Let Z be a smooth symmetrisable variety, let X be a smooth
variety and let Z →֒ X be a closed immersion. Then BlZ(X) is symmetrisable if
and only if X is symmetrisable.
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Proof. The proof is identical to Lemma 3.10, replacing K0-étale linear varieties by
symmetrisable varieties and using that K0(Symk) is a K0(ÉtLink) submodule. �

Remark 4.14. It is a reasonable question to ask whether Theorem 4.10 holds over
a field which is not of characteristic zero. By the discussion in [LPS24, Section
5.1], one can extend the quadratic Euler characteristic of [Lev20] on smooth pro-
jective schemes to a motivic measure K0(Vark) → GW(k) if k has odd positive
characteristic. Also, the power structure of [PP23] on GW(k) is valid in odd pos-
itive characteristic. However, symmetric powers only define a power structure on
K0(Vark) after inverting radicial surjective morphisms, which is also a necessity for
Göttsche’s lemma to hold in positive characteristic. Therefore the only obstruction
to the above theorem holding in positive characteristic is to show that if X and Y
are varieties over a field k of positive characteristic and f : X → Y is a radicial
surjective morphism, one has that χmot(X) = χmot(Y ).

Remark 4.15. We see in Corollary 6.4 and Corollary 6.6 that curves of genus 1
are symmetrisable but not K0-étale linear. Therefore K0(Symk) is strictly larger

than K0(ÉtLink), so Corollary 4.12 is always stronger than Theorem 4.10.

Remark 4.16. Theorem 4.10 can be rephrased in terms of Kapranov ζ-functions.
Let X be a variety over k. We have a power series over K0(Vark), the Kapranov
ζ-function of X :

ζKap(t) :=

∞
∑

n=0

[X(n)]tn ∈ K0(Vark)[[t]].

If [X ] ∈ K0(Symk), then we may apply χmot(X) to obtain a power series in GW(k):

ζχ(X)(t) :=

∞
∑

n=0

an(χ
mot(X))tn ∈ GW(k)[[t]].

In particular, for K0-étale linear varieties, we obtain a quadratically enriched ζ-
function from the Kapranov ζ-function.

In [BHS+23], Bilu, Ho, Srinivasan, Vogt and Wickelgren study quadratically
enriched ζ-functions related to the Hasse–Weil ζ-function used in the Weil conjec-
tures. When working over finite fields, we may use the point counting measure
on the Kapranov ζ-function to obtain the Hasse–Weil ζ-function used in the Weil
conjectures. However, as discussed in Section 9 of [BHS+23], the link between their
quadratically enriched ζ-functions and the Kapranov ζ-function is unclear.

While the link between the above power series ζχ(X)(t) and the Kapranov ζ-
function is clear, it is unclear whether the series ζχ(X)(t) above has an connection

to the ζ-functions of [BHS+23]. Even if we were to resolve the issues from Remark
4.14, it is also unclear whether the ζχ(X)(t) would relate to the Weil conjectures.

4.3. Odd Galois twists.

Theorem 4.17. Let X,Y be varieties such that there exists a finite separable field
extension L/k with [L : k] odd and XL

∼= YL. Then χmot(X) = χmot(Y ).

Proof. Note that χmot
L (XL) is the image of χmot

k (X) under the base change map
GW(k) → GW(L) by [PP22, Lemma 4.2] and similarly for Y . Therefore, since
XL

∼= YL, we see χmot
k (X) − χmot

k (Y ) lies in the kernel of the base change map
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K0(Vark) → K0(VarL). Composing again with the map given by forgetting the
base K0(VarL) → K0(Vark), this means

χmot
k (X × Spec(L))− χmot

k (Y × Spec(L)) = 0 ∈ GW(k).

By multiplicativity of χmot, we have

χmot(Spec(L)) ·
(

χmot
k (X)− χmot

k (Y )
)

= 0.

