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ABSTRACT

The growing adoption of large language models (LLMs) presents substantial potential for
deeper understanding of human behaviours within game theory frameworks through simulations.
Leveraging on the diverse pool of LLM types and addressing the gap in research on competitive
games, this paper examines the strategic interactions among multiple types of LLM-based agents
in a classical game of beauty contest. Drawing parallels to experiments involving human subjects,
LLM-based agents are assessed similarly in terms of strategic levels. They demonstrate varying
depth of reasoning that falls within a range of level-0 and 1, and demonstrate convergence in actions
in repeated settings. Furthermore, I also explore how variation in group composition of agent
types influence strategic behaviours, where I found higher proportion of fixed-strategy opponents
enhances convergence for LLM-based agents, and having a mixed environment with agents of
differing relative strategic levels accelerates convergence for all agents. There could also be higher
average payoffs for the more intelligent agents, albeit at the expense of the less intelligent agents.
These results not only provide insights into outcomes for simulated agents under specified scenarios,
it also offer valuable implications for understanding strategic interactions between algorithms.
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1 Introduction

With the emergent line of research surrounding the study of the capabilities of large language models (LLMs), there is also growing
discussions over the implications of LLMs on economic research and the possibility of using them for social sciences experiments.
While the current applications of LLMs as simulated agents mainly concentrated on more text-based tasks, such as filling in
surveys as a way to provide insights on the average opinion of the population regarding certain topics, it could also impact more
strategic scenarios, particularly in the field of game theory. Recent research in this area, however, mainly focused on exploring
2-player cooperative and non-cooperative games, and often comprises of a single LLM type. It could be interesting to investigate
strategic interactions in multi-player competitive games, where agents can be back-boned by different LLMs to represent players
of heterogeneous types. As a result, in this work, I seek to leverage on the presence of multiple LLMs to explore their strategic
behaviour in beauty contest games.

LLMs as simulated agents. One of the main objectives of this work is to make a case for the possibility of using LLMs
as simulated agents, which still has limited applications in Economics. Since LLMs are trained based on human-generated data,
observing game play for LLM-based agents could be fairly relatable to human subjects in experiments, thus their responses could
provide results that offers more insights than the conventional simulation methods. Furthermore, it is relatively easy to use LLMs
in experiments, making it a good tool to toy with different set-ups and to provide fresh insights on classical games. Even though
studies did highlight LLMs’ ability to mimic human behaviour and reasoning process, there remain questions and controversies of
using LLMs as replacement for human subjects. In view of the potential limitations in interpreting the minds of LLM-based agents
with the absence of similar cognitive architecture that backs human behaviour, it is important to note that using LLM-based agents
as participants of experiments is not aiming at replacing human subjects, but rather simulating potential game play by riding on
top of embedded human behaviour. It is also more cost-effective if we want to investigate some variations that generate interesting
insights from LLM-based games in a more expensive human-driven experiment, thereby offering designs that are worth pursuing.

Behaviour of LLM-based Agents in Multi-player Competitive Game. The second objective of my work is to inform
potential game play in a multi-player competitive game and study the adaptive learning behaviour of agents when the group
composition differs. Literature that simulated agent behaviour with LLMs in games often consist of 2-player games and usually
use a single LLM type (Horton (2023), Phelps and Russell (2023)). This is equivalent to assuming all agents have the same natural
language understanding ability, modelling agent behaviour from which is therefore a little more restrictive and did not leverage
on the potential of having a pool of LLMs. By having multiple types of LLMs, it is possible to draw relation of these models to
human subjects. Using the beauty contest games, I found the models to have a strategic level between 0 and 1 using the level-k
model proposed by Nagel (1995), and in repeated setting, some of them show convergence towards Nash equilibrium action,
which could be at varying speed, as past information are revealed to them. Further to this, I have selected two different LLM
types, characterized by their strategic levels, to explore how variation in proportion of agents types in the group could affect game
outcome. In which case, I found less strategic agents could converge faster to Nash equilibrium than more strategic agents when
facing fixed-strategy opponents. Furthermore, when they are playing against each other, their learning rate could be faster than
when they are playing with their own types. Specifically, while less strategic agents do not learn when playing with own types, they
do in mixed environment. However, in terms of payoffs, the more strategic agents gain comparably well or having better payoffs in
mixed environment than pure environment, and this comes at the expense of less strategic agents. These contribute first to assessing
the models with a human-based metric on the basis of strategic level, thereby drawing a relation to represent heterogeneous human
subjects using the models , and then simulating game play and exploring learning behaviours. The variation in group composition
also offers some insights on how to induce faster learning by changing proportion of opponent types faced by the agents.

Strategic Interactions between AI Algorithms. Last but not least, this work hopes to use methods that evaluate human
subjects to shine a light on how algorithms could interact with one another in strategic setting. For instance, with the ongoing
progress of integrating LLMs into daily life, it is likely that in the future, agents will be using bots back-boned by LLMs to
communicate and interact with one another, making LLMs surrogate agents. A clear example would be in the trading market,
where existing crypto trading bots function by executing pre-defined strategies, making buying and selling automatic (Trality
(2024)), it is entirely plausible to replace such automatic bots to ones backed by LLMs that take into account vast human data on
trading strategies. Therefore, understanding how algorithms react to one another would be important in such context. Furthermore,
since large LLMs could be costly, it is possible to have strategic situations that encompass a variety of LLMs, and one can trade-off
between cost of adopting different LLM-backed agents and their performance.

On a broader perspective, this work hope to highlight that LLM-based agents not only can be used as a tool for social
sciences in simulating potential human behaviour in strategic situations, the theories that were developed to evaluate human
behaviours can nonetheless help us to understand how this new era of computer algorithms function when competing with one
another.

The rest of the paper is divided into a few sections: Section 2 introduces the background of this work. Section 3 explores
LLM-based agents in beauty contest games, divided into games with multi-LLM-based agents to investigate their respective
strategic level, as well as convergence behaviour in repeated setting, and reducing LLM-based agents into two types, to investigate
changes in their behaviour given variations in group composition. This is followed by Section 4, where I study the understanding
and line of reasoning behind the choices made by the two LLM types for the different set-ups. Future updates and extensions are
then highlighted in Section 5. Following which, I conclude in Section 6.
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2 Background

2.1 LLMs as Computational Model of Human Behaviour

While the creation of LLMs have sparkled a new wave of research in Computer Science to improve the models’ performance,
their development also convey huge potential for interdisciplinary studies. Horton (2023) for instance proposed that LLMs can be
perceived as implicit computational model of human behaviour and be used as simulation tool. Before diving into further details, it
is important to understand how LLMs could function as computational model of human behaviour as a result of how they are trained.

Training Process. As illustrated by Ouyang et al. (2022), there is a 3-step training process that involves human feedback:

1. Training a supervised policy. A prompt is sampled from a dataset, and human labelers were asked to provide responses to
the prompt, these response data are then used to facilitate supervised learning of the policy, constituting the early version
of the language model.

2. Training a reward model. For a set of prompt and responses that were generated, again a human labeler gets involved to
rank the responses from best to worst, this ranking data is then used to train the reward model.

3. Optimizing the policy against the reward model. As the policy generates output and reward model computes the reward
for the given output, the policy is fine-tuned against the reward model using reinforcement learning. This form of model
alignment using reward model trained on response ranking from human annotators is referred to as reinforcement learning
with human feedback (RLHF).

There is implicit human involvement in the prompt sample, which rides on top of information that is publicly available on the
internet, as well as licensed information from third parties, and there is also explicit human involvement in the training process
that includes information generated by the LLM labelers and users. (OpenAI (2024)) Particularly, in the reward model training
stage, the training dataset used by Anthropic primarily comes from crowd-sourcing feedback through Amazon Mechanical Turk, a
platform often used for social sciences research. As for OpenAI, their models are trained on used prompts submitted by users to
the GPT API. Since login are more restricted in this case, training based on feedback from different groups of users could induce
performance differences across LLMs. (HuggingFace (2022))

Given that LLMs can be interpreted as computational model of human behaviour based on the underlying training process
that pans on human-generated data, I hope to streamline and differentiate between the two main aspects of how LLMs’ human-like
behaviour could cater to assisting and influencing research for Economics, or more broadly, the social sciences community:

(a) Imitation of human decision-making process given known constraints. LLMs allow for the creation of synthetic
agents with given profiles, and their behaviour, mimicking human behaviour under known and specified constraints, are
investigated. This type of simulation could help to facilitate building of decision theory models when the constraints are
pre-defined. It may resembles agent-based modelling (ABM) approach, where agents are endowed with pre-defined behavioural
prompt, and the outcome from which could serve as a form of visualization and checkpoint of the theoretical predictions. However,
as illustrated by Horton (2023), agents in ABM approach is completely pre-programmed to behave as we expect, whereas homo
silicus, describing LLMs, are not completely under our control. While it is possible to provide them with artificial profiles and
demanding them to behave with a pre-defined constraint, the outcome may not be exactly what we predict, and this could arise if
there are implicit bias embedded in the underlying training data that the theoretical models, which was put to test, did not account
for. Therefore, any deviation in the simulation results away from theoretical predictions inevitably makes it more interesting and
useful, where they can feed back into improving theoretical models to explore potential factors that cause the diversion.

(b) Mirroring human-like complexities without known constraints. It is also possible to run simulation without pre-defining the
constraints, and this would resemble running an experiment with human subjects, except with LLM-based agents. By abstracting
away from putting restrictions on their behaviours, the simulation results would illustrate the less computational side of LLMs,
and essentially offers a tool for computational experiments, showcasing the potential experiment results if they were conducted
with human subjects. Depending on the baseline data the LLMs are trained upon, the results could be more representative of the
average opinion of the general population or specific groups of population.

While the first area spur emerging research in analyzing behaviours of artificial agents who were given pre-defined types
or constraints, confirming and illustrating how certain known or hypothetical human bias could impact outcomes. The objective of
which is more grounded in granulating the elements contributing to decision-making, which would be important in understanding
why human behave the way they do. On the other hand, the second area takes advantage of the latent behavioural elements that
were baked in the training data. Its main focus is to speculate the possible experimental results that can be anticipated if done with
human subjects.

LLMs as heterogeneous agents. LLMs are of different priors and could also comes in varying sizes, they can therefore
be considered as heterogeneous agents on the basis of differences in these characteristics. The main difference between
large-scaled language models and small-scaled language models are the amount of data they are trained upon. Since large-scaled
language models are trained on massive amount of data, often comprising billions or trillions of words, they are potentially better
at natural language understanding and providing better text-based outputs. (Labellerr (2024))
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While we can directly perceive the models to be different types of simulated agents, their variation in text-based generating ability
might not translate to varying strategic ability. Therefore, in this paper, their heterogeneity is characterized by their strategic levels
that are determined when playing in the one-shot beauty contest games. This is a measure ubiquitous to how we evaluate the types
of human subjects, thereby drawing parallels between the two. The additional benefit of this work leveraging on the existence of
different LLM types to represent heterogeneous agents is that it also build a case where smaller language models can also be useful
in helping us to understand human behaviour, rather than just learning from the larger language models.

LLMs as complements to human participants. As the line of research emerge arguing for the usefulness of LLMs in
social sciences, there is the question of whether LLMs can rise up to the task of participating in social experiments in place of
human subjects or rational players. Firstly, current literature have explored if LLMs, mostly a single LLM type (often GPT3.5 or
GPT4 ), could imitate human behaviours by attempting to replicate experimental results conducted with human subjects. Argyle
et al. (2023) found GPT3.5 to reflect viewpoints that parallel to the US public opinions and sub-populations, and could
behave as good proxies for aggregate level human cognition. There are also literature that illustrate LLMs’ strong capability in
analogical reasoning, comprehension and communication skills to solve problems, as well as producing moral judgements that are
well-aligned with human subjects. (Webb et al. (2023), Huijzer and Hill (2023), Dillion et al. (2023)) In the context of strategic
games, LLMs were found to be able to reproduce the findings in many types of experiments, such as the ultimatum game, wisdom
of crowds. AI bots equipped with GPT4 also exhibits behavioral and personality traits, in terms of risk-aversion and cooperation,
as well as learning patterns, similar to that of many human subjects. (Guo (2023), Aher et al. (2023), Mei et al. (2024)) On top
of modelling human behavioural features, there are also works that investigate how LLMs compare to rational players in games.
Fan et al. (2023) indicates LLMs in games, such as dictator game, Rock-Paper-Scissors, and ring network, may find it hard to
elicit uncommon preferences, refine belief, and may take sub-optimal actions because they have ignored or unnecessarily modified
the refined belief. Guo et al. (2024) explores beauty contests and auction games and found LLMs to deviate away from Nash
equilibrium action. While they may not serve the purpose of behaving as rational players in games, they inevitably shows ability to
imitate human behaviours, as could serve as human-like simulated agents. Given their training process, responses from LLMs can
be interpreted to ride on top of the human reasoning process, as well as their preferences and behavioural bias that are embedded
into the training datasets. Therefore, it is likely that the eventual output from LLMs revealed the potential behaviour of human
under each prompt, making LLM-based agent a plausible tool to approximate average human behaviour in experimental setting.
Since training data rely less on strictly controlled environment and acquired from a potentially broader subject pool, the end results
could be more representative of the population.

