
Almost-Sure Termination by Guarded Refinement
SIMON ODDERSHEDE GREGERSEN∗, New York University, USA

ALEJANDRO AGUIRRE, Aarhus University, Denmark

PHILIPP G. HASELWARTER, Aarhus University, Denmark

JOSEPH TASSAROTTI, New York University, USA

LARS BIRKEDAL, Aarhus University, Denmark

Almost-sure termination is an important correctness property for probabilistic programs, and a number of

program logics have been developed for establishing it. However, these logics have mostly been developed for

first-order programs written in languages with specific syntactic patterns for looping. In this paper, we consider

almost-sure termination for higher-order probabilistic programs with general references. This combination of

features allows for recursion and looping to be encoded through a variety of patterns. Therefore, rather than

developing proof rules for reasoning about particular recursion patterns, we instead propose an approach

based on proving refinement between a higher-order program and a simpler probabilistic model, in such a way

that the refinement preserves termination behavior. By proving a refinement, almost-sure termination behavior

of the program can then be established by analyzing the simpler model. We present this approach in the

form of Caliper, a higher-order separation logic for proving termination-preserving refinements. Caliper uses
probabilistic couplings to carry out relational reasoning between a program and a model. To handle the range of

recursion patterns found in higher-order programs, Caliper uses guarded recursion, in particular the principle

of Löb induction. A technical novelty is that Caliper does not require the use of transfinite step indexing or

other technical restrictions found in prior work on guarded recursion for termination-preservation refinement.

We demonstrate the flexibility of this approach by proving almost-sure termination of several examples,

including first-order loop constructs, a random list generator, treaps, and a sampler for Galton-Watson trees

that uses higher-order store. All the results have been mechanized in the Coq proof assistant.

1 INTRODUCTION
Probabilistic programs are programs that draw samples from probability distributions. They have

wide applications, but also complex and unintuitive behaviors. Therefore, there has been long-

standing interest in formal techniques for reasoning about them.

In particular, termination of probabilistic programs is an important property for the correctness

of various sampling and consensus algorithms. This work considers the problem of almost-sure
termination (AST), that is, whether a probabilistic program terminates with probability 1. The

problem of showing AST is known to be computationally harder than termination of determin-

istic programs [Kaminski et al. 2019] so there is clearly no hope of completeness. On the other

hand, the problem is decidable for large classes of probabilistic processes [Brázdil et al. 2013],

and indeed such decision procedures have been implemented in probabilistic model checkers

such as PRISM [Kwiatkowska et al. 2011]. Moreover, there is a long and rich history in the math-

ematical literature that has studied the termination behavior of multiple families of stochastic

processes [Athreya and Ney 2012; Spitzer 2013].

Multiple works have developed program logics to reason about termination or expected runtime

of probabilistic programs. For example, the work on weakest pre-expectation calculi by Morgan

and McIver [1999] can, in particular, be used to prove AST, and the expected runtime transformer

by Kaminski et al. [2016] provides a compositional way to reason about runtime of probabilistic

programs. Ranking Supermartingales [Chakarov and Sankaranarayanan 2013; Fu and Chatterjee

2019] are probabilistic analogues of ranking functions that can be used to prove termination of

probabilistic programs by adapting results from martingale theory to program verification. Others

[McIver et al. 2018] develop rules to prove termination of particularly complex iteration schemes.

∗
This work was carried out while the author was affiliated with Aarhus University.

ar
X

iv
:2

40
4.

08
49

4v
1

 [
cs

.L
O

]
 1

2
A

pr
 2

02
4

HTTPS://ORCID.ORG/0000-0001-6045-5232
HTTPS://ORCID.ORG/0000-0001-6746-2734
HTTPS://ORCID.ORG/0000-0003-0198-7751
HTTPS://ORCID.ORG/0000-0001-5692-3347
HTTPS://ORCID.ORG/0000-0003-1320-0098

2 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

The works listed above have all increased the reach of termination analysis of probabilistic

programs, but they are mostly limited to first-order, imperative languages and their techniques

are adapted to this particular setting. Some work [Avanzini et al. 2021; Kobayashi et al. 2019] has

considered stateless higher-order programs and higher-order recursion schemes, but it is unclear

to what extent this approach scales to richer languages. For instance, in a setting that includes

higher-order functions and higher-order references, recursion and thus divergence can arise in

multiple ways, e.g., by recursion through the store, so rules that have been tailored to syntactic

while loops or particular recursion schemes will be difficult to generalize and apply.

As an example, consider the randomized function walk below, which uses a fixed-point combina-

tor fix defined with Landin’s knot [Landin 1964]:

fix ≜ 𝜆𝑓 . let 𝑟 = ref (𝜆𝑥 . 𝑥) in 𝑟 ← (𝜆𝑥 . 𝑓 (! 𝑟) 𝑥); ! 𝑟
F ≜ 𝜆𝑓 . 𝜆𝑛. if 𝑛 == 0 then ()

else if flip then 𝑓 (𝑛 − 1) else 𝑓 (𝑛 + 1)
walk ≜ fix F

where the flip expression in F reduces uniformly at random to either true or false.
The execution of walk 𝑛 depends on a complex interaction between probabilistic choice and

higher-order store. Nevertheless, walk 𝑛 almost-surely terminates for any starting value 𝑛. The

reason is that the value of the argument on each successive call to 𝐹 follows a symmetric random

walk on the natural numbers which terminates upon reaching 0. This is a well-known stochastic

process that almost-surely terminates. The random walk can be represented by the probabilistic

transition system depicted below

0 1 2 3 · · ·

1

2

1

2

1

2

1

2

1

2

1

2

1

2

where, in this analogy, the labels on the states represent the current value of the argument 𝑛, and

0 represents a terminal state, corresponding to the fact that recursion stops when 𝑛 is 0. Since

execution of walk 𝑛 terminates whenever the transition system terminates, and the transition

system almost-surely terminates, walk 𝑛 must almost-surely terminate.

In this work, we explore a novel approach to proving AST that allows us to capture this kind

of argument in a precise and formal way. We develop Caliper, a higher-order guarded separation
logic that allows one to prove termination of examples like walk 𝑛. Instead of reasoning about the

termination probability directly, Caliper establishes a termination-preserving refinement between a

user-chosen probabilistic model (like the random walk above) and a probabilistic program (such as

walk 𝑛). Termination preservation here implies that the probability of termination of the program

is at least as high as the probability of termination of the model. Thus, if the model almost-surely

terminates, so does the program. This allows us to transfer the problem of proving AST of a

probabilistic program to that of proving AST of a model, and in turn it allows us to make use of a

wide set of tools for showing termination of the model. The benefit of this approach is that it makes

it possible to apply the rich theory and extensive prior work that has been developed for AST of

first-order programs, without the need to adapt that work to the setting of a higher-order language.

In particular, for the motivating example at hand, we have used Caliper to show that walk 𝑛 refines

the symmetric random walk model and, as a consequence, that it almost-surely terminates.

To support reasoning about the different forms of recursion present in higher-order languages

with higher-order store, Caliper uses guarded recursion based on step indexing [Appel et al.

Almost-Sure Termination by Guarded Refinement 3

2007; Birkedal et al. 2012; Nakano 2000]. Several recent works have used guarded recursion for

termination-preserving refinement for non-probabilistic programs [Spies et al. 2021a; Tassarotti

et al. 2017; Timany et al. 2024a], but it is not a priori clear that their formulation of refinement can

be adapted to the probabilistic context. In fact, to preserve termination, that prior work has had to

impose various restrictions on non-determinism of programs, or to replace standard step indexing

with transfinite step indexing, and so one might expect that probabilistic termination preservation

would require similar technical changes. Surprisingly, as we show in §4, it turns out that these

workarounds are not needed in the probabilistic setting.

One limitation of the refinement approach is that it requires coming up with suitable models

of programs. If the model is very close to the original program, the refinement may be easy to

show, yet analyzing the termination of the model is then no simpler. On the other hand, if the

model is considerably simpler than the program, one might worry that the intended refinement is

difficult to prove. To demonstrate empirically that Caliper is effective, we have verified a range of

examples, several of which demonstrate intricate use of higher-order functions and higher-order

state, putting them beyond the scope of previous techniques.

Contributions. In summary,

(1) We develop a compositional, higher-order guarded separation logic for showing termination-

preserving refinement of higher-order probabilistic programs, which we use as a technique

for showing almost-sure termination.

(2) We identify two new and orthogonal uses cases for asynchronous coupling [Gregersen et al.

2024] as a mechanism for (a) coupling one model step to multiple program samplings, and

(b) managing guarded recursion, that is, to eliminate later modalities now, which could

otherwise only have been eliminated in the future if ordinary couplings had been used.

(3) We demonstrate our approach on a rich set of examples, showcasing the potential both on

the “classic” first-order examples but also on more involved implementations which make

use of local and dynamically-allocated higher-order state. Our examples also demonstrate

how our approach allows for concise, composable, and higher-order specifications that

resemble specifications in non-probabilistic separation logics.

(4) All of the results presented in this paper are mechanized in the Coq proof assistant [Coq

Development Team 2023], including the semantics, the logic, the mathematical analysis

results, and the case studies, with the help of the Coquelicot library for real analysis [Boldo

et al. 2015] and the Iris separation logic framework [Jung et al. 2018].

2 BACKGROUND AND PRELIMINARIES
In this section, we recall some basic definitions from probability theory and we define what it

means to execute a probabilistic program. Although the Caliper approach is language generic, in

this paper we fix a probabilistic ML-like language, whose semantics we describe here. Finally, we

define a notion of probabilistic coupling that will be central to the soundness of our approach.

2.1 Probabilistic Semantics
To account for non-terminating behavior, we make use of (discrete) probability sub-distributions.

Definition 2.1. A sub-distribution over a countable set 𝐴 is a function 𝜇 : 𝐴 → [0, 1] such that∑
𝑎∈𝐴 𝜇 (𝑎) ≤ 1. We write D(𝐴) for the set of all sub-distributions over 𝐴.

Definition 2.2. The support of 𝜇 ∈ D(𝐴) is the set of elements supp(𝜇) ≜ {𝑎 ∈ 𝐴 | 𝜇 (𝑎) > 0}.
Lemma 2.3. Let 𝜇 ∈ D(𝐴), 𝑎 ∈ 𝐴, and 𝑓 : 𝐴→ D(𝐵). Then

(1) bind(𝑓 , 𝜇) (𝑏) ≜ ∑
𝑎∈𝐴 𝜇 (𝑎) · 𝑓 (𝑎) (𝑏)

4 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

(2) ret(𝑎) (𝑎′) ≜
{
1 if 𝑎 = 𝑎′

0 otherwise

gives monadic structure to D. We write 𝜇 ≫= 𝑓 for bind(𝑓 , 𝜇).
We obtain a small-step operational semantics for both programs and models by considering

them as (discrete-time) Markov chains.

Definition 2.4. A (sub)-Markov chain over a countable set𝑀 is a function step : 𝑀 → D(𝑀).
Given a Markov chain over𝑀 and a decidable predicate final : 𝑀 → Prop such that if final(𝑚)

then step(𝑚) (𝑚′) = 0 for all𝑚′, we define what it means for a Markov chain to evaluate to a final

state. First, we define a stratified execution distribution exec𝑛 : 𝑀 → D(𝑀) by induction on 𝑛:

exec𝑛 (𝑚) ≜


0 if ¬final(𝑚) and 𝑛 = 0

ret(𝑚) if final(𝑚)
step(𝑚) ≫= exec(𝑛−1) otherwise

where 0 denotes the everywhere-zero sub-distribution. Observe that the value exec𝑛 (𝑚) (𝑚′)
denotes the probability of stepping from a state 𝑚 to a final state 𝑚′ in at most 𝑛 steps. The

probability that an execution starting from a state 𝑚 reaches a final state 𝑚′ is the limit of its

stratified approximations, which exists by monotonicity and boundedness:

exec(𝑚) (𝑚′) ≜ lim𝑛→∞ exec𝑛 (𝑚) (𝑚′)
The probability that the execution from a state𝑚 terminates is thus exec⇓ (𝑚) ≜

∑
𝑚′∈𝑀 exec(𝑚) (𝑚′).

By the monotone convergence theorem we get the lemma below, which intuitively says that it

suffices to consider all finite approximations to bound the termination probability.

Lemma 2.5. If
∑

𝑚′∈𝑀 exec𝑛 (𝑚) (𝑚′) ≤ 𝑟 for all 𝑛 then exec⇓ (𝑚) ≤ 𝑟 .
ProbLang. The syntax of ProbLang, the programming language we consider throughout this

paper, is defined by the grammar below.

𝑣,𝑤 ∈Val ::= 𝑧 ∈ Z | 𝑏 ∈ B | () | ℓ ∈ Loc | rec f x = 𝑒 | (𝑣,𝑤) | inl 𝑣 | inr 𝑣 |
𝑒 ∈ Expr ::= 𝑣 | x | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | . . . | 𝑒1 𝑒2 | if 𝑒 then 𝑒1 else 𝑒2 | fst 𝑒 | snd 𝑒 |

match 𝑒 with inl 𝑣 ⇒ 𝑒1 | inr𝑤 ⇒ 𝑒2 end | ref 𝑒 | ! 𝑒 | 𝑒1 ← 𝑒2 | rand 𝑒
𝐾 ∈ Ectx ::= − | 𝑒 𝐾 | 𝐾 𝑣 | ref 𝐾 | !𝐾 | 𝑒 ← 𝐾 | 𝐾 ← 𝑣 | rand𝐾 | . . .
𝜎 ∈ State ≜ Loc fin−⇀Val

𝜌 ∈ Cfg ≜ Expr × State
The term language is mostly standard: ref 𝑒 allocates a new reference, ! 𝑒 dereferences the location

𝑒 evaluates to, and 𝑒1 ← 𝑒2 assigns the result of evaluating 𝑒2 to the location that 𝑒1 evaluates

to. We introduce syntactic sugar for lambda abstractions 𝜆𝑥. 𝑒 defined as rec _ 𝑥 = 𝑒 , let-bindings

let 𝑥 = 𝑒1 in 𝑒2 defined as (𝜆𝑥. 𝑒2) 𝑒1, and sequencing 𝑒1; 𝑒2 defined as let _ = 𝑒1 in 𝑒2.
The language has a call-by-value Markov chain semantics step : Cfg→ D(Cfg) defined using

evaluation contexts 𝐾 ∈ Ectx. We set final(𝑒, 𝜎) ≜ (𝑒 ∈Val). The semantics is mostly standard: all

the non-probabilistic constructs reduce as usual with weight 1, e.g., step(if true then 𝑒1 else 𝑒2, 𝜎) =
ret(𝑒1, 𝜎) and rand𝑁 reduces uniformly at random, i.e.,

step(rand𝑁, 𝜎) (𝑛, 𝜎) =
{

1

𝑁+1 for 𝑛 ∈ {0, 1, . . . , 𝑁 }
0 otherwise.