Note χmot(Spec(L)) = [TrL/k] by [Hoy14, Proposition 5.2]. Since [L : k] is odd,
[TrL/k] = [L : k]〈1〉 by a result of Bayer-Fluckiger and Lenstra [BFL90, Main

Theorem, pages 356 and 359], so this implies that χmot
k (X)− χmot

k (Y ) is torsion of
order dividing [L : k]. Since [L : k] is odd and all torsion in GW(k) is 2-primary
order by e.g. [Pfi66, Satz 10], this gives us the result. �

Corollary 4.18. Let X,Y/k be varieties such that XL
∼= YL for some L/k with

[L : k] odd, and suppose that Y is symmetrisable. Then X is symmetrisable.

Proof. The isomorphism XL
∼= YL induces isomorphisms (X(n))L ∼= (Y (n))L for all

n. The result then follows from the above theorem and the assumption on Y . �

Corollary 4.19. Let X/k be a Severi-Brauer variety of even dimension n. Then
X is symmetrisable.

Proof. Since X is split by an odd degree extension, there exists an odd degree
separable field extension L/k, such that XL

∼= Pn
L. As Pn is K0-étale linear, it is

symmetrisable by Theorem 4.10, so the result follows by the above. �

Corollary 4.20. Let X/k be a symmetrisable variety and let L/k be an odd di-
mensional extension. Then the Weil restriction ResL/k(XL) is symmetrisable.

Proof. Note that ResL/k(XL)L ∼=
∏[L:k]

i=1 XL. The result follows instantly. �

5. Computations of symmetric powers of symmetrisable varieties

In this section, we first show that some natural classes of varieties are sym-
metrisable, and then compute the compactly supported A1-Euler characteristics of
symmetric powers of varieties using the power structure on GW(k).

5.1. Grassmannians. It is well known that Grassmannians are linear varieties in
the sense of Definition 3.6, see for example [Jos01, Example 2.2], and are therefore
symmetrisable by Theorem 4.10. In this subsection, we compute the Euler charac-
teristic of symmetric powers of Grassmannians. Because linear varieties have Euler
characteristics consisting of sums of the classes 〈1〉 and 〈−1〉 in GW(k), it is useful
to know how the power structure behaves with respect to these classes.

Lemma 5.1. For all m,n ∈ N, we have an(m〈(−1)i〉) =
(

m+n−1
n

)

〈(−1)in〉.
Proof. By Lemma 2.11, an(m〈(−1)i〉) = 〈(−1)in〉an(m〈1〉), so without loss of gen-
erality assume i = 0. The proof is by double induction on m and n. Note that the
identity holds whenever m = 1 or n = 1 by Definitions 2.6 and 2.8.

Now fix n,m ∈ N, and assume that the identity holds for all M,N ∈ N such that
M ≤ m and N ≤ n. Then

an((m+ 1)〈1〉) =
n
∑

i=0

ai(m〈1〉)an−i(〈1〉) =
n
∑

i=0

(

m+ i− 1

i

)

=

(

m+ n

n

)

,
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where the last equality follows from the hockey-stick identity for binomial coeffi-
cients, so the identity also holds for n and m+ 1. Moreover,

an+1(m〈1〉) = an+1((m− 1)〈1〉) +
n
∑

i=0

ai((m− 1)〈1〉)an+1−i(〈1〉)

= an+1((m− 1)〈1〉) + 〈1〉
(

m− 1 + n

n

)

= 〈1〉
m−1
∑

i=0

(

n+ i

n

)

= 〈1〉
(

m+ n

n+ 1

)

,

where the last equality follows from the hockey-stick identity again. Hence the
identity also holds for n+ 1 and m, which completes the proof. �

Brazelton, McKean and Pauli [BMP23, Theorem 8.4] computed the A1-Euler
characteristic of Grassmannians over a field k which admits a real embedding k → R

by using a theorem of Bachmann and Wickelgren [BW23, Theorem 5.11]. We give
a purely combinatorial proof which works over any field of characteristic zero, so
without needing the condition that the field admits a real embedding. We will
use Losanitsch’s triangle, OEIS-sequence A034851, which is a summand of Pascal’s
triangle. It is a well-known combinatorial object constructed for example by Cigler
[Cig17, Section 3]. The d-th entry in the r-th row is denoted by e(d, r) and we
define o(d, r) =

(

r
d

)

− e(d, r). The numbers e(d, r) and o(d, r) satisfy the following
recurrence relations:

(1) if d is even, then

e(d− 1, r − 1) + e(d, r − 1) = e(d, r)

o(d− 1, r − 1) + o(d, r − 1) = o(d, r); and

(2) if d is odd, then

e(d− 1, r − 1) + o(d, r − 1) = e(d, r)

o(d− 1, r − 1) + e(d, r − 1) = o(d, r).

