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The success behind many pseudopotential methods such as Projected Augmented Waves (PAW)
and Phillips-Kleinman pseudopotential methods is that these methods are all electron methods in
disguise. For the Phillips Kleinman and PAW methods we show that there is an all electron formu-
lation. In the all electron formulation there are regular low wavevector wavefunctions and several,
specially chosen, high wavevector wavefunctions that are specialized to the atomic environment.
Using this as inspiration here we propose a new, PAW pseudopotential inspired, basis set method
for small molecules, where we use the recently introduced LO or lo (Localized orbitals) basis set is
paired with a Gaussian basis for a hybrid basis for small molecules.

I. INTRODUCTION

It is of paramount importance to make progress on
the basis set problem for Density Functional Theory
(DFT) for small molecules. Small molecules larger then
diatomic: carbon dioxide, water, ammonia, methane,
ethyne, ethene, ethane to name a few have a variety of
uses in industry and engineering [1, 2]. However there has
been limited progress in optimizing basis sets for small
molecule DFT calculations similarly to basis sets that
have paved breakthroughs in solid state DFT [3–5]. Here
inspired by pseudopotential methods in DFT we pro-
pose one such hybrid basis set. Pseudopotentials at their
core map a problem into another problem. The exact all
electron wavefunction for the system is mapped onto a
smooth wavefunction that may well be represented by a
small number of plane waves. Two of the pre-eminent
examples of pseudopotentials are the Phillips Kleinman
and Projected Augmented Waves (PAW) pseudopoten-
tials. Here we show that these pseudopotential methods
are all electron methods in disguise where the all elec-
tron problem includes smooth plane wave wave functions
and specialized wave functions for orbitals near atomic
nuclei. Inspired by this observation, and the extensive
numerical success of the PAW method [3, 4] we propose
new basis sets for small molecules, where localized LO
or lo [1, 5–7] basis wave functions are augmented with
Gaussian wave functions (where Gaussians have been ex-
tensively used for the problem and various configuration
integrals for them are well known [2, 3, 8]), in a simi-
lar manner to Phillips-Kleinman and PAW all electron
basis sets We propose that this new hybrid basis set is
efficient for DFT and Hartree-Fock (HF) calculations of
small molecules.

II. MANY PSEUDOPOTENTIAL METHODS
ARE ALL ELECTRON METHODS IN DISGUISE

(MOTIVATION)

In this section we reformulate PAW and the Phillips-
Kleinman method as all electron methods where there are
plane waves and special wave functions that are chosen to
represent states near the core. We show the two methods

to be equivalent in their all electron formulation.

A. Phillips-Kleinman as an all electron method in
disguise

We now recall the Orthogonalized Plane Wave (OPW)
wave functions used for the Phillips-Kleinman method.
We know that

|φOPW (k+K)〉

=

∣

∣

∣

∣

1√
V

exp (i (k+K) · r)
〉

−
∑

i

〈

φi (r) |
1√
V

exp (i (k+K) · r)
〉

|φi (r)〉 (1)

Here |φi (r)〉 are localized wave functions relevant to the
single site problem. Here V is the volume of the primi-
tive lattice cell and kis a wavevector in the first Brillouin
zone while K is a reciprocal lattice vector. Now the main
claim of the Phillips-Kleinman method (greatly numeri-
cally supported) is that for a reasonable number of plane
waves the exact Khon Sham (KS) wavefunction |ψn〉 ca
be written as

|ψn〉 ∼=
∑

k,K

cK
k
|φOPW (k+K)〉 (2)

for some reasonable cutoffs Kmax that means that

|ψn〉 ∈ Span {|φOPW (k+K)〉}

⊂ Span

{{∣

∣

∣

∣

1√
V

exp (i (k+K) · r)
〉}

, {|φi (r)〉}
}

(3)

As such in some situations its better and in many ways
simpler to do an all electron calculation with the basis
being given by:

{{∣

∣

∣

∣

1√
V

exp (i (k+K) · r)
〉}

, {|φi (r)〉}
}

(4)

As such Phillips-Kleinman is an all electron method in
disguise. We shall see below that PAW is very similar.
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B. PAW is an all electron method in disguise

1. PAW review

We would like to study highly oscillatory wave func-
tions near the nucleus of an atom using plane waves. In
order to obtain a low cutoff of say ~30 Rydberg in en-
ergy and as such a tolerable basis set we must have that
the wavefunction we represent using plane waves is very
smooth. The key idea of PAW is then to introduce:

|ψn〉 = T̂
∣

∣

∣
ψ̃n

〉

(5)

where T̂ is some linear transformation (specified below)
and |ψn〉 is the exact Khon Sham wave functions (solu-

tions of the KS equations) while
∣

∣

∣
ψ̃n

〉

are the wave func-

tions we approximate efficiently using plane waves. Now
suppose there is a set of augmentation spheres and we
wish for T̂ to be the identity outside the augmentation
spheres, so we write:

T̂ = I+
∑

µ

Sµ (6)

Here µ are the atomic spheres. Now we want the wave-

function
∣

∣

∣
ψ̃
〉

to be smooth inside the sphere and we know

that the exact KS wavefunction is close enough to the sin-
gle atom, atomic wavefunction |φi〉. As such if we choose
Sµ to be

Sµ |ψn〉 =
∑

cni |φi〉 −
∑

cni

∣

∣

∣
φ̃i

〉

(7)

where
∣

∣

∣
φ̃i

〉

are smooth wave functions. Where we choose

cni =
〈

p̃i | ψ̃n

〉

(8)