We recover the Boolean operation flip by defining flip ≜ (rand 1 == 1).

Almost-Sure Termination by Guarded Refinement 5

2.2 Probabilistic Couplings
Probabilistic coupling [Lindvall 2002; Thorisson 2000; Villani 2008] is a mathematical technique

for reasoning about pairs of probabilistic processes. Informally, couplings relate the outputs of

two processes by specifying how corresponding sampling statements should be correlated. This

correlation is described by constructing a particular joint distribution over pairs of samples from

the two processes. Traditional definitions of couplings implicitly require that the masses of the two

distributions being related are the same. Instead, we make use of an asymmetric notion of couplings,

which allows the left-hand side distribution to have less mass than the right-hand side distribution.

Definition 2.6 (Left-partial coupling [Gregersen et al. 2024]). Let 𝜇1 ∈ D(𝐴) and 𝜇2 ∈ D(𝐵). A
sub-distribution 𝜇 ∈ D(𝐴 × 𝐵) is a left-partial coupling of 𝜇1 and 𝜇2 if

(1) ∀𝑎. ∑𝑏∈𝐵 𝜇 (𝑎, 𝑏) = 𝜇1 (𝑎)
(2) ∀𝑏. ∑𝑎∈𝐴 𝜇 (𝑎, 𝑏) ≤ 𝜇2 (𝑏)

We write 𝜇1 ≲ 𝜇2 if there exists a left-partial coupling of 𝜇1 and 𝜇2. Given a relation 𝑅 ⊆ 𝐴 × 𝐵 we

say 𝜇 is a left-partial 𝑅-coupling if furthermore supp(𝜇) ⊆ 𝑅. We write 𝜇1 ≲ 𝜇2 : 𝑅 if there exists

some left-partial 𝑅-coupling of 𝜇1 and 𝜇2.

Notice how 0 ≲ 𝜇 : 𝑅 holds trivially for any 𝜇 ∈ D(𝐵) and 𝑅 ⊆ 𝐴 × 𝐵 by picking 0 ∈ D(𝐴 × 𝐵)
as the witness. This would not be the case for the traditional symmetric definition of coupling.

Once a coupling has been established, we can often extract a concrete relation from it between

the two probability distributions. E.g., for (=)-couplings, we can conclude point-wise inequality.

Lemma 2.7. If 𝜇1 ≲ 𝜇2 : (=) then 𝜇1 (𝑎) ≤ 𝜇2 (𝑎) for all 𝑎.
Moreover—most important for our purposes—from any left-partial coupling of 𝜇1 and 𝜇2, we can

conclude that the mass of 𝜇1 bounds the mass of 𝜇2 from below.

Lemma 2.8. If 𝜇1 ≲ 𝜇2 then
∑

𝑎∈𝐴 𝜇1 (𝑎) ≤
∑

𝑏∈𝐵 𝜇2 (𝑏).
As part of the proof of our soundness theorem (Theorem 3.1), we show that the refinement logic

constructs a left-partial coupling of a partial execution of the model and the full execution of the

program. Using Lemma 2.5 and Lemma 2.8 we may then conclude that the termination probability

of the program is bounded below by the termination probability of the model.

3 A PROBABILISTIC TERMINATION-PRESERVING REFINEMENT LOGIC
Caliper is a probabilistic relational separation logic. In this section, we give a high-level overview of

Caliper’s rules and walk through simple example uses.

The refinement logic uses a refinement weakest precondition, written rwp 𝑒 {𝛷}, where 𝑒 is the
program we want to prove a refinement about and𝛷 is a postcondition. As in much prior work on

refinement reasoning in separation logic, e.g., Frumin et al. [2021b]; Gregersen et al. [2024]; Timany

et al. [2024b]; Turon et al. [2013], the model that we want to relate to 𝑒 is tracked as a ghost state
assertion of the form spec(𝑚), which asserts that the model is currently in state𝑚. We use Markov

chains to represent model systems.

To establish a termination-preserving refinement between a Markov chain model starting in

a state 𝑚 and a program 𝑒 , we prove an entailment of the form spec(𝑚) ⊢ rwp 𝑒 {𝛷}, for an
arbitrary postcondition𝛷 . The following soundness theorem then implies a lower bound between

termination of the model and the program:

Theorem 3.1 (Soundness). Let𝑚 be a state of a Markov chain. If

spec(𝑚) ⊢ rwp 𝑒 {𝛷}
then exec⇓ (𝑚) ≤ exec⇓ (𝑒, 𝜎) for all program heaps 𝜎 .

6 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

𝑒1
pure

⇝ 𝑒2 ∗ rwp 𝑒2 {𝛷} ⊢ rwp 𝑒1 {𝛷} rwp-pure

∀ℓ . ℓ ↦→ 𝑣 ∗ 𝛷 (ℓ) ⊢ rwp ref 𝑣 {𝛷} rwp-alloc

(ℓ ↦→ 𝑣 ∗ 𝛷 (𝑣)) ∗ ℓ ↦→ 𝑣 ⊢ rwp ! ℓ {𝛷} rwp-load

(ℓ ↦→ 𝑤 ∗ 𝛷 (())) ∗ ℓ ↦→ 𝑣 ⊢ rwp ℓ ← 𝑤 {𝛷} rwp-store

∀𝑛 ≤ 𝑁 .𝛷 (𝑛) ⊢ rwp rand𝑁 {𝛷} rwp-rand

𝛷 (𝑣) ⊢ rwp 𝑣 {𝛷} rwp-val

rwp 𝑒
{
𝑣 . rwp 𝐾 [𝑣] {𝛷}

}
⊢ rwp 𝐾 [𝑒] {𝛷} rwp-bind

(∀𝑣 . Ψ(𝑣) ∗ 𝛷 (𝑣)) ∗ rwp 𝑒 {Ψ} ⊢ rwp 𝑒 {𝛷} rwp-mono

𝑃 ∗ rwp 𝑒 {𝛷} ⊢ rwp 𝑒 {𝑣 . 𝑃 ∗ 𝛷 (𝑣)} rwp-frame

Fig. 1. Program logic rules governing the rwp 𝑒 {𝛷} connective.

For the motivating example discussed in §1, if we label the states of the random walk Markov

chain by numbers 𝑛, then showing spec(𝑛) ⊢ rwp walk 𝑛 {True} will establish that walk 𝑛 is a

termination-preserving refinement of the model from starting state 𝑛. Because the model almost-

surely terminates for all 𝑛, we thus get that walk 𝑛 almost-surely terminates.

Separation Logic Connectives and Basic Unary Rules. Caliper is developed on top of the

Iris framework [Jung et al. 2018] and inherits Iris’s basic separation logic connectives. We write

𝑃 ∗ 𝑄 for separating conjunction, 𝑃 ∗ 𝑄 is its adjoint separating implication (magic wand), and

ℓ ↦→ 𝑣 a separation logic resource that denotes ownership of the location ℓ containing the value 𝑣 .

Throughout the paper we will omit connectives that are used for Iris-style ghost resources and

invariants to update resources, e.g., the fancy update modality [Jung et al. 2018] of Iris, since these

ideas are orthogonal to the core challenge of refinement reasoning.

For proving refinement weakest preconditions, the logic has typical separation logic rules for

reasoning about the basic commands of the language. A selection of these rules is shown in Fig. 1.

Guarded Recursion and Relational Rules. Notably, there is no rule in Fig. 1 for reasoning

about recursion or loops. As alluded to in the introduction, there are multiple ways to encode a

form of recursion in a language like ProbLang, so rules based on specific syntactic patterns cannot

cover the full range of such mechanisms. Instead, Caliper makes use of guarded recursion.

To explain and motivate the need for guarded recursion, let us return to the randomwalk example

from §1 and see the issues that arise in trying to prove spec(𝑛) ⊢ rwp walk𝑛 {True}.
One might first try to prove this by induction on 𝑛. However, this attempt would fail in the

inductive case, since when the flip in walk 𝑛 resolves to false, the code effectively makes a recursive

call in which the argument is incremented to 𝑛 + 1. Thus, in that branch, after stepping through

the definition of fix and 𝐹 , we will eventually find ourselves having to prove a goal of the form

spec(𝑛 + 1) ⊢ rwp walk (𝑛 + 1) {True}, which does not match the induction hypothesis.

Instead, the solution in Caliper is to make use of guarded recursion, in particular the löb

rule [Nakano 2000]:

löb

⊲ 𝑃 ⊢ 𝑃
True ⊢ 𝑃

Almost-Sure Termination by Guarded Refinement 7

later-intro

𝑃 ⊢ 𝑄
𝑃 ⊢ ⊲𝑄

later-mono

𝑃 ⊢ 𝑄
⊲ 𝑃 ⊢ ⊲𝑄

later-and

𝑃 ⊢ ⊲(𝑄 ∧ 𝑅)
𝑃 ⊢ ⊲𝑄 ∧ ⊲𝑅

later-sep

𝑃 ⊢ ⊲(𝑄 ∗ 𝑅)
𝑃 ⊢ ⊲𝑄 ∗ ⊲𝑅

Fig. 2. Selected rules for the ⊲ modality.

which says that to prove 𝑃 , it suffices to prove 𝑃 under the hypothesis ⊲ 𝑃 , where ⊲ is the so-called

“later” modality [Appel et al. 2007; Birkedal et al. 2012; Nakano 2000]. Selected other rules for

this modality are shown in Fig. 2. For our example, taking 𝑃 in the löb rule to be (∀𝑛. spec(𝑛) ∗
rwp walk𝑛 {True}), will mean that the hypothesis allows us to assume the desired refinement

holds for all 𝑛, albeit guarded by the later modality. Because the hypothesis applies for all 𝑛, we

will not run into the obstacle we had with induction on 𝑛 when the branch in flip resolved to false.
But how do we eliminate the ⊲ modality from the hypothesis? In most guarded program logics,

the later modality can be eliminated whenever we take a “step” of the program being verified.

However, following Spies et al. [2021a], in Caliper the later modality may only be eliminated when

the model program performs a transition (more precisely, when the model transition system has a

transition from the current state of the model to another state). Since Caliper has no other built-in

rule for reasoning about loops or recursion, this ensures that each time the program does some

kind of looping or recursion using the löb rule, at least one step will have been performed by the

model. Intuitively, this means that the program can only have a non-terminating execution if the

model can take infinitely many transitions.

The simplest later elimination rule applies when the model can make a deterministic transition:

rwp-spec-det

step(𝑚1) (𝑚2) = 1 spec(𝑚2) ∗ 𝑃 ⊢ rwp 𝑒 {𝛷}
spec(𝑚1) ∗ ⊲ 𝑃 ⊢ rwp 𝑒 {𝛷}

If the model is currently in a state𝑚1, as witnessed by ownership of the resource spec(𝑚1), and
the model can deterministically make a step to𝑚2, then we may progress the model, stripping a

later modality from the assumption 𝑃 .

Coupling Rules. Of course, rwp-spec-det is not sufficient for the example at hand, in which

the model only has randomized transitions. To address this, Caliper also satisfies the following

coupling rule, similar to that of pRHL [Barthe et al. 2008], in which the possible transitions of the

model and program must be “matched up” in a way that preserves probabilities:

rwp-coupl-rand

step(𝑚1) ≲ unif (𝑁) : 𝑅 ⊢ ∀(𝑚2, 𝑛) ∈ 𝑅. (spec(𝑚2) ∗ 𝑃) ∗ rwp 𝑛 {𝛷}
spec(𝑚1) ∗ ⊲ 𝑃 ⊢ rwp rand𝑁 {𝛷}

When executing a rand𝑁 command, if the model is currently in the state𝑚1, the rule says that

if we can show a probabilistic coupling step(𝑚1) ≲ unif (𝑁) : 𝑅 of the two steps, then we may

continue reasoning as if the program and the model progressed to states in the support of the

coupling. Furthermore, the ⊲ guarding the assumption 𝑃 is removed, reflecting that the model has

made a transition.

As an example, a special case of this rule for flip is the following:

𝑚𝑓 ≠𝑚𝑡

step(𝑚) (𝑚𝑓) = 1/2 𝑃 ∗ spec(𝑚𝑓) ⊢ rwp 𝐾 [false] {𝛷}
step(𝑚) (𝑚𝑡) = 1/2 𝑃 ∗ spec(𝑚𝑡) ⊢ rwp 𝐾 [true] {𝛷}

⊲ 𝑃 ∗ spec(𝑚) ⊢ rwp 𝐾 [flip] {𝛷}

8 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

With this rule, we have to reason about two cases for how the flip command resolves, and for

each case, we pick a state to transition the model to, subject to the requirement that the model

transitions happen with the same probability 1/2 as the transitions that flip makes.

In the walk example, when the model is in state𝑚 = 𝑛, we take𝑚𝑓 = 𝑛 + 1 and𝑚𝑡 = 𝑛 − 1. Thus,
for the case where the flip resolves to false and then makes the recursive call of walk (𝑛 + 1), we
will have spec(𝑛 + 1). Therefore, we may make use of the induction hypothesis from Löb induction,

which will have had the ⊲ modality removed through the application of the rule for flip. The case
for true is similar.

Summary. As we have seen, at a high level, the rules of Caliper combine three key ingredients:

(1) Higher-order separation logic, as embodied in the Iris framework [Jung et al. 2018], which

provides powerful tools for reasoning about modular use of state in higher-order programs.

(2) Guarded recursion, formulated as in recentworks on termination-preserving refinement [Spies

et al. 2021a] to ensure that looping in the program is matched with transitions in the model.

(3) Couplings, as in pRHL [Barthe et al. 2008], which allow for “aligning” the probabilistic

transitions of the program and model.

In the end, the logic may seem surprisingly—and perhaps suspiciously—simple, but this simplicity

stems from the use of these powerful abstractions. The main challenge and novelty of Caliper,
then, lies in showing that this combination of rules is sound for proving probabilistic termination-

preserving refinements, the question that we turn to in the next section.