While Dillion et al. (2023) indicates LLM to be good proxy of a single participant, they question LLM’s ability to capture
variability in human cognition as the model condense the diversity of responses into a modal opinion. This, however, can be solved
by having different types of LLMs, which could be trained on different subsets of information, even for same training information,
the degree of noise and processing ability also matters. Furthermore, in strategic situations, it remains interesting to investigate
how game play within a homogeneous population is like.

The main concern however, is that minds of LLMs are opaque, just like humans. While there are many theories that
underline the behaviour of human in strategic situations, there is lack of something equivalent that strongly supports AI algorithms
go through the same thinking process. However, since LLMs are trained using human-generated data, including reasoning
procedures, they could develop mechanisms similar to that of human brain. (Kosinski (2023)) Despite this connection, it is
important we treat the simulated results with caution. Therefore, my work does not aim at arguing for replacement of human
subjects in experiments, but rather, in view of the parallels between strategic behaviours of LLMs and human subjects, we should
take advantage of the tool to shed more insights on strategic behaviour of human subjects and their cognition process in specific
setting. Further to this, instead of using it only when experiments are not feasible, it is a good and also cost-effective approach to
gain fresh insights through variations in game set-ups when it is difficult to conduct the same experiment again, or simply as a way
to find interesting experimental set-ups worth pursing with more expensive human subjects. This form of simulation could have
implications for mechanism design, providing clarity on how variation in certain design could potentially impact game play.

2.2 LLM-based Agents in Competitive Games

While some literature have explored cooperation and anti-coordination games between agents back-boned by a single LLM type,
in this paper, I seek to explore competitive games that encompass multiple LLM types. As a result, I focused specifically on beauty
contest games, which provides a classical and desirable set-up that encompasses both (1) competitive nature, (2) interactions
between multiple agents. The agents involved can also be heterogeneous, capturing impact of differences in natural language
understanding capacities or rather, intelligence or strategic levels for simulated agents. Furthermore, it is possible to construct a
simple set-up with a single interior Nash equilibrium solution, making it easy to distinguish the levels of reasoning using either the
iterated elimination of weakly dominated strategies, level-k or cognitive hierarchy models. (Nagel (1995), Camerer et al. (2004))
Further to that, Akata et al. (2023) studied repeated 2 × 2 games, such as Battle of Sexes and iterated Prisoner’s Dilemma, to
inform coordination or anti-coordination behaviour of LLMs in repeated interactions, which has something to do with alignment
with opponents. The same can be done for competitive games to explore LLMs’ adaptive learning behaviour when they are in
direct competition with others and have to outmaneuver the others in order to win. Therefore, the additional benefit of repeated
beauty contests under the standard set-up is that even in repeated setting, there is a single Nash Equilibrium, thereby setting aside
any possibility of multiple equilibrium which could complicate the analysis.
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Nevertheless, there is also another layer of social value for exploring application of LLMs in the beauty contest games.
The Keynesian Beauty Contest stems originally from Keynes (1936), and it has been used to describe the stock market, where
investors attempt to guess what the other investors might do, and it is also related to beauty pageant competitions, where
competitors were asked to select the prettiest contestant by forming expectation about other competitors’ opinions. (Nagel et al.
(2017)) It is likely that in the future, trading bots or algorithms in competitive setting will be back-boned by LLMs, and potentially
behave as proxies for humans to execute tasks. A more superior algorithm in terms of its parameter size or amount of training
data it encompasses, does not necessarily imply better payoffs as they are playing in conjunction with other types of algorithms,
and have to interpret and best react to what might the other algorithms do. Most importantly, individuals could choose proxies that
are backed by different LLMs depending on their cost concern, making it important to look at how different types of LLMs could
react to one another. Therefore, it becomes interesting to investigate how human-like LLMs interact with one another in a simple
competitive setting like the beauty contests to inform more about its potential social implications.

2.3 Strategic Interactions between Machines

Unlike previous generations of static computer algorithms that execute pre-programmed strategies, and behave regardless of the
types of opponents they are faced with, LLMs are more human-like and dynamic in nature. In this work, as I simulate interactions
between LLMs and static algorithm, as well as LLMs vs. LLMs, there can be many different interpretations. The results can
be used to represent game play between synthetic human agents, human vs. computer, and computer vs. computer. In the first
two instances, LLM-based agents are behaving as simulated agents that approximate human behaviour, providing some plausible
conjectures about how human subjects might react in games when placed against other human subjects or against computer
algorithms. While we use LLMs as simulated human agents to understand human behaviour, the reverse is true as well, through
explaining the behaviour using concepts borrowed from human research, we can also understand machines better.

For centuries, economists, psychologists and neuroscientists have been studying the quasi-black box of human brain and
came up with numerous theories that seek to explain the decision-making of human, they can be used to potentially explain
machine’s behaviour as well, or at least as a first step, drawing parallels between the two. For instance, Kosinski (2023) explores
the application of theory of mind for LLMs and Dillion et al. (2023) also mentioned comparing LLMs with human judgements
could perhaps teach us about the machine minds of LLMs. There are a lot more to be done for strategic interactions. By looking
at the computational experiments and the human subjects’ experiments, we can evaluate the models using the method we use to
evaluate humans, and we can perhaps use how we explain human interactions to explain machine interactions, thereby generating
more insights on how minds of machine might work in strategic settings. Understanding how they function is a step forward to
improving their performance in the future to be more human-like or even, exceeding average human capacities.
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3 Beauty Contest Games

The experiments in this section is based on the EconArena proposed by (Guo et al. (2024)). Different from Guo et al. (2024),
where the main objective is to evaluate LLMs’ performance relative to rational players that play Nash equilibrium following
game-theoretical predictions, this work aims to analyze LLMs’ behaviour as though they are human players, where their strategic
levels are assessed using the methods employed to assess human subjects, and their potential game play is simulated under varied
set-ups.

In this section, I first explore one-shot and repeated beauty contests games involving multiple LLM types, which include:
ChatGLM2 , ChatGLM3 , Llama2 , Baichuan2 , Claude1 , Claude2 , PaLM , GPT3.5 , GPT4 After evaluating their strategic
levels and convergence behaviours, I then choose two types of LLMs, namely PaLM and GPT3.5 , which were assessed to be
of different strategic levels, to construct groups of heterogeneous agents, and analyze how variations in group composition could
affect game outcomes, providing some insights on their adaptive learning pattern.

3.1 Multi-LLM-based Agents

The basic set-up is a modified version following Nagel (1995) and the original exemplary prompt is recited in A.1.

• The agents are asked to choose a number between 0 and c̄, where c̄ ∈ (0, 1000).

• The winner is the person whose number is the closest to p of the average of all chosen numbers, where p = 2
3

.

• A fixed prize of $x will be awarded to the winner, and in case of a tie the prize is split amongst those who tie.

• The same game can be repeated several periods, in each period, subjects are informed of the mean, 2
3

of the mean and all
choices.

• Theoretical prediction for this game points to a unique interior Nash equilibrium solution of 0.

I will focus my analysis in the following areas:

1. Strategic Level. The frequency of choices will be explored and analyzed. Following Nagel (1995), an agent is of strategic
degree n if he chooses a number r( 2

3
)n, where r is defined to be the reference point. This could be a choice characterized

by naive player or a point of salience in heuristics, which I will define in later parts.

2. Convergence of Choices. In the repeated game setting, every agent is responding to the information revealed from
previous rounds. The changes in choices adopted by the agents can be tracked to determine if there is convergence to the
unique Nash equilibrium of the game.

3. Frequency and Evolution of Strategic Level. The frequency of strategic levels across periods was also tracked to get a
gauge of the average strategic levels of the simulated agents that does not simply dependent on the choices made in the
first round. It is also possible to explore if strategic level do evolve over time. The evolution of strategic level can be
found by adjusting the reference point of each period, fixing it to be the mean of the previous period. If n increases, it can
be interpreted as increasing level of thinking or revision in actions to best respond to opponents that could be of higher
strategic level.

4. Evolution of Payoffs. The most interesting portion about multi-agent competitive games is the possibility that stronger
models might not always be better in generating the highest payoffs. Therefore, exploration of payoffs and their transition
over time could be important to determine how agents’ performance could be dependent on their own strength as well as
on the environment.

3.1.1 One-Shot Game

150 sessions of one-shot beauty contests were ran with 9 LLM-based agents back-boned by multiple LLM types. These games are
used to determine the strategic level of each model.

In the standard beauty contests, where c̄ is fixed to be 100. Via the iterative elimination of weakly dominated strategies,
all choices between (66.66, 100] are weakly dominated by 66.66, and all choices above 44.44 are weakly dominated by 44.44,
etc. Going by the level-k model, for a focal point set at 50, level-0 chooses 50, and level-1 responds by choosing 33.33, etc. In
this modified set-up, a randomly generated upper-bound, c̄, is used for each one-shot game. The upper-bound will not affect the
assessment of strategic level. For instance, using the level-k model, level-0 would choose the focal point, which would be the
mean of uniform random choices, c̄

2
, following Nagel (1995), and level-1 would respond by choosing 2

3
c̄
2

, so on and so forth.
The average strategic levels of each model are computed in this manner to ensure a more robust measure of strategic level that is
consistent across changing game parameters.

Choices. The frequency of normalized choices made across the 150 sessions of one-shot games is shown in Figure 1. The
choices are concentrated on 50 for ChatGLM3 , Baichuan2 , Claude1 , PaLM . Based on the level-k model proposed in
(Nagel (1995), these models can be characterized as naive or level-0 players. The average choice for Llama2 lay around 60,
approximately corresponding to level-0, and the choices are noticed to be fairly dispersed across the range of 40 to 80. Claude2 ,
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GPT3.5and GPT4 , on the other hand, are displaying slightly different choice frequencies as compared to the previous models. For
Claude2 , there is a spike around 33, indicating the likelihood of level-1 thinking, on top of that, there is high choice frequency
around 66 as well, which can be rationalized via step 1 of the process of iterated elimination of dominated strategies. (Mauersberger
and Nagel (2018)) As for GPT3.5, most of the choices are also concentrated around 33, stipulating level-1 reasoning. While there
are some other spikes at 50 and 66, but are of much lower frequency. Lastly, for GPT4 , the highest spike in choices is around 44,
going by iterated elimination of dominated strategies, this could imply step-2 of the depth of reasoning process, a lower frequency
spike is also seen at around 33, indicating level-1 thinking via the level-k model. There are no data for ChatGLM2 as it is unable
to complete any of the games, which can be attributed to it being a relatively weak model and thus is unable to produce any output
based on the instructions. Based on the choice frequency, it is not surprising that the larger language models are able to generate
higher frequency in choices that can be characterized as higher level of strategic thinking. One further detail to notice is that for
Claude2 and GPT3.5 , there are instances where they in fact select the NE choice of 0, consisting 6% and 5.3% of the sessions
respectively.

Figure 1: Frequency of choices across 150 sessions for each model.
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In Nagel (1995) and Bosch-Domenech et al. (2002)’s period 1 results done on different human populations, including students (mean
choice=36.73, median choice=33), theorist (mean choice=17.15, median choice=15∗), newspaper readers (mean choice=23.08,
median choice=22∗), etc.2 The human subjects experiments shown strong deviation away from game-theoretic solution, and going
by the level-k model, they on average display iteration steps 1 and 2. Even though it is often expected that the general public is
more noisy in choices, in this case, newspaper readers have slightly lower mean than the student population, possibly due to longer
time for reflection and thereby making more contemplated decisions. (Mauersberger and Nagel (2018)) Evaluating the simulation
results of one-shot beauty contests with LLM-based agents against the results with respect to human subjects, they seem to be
choosing slightly higher numbers that imply a lower average strategic level of 0 to 1 as compared to human subjects. However, this
result does comply with the impression that general public should display more noise or randomize their choices more, inducing a
lower strategic level on average. Even though it can be argued that LLM-based agents are all representing the general public, there
remain heterogeneity among them. Given that the alignment of models are riding on top of data generated with different sets of
labelers and users, the simulated agents back-boned by different LLMs can represent different subsets of the general populations,
the difference is that types are not defined based on one’s career for instance, but characterized by their revealed average choices
and strategic levels. As a result, games with multi-LLM-based agents describe a predicted outcome for games played by the general
population, but involving individuals with heterogeneous degree of strategic thinking.