Here |p̃i〉 are the projector wave functions. As such we
have that:

|ψn〉 = T̂
∣

∣

∣
ψ̃n

〉

=
∣

∣

∣
ψ̃n

〉

+
∑

i

(

|φi〉 −
∣

∣

∣
φ̃i

〉)〈

p̃i | ψ̃n

〉

(9)

2. Reformulation of PAW as an all electron method

The main claim of PAW (which has been extensively
numerically verified) is that there is a good expansion in
plane waves for the PAW wavefunction given by:

|ψn〉 ∼=
∣

∣

∣
ψ̃n

〉

+
∑

i

(

|φi〉 −
∣

∣

∣
φ̃i

〉)〈

p̃i | ψ̃n

〉

. (10)

That is the wavefunction
∣

∣

∣
ψ̃n

〉

is made of a rea-

sonably small number of plane waves of the form
1

√

V
exp (i (k+K) · r) in particular we have that:

|ψn〉 ∈ Span

{{

1√
V

exp (i (k+K) · r)
}

, {|φi〉} ,
{∣

∣

∣
φ̃i

〉}

}

(11)

for small number of plane waves here |ψn〉 are all electron

wave functions. Now because
∣

∣

∣
φ̃i

〉

is very smooth we have

that

∣

∣

∣
φ̃i

〉

∈ Span

{

1√
V

exp (i (k+K) · r)
}

(12)

As such the main claim of PAW can be written as

|ψn〉 ∈ Span

{{

1√
V

exp (i (k+K) · r)
}

, {|φi (r)〉}
}

(13)
for a reasonable number of plane waves. Since the basis
set of PAW and Phillips-Kleinman are similar both meth-
ods should yield in their all electron formulation similar
accuracy and basis of the same size. They are equiva-
lent within the all electron formulation when they use
the same localized orbitals.

III. GLOW AND PLOW BASIS SETS

Here we would like to work backwards we wish to for-
mulate an all electron method as the inverse of a pseu-
dopotential method where we use specialized wave func-
tions near the nuclei and many regular wave functions for
the whole space. We focus on small molecules and crys-
talline solids. Below we will simply describe the relevant
basis sets.

A. Glow and GLOW for small molecules

Here G in Glo and GLO stands for Gaussians while lo
and LO for localized orbitals. We consider the lo basis
set [6]:

Φlm
lo = uEl

l (|r− rµ|)Θ (Sµ
l − |r− rµ|)Ylm

(

r̂− rµ

)

(14)
where Sµ

l is chosen to make the wavefunction continuous
everywhere. Here:

[

− d2

dr2
+
l (l + 1)

r2
+ V̄KS (r)

]

ruEl

lµ (r) = Elru
El

lµ (r)

(15)
and V̄KS (r) is the spherically average KS potential or
HF single particle potential. Alternatively we can use
LO basis sets [6]:

Φlm
LO = uEl

l (|r− rµ|)Θ (Sµ
l − |r− rµ|)Ylm

(

r̂− rµ

)

+B
µ
l u̇

El

l (|r− rµ|)Θ (Sµ
l − |r− rµ|)Ylm

(

r̂− rµ

)

(16)

where Bµ
l and S

µ
l are chosen to make the wavefunction

continuous and continuously differentiable everywhere.
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Here u̇El

l = ∂
∂E
uEl

l . Higher derivative terms are also pos-
sible [6], also regular LO and lo is possible [1, 5, 7]. We
also add a large number of Gaussians to our basis set:

φ
µ
l,m,σ =

1

Nl

exp

(

−|r− rµ|2
2σ

)

|r− rµ|l Ylm
(

r̂− rµ

)

(17)
to the molecular basis set as well as polynomials times
φ
µ
l,m,σ, these help make configuration integrals cheap.

Here Nl is a normalization constant. This is a basis
set for many small molecules. Furthermore Gaussians
Coulomb integrals may be efficiently computed [8, 9] so
there are “few” coulomb integrals involving complicated
functions [10].

B. Plow and PLOW basis sets for crystalline solids

Here P in Plo and PLO stands for plane wave while
lo and LO stands for localized orbitals. We start with lo
basis wave functions [6]

Φlo = uEl

l (|r− rµ|)Θ (Sµ
l − |r− rµ|)Ylm

(

r̂− rµ

)

(18)
where Sµ

l is chosen to make the wavefunction continuous
everywhere and LO basis wave functions [6]:

ΦLO = uEl

l (|r− rµ|)Θ (Sµ
l − |r− rµ|)Ylm

(

r̂− rµ

)

+Blu̇
El

l (|r− rµ|)Θ (Sµ
l − |r− rµ|)Ylm

(

r̂− rµ

)

(19)

where Bµ
l and S

µ
l are chosen to make the wavefunction

continuous and continuously differentiable everywhere.
Higher derivative terms are also possible [6, 11, 12]. We
can also add plane wave

χk+K =
1√
V

exp (i (k+K) · r) (20)

to the solid state basis set, these help make configuration
integrals cheap. This is a basis set for many crystalline
solids.

IV. CONCLUSIONS

In this work - inspired by the fact that many pseu-
dopotential methods are all electron methods in disguise
with slowly oscillating wave functions and special wave
functions to account for the environment of the nucleus -
we proposed new basis sets for small molecules and crys-
talline solids. In this basis set we use the LO or lo wave
functions introduced recently in [6] (although regular LO
or lo basis wave functions will also do [1, 5, 7]) combined
either with Gaussians (for molecules) or plane waves (for
solids) to obtain a total basis for the system. This would
allow for initial calculations for many molecules as the
four center calculation is done for Gaussians and two
center density density is done for very generic functions
[2, 8, 10]. This should help open small molecules for the-
oretical DFT or HF like calculations and explorations.
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