4 SEMANTIC MODEL AND SOUNDNESS
The soundness of Caliper is justified by constructing a semantic model of rwp 𝑒 {𝛷} in terms

of the Iris “base logic” [Jung et al. 2018]. This underlying base logic is a separation logic with

the various connectives we saw in the previous section, including the ⊲ modality and the Löb

induction principle. This section defines the semantic model and then shows how the model implies

Theorem 3.1. For notational convenience, we will write an inference rule with premises 𝑃1, . . . , 𝑃𝑛
and conclusion 𝑄 as notation for (𝑃1 ∗ . . . ∗ 𝑃𝑛) ⊢ 𝑄 in the Iris base logic.

4.1 Model
The semantic model of the refinement weakest precondition rwp 𝑒 {𝛷} constructs a coupling of the
execution of𝑚 as tracked by the spec(𝑚) resource and the execution of the program 𝑒 . Intuitively,

it does so by constructing individual stepwise couplings as the proof symbolically executes the

program and the model. In the end, these stepwise couplings will all be combined to construct a

coupling of the full executions.

In contrast to many logics making use of guarded recursion, rwp 𝑒 {𝛷} is defined as a least fixed
point. This is reminiscent of models for weakest preconditions that ensure total program correctness

but our simultaneous use of guarded recursion will permit non-termination in a controlled way.

Formally, the least fixed point lfp𝑥 .𝑡 exists if 𝑡 is monotone, i.e., all recursive occurrences of 𝑥
appear in a positive position, as follows from Tarski’s fixed-point theorem [Tarski 1955]. The

definition looks as follows.

rwp 𝑒1 {𝛷} ≜ lfp𝑊 .(𝑒1 ∈Val ∗ 𝛷 (𝑒1)) ∨
(𝑒1 ∉Val ∗ ∀𝑚1, 𝜎1 . 𝑀 (𝑚1) ∗ 𝑆 (𝜎1) ∗
cpl𝑚1 ∼ (𝑒1, 𝜎1) {𝑚2, (𝑒2, 𝜎2). 𝑀 (𝑚2) ∗ 𝑆 (𝜎2) ∗𝑊 (𝑒2,𝛷)})

The left disjunct of the definition says that if 𝑒1 is a value, then the postcondition𝛷 (𝑒1) must hold.

Meanwhile, the right side says if 𝑒1 is not a value, then we get to assume ownership of two resources

Almost-Sure Termination by Guarded Refinement 9

cpl-prog

reducible(𝜌1) ret(𝑚) ≲ step(𝜌1) : 𝑅 ∀𝑠 ∈ 𝑅. Ψ(𝑠)
cpl𝑚 ∼ 𝜌1 {Ψ}

cpl-model-prog

reducible(𝜌1) reducible(𝑚1) step(𝑚1) ≲ step(𝜌1) : 𝑅 ∀𝑠 ∈ 𝑅. ⊲Ψ(𝑠)
cpl𝑚1 ∼ 𝜌1 {Ψ}

cpl-model

reducible(𝑚1) step(𝑚1) ≲ ret(𝜌) : 𝑅 ∀(𝑚2, 𝜌) ∈ 𝑅. ⊲ cpl𝑚2 ∼ 𝜌 {Ψ}
cpl𝑚1 ∼ 𝜌 {Ψ}

Fig. 3. Inductive definition of the coupling precondition cpl𝑚 ∼ 𝜌 {Ψ}.

𝑀 (𝑚1) and 𝑆 (𝜎1) and have to prove a coupling precondition cpl𝑚1 ∼ (𝑒1, 𝜎1) {. . .} as defined below.
The postcondition of the coupling precondition requires the prover to give back the two updated

resources and show that rwp 𝑒2 {𝛷} holds recursively.
The two resources𝑀 (𝑚1) and 𝑆 (𝜎1) are, respectively, a model and a state interpretation. Formally,

they track authoritative views of the model and the state [Jung et al. 2015]. The model interpretation

always agrees with the model state tracked with the spec(𝑚) resource, i.e., 𝑀 (𝑚) ∗ spec(𝑚′) ⊢
𝑚 = 𝑚′, and the state interpretation always agrees with the points-to connective ℓ ↦→ 𝑣 for the

heap, i.e., 𝑆 (𝜎) ∗ ℓ ↦→ 𝑣 ⊢ 𝜎 (ℓ) = 𝑣 .
The coupling precondition is the heart of the probabilistic program logic and ensures (1) that

𝑒 is safe, meaning it does not get stuck, and (2) the existence of a relational coupling with the

model. The connective cpl𝑚 ∼ 𝜌 {Ψ} is a ternary relation on a model state𝑚 ∈ 𝑀 , a program

configuration 𝜌 ∈ Cfg, and a relational post condition Ψ : 𝑀 → Cfg → iProp where iProp is the
type of propositions in the logic. Intuitively, it forms a relational coupling logic that establishes

the existence of a probabilistic coupling of one step of the program configuration 𝜌 with a finite

number of steps of the model𝑚 such that the postcondition Ψ holds for the support. Formally, it is

defined inductively by the inference rules shown in Fig. 3 (i.e., as a least fixed point).

The first constructor cpl-prog applies to symbolic steps that only progress the program. It requires

that the configuration is reducible and a trivial coupling between the Dirac distribution of the

model state ret(𝑚) and the program step, which just means that the program configuration can

take a step. Moreover, everything in the support of the coupling must satisfy the postcondition.

The constructor is essential to validating all the unary program logic rules shown in Fig. 1.

The second constructor cpl-model-prog is used to validate rwp-coupl-rand. It requires that the

model and the configuration is reducible (to guarantee safety as above) and that a coupling can be

exhibited between a step of the model and a step of the program. Finally, everything in the support

of the coupling must satisfy Ψ but under a later modality. This occurrence is one of the two places

that formally connects the later modality to steps of the model.

The third and last constructor cpl-model is used to validate rwp-spec-det, and thus the symbolic

steps which only progress the model. It requires a trivial coupling of the Dirac distribution of the

program configuration with the model step, which intuitively just means that the model can take a

step. For everything in the support of the coupling, the coupling precondition must hold recursively

under a later modality. This is what connects the later modality to steps of the model.

The definition of the refinement weakest precondition consists of multiple interacting compo-

nents: probabilistic couplings, later modalities, resources, and two fixed points. It is this fine (and

10 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

ref-val

𝑣 ∈Val
𝑚 ≾ (𝑣, 𝜎)

ref-prog

reducible(𝜌1) ret(𝑚) ≲ step(𝜌1) : 𝑅 ∀(𝑚, 𝜌2) ∈ 𝑅.𝑚 ≾ 𝜌2
𝑚 ≾ 𝜌1

ref-model-prog

reducible(𝜌1) reducible(𝑚1) step(𝑚1) ≲ step(𝜌2) : 𝑅 ∀(𝑚2, 𝜌2) ∈ 𝑅. ⊲𝑚2 ≾ 𝜌2

𝑚1 ≾ 𝜌1

ref-model

reducible(𝑚1) step(𝑚1) ≲ ret(𝜌) : 𝑅 ∀(𝑚2, 𝜌) ∈ 𝑅. ⊲𝑚2 ≾ 𝜌

𝑚1 ≾ 𝜌

Fig. 4. Inductive definition of the (plain) guarded refinement relation𝑚 ≾ 𝜌 .

subtle!) balance of the components that allows us in the following section to prove that termination

is indeed preserved across the program and the model, but it is also what allows us to enable the

reasoning principles that we want. For example, the fact that one unfolding of the rwp 𝑒 {𝛷} fixed
point always corresponds to one step of the program (but possibly multiple steps of the model) is

crucial to stating and proving soundness of the rules in Fig. 1.

4.2 Soundness
We show soundness of Caliper in two stages:

(1) we show that the relational logic establishes a so-called “plain” guarded refinement𝑚 ≾ 𝜌 ,
i.e. a guarded relation that does not depend on separation logic resources, and

(2) we show that plain guarded refinement implies preservation of termination.

The plain guarded refinement is defined inductively by the rules in Fig. 4. If the program has

terminated the refinement trivially holds (ref-val), we can step the program and the model indepen-

dently (ref-prog and ref-model, respectively), and we can incorporate non-trivial couplings of model

and program steps (ref-model-prog). In the two cases where we progress the model (ref-model

and ref-model-prog), the recursive occurrence of the refinement is under a later modality, thus

connecting the later modality to steps of the model as in the definition of the relational logic.

The first stage of the soundness proof is the following lemma.

Lemma 4.1. If spec(𝑚) ⊢ rwp 𝑒 {𝛷} then ⊢𝑚 ≾ (𝑒, 𝜎) for all 𝜎 .

The proof goes by structural induction in both the weakest precondition rwp 𝑒 {𝛷} and the

coupling precondition cpl𝑚 ∼ 𝜌 {Ψ} fixed points. While the details of how resources are erased

depends on how they are managed in Iris (e.g., through the fancy update modality, which we have

omitted), for intuition about why this should hold, observe that if we ignore the model and state

interpretation resources, each case of rwp 𝑒 {𝛷} and the constructors of cpl𝑚 ∼ 𝜌 {Ψ} correspond
exactly to one constructor of the𝑚 ≾ 𝜌 refinement relation.

The core of the soundness proof is the second stage and the fact that the𝑚 ≾ 𝜌 relation preserves

termination. The key enabler is the monotone convergence of termination probability (Lemma 2.5),

that is, to show that the termination probability of the program is bounded below by the termination

probability of the model, it suffices to consider all finite prefixes of the model execution—exactly

what our guarded refinement relation is concerned with. This in turn means that to show that

termination is preserved, we “just” have to combine the stepwise left-partial couplings constructed

in the refinement relation into a single coupling of executions. The ability to combine couplings in

Almost-Sure Termination by Guarded Refinement 11

this way follows from the following lemma showing that left-partial couplings can be composed

along the monadic structure of sub-distributions:

Lemma 4.2 (Composition of couplings). Let 𝑅 ⊆ 𝐴 × 𝐵, 𝑆 ⊆ 𝐴′ × 𝐵′, 𝜇1 ∈ D(𝐴), 𝜇2 ∈ D(𝐵),
𝑓1 : 𝐴→ D(𝐴′), and 𝑓2 : 𝐵 → D(𝐵′).

(1) If (𝑎, 𝑏) ∈ 𝑅 then ret(𝑎) ≲ ret(𝑏) : 𝑅.
(2) If 𝜇1 ≲ 𝜇2 : 𝑅 and for all (𝑎, 𝑏) ∈ 𝑅 it is the case that 𝑓1 (𝑎) ≲ 𝑓2 (𝑏) : 𝑆 then 𝜇1≫= 𝑓1 ≲ 𝜇2≫= 𝑓2 : 𝑆

Using this lemma, we have the following:

Lemma 4.3. 𝑚 ≾ 𝜌 ⊢ ⊲𝑛 exec𝑛 (𝑚) ≲ exec(𝜌) for all 𝑛.

Proof. The proof proceeds by induction on the𝑚 ≾ 𝜌 fixed point.

Case ref-val. Since 𝜌 = (𝑣, 𝜎) and 𝑣 ∈ Val we get that exec(𝑣, 𝜎) = ret(𝑣). As 𝜇 ≲ ret(𝑣)
trivially holds for any 𝜇 (pick a coupling that relates all the mass of 𝜇 to 𝑣), we conclude.

Case ref-prog. Since 𝜌 is reducible, we get that exec(𝜌) = step(𝜌) ≫= exec. By the left identity
law of the distribution monad, exec𝑛 (𝑚) = ret(𝑚) ≫= exec𝑛 . We are left with the goal

⊢ ⊲𝑛 (ret(𝑚) ≫= exec𝑛 ≲ step(𝜌) ≫= exec).
Using later-mono we can apply Lemma 4.2 under the later modalities and exploit the

coupling ret(𝑚) ≲ step(𝜌1) : 𝑅 which leaves us with the goal

⊢ ⊲𝑛 ∀(𝑚, 𝜌2) ∈ 𝑅. exec𝑛 (𝑚) ≲ exec(𝜌2)
which follows by the induction hypothesis.

Case ref-model-prog. We do a case distinction on 𝑛. If 𝑛 = 0 then exec0 (𝑚) = 0 and thus the

left-partial coupling exists trivially. If 𝑛 ≠ 0 then exec𝑛 (𝑚) = step(𝑚) ≫= exec𝑛−1 and since

𝜌 is reducible, we get that exec(𝜌) = step(𝜌) ≫= exec. This leaves us with the goal

⊢ ⊲𝑛 (step(𝑚) ≫= exec𝑛−1 ≲ step(𝜌) ≫= exec)
which follows as above by later-mono, Lemma 4.2, and the induction hypothesis.

Case ref-model. We do a case distinction on 𝑛. If 𝑛 = 0 then exec0 (𝑚) = 0 and thus the

left-partial coupling exists trivially. If 𝑛 ≠ 0 then exec𝑛 (𝑚) = step(𝑚) ≫= exec𝑛−1 and by the

left identity law exec(𝜌) = ret(𝜌) ≫= exec. This leaves us with the goal

⊢ ⊲𝑛 (step(𝑚) ≫= exec𝑛−1 ≲ ret(𝜌) ≫= exec)
which follows as above by later-mono, Lemma 4.2, and the induction hypothesis. □

The above result shows that the desired coupling exists, but this existence is internal to the Iris

base logic, and under 𝑛 iterations of the ⊲modality. At this point we rely on the following soundness

theorem for the Iris base logic to know that the coupling exists externally in the meta-logic:

Theorem 4.4. Let 𝜑 be a meta-logic proposition. If ⊢ ⊲𝑛 𝜑 then 𝜑 holds in the meta-logic.

Corollary 4.5. If ⊢𝑚 ≾ 𝜌 then exec𝑛 (𝑚) ≲ exec(𝜌) for all 𝑛.

Proof. Immediate by applying Theorem 4.4 and Lemma 4.3. □

Corollary 4.6. If spec(𝑚) ⊢ rwp 𝑒 {𝛷} then exec𝑛 (𝑚) ≲ exec(𝑒, 𝜎) for all 𝑛 and 𝜎 .

Proof. Immediate by applying Corollary 4.5 and Lemma 4.1. □

The soundness theorem of Caliper (Theorem 3.1) then follows directly by applying Lemma 2.5,

Lemma 2.8, and Corollary 4.6.

12 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

4.3 Comparison to Guarded Recursion for Non-Probabilistic Termination Preservation
As mentioned earlier, prior works have also built program logics for termination-preserving re-

finements using guarded recursion [Spies et al. 2021a; Tassarotti et al. 2017; Timany et al. 2024a].