Models ChatGLM3 ChatGLM2 Llama2 Baichuan2 Claude2 Claude1 PaLM GPT3.5 GPT4
Average 52.029 N/A 59.519 51.158 41.609 47.696 49.976 38.912 41.072
Median 51.724 N/A 62.685 50.0 33.333 49.313 50.0 33.333 44.442

Table 1: Average and Median Choice of the LLMs across 150 Sessions

A possible follow-up question is that if the models are given the exact same instructions, would they choose the same number
consistently? For human subjects, when given identical game set-up, it is possible that they might employ different strategies.
There could be many reason behind this. Devetag et al. (2016) highlights the potential of players focusing on different features of
the games across the series of one-shot games, thereby selecting different strategies for identical games. Further, Costa-Gomes and
Weizsäcker (2008) indicated the discrepancy between individuals’ stated beliefs and actions taken, implying one’s actual choices
might be affected by factors not aligned with this understanding, which translate into inconsistency in strategies. The same could
apply to LLM-based agents. If each LLM-based agent were to represent a single type of human agent, it could be important to
understand how varied one’s choice of number might be given the same instructions. This also applies if each LLM-based agent
were to represent a single type of population, where variation in choices could be further explained by proportions of agents
playing different pure strategies, which might lead to different revealed actions in each round of identical games. This exercise is
important to determine if, like human players, there could be variability in choices.

When using LLMs as simulation tool, it is possible to some extent to control for the variability in the strategies executed
by agents through changing the temperature. Chollet (2021) introduced softmax temperature in the text generation process,
which characterizes the randomness of the choice of the next word. Higher temperature corresponds to less predictability of the
output, and lower temperature indicates more deterministic result. However, though this feature characterized the randomness
in text output, its impact on strategic choices is not as clear. Therefore, by exploring the revealed choices given the same level
of temperature is being set for all the models, this can in fact determine how random the models are in strategy selection while
holding all else constant.

Figure 2: Variability in chosen number given the same upper-bound.

2The median for the later groups were not computed, but it is guesstimated based on the figures in Nagel (1995) and
Bosch-Domenech et al. (2002) to be around 15 for theorist and 22 for newspaper readers.
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Figure 2 shows that within the 150 sessions, for those sessions having the same upper-bound of choice range, the same
LLM-based agent could choose slightly different numbers. For instance, Claude2 , GPT3.5 and GPT4 displayed more
variability in choices as compared to other models. This results is indicative that choices might not be static even when the
instructions is exactly the same, which further emphasize the need to run many sessions of one-shot games that encompass both
identical upper-bounds and different upper-bounds, the determination of average choices and the corresponding strategic levels
based on which would render a more consistent and robust measure for each model.

Strategic level relative to reference point. To evaluate the exact strategic level of each model given their choices, I
follow (Nagel (1995))’s method used for human subjects. One’s strategic level is denoted as n, and r is the reference point, the
computation of strategic level is determined using r( 2

3
)n = chosen number. In Mauersberger and Nagel (2018), the reference point

refers to the choice of a non-strategic agent, who is assumed to play the mean of the range of choices, pertaining to insufficient
reasoning. However, this focal point can be arguable. In these current set of beauty contest games, the upper-bound varies,
therefore, calculating for the mean of uniform random choices may not be as straightforward as games with fixed upper-bound,
thus it could be reasonable for the upper-bounds to be the focal points as well. Figure 3 shows that for the 150 sessions, the
average strategic level of each LLM-based agent lay between 0 and 1 when the reference point is set to mean of random choices
(i.e r = c̄

2
) and between 1 to 2.5 when the reference point is set to be the randomly generated upper-bound of each game (i.e. r = c̄).

For the conventional focal point of c̄
2

, Figure 3a shows that the average strategic level for Claude2 and GPT3.5 are
comparable. Surprisingly, GPT4 has slightly lower strategic level relative to these two models, even though it is often assumed
to be a stronger model than GPT3.5 by being faster and more accurate, but this result shows that it is not necessarily true that
GPT4 is of a higher strategic level. In relation to human subjects, a model with higher strategic level could represent agents
with higher intelligence and/or believing that their opponents are of relatively high strategic level, thus this difference between
GPT4 and GPT3.5 could result from either or both of the preceding reasons. Since GPT4 is known to be trained on more data,
which could result in more noise in strategies employed, it could be argued that agents back-boned by GPT4 is likely to have an
initial “belief” that its opponents have relatively low strategic level, thus leading to guesses that corresponds to lower depth of
reasoning. Further, while the average strategic level of ChatGLM3 is comparable to that of GPT4 , its variability is much higher.
This could suggest that smaller models can representing agents who either have lower strategic level or larger variability in depth
of reasoning, expanding the dimensions of types of agents the models can simulate for.

(a) r = c̄
2

(b) r = c̄

Figure 3: Average strategic level of LLM-based agents in beauty contest games with difference reference points.

Payoff. Apart from choices and strategic levels, it is also important to learn the average payoffs earned by each model. In Figure 4,
it can be seen that Claude2 , GPT3.5 and GPT4 have relatively higher average payoffs than the others. Among the three,
standard deviations are comparable for Claude2 and GPT3.5 , and GPT4 has a slightly lower standard deviation than the other
two. Despite GPT3.5 being the best in average payoffs as compared to the other models, its variability in payoffs is also relatively
high, making large and small gain equally likely. Coupled with the average strategic level of each model, it can be seen that the
ones with higher strategic levels often obtain higher payoffs, except for ChatGLM3 , whereby the variability in its strategic levels
could have adversely influenced its average gain.

Overall, I have analyzed the average choices of each LLM-based agent in the one-shot beauty contest games, and their
strategic levels were determined using methods that were previously employed to evaluate human subjects in experiments.
In a way, this facilitates better understanding of machine behaviour by drawing on theories that were used to study human
decision-making. Herein, the models also showcased their potential in representing heterogeneous agents, who have different
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strategic levels. Through varying the model selection, degree of heterogeneity in the population to be simulated for can be
controlled to some extent.

Figure 4: Average payoffs across 150 sessions for each model.

3.1.2 Repeated Games

In this subsection, I continue with experimental results from Guo (2023), but under the repeated setting of 6 periods. The prompt
to include historical information is detailed in Appendix A.1. Across the periods, the game parameters faced by the agents do not
change, thus they choose numbers within the same range of [0, c̄], and c̄ is randomly generated in period 1. Historical information,
including choices made by all agents, average of these choices, 2

3
of the average, and the winners from the previous round, are

revealed up to 3 periods. The limitation on revealing 3 past periods is as a result of token restrictions to control the computational
intensity. Such setting can be seen as partial feedback or feedback with a forgetting parameter. It is expected that agents will react
to the information and slowly converge to the Nash equilibrium.

The repeated beauty contests ran for 30 sessions. As before, via period 1 choices, the corresponding average strategic
level for each model, assuming the reference point to be c̄

2
is determined to be between 0 and 1, shown in Figure 5a. In Figure 5b,

I explore the average chosen number across the 6 periods. The numbers are normalized for better comparison across different
sessions that could have different c̄. It is shown that with historical information, most LLM-based agents converge in actions,
particularly for Claude1 , Claude2 , GPT3.5 , and GPT4 , their average normalized chosen numbers are approximately 0
in period 6. Suppose models with higher strategic level represent more intelligent agents, then the “smarter” agents do display
“learning” pattern given historical information, where they converge to the unique Nash equilibrium of 0 across time.

(a) Period 1 strategic level. (b) Average chosen number.

Figure 5: Strategic level determined by period 1 choice and convergence in average chosen number over 6 periods.
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Frequency and Evolution of Choices and Strategic Levels: Given the repeated setting, it is possible to track for changes over
time, as a result, the frequency of choices and the corresponding strategic levels are computed over the 6 periods and across 30
sessions in Figure 6.

(a) Choices. (b) Strategic levels.

Figure 6: Frequency of chosen number and strategic level calibrated to new reference points over 6 periods across 30
sessions.

In Figure 6a, for most of the LLM-based agents, the choice of 50 receives the highest frequency, but Claude1 , GPT3.5 and
GPT4 do display more selection below 50. Since the choice frequency consists of period 1 to 6, the histograms display greater
dispersion in number selected as compared to the one-shot games in Figure 1, which is an indication that agents do change their
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actions over time, and there is more selection of numbers lower than 50. Following Nagel (1995) method of computing for strategic
levels in repeated setting, where the first period reference point is fixed at c̄

2
, and in subsequent periods, the reference point is

re-calibrated to be the mean choice of the previous period. In experiments with human subjects, the results show no support for
increasing depth of reasoning, most subjects remain in the bounds of iteration step 0 and 3, and they rarely go over iteration step
2. With LLM-based agents, based on the frequency of strategic levels computed across periods in Figure 6b, the results are similar,
they do not go over iteration step 2, and most of them display spike at 0 and 1, with GPT4 showing spike at both 1 and 2. However,
even though they are comparable to human subjects about staying below iteration step 2, some of them do display minor increases
in strategic level as compared to their period 1 performance. In particular, GPT4 has strategic level much lower than 2 in period 1,
but is able to achieve iteration step of approximately 2 with high probability over time.

Figure 7: Averaging strategic level across 30 sessions for 6 periods.

For illustration, I explore the changes in strategic level for each model, averaged across sessions, for each period in Figure 7. It
shows that strategic levels evolve over time, but the range of that is rather narrow, on average they remain within the bound of 0
and 1.4. Most LLM-based agents shows increasing depth of reasoning as defined by the growing strategic level, this is especially
true for stronger models, Claude2 , GPT3.5 and GPT4 , where strength is characterized by the relative strategic level computed
in period 1. The abnormality comes from ChatGLM3 and Llama2 . Llama2 has a relatively low strategic level in period 1 and
did not display improvement over time, its lack of change could imply some kind of non-strategic or naive behaviour, where they
keep behaving randomly. As for ChatGLM3 , the LLM-based agent do have relatively higher strategic level than the other agents
in period 1, but yet, its average strategic level across time decreases. This could imply its lack of ability to respond to historical
information and adjust its behaviour accordingly.

Evolution of Payoffs: Figure 8 shows the payoffs for each LLM-based agent over time, averaged across 30 sessions.
GPT3.5 outperforms the rest in all periods, while Claude2 and GPT4 are more or less comparable. The rest of the LLM-based
agents do not obtain average payoffs as high, but most of them display growth over time. Coupled with Figure 5b that shows
convergence in average choice towards NE of 0 for most LLM-based agents, the increasing payoffs could be an indication of
learning about the optimal action to take to win the game and also obtain higher payoffs. The exception is Llama2 , it does
not finish the 6 periods and average actions display no convergence, thus its corresponding average payoffs is also consistently 0
throughout.

Figure 8: Average Payoffs across 30 sessions over 6 periods.
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In this section, I explored the outcomes of heterogeneous population comprises of multi-LLM-based agents to illuminate strategic
interactions between heterogeneous agents or algorithms if LLMs were adopted as proxies.

The purpose of one-shot games, as well as the first period of the repeated games, are used to evaluate the strategic level of
different LLM-based agents, with the objective of exploring their behaviour as simulated agents that we can draw parallel to human
subjects. I found that models have varying strategic levels, the ones with larger parameter size do not necessarily have higher
relative strategic level, but models with higher strategic levels tend to achieve better payoffs on average. The results from one-shot
games resembles to that of experiments with human subjects, where agents tend to display low levels of reasoning, however, the
distinction is that the average iteration steps are slightly lower for LLM-based agents than that of human subjects in experimental
setting. Since LLMs encompass data trained on potentially larger and more general groups of population, and experiments with
human subjects tend to explore more specific groups of population depending on the research needs, the degree of noise in
strategies employed and the beliefs about opponents’ depth of reasoning could be different, thereby leading to slight distinction
between game results ran with LLM-based agents and human subjects. By evaluating machine behaviours using traditional
analysis methods conducted on human subjects and compare the results between the two, this helps not only to understand machine
behaviour in human-like terms, it also draws some insights on what type of agents the LLMs can represent in game simulations.

The LLMs involved in the games could vary in parameter size, which is a measure for complexity of neural network
structure that is potentially in equivalence to human brain capacity (i.e. memories and ability to represent complex pattern), it
seems straightforward to define one dimension of heterogeneity in LLM-based agents based on degree of complexity, however,
even though LLMs can mimic human performance in complex tasks, their similarity to brain anatomy and physiology is imperfect,
connecting LLM-based agents and human subjects on this line of differentiation could be problematic. (Pulvermüller et al. (2021))
Therefore, instead of distinguishing LLM-based agents on the basis of their resemblance to human brain capacity, it is more precise
to characterize their heterogeneity in terms of potential difference in their underlying training data, revealed strategic levels and
variance in choices in games, such as the one presented in this paper.

Apart from the one-shot beauty contest games, I have also explore the repeated setting, which shine a light on how the
simulated agents could behave over time, if they respond to historical information and whether there is any improvements in their
depth of reasoning. Similar to human subjects, while LLM-based agents do not display iteration steps that go over 2 for the span
of the games, they do seem to learn from historical information and show convergence in actions towards NE.