Closed formulae for the entries of Losanitsch’s triangle and its complement in Pas-
cal’s triangle are given by

e(d, r) =
1

2

((

r

d

)

+ 1A(r, d)

(⌊r/2⌋
⌊d/2⌋

))

o(d, r) =
1

2

((

r

d

)

− 1A(r, d)

(⌊r/2⌋
⌊d/2⌋

))

,

where A ⊆ N × N is the subset of pairs (r, d) with either r odd or r and d both
even, and 1A is its indicator function. The closed formula is proved by induction
from the recurrence relations.

We now compute χmot of a Grassmannian.

Theorem 5.2. The compactly supported A1-Euler characteristic of the Grassman-
nian Gr(d, r) is

(1) χmot(Gr(d, r)) = e(d, r)〈1〉 + o(d, r)〈−1〉,

https://oeis.org/A034851
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with e(d, r) and o(d, r) as above.

Proof. The closed immersion Gr(d−1, r−1) → Gr(d, r), yields the recursive formula

χmot(Gr(d, r)) = χmot(Gr(d− 1, r − 1)) + 〈(−1)d〉χmot(Gr(d, r − 1)),

If d is even, then

χmot(Gr(d, r)) = χmot(Gr(d− 1, r − 1)) + χmot(Gr(d, r − 1)),

= (e(d− 1, r − 1) + e(d, r − 1))〈1〉
+ (o(d − 1, r − 1) + o(d, r − 1))〈−1〉.

If d is odd, then

χmot(Gr(d, r)) = χmot(Gr(d− 1, r − 1)) + 〈−1〉χmot(Gr(d, r − 1)),

= (e(d− 1, r − 1) + o(d, r − 1))〈1〉
+ (o(d− 1, r − 1) + e(d, r − 1))〈−1〉.

The result follows from the recurrence relations for e(d, r) and o(d, r) above. �

Theorem 5.3. The compactly supported A1-Euler characteristic of the n-th sym-
metric power of the Grassmannian Gr(d, r) is given by

χmot(Gr(d, r)(n)) =

n
∑

i=0

(

e(d, r) + i− 1

i

)(

o(d, r) + n− i− 1

n− i

)

〈(−1)n−i〉

Proof. Since Grassmannians are linear, they are K0-étale linear, so apply Theorem
4.10 to Theorem 5.2 to obtain

χmot(Gr(d, r)(n)) = an(χ
mot(Gr(d, r)))

= an (e(d, r)〈1〉+ o(d, r)〈−1〉)

=
n
∑

i=0

an−i (e(d, r)〈1〉) ai (o(d, r)〈−1〉)

=

n
∑

i=0

(

e(d, r) + n− i− 1

n− i

)(

o(d, r) + i− 1

i

)

〈(−1)i〉,

where we use Lemma 5.1 in order to go to the last line. �

Corollary 5.4. The generating series for the compactly supported A
1-Euler char-

acteristic of symmetric powers of Gr(d, r) is given by
∞
∑

t=0

χmot(Gr(d, r)(n))tn = (1− t)−e(d,r)(1− 〈−1〉t)−o(d,r) ∈ GW(k)[[t]].

Proof. This follows immediately from Theorem 5.3 by taking the Taylor series ex-
pansion of the terms (1 − t)−e(d,r) and (1 − 〈−1〉t)−o(d,r). �

5.2. del Pezzo surfaces. In this subsection, we use the techniques from Section 4
to show a large class of del Pezzo surfaces are symmetrisable. These are a class of
surfaces of arithmetic interest, famous for the fact that over the complex numbers
they contain a finite number of lines lying on them. This number is well known
from enumerative geometry. For example, smooth projective cubic surfaces are del
Pezzo surfaces of degree 3, which contain exactly 27 lines over the complex numbers.
Quadratically enriched counts of the number of lines on del Pezzo surfaces were
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achieved by Kass-Wickelgren [KW21, Theorem 2] in degree 3, by Darwin [Dar22,
Theorem 1.2] in degree 4, and these were generalised to the degree ≥ 3 case in
[KLSW23b] and [KLSW23a] by Kass, Levine, Solomon and Wickelgren.