These works target non-probabilistic languages that instead have (adversarial) non-determinism.

In terms of logical rules, these works use similar core mechanisms of (1) representing a specifica-

tion program or model as ghost state, (2) reasoning about loops using Löb induction, and (3) only

allowing the later modality to be eliminated when the specification program takes a step. Caliper
differs primarily in that its coupling rule requires the resolution of probabilistic non-determinism

between the program and the model to have corresponding probabilities, whereas in these prior

works, non-determinism at the model level is resolved angelically. Of course, the resulting sound-

ness theorems for these prior logics also differ. They say that if the program has a non-terminating

execution, then the model must also have a non-terminating execution.
1

The other key difference is that to prove their soundness theorems, these prior works have found

it necessary to either move to transfinite step indexing [Svendsen et al. 2016], require that models

be finitely branching (meaning that each state can only move to finitely many states in a single

transition), or require a relative image-finiteness condition of the refinement relation. Caliper’s
soundness proof requires no such restriction. The model uses “standard” natural number step

indexing, and a Markov chain model is allowed to have countable branching, since Definition 2.4

permits the support of the chain’s step function to be countable.

One might wonder why these technical workarounds were not needed in the probabilistic

case, and whether Caliper’s soundness proof implies that something similar could be done in the

non-deterministic case as well. The answer lies in Lemma 2.5, which shows that the termination

probability of a program can be lower-bounded by considering the termination probability of its

𝑛-step finite approximations. This theorem was used in the soundness proof of Caliper, allowing us
in Corollary 4.6 to consider executions of up to 𝑛-steps of the model for each 𝑛. Only considering

𝑛-step executions was important because these corresponded to the up to 𝑛 iterations of the later

modality incurred when unfolding the guarded recursion defining the coupling precondition.

A corresponding proof approach does not work in the context of non-probabilistic termination,

because there is no useful analogue of Lemma 2.5. In general, knowing that for all 𝑛, a non-

deterministic program has an execution that has not terminated after 𝑛 steps does not imply that it

necessarily has a diverging execution. Thus, the soundness proofs in the aforementioned logics

cannot use the approach of considering 𝑛 step unfoldings of guarded recursion that we used above.

5 ASYNCHRONOUS COUPLINGS
Probabilistic coupling requires aligning or “synchronizing” the sampling statements of the two

probabilistic processes being related: for example, both the program and its model have to be

executing the sample statements we want to couple for their next step when applying rules like

rwp-coupl-rand. However, it is not always possible to synchronize sampling statements in this way,

especially when considering higher-order programs. To address this issue, Gregersen et al. [2024]

introduce asynchronous coupling for proving contextual refinement of (higher-order) probabilistic

programs. We identify two new and orthogonal use cases for asynchronous coupling in Caliper
which address the following two issues:

(1) When relating a complex program to a simpler model, it is sometimes necessary to couple

one model step to multiple non-adjacent program samplings (as illustrated in §6.4).

1
Tassarotti et al. [2017] and Timany et al. [2024a] consider a concurrent language and allow for a stronger property, requiring

that if the non-terminating execution in the program was under a fair scheduler, then the execution in the model must also

be fair. This imposes some restrictions on how non-determinism at the model is resolved, so that it is not entirely angelic.

Almost-Sure Termination by Guarded Refinement 13

(2) Sometimes a later modality needs to be eliminated now, but the coupling step—which would

introduce the later modality—only happens in the future (as illustrated in §6.6).

In the remainder of this section, we recall the concept of asynchronous coupling and describe how

it is incorporated into Caliper. The reader may want to initially skip this section but return before

reading §6.4 and §6.6.

Presampling tapes. Asynchronous couplings are introduced through dynamically-allocated

presampling tapes. Intuitively, presampling tapes will allow us in the logic to presample (and in turn

couple) the outcome of future sampling statements.

Formally, presampling tapes appear as two new constructs added to the programming language.

𝑒 ∈ Expr ::= . . . | tape 𝑒 | rand 𝑒1 𝑒2
The tape 𝑁 operation allocates a new fresh tape with the upper bound 𝑁 , representing future

outcomes of rand𝑁 operations. The rand primitive can now (optionally) be annotated with a tape

label 𝜄. If the corresponding tape is empty, rand 𝑁 𝜄 reduces to any 𝑛 ≤ 𝑁 with equal probability,

just as if it had not been labeled. But if the tape is not empty, then rand 𝑁 𝜄 reduces deterministically
by taking off the first element of the tape and returning it. However, no primitives in the language

will add values to the tapes. Instead, values are added to tapes as part of presampling steps that will

be ghost operations appearing only in the logic. In fact, labeled and unlabeled samplings operations

are contextually equivalent [Gregersen et al. 2024].

At the logical level, presampling tapes comes with a 𝜄 ↩→ (𝑁, ®𝑛) assertion that denotes ownership
of the label 𝜄 and its contents (𝑁, ®𝑛), analogously to how the traditional points-to-connective ℓ ↦→ 𝑣

of separation logic denotes ownership of the location ℓ and its contents on the heap. When a tape

is allocated, ownership of a fresh empty tape is acquired, i.e.

∀𝜄. 𝜄 ↩→ (𝑁, 𝜖) ∗ 𝛷 (𝜄) ⊢ rwp tape𝑁 {𝛷} rwp-tape-alloc

If one owns 𝜄 ↩→ (𝑁, 𝜖), i.e., when the corresponding tape is empty, then rand 𝑁 𝜄 reduces

symbolically to any 𝑛 ≤ 𝑁 , reflecting the operational behavior described above:

(∀𝑛 ≤ 𝑁 . 𝜄 ↩→ (𝑁, 𝜖) ∗ 𝛷 (𝑛)) ∗ 𝜄 ↩→ (𝑁, 𝜖) ⊢ rwp rand𝑁 𝜄 {𝛷} rwp-tape-empty

When the tape is not empty, then rand 𝑁 𝜄 reduces symbolically by taking off the first element of

the tape and returning it.

(𝜄 ↩→ (𝑁, ®𝑛) ∗ 𝛷 (𝑛)) ∗ 𝜄 ↩→ (𝑁,𝑛 · ®𝑛) ⊢ rwp rand𝑁 𝜄 {𝛷} rwp-tape

Asynchronous couplings can now be introduced in the logic by coupling rules that couple any
finite number of presampling steps onto tapes with a model step. When we—at some point in the

future—reach a presampled rand 𝑁 𝜄 operation, we simply read off the presampled values from the

𝜄 tape deterministically in a first-in-first-out order. For example, an asynchronous variant of the

coupling rule for flip originally shown in §3 is the following:

𝑚𝑓 ≠𝑚𝑡

step(𝑚) (𝑚𝑓) = 1/2 𝑃 ∗ spec(𝑚𝑓) ∗ 𝜄 ↩→ (1, ®𝑏 · false) ⊢ rwp 𝑒 {𝛷}
step(𝑚) (𝑚𝑡) = 1/2 𝑃 ∗ spec(𝑚𝑡) ∗ 𝜄 ↩→ (1, ®𝑏 · true) ⊢ rwp 𝑒 {𝛷}

⊲ 𝑃 ∗ 𝜄 ↩→ (1, ®𝑏) ∗ spec(𝑚) ⊢ rwp 𝑒 {𝛷}
Instead of reasoning about two cases for how a flip operation resolves, we reason about two cases

for how a Boolean is sampled onto the tape 𝜄. This pattern can be generalized to allow one model

step to be coupled with multiple presampling steps, which we exploit in §6.4. Notice moreover that

since a model step is taken, we are also allowed to eliminate a later modality from the assumption

𝑃 before reaching the flip operation. This fact will be crucial for the example considered in §6.6.

14 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

Soundness. Soundness of asynchronous couplings hinges on the fact that presampling opera-

tionally does not matter as seen by the erasure theorem below. The distribution sstep(𝜎1, 𝜄) appends
a uniformly sampled value to the end of the 𝜄 tape in 𝜎1.

Lemma 5.1 (Erasure). If 𝜄 ∈ dom(𝜎1) then exec(𝑒, 𝜎1) = sstep(𝜎1, 𝜄) ≫= (𝜆𝜎2 . exec(𝑒, 𝜎2)).

To incorporate asynchronous couplings into Caliper, we add a fourth constructor to the coupling

precondition that adds the possibility of coupling a model step with any number of presampling

steps. The distribution foldM(sstep, 𝜎1, 𝑙) denotes a monadic fold of sstep over the list 𝑙 of tape

labels using 𝜎1 as the initial value.

reducible(𝑚1)
𝑙 ⊆ dom(𝜎1) step(𝑚1) ≲ foldM(sstep, 𝜎1, 𝑙) : 𝑅 ∀(𝑚2, 𝜎2) ∈ 𝑅. ⊲ cpl𝑚2 ∼ (𝑒1, 𝜎2) {Ψ}

cpl (𝑒1, 𝜎1) ∼𝑚1 {Ψ}
The state interpretation is extended accordingly to give meaning to the 𝜄 ↩→ (𝑁, ®𝑛) resource.

As for the coupling precondition, we also extend the plain guarded refinement relation in Fig. 4.

The soundness theorem can then adapted by making use of Lemma 5.1 to erase presampling steps.

6 CASE STUDIES
In this section, we develop a series of case studies of increasing complexity both in terms of program

size and also in terms of proof complexity. The examples we present are chosen not only to illustrate

how Caliper is applied, but also to demonstrate how working in higher-order guarded separation

logic allows for concise and composable specifications. For the sake of presentation, we make use

of Hoare-triple-like notation {𝑃} 𝑒 {𝑣 .𝑄} ≜ 𝑃 ∗ rwp 𝑒 {𝑣 .𝑄} throughout this section.

6.1 Repeated Coin Flips
One of the simplest almost-surely (but not always) terminating stochastic processes is the one

that repeatedly tosses a fair coin until it gets tails. There exists a non-terminating run, i.e., the
run where one always gets heads, but it happens only with probability zero. We can describe the

process using the following diagram where true is used for heads and false for tails.

true false

1

2

1

2

It is straightforward to show that exec𝑛 (true) = 1 − 1

2

𝑛
and thus exec⇓ (true) = 1.

Using the notation while 𝑒1 do 𝑒2 end ≜ (rec 𝑓 () = if 𝑒1 then 𝑒2; 𝑓 () else ()) () we implement

this process as a while-loop that repeatedly flips a coin until it gets false.

flips ≜ while flip do () end
Using Caliper, we show that flips formally refines the model by showing the specification

{spec(true)} flips {_. spec(false)}
and thus flips almost-surely terminates.

To show the specification we apply löb and are left with the proof obligation

⊲
(
{spec(true)} flips {_. spec(false)}

)
⊢ {spec(true)} flips {_. spec(false)} .

That is, we have assumed our initial goal but under a later modality. After introducing the specifi-

cation resource, we symbolically step the program forward using rwp-pure. We are now at the core

Almost-Sure Termination by Guarded Refinement 15

part of the proof: we apply rwp-coupl-rand using an equality coupling of unif (B) which allows us

to continue reasoning as if the coin in the program and the model have the same outcome 𝑏.

⊲
(
{spec(true)} flips {_. spec(false)}

)
⊢

⊲
(
spec(𝑏) ∗ rwp if 𝑏 then (); flips else () {_. spec(false)}

)
.

We apply later-mono to eliminate the later modalities from both our goal and our premise and

do a case distinction on 𝑏: if 𝑏 is false we are immediately done and if 𝑏 is true we apply rwp-pure

followed by our induction hypothesis which finishes the proof.

While the repeated coin flip is a simple example that mainly serves to illustrate a minimal proof

in Caliper, the same pattern and recipe applies to many other first-order probabilistic looping

constructs as well. For example, the program

let 𝑟 = ref 𝑛 in
while ! 𝑟 ≠ 0 do
if flip then 𝑟 ← ! 𝑟 − 1 else 𝑟 ← ! 𝑟 + 1

end

can be shown to refine the symmetric random walk from the introduction using exactly this pattern

and the refinement proof looks much like for the repeated coin flip.

6.2 Recursion Through the Store
Recall the motivating example from the introduction, which uses Landin’s knot to define a fixed-

point combinator fix and then applies fix to define a recursive randomized program.

fix ≜ 𝜆𝑓 . let 𝑟 = ref (𝜆𝑥 . 𝑥) in 𝑟 ← (𝜆𝑥. 𝑓 (! 𝑟) 𝑥); ! 𝑟
In our walk through of this example earlier in §3, we elided a discussion of how verification of

the code making up fix itself works. In fact, as a first step, we may show a general higher-order

specification for the fixed-point combinator fix. For all abstract predicates𝛷,Ψ :Val→ iProp we
show the specification

(∀𝑓 , 𝑣 ′ . {∀𝑣 ′′ . ⊲ ({𝛷 (𝑣 ′′)} 𝑓 𝑣 ′′ {Ψ})} 𝐹 𝑓 𝑣 ′ {Ψ} ∗𝛷 (𝑣 ′)) ⊢ {𝛷 (𝑣)} fix 𝐹 𝑣 {Ψ} .
The specification says that to prove postcondition Ψ of fix 𝐹 𝑣 given precondition𝛷 (𝑣), it suffices

to show a specification for 𝐹 with postcondition Ψ. In proving the specification of 𝐹 , however,

one may assume that the first argument 𝑓 (used for recursive calls) satisfies the specification as

well, but under a later modality. Notice that the specification does not say anything explicitly

about refinement—in fact, the same specification is given to fix in logics for partial correctness

(see, e.g., Birkedal and Bizjak [2023]) but without the later modality. In our specification, the later

modality signifies an obligation to take a model step: intuitively, to recurse (and hence potentially

not terminate), at least one step of the model must be exhibited in order for termination to be

preserved. The proof of the specification is essentially identical to a proof carried out in standard

Iris: after symbolically evaluating the store operation ! 𝑟 one applies löb and the specification then

follows by the assumed specification of 𝐹 .

The fact that walk 𝑛 refines the symmetric random walk model follows by showing the Hoare

triple {spec(𝑛)} walk𝑛 {_ .∃𝑚. spec(𝑚)} whichwe show by applying the higher-order specification

of fix, picking𝛷 (𝑛) ≜ spec(𝑛) and Ψ(𝑣) ≜ ∃𝑚. spec(𝑚).
We show the specification for F using a similar course of action as when iteration happens using

a while loop. But instead of applying löb induction directly, we apply the specification of 𝑓 as

provided by fix to recurse. When 𝑛 =𝑚+1 for some𝑚 we apply rwp-coupl-rand using the coupling

step(𝑛) ≲ unif (B) : (𝜆𝑝,𝑏. 𝑝 = if 𝑏 then𝑚 else𝑚 + 2) which allows us to only consider the model

16 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

state𝑚 in the first branch and𝑚 + 2 in the second. In both cases, the argument to 𝑓 agrees with

the model state and applying the specification of 𝑓 finishes the proof.