3.2 Adaptive Learning with Variation in Group Composition

To further analyze the strategic interactions between LLM-based agents, one possible aspect would be to investigate their adaptive
learning behaviour given variation in group composition. Since I have already identified the LLM types in terms of their strategic
levels, it is possible to conduct a simulation between heterogeneous agents, and observe their dynamics of game play by varying
the proportion types for each session. Such repeated interactions in competitive games could assist in understanding what would
human subjects do in similar set-ups, knowledge of which could be helpful in informing policy design. Furthermore, it would also
foster better understanding of how algorithms will react to one another if they were adopted widely in competitive setting.

In the following sections, I have selected two LLM types, a stronger and a weaker model, GPT3.5 and PaLM, where the
strength is characterized by their strategic levels as analyzed in the previous section. They can be used to represent simulated
agents who are more “intelligent” and “less intelligent”, or simply algorithms that are stronger and weaker. The games follow a
revised design from Nagel (1995):

• 10 LLMs-based agents are playing in each game.

• The same group plays for 5 periods, and all history are revealed.

• They choose a number between 0 and c̄, where in this section, c̄ is fixed to be 100. The winner is the agent whose number
is the closest to p times the average of all chosen numbers, where p = 2

3
to ensure a unique interior NE solution.

• In each period, the winner gets a fixed prize of $x. In case of a tie, the prize is split amongst those who tie. All other
players receive 0.

The metrics of interest for my analysis are similar as before, including (1) initial choices and strategic level - period 1; (2)
frequency and evolution of choices - period 1 to 5; and (3) payoffs - period 1 to 5. But in addition, I will also compare the adaptive
learning behaviour across different set-ups that comprises of varying group composition.

There are two main environment that I hope to investigate: In the first set-up of hard-coded fixed strategy environment, a
single LLM type will be playing against fixed-strategy opponent(s). The LLM-based agent(s) will be told there is a proportion of
fixed strategy players and they are expected to react to this prompt in the first period, which can be seen as forming “ belief” about
what other players will play and they are best responding to that “belief”, subjecting to their own strategic level. Based on past
game play, they could learn what is the proportion of fixed strategy players and form “belief” about the strategies of other players’,
who are not fixed strategy. In the second environment, I explore the interaction between the two LLM types, and observe how they
react to different proportion of LLM types in the population. In this case, the environment is more dynamic as both LLM types
will be responding to potential changes in strategies given their “beliefs” about what the opponents might be doing, the actions
would have to be more strategic in order to win the games.
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3.2.1 LLM vs. Static Algorithm: Variation in Hard-coded Fixed Strategy Opponents

In the partial static environment illustrated in this section, there are no change in hard-coded agents’ actions, but across different
settings, the proportion of fixed strategy players and LLM-based agents change while maintaining the group size.

The set-ups are as follows for 5 periods in total, history reveal up to 4 periods; p = 2
3

; and agents to choose a number
between [0, 100]. There are 3 treatments:

1. 1 LLM + 9 Hard-coded Agents (Low strategic uncertainty)

2. 5 LLMs + 5 Hard-coded Agents (Mixed strategic uncertainty)

3. 9 LLMs + 1 Hard-coded Agents (High strategic uncertainty)

I follow an exemplary prompt in Appendix A.2. LLM-based agents are specifically told that some of their opponents are playing a
fixed strategy of 0, which is the NE strategy of the game. This would mitigate the strategic uncertainty, but only to some extent,
as the population may comprise a mixture of LLM-based agents and fixed strategy agents. In (Duffy et al. (2021)), where repeated
prisoners’ dilemma games were played, human subjects were instructed that they are playing against programmed opponents that
use the grim trigger strategy. Since the games were played in pairs, there is complete elimination of strategic uncertainty, however,
in this setting of multi-agent competitive game, by varying the proportion of fixed strategy players and LLM-based agents, the
degree of strategic uncertainty varies across different sessions.

The NE strategy should not be affected by the proportion of fixed-strategy agents and LLM-based agents, but it is expected that the
speed of convergence towards NE could differ across settings. In the three set-ups, denoting at to be the action/number guessed in
each time period, Nf to be the number of fixed-strategy players and Nl to be the number of LLM-based agents, the selection in the
next period:

at+1 = BR(Nf , Nl, at) =
2

3
(
Nf

10
∗ 0 + Nl

10
at) (1)

The choice variation over the periods is computed with at+1

at
. For 9/10 fixed-strategy agents, the next period guess would be 0.067

of the previous number; For 5/10 fixed-strategy agents, the guess would be 0.333 of the previous number; For 1/10 fixed-strategy
agents, the guess would be 0.6 of the previous number. It is expected that if the proportion of fixed strategy agents in the population
is higher, it would be more likely for LLM-based agents to reach 0 faster.

Higher Intelligence Model (represented by GPT3.5 ) vs. Lower Intelligence Model (represented by PaLM ) when playing against
fixed-strategy opponents:

(a) Higher Intelligence (b) Lower Intelligence

Figure 9: Transition in choices of LLM-based agents playing against fixed strategy opponents.

In period 1 of all sessions, GPT3.5 -based agents choose around 66.67, which corresponds to step-1 by iterated elimination of
dominated strategies, and agents back-boned by PaLM choose 50, which is level-0 as characterized by the level-k model. To use
the same basis of evaluation, it is important to link the agent types with the one-shot beauty contest games discussed in Section 3.1.
By applying the level-k model with the reference point of c̄

2
, I have determined GPT3.5 to have an average strategic level of

approximately 1 and PaLM is approximately 0. They represent higher and lower intelligence agent respectively, where intelligence
is interpreted loosely as metonym for strategic level.

In set-up 2 and 3 of Figure 9a, a representative agent is selected since the the choices are almost identical for all LLM-based agents
in the same set-up. This is in contrast to the set-up 2 and 3 of Figure 9b, where different LLM-based agents could take actions that
are substantially disparate, though they are of the same type. Across all three set-ups, the choices for higher intelligence agent(s)
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converge towards 0, exhibiting either refinement of belief about opponents’ strategies or progression in their depth of strategic
thinking when given historical information. The pace is slower as the proportion of LLM-based agents becomes larger relative
to fixed strategy agents. As for lower intelligence agent(s), there is also similar pattern of slower convergence to 0 when the
proportion of LLM-based agents is higher than the fixed strategy ones. However, their results for set-up 1 and 2 largely coincide,
indicating that lower intelligence agent(s) are not very sensitive to the difference in environments of having 90% vs. 50% fixed
strategy opponents in the group. Although, there is an outlier in set-up 2, where one agent did not converge at all. Alongside
larger fluctuations in choices in set-up 3 that comprises of even lower proportion of fixed strategy opponents, this suggests that
higher strategic uncertainty could induce greater variability in strategies and might lead to non-convergence behaviour in lower
intelligence agents. When comparing between the higher intelligence and the lower intelligence agents, the lower type is less
“cautious” in a sense that they could converge to 0 in period 2 straightaway, such as the case for set-up 1 and 2, while convergence
to 0 only happen in period 3 of set-up 1 in Figure 9a, and the other two set-ups do not actually achieve 0 but approaches 0 in
the limit as the number of periods increases. Given all past choices in period 1 are revealed to the agents in period 2, the steep
adjustment in choices comply with the expectation that information about Nf is implicitly fully disclosed by period 2, as one can
determine the proportion of fixed strategy agents through the revealed choices. The higher intelligence agents follow the prediction
of step-by-step adaptation, while lower intelligence agents could do a one step jump to 0. In a sense, higher intelligence agents
demonstrate movement from less sophisticated strategies to more refined choices through iterative learning and adaptation, and
on the other hand, the lack of such systematic adjustments in choices by the lower intelligence agents could suggest that they are
relying more on intuitive guesses than successive elimination of less likely options.

Convergence Rate: The convergence rate of choices can be computed with

ct =
at+1 − at

at
,where at+1 ≥ at (2)

For the higher intelligence agents, the convergence rates are constant for set-up 2 and 3. As for set-up 1, convergence to 0 happened
in period 3, therefore, the peak of convergence rate has been reached then, and there are no further convergence. The results
demonstrate that higher proportion of fixed strategy opponents, lower strategic uncertainty, the revelation of historical information
therefore corresponds to higher convergence rate. On the other hand, for the lower intelligence agents, convergence to 0 happened
straightaway in period 2 for most LLM-based agents in set-up 1 and 2, therefore, convergence rates drop to 0 thereafter. In set-up
3, the convergence rate fluctuates, in tune with previous analysis that higher strategic uncertainty contributes to larger variation in
choices for the lower intelligence agents. Compared the two types of LLMs, there is more stable adjustment in choices over time for
higher intelligence agents, and while convergence could be faster for lower intelligence agents, larger noise in choices is recorded
when uncertainty is high.

(a) Higher Intelligence (b) Lower Intelligence

Figure 10: Convergence rates in choices of LLM-based agents, where t = 1 represents transition from period 1 to 2.

Evolution of Strategic Level: When evaluating the transition in strategic level across periods, all LLM-based agents start out from
level-0, as evaluated by level-k model with reference point of 50. Removing the cases where NE choice of 0 is first played in
the current period, it can be seen that for the higher intelligence agents, their level transitioned from 0 to 1 before playing the NE
choice. Though they display improvements in strategic sophistication or belief refinement, their level remain below 1. As for the
lower intelligence agents, most of them stay at level-0, with some fluctuations between 0 and 1 when strategic uncertainty is high.3

3In period> 0, if the current chosen number is 0 and previous is not, the optimal strategy has been realized given the historical information, so strategic level for
these periods where NE choice is first played are not included. If previous number is 0 but current is not, then strategic level is 0 as one must be randomizing and not
actually adaptively adjust.
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(a) Higher Intelligence (b) Lower Intelligence

Figure 11: Frequency of strategic levels for each agent across periods within each set-up.

Payoffs. The next step is to determine the payoffs of LLM-based agents in each set-up.

(a) Low (b) Mixed (c) High

Figure 12: Transition of payoffs for higher intelligence LLM-based agent(s) and fixed-strategy opponents.

Figure 12a shows that in the environment with low strategic uncertainty, the single higher intelligence LLM-based agent starts off
with payoffs of 0, but over time, as it converges to the NE choice of 0, the prize are shared among all those who ties and the agent
manage to obtain positive payoffs from period 3 onwards. In the mixed environment (Figure 12b), though the actions of LLM-based
agents converge towards 0, they remain further away from 2

3
of the average than fixed strategy players, therefore, prizes are shared

by fixed strategy players and LLM-based agents have a flat payoff of 0 throughout all 5 periods. Lastly, in the environment with
high proportion of LLM-based agents (Figure 12c), the reverse happens, since 2

3
of average is relatively high, the prizes are shared

by the LLM-based agents, and they have a flat payoff of 0.11. In sum, higher intelligence LLM-based agents tend to gain better
payoffs in the environment with low and high strategic uncertainty as compared to the mixed environment when playing against
fixed strategy opponents.

(a) Low (b) Mixed (c) High

Figure 13: Transition of payoffs for lower intelligence LLM-based agent(s) and fixed-strategy opponents.

In Figure 13a, the single lower intelligence LLM-based agent shows similar payoff pattern as that of higher intelligence agent. It
starts off with 0 payoff, and as its choice converge to NE quickly, it is able to earn positive payoffs from period 2 onwards. In the
mixed environment (Figure 13b), unlike the higher intelligence agents, majority of the lower intelligence agents have non-zero
payoffs. As they convergence towards the NE choice, the prizes are split among some of the LLM-based agents and the fixed
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strategy players who tied. Lastly, for the high strategic uncertainty environment (Figure 13c), majority of the lower intelligence
LLM-based agents achieve positive payoffs across the periods. However, the payoffs are not flat, this is contributed by a case of a
specific LLM-based agent “lagging behind”, where it chose a number that was chosen by majority in the past period but not in the
current period.

Comparing between higher and lower intelligence LLM-based agents, interestingly, payoffs achieved in all settings by the
lower intelligence agents could often be comparable or higher than that of the higher intelligence agents, though the variations in
payoffs is also larger. This could indicate that higher strategic level does not necessarily imply higher payoffs when competing
with fixed-strategy opponents.

In general, when LLM-based agents are playing in a repeated beauty contest game with fixed strategy opponents, they
display convergence in actions towards the interior NE strategy of 0 over time given historical information of past choices and
payoffs are revealed. As I vary the proportion of LLM-based agents and fixed strategy opponents, the speed of convergence is
usually slower when there is presence of other simulated agents, which contributes to higher strategic uncertainty. The payoffs
could also be in favor of the LLM-based agents when strategic uncertainty is relatively high, as 2

3
of average in which case would

fall much higher than 0. This results not only signifies the potential game play if human subjects are playing against opponents that
naively adopt a fixed strategy of 0, it could also portray a simulated outcome if they are going against static computer algorithms
that are playing a fixed NE strategy.