Definition 5.5. A del Pezzo surface is a smooth projective variety of dimension 2
whose anticanonical bundle is ample. The degree of a del Pezzo surface is the self
intersection number of the anticanonical class. An exceptional curve on a del Pezzo
surface is a curve with self intersection number −1.

Theorem 5.6 (Demazure, Théorème 1 of [Dem80]). Let k be an algebraically closed
field and let X/k be a del Pezzo surface of degree d. Then 1 ≤ d ≤ 9 and either:

(1) X ∼= P
1 × P

1 and d = 8.
(2) X is isomorphic to the blow up of P2 at 9− d points in general position.

While del Pezzo surfaces can be arithmetically very complicated, once we base
change to the algebraic closure of our field, they are linear, so we would expect
large classes of del Pezzo surfaces to be symmetrisable.

Theorem 5.7. Let X/k be a del Pezzo surface of degree ≥ 5 such that X(k) 6= ∅.
Then X is symmetrisable.

Proof. This proceeds by checking on a case by case basis that the conditions we
have already established for X to be symmetrisable hold in our cases. We appeal
to [Poo17, Section 9.4], and we sketch the main results here.

Suppose X is a del Pezzo surface of degree 9. Then X is an even dimensional
Severi Brauer variety, and since X(k) 6= ∅, we see X ∼= P2, so X is K0-étale linear
and so symmetrisable by Theorem 4.10.

Suppose X is degree 8. By [Poo17, Proposition 9.4.12], we see X is either
ResL/k(C) where L/k is a quadratic étale algebra and C is a conic, or P2 blown
up at a point. In the latter case the result holds by Corollary 4.13. Suppose X is
the Weil restriction of a conic. Then X(k) 6= ∅ implies that C(L) 6= ∅ so CL

∼= P1
L.

Therefore ResL/k(C) = P1 × P1, which is symmetrisable by Theorem 4.10.
Suppose X is degree 7. Then Proposition 9.4.17 of [Poo17] tells us that X is

isomorphic to the blow up of P2 at a closed subscheme isomorphic to a finite étale
algebra of degree 2, so the result holds by Corollary 4.13.

Suppose X has degree 5. Then by [Poo17, Proposition 9.4.20], if there exists
a k-point of X lying on none of the exceptional curves in X , we may obtain X
through blowing up and and blowing down P2. By [Poo17, Theorem 9.4.29], this is
always the case in characteristic 0. Therefore, X is symmetrisable.

Suppose X is degree 6, and let x ∈ X(k). Using [Poo17, Proposition 9.4.20], if x
lies on exactly one exceptional curve Ei, then we may blow down X to obtain a del
Pezzo surface of degree 7. Therefore, X is symmetrisable by the degree 7 case and
Corollary 4.13. If x lies on an intersection of exceptional curves, then we may blow
down two other exceptional curves to expressX obtain a del Pezzo surface of degree
8, so X is symmetrisable by Corollary 4.13 and the degree 8 case. Finally, if x does
not lie on any exceptional curves, we blow up X at x to obtain a del Pezzo surface
of degree 5, so X is symmetrisable by the degree 5 case and Corollary 4.13. �

If X is a del Pezzo surface of degree 5 or 7, the condition that X(k) 6= ∅ is
immediate. If X is a del Pezzo surface of degree 9, then it is a Severi–Brauer
surface so it is symmetrisable by Corollary 4.19. We also see del Pezzo surfaces
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of degree 6 which are given by blow ups of Severi–Brauer surfaces at a point are
also symmetrisable by Corollary 4.13, so the above also holds for certain del Pezzo
surfaces with no k-point. We can also use our results to show the following.

Theorem 5.8. Let X/k be a diagonal cubic surface. Then X is symmetrisable.

Proof. We first claim that the diagonal cubic surface Y defined by the equation

Y : x3 + y3 + z3 = t3 ⊆ P
3
[x:y:z:t]

is K0-étale linear. Note that Y contains 2 skew lines defined over k: namely, the
lines L1 : {x = t, y = −z} and L2 : {x = −t, y = z}. Therefore we may blow Y
down at these 2 lines to obtain a del Pezzo surface of degree 5. This del Pezzo surface
will have a k-point, since the skew lines are defined over k, so is symmetrisable by
Theorem 5.7, and therefore Y is symmetrisable by Corollary 4.13.