6.3 List Generators
Kobayashi et al. [2020] study probabilistic programs with higher-order functions (but without state)

using probabilistic higher-order recursion schemes. As a motivating example, they present the

following program that combines probabilistic choice and higher-order functions.

rec listgen 𝑓 = if flip then None

else letℎ = 𝑓 () in
let 𝑡 = listgen 𝑓 in

Some (ℎ, 𝑡)
The function listgen takes a generator 𝑓 of elements as an argument and creates a list of elements,

each of them obtained by calling 𝑓 . The length of the list is randomized and distributed according

to the geometric distribution. As a concrete application of listgen, they consider the program

listgen (𝜆 _. listgen (𝜆 _. flip))
which generates a list of lists of random Booleans.

Using Caliper, we show that the program refines the model below.

𝑞𝑓 𝑞0 𝑞1

1

2

1

2
1

2

1

2

Intuitively, state 𝑞0 corresponds to the outer application of listgen and state 𝑞1 to the inner applica-

tion. Using the ranking super-martingale [Chakarov and Sankaranarayanan 2013] 𝑓 that maps 𝑞𝑓 ,

𝑞0, and 𝑞1 to 0, 2, and 3, respectively, and 𝜖 = 1

2
one can straightforwardly show that the model

almost-surely terminates.

First, we show a specification of the inner list generator

{spec(𝑞1)} listgen (𝜆 _. flip) {_. spec(𝑞0)} .
The proof proceed by löb induction. When we reach the flip expression in listgen, we apply rwp-

coupl-rand using the coupling step(𝑞1) ≲ unif (B) : (𝜆𝑞,𝑏. 𝑞 = if 𝑏 then 𝑞0 else 𝑞1). If 𝑏 is true
the goal is immediate. If 𝑏 is false, we symbolically evaluate the flip expression in the generator

using rwp-rand as this second sampling is irrelevant to termination of the program. The induction

hypothesis now finishes the proof.

The specification of the outer list generator looks as follows.

{spec(𝑞0)} listgen (𝜆 _. listgen (𝜆 _. flip))
{
_. spec(𝑞𝑓)

}
.

The proof proceeds by löb induction and we apply rwp-coupl-rand using the coupling step(𝑞1) ≲
unif (B) : (𝜆𝑞,𝑏. 𝑞 = if 𝑏 then 𝑞𝑓 else 𝑞1). If 𝑏 is true the goal is immediate. If 𝑏 is false, the model

is in state 𝑞1 and we apply our specification for listgen (𝜆 _. flip) which returns the model in state

𝑞0. The induction hypothesis finishes the proof.

While our methodology is sufficient for the example at hand, we would have liked to derive a

single higher-order specification of listgen that suffices for proving both of the specifications above.

However, to do so, we believe a richer notion of model is required. The function listgen keeps

invoking 𝑓 until it returns None, i.e., until the corresponding stochastic process has terminated.

But when listgen is invoked in a nested fashion, the process needs to be “restarted” for each nested

Almost-Sure Termination by Guarded Refinement 17

init ≜ 𝜆 _. ref None

cmp ≜ 𝜆ℓ1, ℓ2. if ℓ1 == ℓ2 then 0 else cmpList ℓ1 ℓ2

rec cmpList ℓ1 ℓ2 =

let (𝑏1, 𝑛1) = getB ℓ1 in

let (𝑏2, 𝑛2) = getB ℓ2 in

let 𝑐 = cmpB 𝑏1 𝑏2 in

if 𝑐 == 0 then cmpList 𝑛1 𝑛2 else 𝑐

getB ≜ 𝜆𝑐. match ! 𝑐 with
Some 𝑣 ⇒ 𝑣

| None ⇒ let 𝑏 = flip in
let 𝑛 = ref None in
let 𝑣 = (𝑏, 𝑛) in
𝑐 ← 𝑣 ;

𝑣

end

cmpB ≜ 𝜆𝑏1, 𝑏2. if 𝑏1 < 𝑏2 then −1 else (if 𝑏2 > 𝑏1 then 1 else 0)

Fig. 5. Code for lazy uniform real sampling and comparison.

invocation. To give a general, model-agnostic specification it seems that one would therefore need

more model structure, e.g., recursive Markov chains [Etessami and Yannakakis 2009].

6.4 Lazy Real
A standard result in probability theory says that sampling a real number uniformly from the

interval [0, 1] is equivalent to sampling an infinite sequence of Bernoulli random variables, each

independently and uniformly drawn from the set {0, 1} [Cohn 2013, Proposition 10.3.13]. We can

think of the sequence of Bernoulli variables as representing the digits of the sample from [0, 1]
written in binary form. Using this representation, we can implement a procedure to sample “exactly”

from the uniform [0, 1] distribution, by sampling these binary digits lazily as they are needed. In

this example, we consider such a lazy implementation of a sampler, along with an operation for

comparing the magnitude of two lazily-sampled reals.

The code is shown in Fig. 5. We store the partially-sampled bits of a real number as a mutable

linked list, where the head of the list is the most significant bit. The procedure init generates a fresh
random sample with no bits sampled yet, as represented by a reference initialized to None. Then
the comparison procedure cmp 𝑙1 𝑙2 returns −1 if the real represented by 𝑙1 is less than 𝑙2, 0 if they

are equal, and 1 if 𝑙1 is greater than 𝑙2. It is implemented by first checking whether the pointers 𝑙1
and 𝑙2 are equal. If they are, it short-circuits and immediately returns 0, since the corresponding real

numbers must be the same. Otherwise, it calls cmpList, which recurses down the lists, checking

bit by bit until it finds a position in the lists where the corresponding bits are not equal. Since the

bits are only sampled lazily, during a call to cmpList, the next bit to be compared in one of the lists

may not have been sampled yet. To handle this, cmpList uses the wrapper function getB when

accessing a bit. The function getB either returns the bit (if it has already been sampled), and if not,

it generates a fresh bit and appends it to the end of the linked list.

A priori, comparing two lazily-sampled reals with cmp is not guaranteed to terminate, as each

generated bit of the two reals could be the same, indefinitely. However, cmp does terminate almost-

surely. We will prove this by showing a refinement with the following Markov chain model, which

samples from two independent coins until they disagree, as depicted by the following diagram.

18 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

⊤⊥ ⊥⊤

⊤⊤ ⊥⊥

1

4

1

4

1

41

4

1

4

1

4

1

4

1

4

This model can be shown to almost-surely terminate using the ranking super-martingale 𝑓 (𝑏1, 𝑏2) ≜
if𝑏1 ≠ 𝑏2 then 0 else 2 with 𝜖 = 1. In order to give a specification that supports multiple comparisons

of (possibly) different lazily-sampled reals, we consider 𝑁 iterations of the model above, i.e., a model

with state space B × B × N where the last component of the state tuple represents the remaining

number of times we can call cmp.
As alluded to in §5, the main difficulties in showing the refinement are twofold: (1) when

comparing random samples where fresh bits need to be sampled on both sides, one model step

corresponds to two flip statements occurring in two different invocations of getB, and (2) when

comparing random samples that have already had some bits sampled (but not the same amount),

one of the samples might need to “catch up” by sampling additional bits first. Presampling tapes

and asynchronous coupling are key ingredients in addressing both concerns in a high-level and

composable manner. Thus, the first step in the proof is to consider a version of the program where

the sampling operations are labeled with tapes.
2

To specify the lazily-sampled real operations we will make use of two predicates defined below.

Cmps(𝑁) ≜ ∃𝑏,𝑀. spec(𝑏, 𝑏,𝑀) ∧𝑀 ≥ 𝑁

LazyReal(®𝑏, 𝑣) ≜ ∃ℓ, 𝜄, ®𝑏1, ®𝑏2. 𝑣 = (ℓ, 𝜄) ∗ ®𝑏 = ®𝑏1 · ®𝑏2 ∗ IsList (ℓ, ®𝑏1) ∗ 𝜄 ↩→ (𝑁, ®𝑏2)
The Cmps(𝑁) predicate keeps track of the model resource and the fact that there are at least 𝑁
comparison operations left. The LazyReal(®𝑏, 𝑣) predicate is a representation predicate that expresses
that 𝑣 corresponds to the lazy-sampled real denoted by the bits

®𝑏. Formally, the predicate says that

𝑣 is a pair of a location ℓ and a tape label 𝜄 and ®𝑏 can be split into two sub-sequences
®𝑏1 and ®𝑏2 such

that
®𝑏1 corresponds to the linked list stored at location ℓ and ®𝑏2 corresponds to bits that have been

presampled onto the tape 𝜄. The IsList (ℓ, 𝑙) assertion is a standard separation logic representation

predicate for linked lists [Reynolds 2002].

We can now give general high-level specifications to the operations. When initializing a new

lazily-sampled real, ownership of LazyReal(𝜖, 𝑣) is acquired for some 𝑣 .

{True} init () {𝑣 . LazyReal(𝜖, 𝑣)}
When comparing two lazily-sampled reals, ownership of both reals are required as well as evidence

that at least one comparison is left in the model.{
LazyReal(®𝑏1, 𝑣1) ∗ LazyReal(®𝑏2, 𝑣2) ∗ Cmps(𝑁 + 1)

}
cmp 𝑣1 𝑣2{
𝑏. ∃ ®𝑏′

1
, ®𝑏′

2
. LazyReal(®𝑏′

1
, 𝑣1) ∗ LazyReal(®𝑏′

2
, 𝑣2) ∗ Cmps(𝑁)

}
In the post condition we get back ownership of both reals, where more bits may have been sampled,

and the number of comparisons has been decremented.

2
We omit these annotated versions of the code here. They are shown in Appendix C.

Almost-Sure Termination by Guarded Refinement 19

While the high-level specifications are intuitive, the proof of cmpList is more intricate and goes

by induction on the (pre)sampled bit sequences
®𝑏1 and ®𝑏2. For the base case of the induction, which

corresponds to reaching the end of both sequences, the proof uses Löb induction and presamples

coupled bits to two tapes (which in turn allows us to eliminate the later modality). If both bit

sequences are non-empty, the specification follows by symbolic execution and the induction

hypothesis. If one sequence is empty and the other is not, we first sample additional bits using

rwp-tape-empty and continue as when both sequences are non-empty.

6.5 Treap
A treap [Seidel and Aragon 1996] is a randomized binary search tree structure. Rather than using

rebalancing, it relies on randomness to ensure that the tree is𝑂 (log𝑛) height with high probability.

Searching for a key in the tree proceeds as normal in a binary search tree, but insertion makes use

of randomness. To add a new key 𝑘 into the tree, the insertion procedure first searches for 𝑘 in the

tree. If it finds 𝑘 is already in the tree, insertion stops and returns. However, if 𝑘 is not in the tree,

insertion generates a random priority for 𝑘 by sampling an element 𝑝 independently from some

totally ordered set. How these priorities are represented and the distribution on the set they are

sampled from does not matter, so long as the probability of sampling the same priority twice is

low. Once the priority 𝑝 is generated, insertion creates a new node containing (𝑘, 𝑝) and attaches it
to the tree as a leaf node. At this point, the priority 𝑝 is compared to the priority 𝑝′ of the node’s
parent 𝑘 ′. If 𝑝 is greater than 𝑝′, then the insertion procedure performs a tree rotation, swapping

the order of (𝑘, 𝑝) and (𝑘 ′, 𝑝′). This rotation process is repeated recursively with the new parent of

𝑘 , until 𝑘 either has smaller priority than all of its ancestors, or it becomes the root.

As mentioned above, it is important for the priorities of all of the nodes to be distinct. If they are,

then with high probability the tree will have𝑂 (log𝑛) height. In theoretical analyses of treaps [Eberl

et al. 2020; Seidel and Aragon 1996], it is common to treat the priorities as if they are real numbers

sampled from some continuous distribution, so that the probability of a collision is 0.

Erickson [2017] notes that one may use lazily-sampled reals, as in the previous example, to

represent the priorities. We show that with such an implementation of treaps, the insertions

terminate almost surely. Of course, this follows from the fact that the comparison operation

terminates almost surely, as the previous example showed. The motivation for this example is to

demonstrate the modularity of our approach, as the treap proof does not need to know about the

“internal” randomness and refinement proof of the lazy real comparisons.

Our specification makes use of a treap representation predicate IsTreap(𝑣, 𝑡) that expresses that
𝑣 corresponds to the treap 𝑡 as defined below.

IsTreap(𝑣, leaf) ≜ 𝑣 = None

IsTreap(𝑣, node(𝑘, 𝑙, 𝑟)) ≜ ∃ℓ, 𝑝, ®𝑏, 𝑣𝑙 , 𝑣𝑟 . 𝑣 = Some ℓ ∗ ℓ ↦→ (𝑘, 𝑝, 𝑣𝑙 , 𝑣𝑟) ∗

LazyReal(®𝑏, 𝑝) ∗ IsTreap(𝑣𝑙 , 𝑙) ∗ IsTreap(𝑣𝑟 , 𝑟)

If 𝑡 is leaf, then 𝑣 = None. If 𝑡 is node(𝑘, 𝑙, 𝑟) then 𝑣 = Some(ℓ) and ℓ is a location that contain a

tuple consisting of a key 𝑘 , a priority 𝑝 , and two treaps 𝑣𝑙 and 𝑣𝑟 . We omit the usual binary search

tree invariants about the ordering of keys in 𝑙 and 𝑟 , since they are not needed to ensure termination.

The LazyReal(®𝑏, 𝑝) assertion is the lazy real representation predicate from the previous section

which states that 𝑝 corresponds to the lazy-sampled real denoted by the bits
®𝑏. Notice how the

structure of the definition closely resembles representation predicates for non-probabilistic data

structures (such as lists, trees, etc.) and that the lazy real is logically managed abstractly through

the LazyReal(®𝑏, 𝑝) assertion.