Application. A typical example of beauty contest application which has strategic complements, as the one in this paper, is
the Bertrand competition model. The LLM-based agents and fixed strategy agents can be perceived as simulated firm entities that
adopt different pricing strategies, the objective is to win the competition and to maximize their profits. In the slightly modified
version of the Bertrand market described in Mauersberger and Nagel (2018), let me first suppose there are 10 firms, and each
of them have a marginal cost of γ. They set the price of the product at time t to be pit = 2

3
Êit min (γ, p1t, p2t, ..., p10t) − γ,

where Êit is the subjective expectation of firm i held at time t. The fixed strategy players could be seen as those that always play
the equilibrium action of setting the price equals to the marginal cost, peq = γ, while LLM-based agents are firms that adjust
their pricing strategies in each time period. Based on the simulation results previously, having higher proportion of fixed strategy
firms would drive the prices set by LLM-based firms down faster. Firms with higher strategic level would adjust the prices down
step-by-step, while firms with lower strategic level either adjust straightaway or they failed to adjust at all. In this context, if
there exist certain rigidity in the short run, such as production capacity constraints for the firms or limited response time for the
consumers, then firms who set higher prices in the short run would be able to obtain higher profits. In the long run, however, all
factor inputs are flexible and consumers will not purchase from the firm that sells a homogeneous product but at higher price than
the equilibrium, therefore, it is better for firms to converge to the equilibrium price in order to stay in the market. For instance,
suppose qit is the quantity sold by LLM-based firm i in time t, it could be earning a higher profit than fixed strategy players, f , if:

pitqit − γqit > 0, where pftqft − γqft = 0 (3)

Assume γ = 0, as long as qit > 0, they are able to earn more than the fixed strategy players in the short run. As prices are driven
down to the marginal cost over time, firms setting higher prices will risk losing consumers, so everyone will be lowering prices to
0 and be earning normal profit in the long run. In this sense, higher intelligence agents could often achieve better outcome than
lower intelligence agents in the short run, where they can earn a positive profit by converging gradually. Even in the long run, it is
possible that lower intelligence agents have larger variance in pricing strategies as compared to higher intelligence agents, where
they either failed to converge or display high volatility in prices, these could adversely impact their profits.

Computer algorithms. Nonetheless, the above games simulated between LLM-based agents and the fixed strategy agents
could also be seen as a competition between a dynamic responsive algorithms and a static computer algorithm, where the same
Bertrand story could apply and firms are outsourcing their pricing strategies to automated algorithms. Such automated pricing
algorithms have been widely discussed in literature, but having LLM algorithms that are dynamically responsive to changes
in rivals’ strategies could spark fresh perspective to existing research questions, such as interactions between multiple pricing
algorithms and how would they impact the dynamics within the market. (Brown and MacKay (2023), Chen et al. (2016))

In a more general sense, it is possible to envision a future with greater adoption of machine algorithms in executing commands,
be it in the consumer market or other aspects, thus understanding interactions between machine algorithms could shine a light on
how they would behave in view of one another. The appealing feature of the LLM algorithms is that optimal strategy does not
need to be first determined, and given past choices, they will learn to respond to these information. In the standard beauty contest
games illustrated, when comparing the payoffs, static algorithm that has a pre-defined strategy that is already fixed at NE might
win the game and obtain better payoffs than LLM-based agents earlier on, but they might not fare as well as the games carry
on. In particular, LLM algorithms could obtain higher payoffs than the static algorithm when the group comprises of more LLM
algorithms, implying that with greater adoption of the dynamic responsive algorithms, they would outperform static computer
algorithm in the aforementioned set-ups, drawing greater traction to investments in algorithms. However, the irony is that payoffs
with stronger models could be lower than with weaker models, especially in the mixed environment, this results from more cautious
adjustment based on past information. In view of this, the adoption of the type of LLM algorithms could also be dependent on the
risk-aversion of individuals using them.
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3.2.2 LLM vs. LLM: Variation in Opponent Types

This section illustrated a dynamic environment where two different types of LLM-based agents are playing against each other and
the proportion of LLM types differ across set-ups.

Similarly, there are 5 periods in total with history reveal up to 4 periods; p = 2
3

; and agents to choose a number between
[0, 100]. There are 5 treatments, where high intelligent LLMs are represented by GPT3.5 , denoted from here on as the high type
(H), and the less intelligent LLMs are represented by PaLM , denoted hereafter as the low type (L). Their types are characterized
by strategic levels evaluated in section 3.1.

1. 10 H LLMs (Pure high intelligence environment)

2. 9 H LLMs + 1 L LLM (Highly intelligent environment)

3. 5 H LLMs + 5 L LLMs (Mixed intelligent environment)

4. 1 H LLM + 9 L LLMs (Less intelligent environment)

5. 10 L LLMs (Pure low intelligence environment)

I use the original prompt with historical information as in Appendix A.1.

Let the strategy of high type in period t be aHt and that of low type be aLt, the selection of next period choice would
be:

ait+1 = BR(B(NH), B(NL), at) =
2

3
(
B(NH)

10
aHt +

B(NL)

10
aLt), i ∈ (H,L) (4)

where B(NH) and B(NL) are agent i’s “beliefs” about the number of high types and low types. When playing against fixed
strategy opponents, it is possible to observe in period 2 who selected 0, thereby deriving the correct proportion of fixed strategy
players within the population. Since all agents are back-boned by LLMs in these set-ups, it could be harder to distinguish the
proportion of types within the group based on historical choices in period 2, for instance, even if they chose the same number it
does not imply they are of the same type. Further, the agents were not told explicitly their own type relative to the others, so they
have to guess if they fall within NH or NL. As a result, the best response of a specific agent would be dependent on its beliefs
about the proportion of high and low types. In the case where beliefs are correct given revealed information, then B(NH) = NH

and B(NL) = NL.

Suppose one correctly perceived the proportion of agent types based on revealed historical choices, the variation of number
selected over the periods could similarly be computed with at+1

at
:

• Pure high intelligence environment: guess 0.667 of the previous number.

• Highly intelligent environment:

aHt+1

aHt
= 0.067

aLt

aHt
+ 0.6,

aLt+1

aLt
= 0.6

aHt

aLt
+ 0.067, for

aHt

aLt
< 1,

aHt+1

aHt
>

aLt+1

aLt

• Mixed intelligent environment:

aHt+1

aHt
= 0.333

aLt

aHt
+ 0.333,

aLt+1

aLt
= 0.333

aHt

aLt
+ 0.333, for

aHt

aLt
< 1,

aHt+1

aHt
>

aLt+1

aLt

• Less intelligent environment:

aHt+1

aHt
= 0.6

aLt

aHt
+ 0.067,

aLt+1

aLt
= 0.067

aHt

aLt
+ 0.6, for

aHt

aLt
< 1,

aHt+1

aHt
>

aLt+1

aLt

• Pure low intelligence environment: guess 0.667 of the previous number.

For the pure environments, the rate of change in choices is expected to be the same for the high and low types. As for set-ups 2
to 4, if high types chose a smaller number than low types because they go through more iterations of reasoning, and aHt

aLt
< 1,

then high types are expected to proportionally lower their estimations less from time t to t + 1 compared to low types. There
could mean slower rate of change for the high types than low types. On the other hand, if high types have strong beliefs that
they are playing against opponents who will choose higher numbers while low types believe the other way around, then it
is possible for aHt

aLt
> 1, then the inverse happens, low types are expected to proportionally lower their estimations less from

time t to t+1 compared to high types. This would mean faster rate of change in choices for high types as compared to than low types.

Higher Intelligence Model (represented by GPT3.5 ) vs. Lower Intelligence Model (represented by PaLM ) when playing against
each other:
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(a) Pure High Intelligence (b) Highly Intelligent (c) Mixed Intelligent

(d) Less Intelligent (e) Pure Low Intelligence

Figure 14: Impact of variations in proportion of different LLM-based agents on chosen number.

In set-up 1 and 5, the same type of LLM-based agents are playing against each other. Figure 14a shows for a pure high intelligence
environment, the choices converge to lower numbers than the one they picked at the beginning of the games, indicating some
adjustments over time when information about past periods are revealed. However, even for homogeneous LLM-based agents,
they do vary in actions, but the rate of change in choices do look similar to my expectation. In Figure 14e, the low type LLM-based
agents do not show convergence to a smaller number, but rather a pretty consistent trend of picking approximately 50, which is in
contrast to my expectation of adjustments over time. On top of that, there are no variations in actions for low type agents when
they are playing against each other. These results could be perceived as the high types being able to adjust their strategies over
time when given historical information, displaying some learning pattern, whereas the low types do not show such trend, they
persistently choose the mean of the range of numbers.

In set-up 2 to 4, when there is a mixture of high and low types of LLM-based agents, all agents show some convergence
to lower numbers than the ones picked in period 1. The main difference across the set-ups is that the gap between the numbers
chosen by the high and low types is smaller when there is higher proportion of low types in the group. Relating to the anticipated
changes in choices, at the beginning of the games, high types are selecting a larger number than the low types. It is expected that
rate of change in selections will be more rapid for the high types, a trend that appears evident by a significant drop in numbers
chosen by the high type as shown in (b) to (d) of the Figure 14. As the games progress, high types are choosing smaller numbers
than the low types, therefore, the rate of change is expected to be faster for the low types, which align with the observed trends.
However, starting from period 3 onwards, the rate of change appears to be comparable for both types. This could be attributed to
the numbers chosen by both types gradually converge as time elapses.

The results could have interesting implications. In the pure low intelligent environment, low type agents fail to adapt their
strategies. Despite the disclosure of historical information, there is no apparent evidence of learning. However, when they are
placed in mixed environment, their learning is better facilitated when there exist high types in the group. High intelligent agents,
on the other hand, will respond to past plays regardless of the environment, but the variation in choices could be smaller when
placed in the mixed environment.

Convergence Rate: As shown in Figure 15, the convergence rate is approximately flat for set-up 1, set-up 2 high types,
and set-up 5, indicating that high proportion of homogeneous agents or high proportion of high types have relatively constant
change in strategies. Based on the computation of at+1

at
, the flat convergence rate is almost as predicted for pure intelligence

environments, except that for the environment that involves only the high types, the average convergence rate is lower than
anticipated because of the possible variations in choices, and for the one with only the low types, average convergence rate is
constant at 0, and there is no learning. As for set-up 2 high types, the approximately flat and high convergence rate could be as a
result of low weight attributed to the difference between choices made by the different types of agents, and the changes are mostly
contributed by the adjustments in the high types.
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The consistently higher convergence rate exhibited by the set-up 2-H as compared to set-up 1 implies faster learning of
high types in the mixed environment when there is a small proportion of low types in the group. As the proportion of low types
increases, this could negatively affect the convergence speed of the high types, illustrated by set-up 3-H and set-up 4-H curves,
which lay below that of set-up 2-H. However, there is fluctuations in convergence rate with increased prevalence of low types
in the environment, and having a 50:50 mix of high and low types could induce higher convergence rate than pure intelligence
environment majority of the time. As for the low types, being in the mixed environment improves convergence4. The rate is
relatively higher when there is larger proportion of high types in the group, and the rates similarly fluctuates when there is higher
proportion of low types, but the pattern of fluctuation appear identical for set-up 3-L and set-up 4-L, implying that 50% and 90%
low types could affect changes in convergence rate analogously. Mixed environment is beneficial for both types of agents. They
generally learn faster in the highly intelligent environment.

Figure 15: Average convergence rates for the same type of LLM-based agents across set-ups.

Evolution of Strategic Level: Figure 16 shows a variations in strategic levels across time for most of the agents in all set-ups,
except for set-up 5. Interestingly, for set-up 3, it is possible for high type agents to reach a strategic level greater than 1, which
could imply another benefit of having highly mixed environment in stimulating considerable growth in the depth of reasoning for
some agents. Similarly, for the less intelligent agents, having a mixed environment and higher proportion of low types, such as in
set-up 3 and 4, is beneficial in instigating higher strategic levels.

(a) Higher Intelligence (b) Lower Intelligence

Figure 16: Frequency of strategic levels for each agent across periods within each set-up.