For the general case, a diagonal cubic surface X is defined by an equation

X : a1x
3 + a2y

3 + a3z
3 = t3 ⊆ P

3
[x:y:z:t],

for some a1, a2, a3 ∈ k×. Therefore, X and Y become isomorphic over the field
L = k( 3

√
a1, 3

√
a2, 3

√
a3). Note that [L : k] = 3i where i ∈ {0, 1, 2, 3}. In particular,

we can apply Theorem 4.17 to obtain the result. �

To demonstrate the computational utility of Theorem 4.10, we give an explicit
computation of the compactly supported A1-Euler characteristic of the third sym-
metric power of a class of cubic surfaces. Let α, β, γ ∈ k× be non squares. Let Y
be a closed embedding of Spec(k(

√
α))∐ Spec(k(

√
β))∐ Spec(k(

√
γ)) into P2 such

that the six points of Yk(k) lie in general position in P2
k
(k). Let X := BlY (P

2), so

X/k is a smooth cubic surface which is symmetrisable by Corollary 4.13.

Proposition 5.9. We see that

χmot(X) = 2〈1〉+ 4〈−1〉+ 〈−α〉+ 〈−β〉+ 〈−γ〉.
Proof. By the blow up formula for χmot, we see that

χmot(X) = χmot(P2) + χmot(E)− χmot(Y ),

where E is the exceptional divisor of the blow up. The exceptional divisor is a
P1 bundle over Y , so χmot(E) = χmot(P1) · χmot(Y ). Note that χmot(P1) = H, so
χmot(E) − χmot(Y ) = 〈−1〉 · χmot(Y ). By [Hoy14, Proposition 5.2], we see that if
L/k is a finite field extension, then χmot(Spec(L)) = TrL/k, where [TrL/k] is the

trace form on L. If L = k(
√
α), then computing the trace form in the basis 1,

√
α

gives χmot(Spec(L)) = 〈2〉+ 〈2α〉 = 〈1〉+ 〈α〉. Additivity of χmot implies

χmot(Y ) = 3〈1〉+ 〈α〉 + 〈β〉+ 〈γ〉.
Finally, χmot(P2) = 2〈1〉+ 〈−1〉. Put together, this gives

χmot(X) = 2〈1〉+ 4〈−1〉+ 〈−α〉+ 〈−β〉+ 〈−γ〉.
�

Corollary 5.10. For X/k our cubic surface as above, the compactly supported A1-
Euler characteristic of its third symmetric power is given by

χmot(X(3)) = 60H+ 14〈−1〉+ 8 (〈−α〉+ 〈−β〉+ 〈−γ〉)
+ 2 (〈−αβ〉+ 〈−αγ〉+ 〈−βγ〉) + 〈−αβγ〉+ tαβ + tβγ + tαγ .
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Proof. Since X is symmetrisable, we see that χmot(X(3)) = a3(χ
mot(X)). We may

compute a3(χ
mot(X)), using the additive formula for the ans, to obtain

χmot(X(3)) = a3(2〈1〉+ 4〈−1〉)
+ a2(2〈1〉+ 4〈−1〉) · (〈−α〉+ 〈−β〉+ 〈−γ〉)
+ (2〈1〉+ 4〈−1〉) · a2(〈−α〉+ 〈−β〉+ 〈−γ〉)
+ a3(〈−α〉+ 〈−β〉+ 〈−γ〉).

Write φ = 〈−α〉 + 〈−β〉 + 〈−γ〉 to ease notation. Standard computations utilising
[PP23, Lemmas 3.18 and 3.19] give us

a3(2〈1〉+ 4〈−1〉) = 24H+ 8〈−1〉
a2(2〈1〉+ 4〈−1〉)φ = 24H+ 5φ

(2〈1〉+ 4〈−1〉) · a2(φ) = 12H+ 6〈−1〉+ 2 (〈−αβ〉 + 〈−βγ〉+ 〈−αγ〉)
a3(φ) = 3φ+ 〈−αβγ〉+ tαβ + tβγ + tαγ ,

and putting this together gives

χmot(X(3)) = 60H+ 14〈−1〉+ 8 (〈−α〉+ 〈−β〉+ 〈−γ〉)
+ 2 (〈−αβ〉+ 〈−αγ〉+ 〈−βγ〉) + 〈−αβγ〉+ tαβ + tβγ + tαγ .