20 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

rec sampleNode 𝑑 𝑟 𝑠 () =
let 𝑛 = 𝑑 () in
let 𝑓 = (𝜆 _. let 𝑟 ′ = ref [] in (Stack.add (sampleNode 𝑑 𝑟 ′ 𝑠) 𝑠); 𝑟 ′) in
𝑟 ← List.init 𝑛 𝑓

rec run 𝑠 = match Stack.take 𝑠 with
Some 𝑓 ⇒ 𝑓 (); run 𝑠
| None ⇒ ()
end

genTree ≜ 𝜆𝑑. let 𝑟 = ref [] in
let 𝑠 = Stack.create () in
Stack.add (sampleNode 𝑑 𝑟 𝑠) 𝑠;
run 𝑠; ! 𝑟

Fig. 6. Implementation of a sampler for Galton-Watson trees in a higher-order event-loop style.

Given the representation predicate, our specification of the treap insert procedure looks as follow.

{IsTreap(𝑣, 𝑡) ∗ Cmps(𝑁) ∗ height (𝑡) ≤ 𝑁 }
insert 𝑣 𝑘

{𝑤.IsTreap(𝑤, 𝑡 ′) ∗ height (𝑡) ≤ height (𝑡 ′) ≤ ℎ𝑒𝑖𝑔ℎ𝑡 (𝑡) + 1 ∗ Cmps(𝑀) ∗ 𝑁 − height (𝑡) ≤ 𝑀}
To insert a value 𝑘 into the treap 𝑡 , ownership of the treap is required and evidence that at least
height (𝑡) comparisons are left in the lazy-real model. In return, we get ownership of a (possibly-)

updated treap where the height may have been increased by one and height (𝑡) comparisons may

have been performed. The proof proceeds in a straightforward way by applying the specification

of cmp to compare the lazily-sampled priorities.

6.6 Galton-Watson Tree
In this example, we consider a sampler for generating Galton-Watson trees. Galton-Watson trees

are random trees generated by the following stochastic process, which proceeds through a series of

rounds. Initially, in round 1, the tree starts with a single root node, which we call generation 1 of

the tree. In round 2, we sample a natural number 𝑛 from some distribution 𝜇, and attach 𝑛 children

nodes to the root node. These children are called generation 2. Inductively, in round 𝑘 + 1, for each
node 𝑖 in generation 𝑘 , we draw an independent sample 𝑛𝑖 from 𝜇 and attach 𝑛𝑖 children nodes

to 𝑖 . The nodes added in round 𝑘 + 1 constitute generation 𝑘 + 1. The process stops and is said to

undergo extinction if a generation has no nodes, i.e. if all the 𝑛𝑖 in a round are 0.

There are many algorithms for sampling Galton-Watson trees. One approach is to essentially

follow the definition above for how the trees are generated. This can be seen as a kind of “breadth-

first” sampling strategy, as we sample all the nodes in a given generation before moving on to any

node in the next generation. In fact, one can consider alternate strategies for “traversing” the tree

as it is generated. For example, Devroye [2012] describes a depth-first approach which maintains a

stack containing the nodes whose children have not yet been sampled.
3

Here, we consider an implementation of a Galton-Watson tree sampler that uses a stack to manage

traversal of the tree. However, rather than storing nodes in the stack, we will use a higher-order

implementation that stores pending tasks, functions of type unit→ unit, that when invoked will

carry out sampling a given node’s children. In addition, our implementation will be parameterized

by a function 𝑑 that carries out sampling from the distribution 𝜇 for the number of children.

3
Devroye in fact describes a variant where we want to sample a tree conditioned on the fact that it will have exactly 𝑘

nodes for some 𝑘 , so as a result the algorithm aborts and restarts if 𝑘 + 1 nodes have been generated in a tree.

Almost-Sure Termination by Guarded Refinement 21

The code is shown in Fig. 6. A node is represented by a list of pointers to its children, with an

empty list representing a leaf node. The top-level function genTree takes the child distribution

sampling function 𝑑 as an argument. It initializes a reference cell 𝑟 that contains the root node,

represented as an empty list (because 𝑟 has no children yet) and creates an empty task stack 𝑠 .

An initial task sampleNode 𝑑 𝑟 𝑠 for sampling the children of 𝑟 is added to the task stack. Then,

the task stack run function is called, which invokes all the tasks in the stack until there are none

remaining. When the call to run returns, genTree returns the representation of the root stored in 𝑟 .

The actual work of carrying out sampling is done by the sampleNode task function, which takes

as arguments the sampler function 𝑑 , the node 𝑟 to sample for, and the task stack 𝑠 . This function

begins by sampling the number of children 𝑛 from 𝑑 . It then uses the List.init function to initialize

a list of length 𝑛, where each element of the list is a reference to a child node generated by a call to

the locally defined function 𝑓 . This function 𝑓 adds a recursive task for the child node it generates

to the task stack. The list of references is then stored back in 𝑟 .

A key challenge here is that the task stack is re-entrant, in the sense that a task may add more

tasks to the same stack it came from. Thus, in reasoning about the recursion in run, one cannot
proceed by induction on the length of the stack, as the stack may grow before the recursive call.

When does such a sampler terminate? The sampler terminates only if the tree goes extinct. The

probability of extinction is a classical problem in probability theory and depends on the distribution

𝜇 for the number of children. A typical proof approach is to represent the tree generation process

as a random walk Markov chain, where the position of the random walk is the number of nodes

that have not yet had their children sampled. Each transition of the walk corresponds to a node’s

children being sampled: if the node is in position 𝑛 + 1, it transitions to 𝑛 + 𝑘 with probability 𝜇 (𝑘).
(So in particular, moving from 𝑛 + 1 to 𝑛 if no children are produced.) The probability of extinction

is equivalent to the probability that the walk hits 0. Graphically, we can represent this as follows:

0 · · · 𝑛 𝑛 + 1 · · · 𝑛 + 𝑘

𝜇 (𝑘)

𝜇 (0)

We prove a specification that establishes a refinement between genTree and this Markov chain.

We first give general reusable specifications to the stack operations that do not concern themselves

with refinement. Since the tasks in the stack-based sampler (i.e., partial applications of sampleNode)
add elements to the stack, we need a (self-referential) specification of the stack that allows the

specification of the elements in the stack to depend on the stack itself.

By working in a logic with guarded recursion, we can define guarded-recursive predicates as a
guarded fixed point 𝜇𝑥 . 𝑡 . Guarded fixed points have no restriction on the variance of the recursive

occurrence of 𝑥 , as long as 𝑡 is contractive, i.e., as long as all the occurrences of 𝑥 in 𝑡 appear below

a later modality. We will use such a predicate to define a self-referential representation predicate

for the stack data structure to support the higher-order nature of the Galton-Watson sampler.

We define the predicate in two steps. First, we define an assertion IsStack(𝛷, 𝑠, 𝑛) that expresses
that 𝑠 is a stack (implemented as a list) with 𝑛 elements, each satisfying𝛷 .

IsStack(𝛷, 𝑠, 𝑛) ≜ ∃𝑙 . length(𝑙) = 𝑛 ∗ IsList (𝑠, 𝑙) ∗ ∗
𝑥∈𝑙

𝛷 (𝑥)

Second, we define Stack(Ψ) (𝑠, 𝑛) as a guarded fixed point. The assertion also expresses that 𝑠 is a

stack with 𝑛 elements, each satisfying Ψ, but Ψ may depend on the stack assertion.

Stack(Ψ) (ℓ, 𝑛) ≜ 𝜇𝑄. IsStack(ℓ, 𝑛, (𝜆𝑤. Ψ(𝑄,𝑤, ℓ))

22 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

For the fixed point to exist, the predicate Ψ : (Val → N → iProp) →Val →Val → iProp must be

contractive in the first parameter.

With the Stack(Ψ, ℓ, 𝑛) representation predicate in hand, we prove the following generic specifi-

cations for the stack operations.

{True} Stack.create {𝑞. Stack(𝑞, 0,Ψ)}
{Stack(𝑠, 𝑛,Ψ) ∗ Ψ(𝑣, 𝑞, Stack(Ψ))} Stack.add 𝑣 𝑠 {_. Stack(𝑠, 𝑛 + 1,Ψ)}
{Stack(𝑠, 0,Ψ)} Stack.take 𝑞 {𝑣 . 𝑣 = None ∗ Stack(𝑠, 0,Ψ)}
{Stack(𝑠, 𝑛 + 1,Ψ)} Stack.take 𝑠 {𝑣 . ∃𝑤. 𝑣 = Some 𝑤 ∗ Stack(𝑠, 𝑛,Ψ) ∗ Ψ(𝑤, 𝑠, Stack(𝛷))}

When creating a stack, ownership of an empty stack Stack(𝑠, 0,Ψ) is obtained for a user-chosen

contractive stack predicate Ψ. To add an element 𝑣 to the stack 𝑠 , ownership of the stack and

Ψ(𝑣, 𝑠, Stack(Ψ)) is required. Finally, when popping an element 𝑣 from a non-empty stack, one gets

back ownership of Ψ(𝑣, 𝑠, Stack(Ψ)).
To specify the Galton-Watson sampler, we apply our general specification of the stack operations.

Recall that genTree stores suspended tasks, i.e. closures, in the task stack. Intuitively, this means

that the stack predicate ΨGW we instantiate the stack library with must be a specification of the

shape ⊲ ({Stack(𝑠, 𝑛,Ψ) ∗ . . .} 𝑓 () {_. Stack(𝑠, 𝑛 + 𝑘,Ψ) ∗ . . .}) for task 𝑓 . The Hoare triple must

be behind a later modality for ΨGW to be contractive since the pre- and postcondition contains the

stack representation predicate. This may seem like an obstacle to specifying the run event-loop:

when suspended tasks 𝑓 are taken out of the stack, the specification will still appear below a later

modality which the proof has no way of eliminating. That is, we will need to eliminate the later

modality now to apply the specification of 𝑓 , but a coupling step—which would allow us to eliminate

the later modality—only happens in the future when 𝑓 is invoked. To address this issue, the key

idea is to asynchronously couple the sampling happening in 𝑑 with the model during the proof of

the run specification and thus eliminate the later modality earlier than otherwise permitted. As our

language and thus presampling tapes only support uniform sampling, we assume 𝜇 distributes as

unif (𝑁) for some 𝑁 for the remainder of the section.

Our specification of genTree looks as follows.

{𝜄GW ↩→ (𝑁,𝑘)} 𝑑 () {𝑣 . 𝑣 = 𝑘 ∗ 𝜄GW ↩→ (𝑁, 𝜖)} ⊢
{spec(1) ∗ 𝜄GW ↩→ (𝑁, 𝜖)} genTree 𝑑 {True}

The specification requires that the sampling function 𝑑 consumes randomness from the 𝜄GW tape

when invoked; the run specification will populate the presampling tape through asynchronous

coupling. When creating the stack, we pick the stack predicate ΨGW below.

ΨGW (𝑆, 𝑠, 𝑓) ≜ ⊲ (∀𝑛, 𝑘. {𝑆 (𝑠, 𝑛) ∗ 𝜄GW ↩→ (𝑁,𝑘)} 𝑓 () {_. 𝑆 (𝑠, 𝑛 + 𝑘) ∗ 𝜄GW ↩→ (𝑁, 𝜖)})

The predicate says that tasks in the stack must satisfy a specification that, given ownership of the

stack and 𝜄GW ↩→ (𝑁,𝑘), adds 𝑘 new tasks to the stack.

The crux of the proof lies in the specification of run.

{Stack(𝑠, 𝑛,ΨGW) ∗ spec(𝑛) ∗ 𝜄GW ↩→ (𝑁, 𝜖)}
run 𝑠

{_. ∃𝑚. Stack(𝑠,𝑚,ΨGW) ∗ spec(𝑚) ∗ 𝜄GW ↩→ (𝑁, 𝜖)}

The specification of run requires ownership of a stack 𝑠 with 𝑛 elements, the model resource at

state 𝑛, and the 𝜄GW presampling tape. The proof also proceeds by Löb induction. To eliminate

both the later modality in front of the induction hypothesis and the later modality in front of the

Almost-Sure Termination by Guarded Refinement 23

specification of the task retrieved from the queue, the proof asynchronously couples the model

transition from 𝑛 with a presampling onto 𝜄GW.

7 RELATEDWORK
Almost-Sure Termination of First-Order Programs. The study of termination of stochastic

processes has a long history in probability theory, and there are broad classes of techniques for

proving termination in the theory of Markov chains and branching processes. Many of these

techniques have been adapted to formal methods for proving termination of probabilistic programs.

For example, Chakarov and Sankaranarayanan [2013] use ranking super-martingales for proving

almost-sure termination. A number of follow-up works have extended the scope and applicability

of ranking super-martingales [Agrawal et al. 2018; Fioriti and Hermanns 2015; Fu and Chatterjee

2019; McIver et al. 2018]. Several of these works develop program logics for first-order imperative

probabilistic programs, in which the primitive mechanism for looping is a while loop construct.

Ranking super-martingales are used in the conditions for the while loop, analogous to the way

ranking functions are used in standard, non-probabilistic Hoare logic’s variant rule for loops. In

principle, similar rules could be devised for particular schemes and patterns of recursion in a

higher-order language like ProbLang, but it would be challenging to devise general purpose rules,

that would apply to examples like the treap or the Galton-Watson sampler from §6.

Arons et al. [2003] give an approach for reducing almost-sure termination of a randomized

program to may-termination under a non-deterministic semantics. For this non-deterministic

semantics, their planner rule allows one to pre-select a finite sequence of outcomes for random

choices. If the program can be shown to terminate when this finite sequence of outcomes occurs,

then it must terminate almost-surely under the standard probabilistic semantics. Esparza et al.

[2012] generalize this rule to more flexible forms of finite sequences, which they call patterns. This
generalization is complete for weakly finite programs, which from each starting state can only

reach a finite number of states. Examples like the unbounded random walk or the Galton-Watson

tree are not weakly finite in this sense, and appear to be beyond the scope of these techniques.

The soundness of these approaches is justified by the Borel-Cantelli lemma, which shows that the

pre-selected sequence of outcomes must occur infinitely often in any non-terminating execution.

The Borel-Cantelli lemma is an example of a zero-one law, and similar zero-one laws have been

used to justify other proof rules for almost sure termination [Hart et al. 1983].

Positive almost-sure termination (PAST) is a stronger property [Bournez and Garnier 2005;

Majumdar and Sathiyanarayana 2024], stating that the expected number of total transitions for a

program is finite. A number of methods have been developed for proving bounds on the expected

running time of a program, thereby implying almost-sure termination. For example, Kaminski et al.