4The negative convergence rates in period 1 is as a result of at+1 < at on average, the higher numbers selected by high types in period 1 could have induce the
low types to adjust their guesses upwards.
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Payoffs: Last but most importantly, the variations in payoffs are larger when it comes to the mixed environments as shown in
Figure 17. The upper-bounds of payoffs that can be achieved by the agents are either comparable or higher in (b) to (d) than (a)
and (e). In set-up 1, majority of the agents receive a payoff of 0, with some achieving a payoff of 0.5. The high types follow a
step-by-step convergence process, some of them are obtaining higher payoffs because of a head-start in guessing a slightly lower
number at the beginning. In set-up 5, also a pure type environment, all agents obtain 0.1 across the periods. The low types do not
have much variability and typically behave randomly and in unison. As for set-up 2 to 4, higher payoff of 1 can be achieved in the
highly intelligent and mixed intelligent environment. Low type agents usually can obtain positive payoffs at the beginning of the
game as it chose the mid-point of the range, which happens to be closer to 2

3
of the average. However, this head-start advantage is

soon eroded if there exist any high types in the group, who learn to react to this information rapidly. Therefore, low types tend to
earn 0 payoffs after period 1, except in set-up 4, where certain low types are able to learn as fast and tie with the high types.

(a) Pure High Intelligent (b) Highly Intelligent (c) Mixed Intelligent

(d) Less Intelligent (e) Pure Low Intelligent

Figure 17: Transition of payoffs for different set-ups given variation in group composition, where LLM-based agents
are playing against each other.

Based on the results of LLM vs. LLM, it is observed that mixed environments instigate faster learning for both high and low types,
particularly when there are higher proportion of high type opponents. Low type on their own do not show any convergence to
selecting lower numbers, which is indicative of them not learning to adjust their guesses to 2

3
of the average based on past period

choices, but adding a single high type could very well stir the pot and induce learning. Coupling with the convergence rate and
payoff results, mixed environments exhibit potential to yield comparable or better payoffs, though the variability could also be
larger. While the low types tend to fare better in period 1, they are less likely to win across periods.

Application. The simulation results can be used to illustrate agents with different intelligence levels, competing against
each other. One potential application would be the streaming system in schools, where students are allocated into different classes
or “streams” given their grades to facilitate better learning. (Ireson and Hallam (1999)) Singapore for instance, practice nationwide
within-school ability grouping. (Liem et al. (2013)) There are also extensive literature in this area that explore the impact of such
system on students’ perception of learning experiences, variations in teachers’ expectation, etc. (Joyce and McMillan (2010);
Johnston et al. (2023)) My simulation results obstruct from any peer effects or differences in allocation of resources and teachers’
attention, focusing simply on learning rates given variation in class composition. Suppose students are classified into high and low
types in terms of their ability, it would be better off for both the high and low types to be in a mixed environment. The low types
will learn faster when integrated into a class with larger proportion of higher ability peers, possibly due to a revision in beliefs
about opponents. Even for the high types, their learning rate could also be slightly improved, potentially as due to the prospect of
attaining higher rewards when competing against peers of comparatively lower ability.

In Proto et al. (2022), repeated Prisoner’s Dilemma games were played among human subjects. They found there are
overall higher cooperation rates and average final payoffs in the integrated treatment groups, where subjects of different IQ levels
interact with one another, as compared to separated treatment groups that have pure high IQ or low IQ subjects. They also
highlighted that in terms of payoffs, lower IQ subjects are better off and higher IQ subjects are worse off in the integrated groups
than in separated groups. Drawing relation to their paper, my results show generally higher convergence rates in the integrated
treatment groups, indicative of more learning taking place in such set-ups. Since beauty contest is a competitive game with one
winner per period and total payoffs sum to 5 for the whole session, the average final payoffs without distinguishing between agent
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types are the same. When considering the types individually, in the pure environments, the average final payoff for each type of
agents is simply 1

2
. For set-up 2, average final payoffs for high type is 0.444 and 1 for low type; and set-up 3, average final payoffs

for high type is 0.8 and 0.2 for the low type; and set-up 4, average final payoffs for high type is 2 and 0.333 for the low type. These
show that unlike results from Prisoner’s Dilemma games, degree of integration matters when evaluating the average final payoffs
for each agent type in the mixed environments vs. the separated treatment groups. Low types are better off on average when there
are higher proportion of high type opponents, and high types are better off when there are more low types. Depending on the
goal of streaming, when aiming for larger average final payoffs, integrated group is generally better for higher ability students and
worse for lower ability students in a competitive setting in contrast to a cooperative setting, but integrated group is generally more
beneficial when aiming for higher learning rates, particularly for the low types, which could be a more practical objective in the
education context.

Computer algorithms. The results also illustrate the potential interactions between dynamically responsive computer
algorithms. The convergence in chosen number makes a case for the usefulness of weaker LLM models that are of lower strategic
level, measured via metrics that were used to evaluate human subjects. Even though these models might not learn when competing
with one another, they could learn when placed in a mixed environment in presence of stronger LLMs. Furthermore, stronger
models could also benefit from playing against a small proportion of weaker models in addition to their own types, where they
show faster convergence. With regards to payoffs, stronger models can also obtain better outcome on average when placed together
with higher proportion of weaker models. Therefore, playing against weaker opponents could in fact be helpful in improving the
performance of the stronger models in strategic situations. Nonetheless, apart from setting forth the value of investing in both the
stronger and weaker models, depending on the objectives of the users, their choices of algorithms to adopt could differ based on the
results of strategic interactions described previously. If users are looking for short-term positive payoffs, using weaker algorithms
could be more attractive (for instance, PaLM usually choose lower number than GPT3.5 in period 1); on the other hand, if
they seek long-term positive payoffs, using stronger algorithms could be more tempting after accounting for the usual higher cost
associated with the stronger models.
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4 Understanding and Line of Reasoning

Apart from analyzing the strategic behaviour exhibited by the LLM-based agents, it is also compelling to delve into the reasoning
behind their actions. In all set-ups, LLM-based agents were given a prompt at the beginning of period 1 to state their understanding
of the game, and for each subsequent periods, they are asked to reinstate their goal. This step is essential to mitigate the potential
of them not comprehending the game or having incorrect interpretations of the game rules, which could affect how they behave.
After this, they are asked to make their choices, followed by giving their line of reasoning.

In this section, I explore specifically set-up 2 of LLMs vs. static algorithm (Section 3.2.1) and set-up 3 of LLMs vs.
LLMs (Section 3.2.2). The line of reasoning are fairly consistent across different set-ups, so whichever set-up was chosen would
not impact the analysis. The main reason for selecting these two set-ups is to focus on an interesting scenario that involve strategic
interactions between different types of agents, also they are completely mixed environments with the same number of different
types of agents, such that there are no disproportionate influence of one specific type on the average behaviour.

4.1 LLMs vs. Fixed Strategy Opponents

In the set-up where LLMs are going against static algorithms, LLM-based agents were explicitly told that they are playing with
some fixed strategy opponents that select 0, but the proportion of which is unknown.

4.1.1 Period 1

Understanding. Both types of agents correctly recite the game rules and objectives they need to follow, albeit in slightly different
phrasing. They both understand they are suppose to choose a number between 0 and 100, the one whose number is the closest
to two thirds of the average of all chosen numbers will win. They also consider the information that some of the opponents are
playing a fixed strategy of 0 and all others will be behaving as rationally as possible. Further, they also comprehend the goal of
the game to be winning the prize and to maximize the size of their own gain. The high types in this case, display slightly more
variability in the wordings of their answers, but the gist are the same, except they also considers the information that the winner
receives a fixed prize and that in case of a tie, the prize will be split among the winners.

Reasoning of Choice. Upon selecting their choices, both type of agents were asked about how they arrive at their selection. It is
expected that in period 1, they will behave according to their strategic levels and their beliefs about their opponents’ strategies.
Below are the line(s) of reasoning they gave:

PaLM : “I think the most popular answer will be 50, because it is the middle number between 0 and 100. If everyone
chooses 50, the average will be 50, and the winner will be the person who chooses 50. However, if I choose 50, I will not be
guaranteed to win, because someone else might choose 50 as well. In order to maximize my chances of winning, I should choose
a number that is close to 50, but not equal to 50. I could choose 49 or 51, but I think 50 is the best choice, because it is the most
likely number to be chosen by other players. If I choose 50, I will have a 10% chance of winning, which is the highest chance of
winning of any number I could choose.”

GPT3.5 : “I believe that the most likely popular answer from other players will be 0, as some opponents are playing a
fixed strategy of 0. However, I want to maximize my chances of winning and my prize. To do so, I will choose a number close to
two-thirds of the average, which is approximately 66.67. By selecting this number, I increase the likelihood of being closest to
the target and increase my chances of winning the prize.” OR “The popular answer is likely to be 0 because some opponents will
play a fixed strategy of 0. By choosing 0, I increase my chances of being closer to two-thirds of the average. However, I believe
that most rational players will not choose 0, as it is not the optimal strategy. Therefore, I will choose 66.6, which is close to the
upper limit of the range. This gives me a better chance of being closer to two-thirds of the average if other rational players choose
numbers closer to the middle of the range.”

Based on the responses, the low type agents indicated their beliefs about 50 being the popular answer, which is the mid-point of
the range of numbers to choose from, and as a result, they choose 50 to maximize their chances of winning. On the other hand,
high type agents stated their belief that most rational players will not choose 0 despite having some proportion of fixed-strategy
players playing 0. They chose 66.67 or 66.6, which are close to the upper limit of the range, possibly using the upper-bound as
the focal point, or that they are going by iterated elimination of dominated strategies. Comparing the two types of agents, they
are both reacting to their beliefs about opponents’ choices, the difference is that the low type agents did not include fix strategy
players into their reasoning process, and they think their opponents are randomizing and choosing 50 on average; while the high
type agents takes into consideration the fixed strategy players, but they still chose higher numbers despite accounting for some
proportion playing 0.

For the high types, one possible reason for guessing 66.67, as illustrated in the reasoning process, is that they believe the
number to be closer to the target, 2

3
of average, without going in depth about what exactly might the others do. This could result

from model’s own low depth of reasoning or beliefs that other players are of low strategic levels. The alternative is to postulate that
other rational players apart from the fixed strategy players will be choosing numbers close to the middle of the range, this would
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imply that the following computation,

66.6− x < x− 50, where x is
2

3
of average

This simplifies to x > 58.35. Instead of players choosing around the middle range, this value is indicative of players choosing
much higher numbers such that average is higher or equal to 87.525. There seems to be some discrepancies between the
computation and the reasoning. This could have a few possibilities:
Anticipatory moves: Agents might strategically select higher numbers anticipating that the other will follow suit in future rounds as
a result of higher average in this round, thereby increasing their chances of winning in subsequent periods. However, this argument
is unlikely to hold in this context, since the prompt has specified that in each period, players are playing a one-round game, and in
each subsequent periods, past information are packaged in a way that they are revealed as part of a new prompt. Each player should
perceive each round as independent but with additional information, as a result, they should not have incentive to be anticipatory
and attempting to influence other players.
Cascade effect: In this paper, the beauty contest games involve strategic complementarity. When one agent chooses a higher
number, it can trigger a cascade effect such that the other agents also select higher numbers. The high type agents could be
attempting to outsmart the average, if they believe the rest will be guessing a number around mid-range, the average could
potentially be higher than 50, therefore, they might be able to increase their chances of winning by guessing a higher number. As
one can be choosing a higher number in order to pull the average towards them, and they know the others could think similarly
and adopt the same strategy in order to be closer to the 2

3
of the eventual average, the resulting strategy would therefore be one of

guessing a higher number.
Logical inconsistency: Lastly, this could also be as a result of flaws in LLMs’ line of reasoning, which arise from “hallucination”.
In this context, such “hallucination” falls specifically under the category of logical inconsistency, where arithmetic operation was
performed slightly inaccurately and is inconsistent with the text reasoning. (Huang et al. (2023)) For the selection of higher number
to hold, agents have to be believing that 2

3
of the average is close to the middle of the range instead of the average. This would

imply the average have to be much higher and other agents have to be choosing a number much closer to the upper-bound.

Based on period 1 reasoning, the LLM-based agents show slightly different perception about the behaviour of their opponents.
The low types behave more naively and did not really take into consideration they are playing with fixed strategy players who will
be choosing 0, they do appear more concern about the average; conversely, the high types display more strategic sophistication in
reasoning about their opponents’ behaviours, and it appears they contemplate more based on both opponents’ individual choices
and 2

3
of the average.

4.1.2 Subsequent Periods

Understanding. At the beginning of each subsequent periods, the LLM-based agents’ understanding of game rules and objectives
are verified again for consistency. While the LLM-based agents correctly recite the goal of the game, the high types display more
variability in wordings and can sometimes provide a different answer. They could state their goal to be choosing a number closest
to two-thirds of the average of all chosen numbers, instead of maximizing their winning probability or to be maximizing their
prize. While the two objectives should give rise to the same results and can be perceived as different ways of phrasing the same
problem, the linguistic formulation of the former relies less on the specifics of payoffs.

Reasoning of Choice. In periods after the first, LLM-based agents are able to observe the past choices of their opponents,
they can do some computations and adjust their strategies accordingly. Otherwise, they could also obstruct from any calculations,
and base their guesses on the information of past average choices or 2

3
of the past average instead.