�

6. Curves of genus ≤ 1

In this section we show that curves of geometric genus ≤ 1 are symmetrisable,
but curves of geometric genus > 0 are not K0-étale linear. Therefore, curves of
genus 1 give examples to show the inclusion K0(ÉtLink) ⊆ K0(Symk) is strict.

6.1. Curves of genus ≤ 1 are symmetrisable.

Proposition 6.1. Let C be a smooth projective curve, and let n be odd. Then
χmot(C(n)) = an(χ

mot(C)).

Proof. Note that C(n) is smooth projective of odd dimension, so χmot(C(n)) is
hyperbolic by [Lev20, Corollary 3.2]. Similarly, since χmot(C) is hyperbolic and n
is odd, an(χ

mot(C)) is hyperbolic by Lemma 2.10, so we only need to check that
these have the same rank. Since the rank is invariant under base change of fields, we
may argue as in the proof of [PP22, Theorem 2.10] to reduce the result to the case
where k = C, where the result holds by a result of MacDonald [Mac62a, (4.4)]. �

Corollary 6.2. Smooth projective curves of genus 0 are symmetrisable.

Proof. Let C be a smooth projective curve of genus 0. By the above proposition,
we only need to show χmot(C(n)) = an(χ

mot(C)) when n is even. If C = P1, then
C is linear, so the result follows by Theorem 4.10. Assume therefore that C is a
conic with C(k) = ∅, so there exists a quadratic extension L/k with C(L) 6= ∅.
In particular, we see there is a closed embedding Spec(L) →֒ C. We then see that
Spec(L)(n) is a closed subvariety of C(n). Moreover, since C(n) is a k-form of P1, we
see that C(n) will be given by a k-form of (P1)(n) = Pn, so is also a Severi–Brauer
variety. Note that Spec(L)(n) is given by the disjoint union of Spec(k) and n

2 copies

of Spec(L), so in particular, Spec(k) embeds as a closed subvariety into C(n), so
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C(n)(k) 6= ∅. Since C(n) is a Severi–Brauer variety however, we see C(n) = Pn again
by Châtelet’s Theorem ([Poo17, Proposition 4.5.10]). The result is now clear. �

Proposition 6.3. Let C be a smooth projective curve of genus g > 0. Suppose that
n > 2g − 2. Then χmot(C(n)) = 0.

Proof. Following the proof of [Mus11, Theorem 7.33], we may define a morphism
C(n) → Picn(C) which is defined on points over the algebraic closure k̄ of k as
follows. A point of C(n) over k̄ is a divisor D on C of degree n and we send D to
OC(D). If n > 2g − 2, this map makes C(n) into a Zariski locally trivial bundle of
degree n−g over Picn(C) whose fibre Bn−g is a Severi–Brauer variety of dimension
n− g. We now find that

χmot(C(n)) = χmot(Bn−g)χmot(Picn(C)).

We note that χmot(Picn(C)) = 0 by Theorem 5.48 of [PP22]. This gives the desired
result. �

Corollary 6.4. Let C be a curve of geometric genus ≤ 1. Then C is symmetrisable.

Proof. We first reduce to the case where C is smooth and projective. Let C be
a compactification of C, and let C̃ be a normalisation of C. Then C̃ and C are
birational and dimension 1, so the rational map C̃ 99K C allows us to realise
[C̃] − [A] = [C] − [A′], where A,A′ are dimension 0 varieties. Since K0(Symk) is
an sub-abelian group of K0(Vark) and dimension 0 varieties are symmetrisable by

[PP23, Corollary 4.30], [C] is an element of K0(Symk) if and only if [C̃] is. Therefore
without loss of generality, assume C is smooth and projective.