[2016] develop a weakest-precondition style calculus for bounding expected running time. Ngo

et al. [2018] develop an extension of automatic amortized resource analysis (AARA) for bounding

expectations of resource use in randomized programs. Some of the examples considered in §6, such

as the random walk, are AST but have infinite expected running time, so techniques based on

bounding expected running time cannot be used to prove that they are AST.

Although our focus has been on using Caliper to prove AST, the lower bound on termination

probabilities established by Theorem 3.1 applies even when the model does not terminate with

probability 1. Thus, Caliper can be used to show lower-bounds on termination probabilities for

programs that are not AST. Feng et al. [2023] develop a weakest pre-expectation calculus for proving

lower bounds on expected values of quantities in non-AST programs.

Almost-Sure Termination for Higher-Order Programs. Hurd [2002] develops theory for

proving termination of a monadic embedding of randomized programs in HOL. He defines a while

24 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

combinator for this embedding and proves analogues of 0-1 rules for almost-sure termination

developed by Hart et al. [1983].

Avanzini et al. [2021] present a technique to reason about the expected runtime of programs

written in a probabilistic lambda calculus. They use a continuation-passing style translation, where

the continuationmaps inputs to expected runtimes, thus turning the program into a cost transformer.

Several works introduce type systems that imply termination or expected bounds on higher-

order programs. Lago and Grellois [2017] present a probabilistic variant of sized types that ensures

almost-sure termination of well-typed programs. In this system, a function body’s type is associated

with a particular kind of random walk called a sized random walk. The typing rule for letrec has

a premise that requires the corresponding random walk to be almost-surely terminating. AST for

these sized random walks is shown to be decidable. Lago et al. [2021] develop an intersection type

systems for capturing both almost-sure and positive almost-sure termination. Wang et al. [2020]

present a probabilistic variant of RaML, a higher-order language with a type system that does

amortized resource analysis to produce bounds on expected resource consumption.

Kobayashi et al. [2020] introduce probabilistic higher-order recursion schemes (PHORS), a

probabilistic variant of the HORS considered in higher-order model checking. They show that the

decision problem for almost-sure termination of order-2 PHORS is undecidable, and introduce a

sound but incomplete procedure for bounding termination probabilities of order-2 PHORS. An

implementation of their procedure is applied to several PHORS, including one that is equivalent

to the listgen example in §6. In place of Markov chains, PHORS could be used as the models in

Caliper, in order to prove that a particular PHORS is an adequate abstraction of a program.

In contrast to Caliper, the above works deal with higher-order calculi without imperative state.

Guarded Recursion for Termination and Termination-Preserving Refinement. We have

already discussed closely related uses of guarded recursion for termination-preserving refinement in

§4.3. Other works have made use of guarded recursion or step-indexed models to prove termination

or termination-preserving refinement. Spies et al. [2021b] construct a transfinite step-indexed

logical relation to show that a linear type system implies termination. SeLoC [Frumin et al. 2021a]

is a relational logic for proving termination-sensitive noninterference properties of higher-order

programs. To achieve the intended security property, the simulation relation that their program

logic encodes is much stricter than the one we have considered here, so that later modalities are

only eliminated in rules where both the program and its model take a simultaneous step. In contrast,

Gregersen et al. [2021] develop a model of termination-insensitive noninterference where later
modalities are eliminated when either the program or the model take a step.

Much as PAST implies AST, establishing an upper bound on the number of steps a program takes

also implies termination. Several works have proved resource bounds in step-indexed program

logics [Mével et al. 2019; Pottier et al. 2024] using the technique of time credits [Atkey 2011;

Charguéraud and Pottier 2019]. In this approach, a later modality is eliminated on every program

step, which might at first appear to allow infinite looping by Löb induction. However, this is ruled

out by requiring a finite resource called a time credit to be spent on steps of execution. Such an

approach could be adapted to deriving expected bounds on probabilistic programs, but this would

not be applicable for proving AST of the symmetric random walk, as it is not PAST.

Guarded Recursion for Probabilistic Refinement. Guarded recursion has also been used

to define logical relations models and logics for refinement of probabilistic programs. Bizjak and

Birkedal [2015] construct such a logical relation for a language similar to our ProbLang, but without
higher-order state. Aguirre and Birkedal [2023] extend this language with support for countable

non-deterministic choice. In the presence of non-determinism, a program has a range of probabilities

of termination based on how non-determinism is resolved by a scheduler. They develop a logical

Almost-Sure Termination by Guarded Refinement 25

relation for proving equivalences with respect to the may and must-termination probabilities (the

maximal and minimal probabilities across all schedulers). Wand et al. [2018] build a step-indexed

logical relation for proving contextual equivalences for a higher-order language with sampling

from continuous distributions. Finally, Clutch [Gregersen et al. 2024] is a program logic based on

Iris for proving contextual equivalences of programs written in a language like ProbLang.
In the above works, the defined refinement relations lead to lower bounds that are effectively in

the opposite direction of Theorem 3.1. In other words, translating their approaches to our setting

leads to a soundness theorem in which the termination probability of the program is a lower bound

on the termination probability of the model. This is because their approaches effectively allow for

later elimination when the program takes a step, as opposed to when the model takes a step as in

Caliper.4 Since the goal in those works is to prove equivalences by proving refinements in both

directions, the direction of this inequality is adequate for their purposes.

Aguirre et al. [2018] present a logic to prove couplings between pairs of infinite runs over Markov

chains defined in a probabilistic guarded lambda calculus, without considering any form of state.

Markov chains are defined as distributions over infinite streams. Productivity (the fact that a step

will eventually be taken) is dual to termination, and is ensured by their type system.

Polaris [Tassarotti and Harper 2019] is a concurrent program logic based on Iris for proving a

coupling between a randomized program and a more abstract model. The soundness theorem for

Polaris allows bounds on probabilities and expectations in the model to be translated into bounds

on the program across schedulers. However, these bounds only apply under schedulers for which

the program terminates in a bounded number of steps. Thus, Polaris is a kind of partial correctness

logic, as its soundness theorem assumes a property that is already stronger than AST.

8 CONCLUSION
We have presented Caliper, a logic for proving termination-preserving refinements between higher-

order probabilistic programs and more abstract models. For proving such refinements, Caliper
combines powerful techniques such as Löb induction and couplings. We have demonstrated Caliper
on several examples, including ones that are outside the scope of prior methods and approaches

for proving almost-sure termination of randomized programs. A natural future direction would be

to extend Caliper with support for adversarial non-determinism in programs and models, and to

consider other classes of abstract models such as PHORS and recursive Markov chains.

ACKNOWLEDGMENTS
This work was supported in part by the National Science Foundation, grant no. 2225441, the

Carlsberg Foundation, grant no. CF23-0791, a Villum Investigator grant, no. 25804, Center for Basic

Research in Program Verification (CPV), from the VILLUM Foundation, and the European Union

(ERC, CHORDS, 101096090). Views and opinions expressed are however those of the author(s) only

and do not necessarily reflect those of the European Union or the European Research Council.

Neither the European Union nor the granting authority can be held responsible for them.

REFERENCES
Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. 2018. Lexicographic ranking supermartingales: an efficient

approach to termination of probabilistic programs. Proc. ACM Program. Lang. 2, POPL (2018), 34:1–34:32. https:

//doi.org/10.1145/3158122

4
The first three of these works use explicitly step-indexed models, as opposed to the “logical” approach to step-

indexing [Dreyer et al. 2011] with ⊲ modalities. Nevertheless, they decrement the step index when the program on

the left side of their refinement relation takes a step, which corresponds to eliminating a later modality as we have described.

https://doi.org/10.1145/3158122
https://doi.org/10.1145/3158122

26 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

Alejandro Aguirre, Gilles Barthe, Lars Birkedal, Ales Bizjak, Marco Gaboardi, and Deepak Garg. 2018. Relational Reasoning

for Markov Chains in a Probabilistic Guarded Lambda Calculus. In Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10801), Amal

Ahmed (Ed.). Springer, 214–241. https://doi.org/10.1007/978-3-319-89884-1_8

Alejandro Aguirre and Lars Birkedal. 2023. Step-Indexed Logical Relations for Countable Nondeterminism and Probabilistic

Choice. Proc. ACM Program. Lang. 7, POPL (2023), 33–60. https://doi.org/10.1145/3571195

AndrewW. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007. A very modal model of a modern,

major, general type system. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2007, Nice, France, January 17-19, 2007. 109–122. https://doi.org/10.1145/1190216.1190235

Tamarah Arons, Amir Pnueli, and Lenore D. Zuck. 2003. Parameterized Verification by Probabilistic Abstraction. In

Foundations of Software Science and Computational Structures, 6th International Conference, FOSSACS 2003 Held as Part of
the Joint European Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings
(Lecture Notes in Computer Science, Vol. 2620), Andrew D. Gordon (Ed.). Springer, 87–102. https://doi.org/10.1007/3-540-

36576-1_6

K.B. Athreya and P.E. Ney. 2012. Branching Processes. Springer Berlin Heidelberg.

Robert Atkey. 2011. Amortised Resource Analysis with Separation Logic. Logical Methods in Computer Science Volume 7,

Issue 2 (June 2011). https://doi.org/10.2168/LMCS-7(2:17)2011

Martin Avanzini, Gilles Barthe, and Ugo Dal Lago. 2021. On continuation-passing transformations and expected cost

analysis. Proc. ACM Program. Lang. 5, ICFP (2021), 1–30. https://doi.org/10.1145/3473592

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2008. Formal certification of code-based cryptographic

proofs. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages -
POPL ’09. ACM Press, Savannah, GA, USA, 90. https://doi.org/10.1145/1480881.1480894

Lars Birkedal and Aleš Bizjak. 2023. Lecture Notes on Iris: Higher-Order Concurrent Separation Logic. http://iris-

project.org/tutorial-pdfs/iris-lecture-notes.pdf

Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. 2012. First steps in synthetic guarded

domain theory: step-indexing in the topos of trees. Log. Methods Comput. Sci. 8, 4 (2012). https://doi.org/10.2168/LMCS-

8(4:1)2012

Ales Bizjak and Lars Birkedal. 2015. Step-Indexed Logical Relations for Probability. In Foundations of Software Science and
Computation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 279–294. https://doi.org/10.1007/

978-3-662-46678-0_18

Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. 2015. Coquelicot: A User-Friendly Library of Real Analysis for

Coq. Math. Comput. Sci. 9, 1 (2015), 41–62.
Olivier Bournez and Florent Garnier. 2005. Proving Positive Almost-Sure Termination. In Term Rewriting and Applications,

16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings (Lecture Notes in Computer Science,
Vol. 3467), Jürgen Giesl (Ed.). Springer, 323–337. https://doi.org/10.1007/978-3-540-32033-3_24

Tomás Brázdil, Javier Esparza, Stefan Kiefer, and Antonín Kucera. 2013. Analyzing probabilistic pushdown automata. Formal
Methods Syst. Des. 43, 2 (2013), 124–163. https://doi.org/10.1007/S10703-012-0166-0

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. 511–526.
https://doi.org/10.1007/978-3-642-39799-8_34

Arthur Charguéraud and François Pottier. 2019. Verifying the Correctness and Amortized Complexity of a Union-Find

Implementation in Separation Logic with Time Credits. Journal of Automated Reasoning 62, 3 (March 2019), 331–365.

https://doi.org/10.1007/s10817-017-9431-7

D.L. Cohn. 2013. Measure Theory: Second Edition. Springer New York.

Coq Development Team. 2023. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.8161141

Luc Devroye. 2012. Simulating Size-constrained Galton-Watson Trees. SIAM J. Comput. 41, 1 (2012), 1–11. https:

//doi.org/10.1137/090766632

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical Step-Indexed Logical Relations. Log. Methods Comput. Sci. 7, 2
(2011). https://doi.org/10.2168/LMCS-7(2:16)2011

Manuel Eberl, Max W. Haslbeck, and Tobias Nipkow. 2020. Verified Analysis of Random Binary Tree Structures. J. Autom.
Reason. 64, 5 (2020), 879–910. https://doi.org/10.1007/S10817-020-09545-0

Jeff Erickson. 2017. Treaps and Skip Lists. https://jeffe.cs.illinois.edu/teaching/algorithms/notes/03-treaps.pdf

Javier Esparza, Andreas Gaiser, and Stefan Kiefer. 2012. Proving Termination of Probabilistic Programs Using Patterns. In

Computer Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings
(Lecture Notes in Computer Science, Vol. 7358), P. Madhusudan and Sanjit A. Seshia (Eds.). Springer, 123–138. https:

https://doi.org/10.1007/978-3-319-89884-1_8
https://doi.org/10.1145/3571195
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1007/3-540-36576-1_6
https://doi.org/10.1007/3-540-36576-1_6
https://doi.org/10.2168/LMCS-7(2:17)2011
https://doi.org/10.1145/3473592
https://doi.org/10.1145/1480881.1480894
http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/S10703-012-0166-0
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/s10817-017-9431-7
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1137/090766632
https://doi.org/10.1137/090766632
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1007/S10817-020-09545-0
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/03-treaps.pdf
https://doi.org/10.1007/978-3-642-31424-7_14
https://doi.org/10.1007/978-3-642-31424-7_14

Almost-Sure Termination by Guarded Refinement 27

//doi.org/10.1007/978-3-642-31424-7_14

Kousha Etessami and Mihalis Yannakakis. 2009. Recursive Markov chains, stochastic grammars, and monotone systems of

nonlinear equations. J. ACM 56, 1 (2009), 1:1–1:66. https://doi.org/10.1145/1462153.1462154

Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Naijun Zhan. 2023. Lower

Bounds for Possibly Divergent Probabilistic Programs. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 696–726. https:

//doi.org/10.1145/3586051

Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Com-

positionality. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 489–501.

https://doi.org/10.1145/2676726.2677001

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021a. Compositional Non-Interference for Fine-Grained Concurrent

Programs. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE,
1416–1433. https://doi.org/10.1109/SP40001.2021.00003

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021b. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained

Concurrency and Logical Atomicity. Log. Methods Comput. Sci. 17, 3 (2021). https://doi.org/10.46298/lmcs-17(3:9)2021

Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In Verification, Model
Checking, and Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal, January 13-15, 2019,
Proceedings. 468–490. https://doi.org/10.1007/978-3-030-11245-5_22

Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic. Proc. ACM Program. Lang. 8, POPL (2024),

753–784. https://doi.org/10.1145/3632868

Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. 2021. Mechanized logical relations for

termination-insensitive noninterference. Proc. ACM Program. Lang. 5, POPL (2021), 1–29. https://doi.org/10.1145/3434291
Sergiu Hart, Micha Sharir, and Amir Pnueli. 1983. Termination of Probabilistic Concurrent Program. ACM Trans. Program.