In period 2, the low type LLM-based agents were shown to have two possible responses. The first is to acknowledge the
average of all chosen numbers, and that the winner was the one that chose 0.0. Therefore, they would choose 0.0, believing it
is the best strategy and the most likely number to be chosen by the other players, thus giving the highest possibility of winning.
The second possible response is to stick to the answer of 50, believing it to remain as the most popular answer since it falls in the
middle of the range, and choosing it will maximize the chance of winning. In this case, past information does not appear to have
any influence on their behaviour.

As for the high type LLM-based agents, they acknowledge in their reasoning process they observe the historical choices
made in the previous round and that the average of all chosen number was found to be 33.314, and they compute for two-third of
this average and adjust their choice to this value to maximize the probability of winning the game. The adjustment were of similar
magnitude among agents of the same type but different entities, the only difference is in terms of the decimal places that one
appears to be accounting for. For instance, after learning the past information, some agents adjust to select 22.209333333333333
and some to 22.209. In the set-ups outlined in this paper, agents can choose any number within the range, and computationally, as a
result of floating-point precision, the number of choices are finite. (Goldberg (1991)) The difference in the number selection could
be a result of token limitation, which specify the capacity of a model to handle or generate text within a sequence. (IBM (2024))
Given the slight variations in the responses, the same type of models could generate numbers of marginally different precision,
where they could be rounded off or truncated to fit within the limit. Even though the difference between the numbers selected are
essentially trivial, accounting for different number of decimal places could constitute another potential type of model capability
that could have strategic significance and make a difference in payoffs obtained. However, this is not an issue in this set-up since
the fixed-strategy players are the ones winning.
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In the following periods, it generally holds true that the low types would choose 0.0 based on the average information of
past periods. There are rare instances where agents persistently choose 50, driven by their steadfast belief, in spite of all the
historical information, that the most popular answer continues to be the mid-point of 0 and 100, and switching to another number
would decrease their chances of winning. On the other hand, for the high types, they take into account the average of all chosen
numbers in the past rounds, as well as information on two-thirds of the average and that the winner of all past rounds were choosing
a number close to two-thirds of the average. As a result, they adjust their choice to be two-thirds of the past period average in each
new round to maximize the probability of winning the prize.

Both types of LLM-based agents understand the game rules and over the periods, they continue to correctly aim for maximizing
chances of winning the prizes. Based on the line of reasoning, low type agents either adjust their choices according to the past
periods’ average or the winners’ strategy, which can be an indication of learning through imitation. It is also possible they show
no adjustment at all and continue to pick 50, which they perceive to be the popular choice at the start of the game. This could
imply that they are following level-0 thinking process, and their unwavering, perceived popular choice is the most important
piece of information in determining their choices. Further, throughout the reasoning process, they did not mention fixed-strategy
players, except when prompting their understanding of the game in period 1. It is expected that they learn about the proportion of
fixed-strategy opponents after revelation of historical information at the start of period 2, but it appears that they do not make use
of such information. As for the high type agents, they adjust are adjusting according to the information on past periods’ average
and two-thirds of the average. There is step-by-step convergence that corresponds to the line of reasoning under level-1 thinking
process. In contrast to the low types, high type agents do mention about fixed-strategy players in period 1, where they acknowledge
that some of their opponents will be playing 0 and that they believe the other players would not be choosing 0. However, as
historical information becomes available, they no longer reason about their choices using the proportion of fixed-strategy players,
but focus more on the information about the two-thirds of the average.

4.2 LLMs vs. LLMs

In this subsection, LLM-based agents are playing against one another and they were not given any information on the proportion of
LLM types in the group. Since the algorithms are dynamically responsive, it would be harder to learn the proportion of agent types
in period 2 even when past choices are revealed. Therefore, in this case, there are more strategic uncertainty, and agents likely have
to make use of other information to base their guesses on.

4.2.1 Period 1

Understanding. Once again, I verify agents’ comprehension of game rules and objectives, which they have accurately
demonstrated by reciting. However, the main difference between the responses of different agent types is that the low types state
straightaway that “I think other players are most likely to choose numbers around 50, so I will choose 50” at this stage of eliciting
understanding.

Reasoning of Choice. Similar to the case with fixed-strategy opponents, when LLM-based agents are asked to state the
reasoning of their choices, the low type agents responds that they have chosen 50 because they believe other players are most likely
to choose numbers around 50, which is the middle number and a safe bet, thus choosing 50 would offer them the best chance of
winning. Meanwhile, the high types also believe the popular answer is likely to be around 50 and many players may choose it as a
safe option, but they respond to that by choosing 66.67 to maximize the likelihood of winning, which they stressed in the reasoning
to be exactly two-thirds of the maximum possible value. This could be an indication that they are either using the upper-bound as
the focal point per level-k model or that they are following iterated elimination of dominated strategies.

4.2.2 Subsequent Periods

Understanding. In each subsequent periods, I again verify LLM-based agents’ understanding of game rules and objectives for
consistency, and to which, both agent types accurately relay their objectives of maximizing the probability of winning and the
value of their prizes.

Reasoning of Choice. As compared to the environment with fixed-strategy opponents, LLM-based agents in the game of
LLMs vs. LLMs display slightly larger variability in the phrasing of their answers, while the content remain fairly consistent.

For instance, in period 2, a possible response from low type agents would be: “In the last run, the average of all chosen
numbers was 58.327999999999996. The two thirds of the average is 38.88533333333333. The winner was the player who chose
50. I think other players are most likely to choose numbers around 50 again in this run. To maximize my chance of winning, I
will choose 66.67, which is closer to the two thirds of the average than 50. I also think that by choosing a number that is higher
than 50, I have a better chance of winning the prize if there is a tie.” Based on this response, it can be interpreted that low types
have taken into consideration the average of all chosen numbers, the value of two thirds of the average, as well as the winners’
choice, before forming an opinion about what is the most likely choice. Since the average was higher than 50 in period 1, low type
agents who chose 50 in period 1 adjust their choices up and choose 66.67 in period 2. Even though practically, this selection may
not be closer to 2

3
of the previous round average as compared to 50, and probably will not be the case for the new round as well,

the adjustment could be as a result of previous average being higher than expected, thereby inducing a higher guess in the new round.
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As for the high types, a possible response would be: “Based on the historical choices, the average of all chosen numbers
in the previous run was 58.33. To be closest to two-thirds of the average, I should aim for a number close to 38.89. This is
because two-thirds of 58.33 is approximately 38.89. By adjusting my choice to 38.89, I increase my chances of being the closest
to two-thirds of the average and winning the prize.” As illustrated, the high type agents anchor their guesses to two-thirds of the
previous round average, and this complies with level-1 thinking. Furthermore, they also appear to take winner’s strategy into
consideration, where some of them indicate that that they are aligning their choices with the winning strategy from the previous
round. Similar to the analysis before, since agents are allow to choose any number that falls within in the range, and there is slight
variation in the guesses due to token allocation (i.e. some chose 38.89 and some 38.885). In this set-up, this distinction matters as
the winner of the round that guesses 38.885 wins the game. This point is addressed in the following subsection 4.3.

In subsequent periods, the low type agents mimic the winner’s choice of the previous round, and state that they believe the
other players are most likely to choose the winning number again in this round. This implies learning by imitation. As for the high
types, they adjust their choices to two-thirds of the previous period’s average by the following reasoning process:
(1) Similar to the low type agents, they indicate that they have incorporated information about winner’s strategy, which is an
indication of learning via imitation, but they perceive the strategy to be selecting a number that is 2

3
of the average instead of a

strategy that is to select the winning number of the past round;
(2) By stating that they are aiming to be closer to the two-thirds of the past average, this also implies adjustment according to
level-1 reasoning, where the new guess is anchored to a new reference point;
(3) There is also a hint of outcome-based learning, where some mentioned they were not the closest to two-thirds of average in the
past round, and this propels a change in their strategy in the current round, aiming to optimize the chances of winning;
(4) Lastly, a surprising thing that one agent mentioned was that “considering the trend of decreasing choices in the previous runs, it
seems reasonable to continue this trend and choose a lower number.” This highlights there could also be learning based on pattern
recognition.
Similar to the low type agents, there could be slight variations in terms of the choice of words and the number of decimal places
accounted for in the guesses.

4.3 Evaluation

Many learning models have been explored in relation to beauty contests, and which piece(s) of historical information was(were)
revealed to the agents could have differential impact on agents’ choices and convergence behaviour. Based on Mauersberger and
Nagel (2018), models like reinforcement learning, reference-dependence preferences, as well as adaptive models, could be used to
explain for agents’ behaviour in the repeated beauty contest games. These learning models mainly differ in feedback information
they receive after each round of game, before making any new selection, and one way to test the type of learning would be to
provide agents different pieces of information and investigate the changes in their behaviour.

In this section, I explored two set-ups where LLM-based agents were given full historical information for all past periods,
which constitute: (1) period index, (2) choices made by all agents, (3) average of the choices, (4) 2/3 of the average, (5) winner.
Through their line of reasoning, I can attempt to observe what are the main pieces of information that facilitate their learning
process. In sum, for the low type LLM-based agents back-boned by PaLM , they appears to learn by (1) adjusting the reference
point to the average of the previous period, and make selection that complies with a strategic level of 0, or (2) they learn by
imitation and follow the winner’s choice from the previous period. There are also instances where they do not learn at all,
and continue to select a number that they believe to be the popular choice ever since the beginning of the game. This happens
particularly when playing against fixed-strategy opponents for these two set-ups. On the other hand, for the high type LLM-based
agents back-boned by GPT3.5 , they appears to learn by (1) adjusting their guesses to two-thirds of the past period’s average,
which is an indication that their reference point has changed to be the average of the last period and that their choices display
level-1 reasoning. They could also be learning from (2) imitating winner’s strategy. Further, there are possibilities that they are
learning from (3) past period payoffs, and adjusting their actions when there are no positive reinforcements, and also (4) pattern
recognition.

Based on the line of reasoning discussed, it can be inferred that various types of agents may place different reliance on
distinct pieces of historical information when making their choices, and multiple types of learning could come into play when
explaining for their behaviour. The faster convergence to NE choice, which is indicative of stronger learning ability of the high
type agents as compared to the low types, could be driven by the innate higher strategic level that carries throughout the periods,
and also as a result of combined effect of learning from historical information.

Another interesting point is that even though information revealed are identical, there could be variations in information
consideration and revealed choices among homogeneous agents. One aspect of that is for instance, the high type agents sometimes
consider longer string of decimal places within the information given and in turn make guesses with more decimal places. This
could arise from slight differences in token allocation within a response. Such numerical variations are often trivial, and have no
impact on the determination of strategic levels. However, a small difference in choices could lead to a large distinction in payoffs
given the settings illustrated in this paper. It is entirely possible that agents are deliberately choosing a number slightly larger or
smaller in order to beat the rest to be closer to two-thirds of the average; or that agents are unconsciously selecting a number that
is slightly larger or smaller, which end up winning the game. These settings with LLM-based agents most likely demonstrate

26



the second. Since the information is feed to all agents at the beginning of each period, there are no distinction in what is being
observed, therefore the difference lays in that some agents are able to process longer string of information, which technically boils
down to token constraints. However, this constraint can potentially distinguish the processing capability or relating to human
subjects, the amount of attention to the information given. In which case, having better attention would imply incorporating
longer string of information in decision-making. Adopting this interpretation, having better attention could render higher payoffs
in certain set-ups though the differences of number chosen between homogeneous agents are almost negligible. Nonetheless,
there can also be instances where having more decimal place is detrimental to the outcome, such that the choice is further away
from two-thirds of the average than rounded-off numbers selected by players who do not pay as much attention. Intriguingly, this
potentially opens up the study of attention in beauty contest game outcomes, which has yet to be addressed.
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5 Future Updates and Extensions

Much like experiments with human subjects, LLM-based agents could also be sensitive to variations in game design, feedback, as
well as instructions provided to them at the beginning of the games.

Variations in Game Design. In the original beauty contest game proposed by Nagel (1995), which is later called the
p-beauty contest game as p can be varied. In this work, I focused on p = 2

3
, such that there exists a unique interior solution, similar

set-ups can be done for p = 1
2

and p = 4
3

, which was conducted for human subjects. This paper simply illustrates a case for
interactions between LLM-based agents involving strategic complementarity (i.e. p > 0), where there is strategic mimicry among
agents. It is possible to evaluate the same set-ups for p < 0, which involves strategic substitution. For the application of results, I
can alternatively examine the Cournot market, where agents have to do the opposite of one another in choosing quantities. There
are a lot of possibilities in this aspect that merit further exploration in the future.

Nonetheless, previous experimental design often involve same group of subjects playing for several rounds, random pairing of
subjects with different historical information might have implications for extrapolation of out-of-context experiences. While it
can be hard to control the information possession of human subjects practically, such variation in game design could be easily
simulated with LLM-based agents and would be useful to investigate the potential game play when agents are endowed with
individual-specific past game information.