If g(C) = 0, we appeal to Corollary 6.2. If g(C) = 1, Proposition 6.3 guarantees
that χmot(C(n)) = an(χ

mot(C)) for all n > 0. Therefore, for all n, we have that
χmot(C(n)) = an(χ

mot(C)), so [C] ∈ K0(Symk). �

6.2. Curves of genus > 0 are not K0-étale linear.

Theorem 6.5. Let X/k be a geometrically connected variety which is not geomet-
rically stably rational. Then X is not K0-étale linear.

Proof. Let k be an algebraic closure of k. Suppose that [X ] ∈ K0(ÉtLink). Then

clearly after base changing to k, we have Xk ∈ K0(ÉtLink). Since k is algebraically

closed, all varieties of dimension 0 are disjoint unions of Spec(k), and therefore

K0(ÉtLink) is simply the subring of K0(Vark) generated by A
1. This question

therefore reduces to the case where k is algebraically closed.
Let I denote the ideal of K0(Vark) generated by A1. Then by a result of Larsen

and Lunts [LL03, Proposition 2.7], we have an isomorphism K0(Vark)/I ∼= Z[SB],
where Z[SB] is the ring whose underlying additive group is the free abelian group
generated by stable-birational classes of varieties. By [LL03, Proposition 2.7], a
connected smooth projective variety X/k is stably rational if and only if the class
[X ] in K0(Vark) is congruent to 1 (mod I). By assumption, X is not stably rational
and is connected, so [X ] 6= 1 ∈ Z[SB], which implies that [X ] 6= n ∈ Z[SB] for
some n ∈ Z, since X is connected. This is precisely saying that there is no element
Y ∈ I such that Y + n[Spec(k)] = [X ] for any n ∈ Z. Since every element of

K0(ÉtLink) can be written in this manner, [X ] is not in K0(ÉtLink). �
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Corollary 6.6. Let X be a geometrically connected curve of geometric genus > 0.
Then X is not K0-étale linear.

Proof. As above, we may reduce to the case where k is algebraically closed and
X is connected, and as in Corollary 6.4, we may reduce to the case where X is
smooth and projective. Suppose X is stably rational, so it is unirational. Since X
is a curve, this would imply X is rational by a result of Luroth ([Lür75]). By the
Riemann–Hurwitz formula g(X) = 0. For X not genus 0, it is not geometrically
stably rational, so we can apply the above theorem. �

As mentioned in Remark 4.15, the above shows that the inclusion K0(ÉtLink) ⊆
K0(Symk) is always strict. In [BV24], it is shown that all curves are symmetrisable.

Since we know that K0(Symk) is a module over K0(ÉtLink), we can combine the
above result with the result from [BV24] to obtain large classes of symmetrisable
varieties which are not K0-étale linear.

Remark 6.7. For other invariants in motivic homotopy theory, we may obtain
obstructions to nice behaviour for varieties which are not A1-connected. For ex-
ample, [KLSW23b, Definition 2.30] introduces the notion of a global A1-degree of
a morphism f : X → Y , which descends to an element of GW(k) only when Y
is A1-connected. Therefore, one might expect A1-connectedness to be a necessary
condition for symmetrisability. However, when k is a number field, there exist
smooth projective curves of genus ≥ 1 that are not A1-connected. It is therefore
not true that over a number field K0(Symk) is given by the Grothendieck group of
A1-connected varieties.
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[Mus11] Mircea Mustaţă. Zeta functions in algebraic geometry, 2011. Lecture notes.
[Pfi66] Albrecht Pfister. Quadratische Formen in beliebigen Körpern. Invent Math, 1:116–

132, 1966.
[Poo17] Bjorn Poonen. Rational points on varieties, volume 186 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, 2017.



EULER CHARACTERISTICS OF SYMMETRIC POWERS OF CELLULAR VARIETIES 23

[PP22] Jesse Pajwani and Ambrus Pál. An arithmetic Yau-Zaslow formula, 2022. Preprint
on arXiv:2210.15788[math.AG].

[PP23] Jesse Pajwani and Ambrus Pál. Power structures on the Grothendieck–Witt ring
and the motivic Euler characteristic, 2023. Preprint on arXiv:2309.03366[math.NT].

[Ser58] Jean-Pierre Serre. Espaces fibrés algébriques. Séminaire Claude Chevalley, 3:1–37,
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