Lang. Syst. 5, 3 (1983), 356–380. https://doi.org/10.1145/2166.357214

Joe Hurd. 2002. A Formal Approach to Probabilistic Termination. In Theorem Proving in Higher Order Logics, 15th International
Conference, TPHOLs 2002, Hampton, VA, USA, August 20-23, 2002, Proceedings (Lecture Notes in Computer Science, Vol. 2410),
Victor Carreño, César A. Muñoz, and Sofiène Tahar (Eds.). Springer, 230–245. https://doi.org/10.1007/3-540-45685-6_16

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
637–650. https://doi.org/10.1145/2676726.2676980

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2019. On the hardness of analyzing probabilistic

programs. Acta Informatica 56, 3 (2019), 255–285. https://doi.org/10.1007/S00236-018-0321-1

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition

Reasoning for Expected Run-Times of Probabilistic Programs. In Programming Languages and Systems - 25th European
Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. 364–389. https://doi.org/10.1007/978-3-662-49498-

1_15

Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. 2019. On the Termination Problem for Probabilistic Higher-Order

Recursive Programs. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019. 1–14. https://doi.org/10.1109/LICS.2019.8785679

Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. 2020. On the Termination Problem for Probabilistic Higher-Order

Recursive Programs. Log. Methods Comput. Sci. 16, 4 (2020). https://lmcs.episciences.org/6817

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-Time Systems.

In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings.
585–591. https://doi.org/10.1007/978-3-642-22110-1_47

Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca. 2021. Intersection types and (positive) almost-sure

termination. Proc. ACM Program. Lang. 5, POPL (2021), 1–32. https://doi.org/10.1145/3434313

Ugo Dal Lago and Charles Grellois. 2017. Probabilistic Termination by Monadic Affine Sized Typing. In Programming
Languages and Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes
in Computer Science, Vol. 10201), Hongseok Yang (Ed.). Springer, 393–419. https://doi.org/10.1007/978-3-662-54434-1_15

https://doi.org/10.1007/978-3-642-31424-7_14
https://doi.org/10.1007/978-3-642-31424-7_14
https://doi.org/10.1007/978-3-642-31424-7_14
https://doi.org/10.1145/1462153.1462154
https://doi.org/10.1145/3586051
https://doi.org/10.1145/3586051
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1109/SP40001.2021.00003
https://doi.org/10.46298/lmcs-17(3:9)2021
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1145/3632868
https://doi.org/10.1145/3434291
https://doi.org/10.1145/2166.357214
https://doi.org/10.1007/3-540-45685-6_16
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/S00236-018-0321-1
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1109/LICS.2019.8785679
https://lmcs.episciences.org/6817
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/3434313
https://doi.org/10.1007/978-3-662-54434-1_15

28 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

P. J. Landin. 1964. The Mechanical Evaluation of Expressions. Comput. J. 6, 4 (1964), 308–320. https://doi.org/10.1093/

COMJNL/6.4.308

T. Lindvall. 2002. Lectures on the Coupling Method. Dover Publications, Incorporated.
Rupak Majumdar and V. R. Sathiyanarayana. 2024. Positive Almost-Sure Termination: Complexity and Proof Rules. Proc.

ACM Program. Lang. 8, POPL (2024), 1089–1117. https://doi.org/10.1145/3632879

Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A new proof rule for

almost-sure termination. Proc. ACM Program. Lang. 2, POPL (2018), 33:1–33:28. https://doi.org/10.1145/3158121

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time Receipts in Iris. In Programming
Languages and Systems (Lecture Notes in Computer Science), Luís Caires (Ed.). Springer International Publishing, Cham,

3–29. https://doi.org/10.1007/978-3-030-17184-1_1

Carroll Morgan and Annabelle McIver. 1999. pGCL: formal reasoning for random algorithms. South African Computer
Journal 22 (1999), 14–27.

Hiroshi Nakano. 2000. A Modality for Recursion. In 15th Annual IEEE Symposium on Logic in Computer Science, Santa
Barbara, California, USA, June 26-29, 2000. 255–266. https://doi.org/10.1109/LICS.2000.855774

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded expectations: resource analysis for probabilistic

programs. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 496–512. https:

//doi.org/10.1145/3192366.3192394

François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével. 2024. Thunks and Debits in Separation

Logic with Time Credits. Proceedings of the ACM on Programming Languages 8, POPL (Jan. 2024), 50:1482–50:1508.

https://doi.org/10.1145/3632892

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th IEEE Symposium on Logic
in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74.

https://doi.org/10.1109/LICS.2002.1029817

Raimund Seidel and Cecilia R. Aragon. 1996. Randomized Search Trees. Algorithmica 16, 4/5 (1996), 464–497. https:

//doi.org/10.1007/BF01940876

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2021a.

Transfinite Iris: resolving an existential dilemma of step-indexed separation logic. In PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021.
80–95. https://doi.org/10.1145/3453483.3454031

Simon Spies, Neel Krishnaswami, and Derek Dreyer. 2021b. Transfinite step-indexing for termination. Proc. ACM Program.
Lang. 5, POPL (2021), 1–29. https://doi.org/10.1145/3434294

F. Spitzer. 2013. Principles of Random Walk. Springer New York.

Kasper Svendsen, Filip Sieczkowski, and Lars Birkedal. 2016. Transfinite Step-Indexing: Decoupling Concrete and Logical

Steps. In Programming Languages and Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2-8, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9632), Peter Thiemann (Ed.). Springer, 727–751. https:

//doi.org/10.1007/978-3-662-49498-1_28

Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 2 (June 1955), 285–309.
https://doi.org/10.2140/pjm.1955.5.285

Joseph Tassarotti and Robert Harper. 2019. A separation logic for concurrent randomized programs. Proc. ACM Program.
Lang. 3, POPL (2019), 64:1–64:30. https://doi.org/10.1145/3290377

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving

Refinement. In Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-
29, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.). Springer, 909–936. https:

//doi.org/10.1007/978-3-662-54434-1_34

Hermann Thorisson. 2000. Coupling, stationarity, and regeneration. Springer-Verlag, New York. xiv+517 pages.

Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Jonas Kastberg Hinrichsen, Léon Gondelman, Abel Nieto, and

Lars Birkedal. 2024a. Trillium: Higher-Order Concurrent and Distributed Separation Logic for Intensional Refinement.

Proc. ACM Program. Lang. 8, POPL (2024), 241–272. https://doi.org/10.1145/3632851

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2024b. A Logical Approach to Type Soundness. (2024).

https://iris-project.org/pdfs/2024-submitted-logical-type-soundness.pdf Unpublished manuscript.

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and hoare-style reasoning in a logic for higher-

order concurrency. In ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA -
September 25 - 27, 2013. 377–390. https://doi.org/10.1145/2500365.2500600

C. Villani. 2008. Optimal Transport: Old and New. Springer Berlin Heidelberg.

https://doi.org/10.1093/COMJNL/6.4.308
https://doi.org/10.1093/COMJNL/6.4.308
https://doi.org/10.1145/3632879
https://doi.org/10.1145/3158121
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3632892
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/BF01940876
https://doi.org/10.1007/BF01940876
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3434294
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1145/3290377
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/3632851
https://iris-project.org/pdfs/2024-submitted-logical-type-soundness.pdf
https://doi.org/10.1145/2500365.2500600

Almost-Sure Termination by Guarded Refinement 29

Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual equivalence for a

probabilistic language with continuous random variables and recursion. Proc. ACM Program. Lang. 2, ICFP (2018),

87:1–87:30. https://doi.org/10.1145/3236782

Di Wang, David M. Kahn, and Jan Hoffmann. 2020. Raising expectations: automating expected cost analysis with types.

Proc. ACM Program. Lang. 4, ICFP (2020), 110:1–110:31. https://doi.org/10.1145/3408992

https://doi.org/10.1145/3236782
https://doi.org/10.1145/3408992

30 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

A REFINEMENT LOGIC

rwpE 𝑒1 {𝛷} ≜ lfp𝑊 .(𝑒1 ∈Val ∗ |⇛E𝛷 (𝑒1)) ∨
(𝑒1 ∉Val ∗ ∀𝜎1,𝑚1. 𝑀 (𝑚1) ∗ 𝑆 (𝜎1) ∗ |⇛E ∅

cpl𝑚1 ∼ (𝑒1, 𝜎1)
{
𝑚2, (𝑒2, 𝜎2). |⇛∅ E𝑀 (𝑚2) ∗ 𝑆 (𝜎2) ∗𝑊 (𝑒2, E,𝛷)

}
)

𝑒1
pure

⇝ 𝑒2 ∗ rwpE 𝑒2 {𝛷} ⊢ rwpE 𝑒1 {𝛷}
∀ℓ . ℓ ↦→ 𝑣 ∗ 𝛷 (ℓ) ⊢ rwpE ref 𝑣 {𝛷}

(ℓ ↦→ 𝑣 ∗ 𝛷 (𝑣)) ∗ ℓ ↦→ 𝑣 ⊢ rwpE ! ℓ {𝛷}
(ℓ ↦→ 𝑤 ∗ 𝛷 (())) ∗ ℓ ↦→ 𝑣 ⊢ rwpE ℓ ← 𝑤 {𝛷}

∀𝑛 ≤ 𝑁 .𝛷 (𝑛) ⊢ rwpE rand𝑁 {𝛷}
𝛷 (𝑣) ⊢ rwpE 𝑣 {𝛷}

rwpE 𝑒
{
𝑣 .rwpE 𝐾 [𝑣] {𝛷}

}
⊢ rwpE 𝐾 [𝑒] {𝛷}

(∀𝑣 . Ψ(𝑣) ∗ 𝛷 (𝑣)) ∗ rwpE 𝑒 {Ψ} ⊢ rwpE 𝑒 {𝛷}
𝑃 ∗ rwpE 𝑒 {𝛷} ⊢ rwpE 𝑒 {𝑣 . 𝑃 ∗ 𝛷 (𝑣)}

∀𝜄. 𝜄 ↩→ (𝑁, 𝜖) ∗ 𝛷 (𝜄) ⊢ rwpE tape𝑁 {𝛷}
(𝜄 ↩→ (𝑁, ®𝑛) ∗ 𝛷 (𝑛)) ∗ 𝜄 ↩→ (𝑁,𝑛 · ®𝑛) ⊢ rwpE rand𝑁 𝜄 {𝛷}

(∀𝑛 ≤ 𝑁 . 𝜄 ↩→ (𝑁, 𝜖) ∗ 𝛷 (𝑛)) ∗ 𝜄 ↩→ (𝑁, 𝜖) ⊢ rwpE rand𝑁 𝜄 {𝛷}

rwp-coupl-rand

step(𝑚1) ≲ unif (𝑁) : 𝑅 spec(𝑚1) ∀(𝑚2, 𝑛) ∈ 𝑅. ⊲
(
spec(𝑚2) ∗ rwpE 𝑛 {𝛷}

)
rwpE rand𝑁 {𝛷}

rwp-spec-det

𝑒 ∉Val step(𝑚1) (𝑚2) = 1 spec(𝑚1) ⊲
(
spec(𝑚2) ∗ rwpE 𝑒 {𝛷}

)
rwpE 𝑒 {𝛷}

B COUPLING MODALITY
reducible(𝜌1) ret(𝑚) ≲ step(𝜌1) : 𝑅 ∀𝑠 ∈ 𝑅. |⇛∅Ψ(𝑠)

cpl𝑚 ∼ 𝜌1 {Ψ}

reducible(𝜌1) reducible(𝑚1) step(𝑚1) ≲ step(𝜌1) : 𝑅 ∀𝑠 ∈ 𝑅. ⊲ |⇛∅Ψ(𝑠)
cpl𝑚1 ∼ 𝜌1 {Ψ}

reducible(𝑚1) step(𝑚1) ≲ ret(𝜌) : 𝑅 ∀(𝑚2, 𝜌) ∈ 𝑅. ⊲ |⇛∅ cpl𝑚2 ∼ 𝜌 {Ψ}
cpl𝑚1 ∼ 𝜌 {Ψ}

reducible(𝑚1) 𝑙 ⊆ dom(𝜎1)
step(𝑚1) ≲ foldM(sstep, 𝜎1, 𝑙) : 𝑅 ∀(𝑚2, 𝜎2) ∈ 𝑅. ⊲ |⇛∅ cpl𝑚2 ∼ (𝑒1, 𝜎2) {Ψ}

cpl (𝑒1, 𝜎1) ∼𝑚1 {Ψ}

Almost-Sure Termination by Guarded Refinement 31

C LAZY REALWITH PRESAMPLING TAPES

init ≜ 𝜆 _. (ref None, tape 1)
cmp ≜ 𝜆(ℓ1, 𝜄1), (ℓ2, 𝜄2). if ℓ1 = ℓ2 then 0 else cmpList 𝜄1 ℓ1 𝜄2 ℓ2

rec cmpList 𝜄1 ℓ1 𝜄2 ℓ2 =

let (𝑏1, 𝑛1) = getB 𝜄1 ℓ1 in

let (𝑏2, 𝑛2) = getB 𝜄2 ℓ2 in

let 𝑐 = cmpB 𝑏1 𝑏2 in

if 𝑐 == 0 then cmpList 𝜄1 𝑛1 𝜄2 𝑛2 else 𝑐

getB ≜ 𝜆𝜄, 𝑐 . match ! 𝑐 with
Some 𝑣 ⇒ 𝑣

| None ⇒ let 𝑏 = flip 𝜄 in
let 𝑛 = ref None in
let 𝑣 = (𝑏, 𝑛) in
𝑐 ← 𝑣 ;

𝑣

end

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Probabilistic Semantics
	2.2 Probabilistic Couplings

	3 A probabilistic termination-preserving refinement logic
	4 Semantic Model and Soundness
	4.1 Model
	4.2 Soundness
	4.3 Comparison to Guarded Recursion for Non-Probabilistic Termination Preservation

	5 Asynchronous Couplings
	6 Case Studies
	6.1 Repeated Coin Flips
	6.2 Recursion Through the Store
	6.3 List Generators
	6.4 Lazy Real
	6.5 Treap
	6.6 Galton-Watson Tree

	7 Related work
	8 Conclusion
	Acknowledgments
	References
	A Refinement logic
	B Coupling modality
	C Lazy Real with Presampling Tapes