Variations in Feedback Information. Given the line of reasoning discussed in Section 4. It is likely that LLM-based
agents are responding to past periods’ average, two-thirds of the average and the winner’s strategy. In this work, past information
is fully disclosed. As an extension, it is possible to do the same set-up but with partial feedback to explore the variation in agents’
behaviour. One potential variation of prompt is detailed in A.2. Agents could be given only past rounds’ averages and two-thirds
of those averages. This potentially eliminates the possibility of learning from imitation, as well as learning based on gradient
ascent learning or experience-weighted attraction, which require revelation of all players’ choices and payoffs. In other words,
current period’s choices are expected to be best responses to only the past period average. The proportion of different types of
agents would not be formulated as part of the decision problem, and the next period choice is therefore expected to be 0.67 of
the past average guess. If the learning pattern does not vary much compared to the current settings, then it could be possible that
learning via adjusting the reference points precedes the influence from any other forms of learning.

Further, it is possible that algorithms might react differently to historical information as compared to humans, thus it could
be interesting to understand how LLMs learn from partial feedback as compared to full feedback.

Objectives. Another aspect that worthy of further exploration would be in the area of prompt engineering. Human sensitivity to
problem framing and phrasing of survey questions have long been explored. (Tversky and Kahneman (1981), Kalton and Schuman
(1982)) The same applies for LLMs, their decisions are likely to be influenced by the formatting of prompts. (Sclar et al. (2023))

At the current juncture, the beauty contest games with LLM-based agents mainly aim to understand how would agents
behave given the goal of winning the games and then maximizing their payoffs, in most economic models, the focus is usually
on maximizing utilities instead of winning. A potential variation that could be interesting to explore would be changing the
sequencing of objectives in the last line of instruction, such that the primary objective would be to maximize one’s payoffs, and the
secondary goal is to win the games. (Appendix A.2) In this competitive game, the winning strategy is also the strategy that gives
the best payoff for each agent, it is therefore unlikely that the decisions given the variation in objective sequencing would result in
drastic differences in game outcomes. However, a future update of this work could be to evaluate the same set-ups while varying
the prompt slightly, which can serve as sanity check on how much variation in behaviour we would expect the LLM-based agents
to have.

Prompt Language. In Guo et al. (2024), the prompt language was changed to Mandarin Chinese in the multi-LLM-based
agents setting. It was found that PaLM is unable to complete the games, indicating potential difficulty in comprehending the
instructions when they are given in another language. As for GPT3.5 , it can complete the game in Chinese setting but the
choices are more clustered. The variance in strategies observed in this context as compared to the English setting may reflect
the differences in strategic behaviours among different language users that the models are trained on, or it could stem from a
significantly smaller availability of human-generated data in another language, which is an area that can be improved on to better
represent the population. Current work focused on English setting, but future work could involve replicating the set-ups in other
prompt languages.

Human vs. Computer Interactions. While this work mainly explores LLMs as simulated agents and provides insights
on how human subjects might behave given variations in group composition, it also shine a light how we might expect machine
vs. machine interactions to be like. Another straightforward and practical extension would be to investigate human vs. machine
interactions. Previously, experimental designs involving computers often comprises of pre-defined algorithms. In Coricelli and
Nagel (2009), for the treatment group with computer opponent, the computer player is specified to choose uniform randomly
9 numbers within the range of 0 to 100. The authors found that playing against human opponents activated areas in brain that
suggest greater strategic reasoning about opponents’ strategies and behaviours, which is not the case when playing with computer
that is pre-programmed. This is similar in flavour to the case of simulated subjects playing against fixed-strategy opponents, or
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static algorithms, in this paper. There is a larger degree of complexity when dealing with LLM-based agents, who could respond
dynamically and switch their strategies given historical information. Not only it is intriguing to investigate how human subjects
could react to dynamically responsive algorithms, since LLMs do display some degree of learning abilities, it is entirely possible
that they are also learning from playing with human subjects, thus observing changes in their performance would also be of
interest. This also leads to the question of the potential implications of a feedback loop, where human subjects could attempt to
influence the algorithms that in turn affect the other players. There remain lots of research potential in this area.
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6 Conclusion

The contribution of this work is threefold. Firstly, it serves as part of the literature that seeks to make a case for integration of
LLMs as tools for social sciences research. It can be utilized to simulate behaviours following known behavioural constraints to
see if they fit theoretical predictions, or it can be used to mirror human-like behaviour in a specified environment, such that it
resembles experiments with human participants, only that they are ran with simulated agents that can be controlled to some extent.
This work focuses on the second scenario, where LLMs are first evaluated using methods conventionally used for human subjects,
and the results are related to the types of human subjects that they could represent in terms of strategic levels. Following which,
simulated agents are put into certain game settings for us to observe their behaviours.

The second aspect of this paper specified this game setting. While current literature mainly focused on cooperative
or anti-coordination games between agents back-boned by a single type of LLM, I explore competitive games between
multi-LLM-based agents, and specifically, I explore beauty contest games. Based on the one-shot beauty contests, I characterized
the models’ strategic levels based on methods proposed in Nagel (1995), I found LLM-based agents to have strategic levels that
fall within the range of 0 to 1 when the reference point is fixed to be mid-point of the range of the numbers they can choose from.
In the repeated setting, where multi-LLM-based agents play against each other, they exhibit different learning rates, in terms of
their speed of convergence towards the Nash Equilibrium choice. LLM-based agents with relatively lower strategic levels might
not show convergence to 0 at the end of 6 periods. The learning behaviour demonstrate potential revision in agents’ belief about
their opponents, or them increasing their depth of reasoning, to break it down, when computing the strategic level anchoring to new
reference points across periods, I found strategic levels do evolve over time, but the changes are minimal, which in fact complies
with results from experiments conducted with human subjects.

To investigate the strategic interactions between LLM-based agents further, I introduce some variations into the games. I
select two types of LLM-based agents (high types and low types) based on their strategic levels revealed in the one-shot games,
and simulate their behaviours. The interaction between LLM-based agents and fixed-strategy opponents is indicative of potential
behaviour when human subjects are playing against static algorithms, usually associated with traditional computerized opponents.
In such cases, higher intelligence agents show step-by-step convergence towards 0, while lower intelligence agents could either
converge straightaway or stick to a choice determined in period 1 and do not budge. As for the interactions among LLM-based
agents, the results suggest plausible outcomes when human subjects are going against each other. I found higher intelligence
agents tend to reach 0 more rapidly than lower intelligence agents, and it appears that adjustments in strategies do not occur when
the less intelligent agents are playing against one another. When exploring the effects of varying the proportion of agent types in
each group, higher intelligence agents converge slower to 0 as the proportion of fixed-strategy agents decreases, demonstrating the
impact of increased strategic uncertainty; the same applies for lower intelligence agents - convergence rate declines when there
is lower proportion of fixed-strategy opponents - but this is also coupled with greater variations in choices and possibility of no
convergence. Given dynamically responsive opponents, agents were found to learn faster when placed in mixed environment with
players of different strategic levels than environments that comprises sole of a single pure type. This postulates the potential for
application in stimulating faster learning, particularly among less intelligent agents, by introducing heterogeneity into the groups.

Last but not least, this work also provides some insights into how different algorithms would behave when interacting with
one another. Algorithms could act as proxies for humans or they could become products to be purchased by individuals and
firms, and apply to competitive situations. Simulation of strategic interactions between dynamically responsive algorithms and the
conventional, static computer algorithms, as well as among the dynamically responsive algorithms themselves, could be useful
to learn more about machine behaviour, employing methods used to evaluate humans that can be understood and supported by
cognitive theories. In the set-ups illustrated in the paper, even though LLMs may not be able to beat the static algorithm that is
pre-defined to play an optimal strategy, they could do comparably well, or in cases of high strategic uncertainty, they could obtain
higher payoffs than the static algorithms. As for LLMs vs. LLMs, stronger LLMs, in terms of strategic level, could gain higher
payoff when placed in a highly mixed intelligence environment, while weaker LLMs might get a one-shot head-start, but the gain
is unsustainable, they would do better in the longer run when there are larger proportion of weaker LLMs in the group. The results
show that a mixed environment could improve performance for both LLM types, illustrated by faster speed of convergence, and
also surprisingly, having injection of weaker LLMs into game play is beneficial for improving the stronger LLMs, making a case
for the usefulness of weaker algorithms.

I have also attempted at exploring the line of reasoning behind LLM-based agents’ choices and found that they seem to
comprehend the game pretty accurately, and they are mainly adjusting their strategies based on the level-k reasoning process of
shifting reference points, as well as through imitation of the winners’ strategy. Since LLMs are trained via human generated data
that incorporate reasoning processes, the results could give us a hint at the possible logic individuals could have adopted in certain
strategic situations.

Since this is a relatively new subject area, there are many possible extensions and great potentials for LLMs to be employed as
toolkits for economics research in helping us to interpret and decipher human behaviour. The reverse is true as well, theories and
experimental results from decades of learning about human decision-making can be similarly used to better understand machine
behaviours and improve their performance to serve specific needs.
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A Appendix

A.1 Original Exemplary Prompt

One-shot games with multi-LLM-based agents.

[System Instruction.] I want you to act as a clever game player and perform as rationally as possible.

[User Instruction.] You are playing a game and the rules are as follows:

• it consists of {number of players} players, including you.

• this is a one-round game.

• you need to choose a real number between 0 and {upper bound}, 0 and {upper bound} inclusive.

• everyone does not know how others would make choices beforehand.

• the winner is the person whose number is the closest to the two thirds of the average of all chosen numbers.

• the winner gets a fixed prize, in case of a tie the prize is split amongst those who tie.

• your goal is primarily to maximize the possibility of getting the prize and secondly to maximize the your prize.

(Return to 3.1.1)

Subseqent Prompt for Historical Information.

[User Instruction.]
• The game of the same config has been hold for {number of runs} run(s), and the historical choices of everyone

are shown below (your id is {ID of the agent}: {historical information including (1) period index, (2) choices
made by all agents, (3) average of the choices; (4) 2/3 of the average; (5) winner id.}

• Everyone can optimize his/her answer with the history to play in a new run in order to achieve goals.

(Return to 3.1.2) (Return to 3.2.2)
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A.2 New Exemplary Prompt

Opponents Playing Fixed Strategy of 0

[System Instruction.] I want you to act as a clever game player and perform as rationally as possible.

[User Instruction.] You are playing a game and the rules are as follows:

• it consists of {number of players} players, including you.

• this is a one-round game.

• you need to choose a real number between 0 and {upper bound}, 0 and {upper bound} inclusive.

• everyone does not know how others would make choices beforehand.

• the winner is the person whose number is the closest to the two thirds of the average of all chosen numbers.

• the winner gets a fixed prize, in case of a tie the prize is split amongst those who tie.

• your goal is primarily to maximize the possibility of getting the prize and secondly to maximize the your prize.

• some of your opponents will be playing a fixed strategy of 0 and all others are behaving as rationally as possible.

Follow-up for each period.
Please just strictly output a JSON string, which has following keys:

• understanding: str, your brief understanding of the game

• popular answer: float, the number which you think other players are most likely to choose

• answer: float, the number which you would like to choose

• reason: str, the brief reason why you give the popular answer and the answer that way

Subsequent Prompt (after period 1).

• The game of the same config has been hold for {number of runs} run(s), and the historical choices of everyone
are shown below (your id is {ID of the agent}: {historical information including (1) period index, (2) choices
made by all agents, (3) average of the choices; (4) 2/3 of the average; (5) winner id.}

• Everyone can optimize his/her answer with the history to play in a new run in order to achieve goals.

(Return to 3.2.1)
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Partial Feedback: Subsequent Prompt for Historical Information.

[User Instruction.]
• The game of the same config has been hold for {number of runs} run(s), and the historical choices of everyone

are shown below (your id is {ID of the agent}: {historical information including (1) period index, (2) average of
the choices; (3) 2/3 of the average.

• Everyone can optimize his/her answer with the history to play in a new run in order to achieve goals.

(Return to 5)

Changing Objective Sequence: Optimizing before Winning

[System Instruction.] I want you to act as a clever game player and perform as rationally as possible.

[User Instruction.] You are playing a game and the rules are as follows:

• it consists of {number of players} players, including you.

• this is a one-round game.

• you need to choose a real number between 0 and {upper bound}, 0 and {upper bound} inclusive.

• everyone does not know how others would make choices beforehand.

• the winner is the person whose number is the closest to the two thirds of the average of all chosen numbers.

• the winner gets a fixed prize, in case of a tie the prize is split amongst those who tie.

• your goal is primarily to maximize your prize and secondly to maximize your possibility of getting the prize.

*Follow-up for each period, and subsequent prompt (after period 1). (same as before)
(Return to 5)
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