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The crossover between short-range and long-range (LR) universal behaviors remains a central
theme in the physics of long-range interacting systems. The competition between LR coupling and
the Berezinskii-Kosterlitz-Thouless mechanism makes the problem more subtle and less understood
in the two-dimensional (2D) XY model, a cornerstone for investigating low-dimensional phenomena
and their implications in quantum computation. We study the 2D XY model with algebraically
decaying interaction ∼ 1/r2+σ. Utilizing an advanced update strategy, we conduct large-scale
Monte Carlo simulations of the model up to a linear size of L = 8192. Our results demonstrate
continuous phase transitions into a ferromagnetic phase for σ ≤ 2, which exhibits the simultaneous
emergence of a long-ranged order and a power-law decaying correlation function due to the Goldstone
mode. Furthermore, we find logarithmic scaling behaviors in the low-temperature phase at σ = 2.
The observed scaling behaviors in the low-temperature phase for σ ≤ 2 agree with our theoretical
analysis. Our findings request further theoretical understandings and can be of practical application
in cutting-edge experiments like Rydberg atom arrays.

Introduction.— Long-range (LR) interacting systems
have been studied in statistical and condensed matter
physics for decades, unveiling a range of exotic physical
phenomena [1–3]. This interest has recently intensified,
driven by the experimental realizations of such systems in
atomic, molecular, and optical (AMO) setups [4–10]. In
particular, the two-dimensional (2D) XY model with LR
interactions has gained notable attention [11–14]. With-
out LR interactions, the model undergoes the celebrated
BKT transition driven by topological defects [15] and
serves as a fundamental cornerstone for understanding
low-dimensional superfluidity [16] and superconductiv-
ity [17–19]. Upon incorporating LR interactions, how-
ever, it becomes a pivotal framework for exploring the
complex interplay between LR interactions and the BKT
mechanism [15]. Most importantly, recent implementa-
tions of the model in trapped ion setups and the Rydberg
systems demonstrate its significance in quantum compu-
tation [10, 13, 14].

The XY model belongs to the classical O(N ) spin
models with N = 2. The d-dimensional LR O(N )
spin model with power-law decaying ∼ 1/rd+σ interac-
tions has been extensively investigated, particularly re-
garding the renormalization group (RG) relevance of the
LR interactions [20–27]. In such systems, there exists
a threshold value σ∗ separating the LR and SR critical
behaviors. For σ > σ∗, the system is in the same uni-
versality class as its nearest-neighbor (NN) counterpart,
while for σ ≤ σ∗, the LR interactions become relevant,
yielding distinct critical properties [21–23]. The value
of σ∗ was first obtained in the seminal paper of Fisher
et al. [21], where a second-order ϵ-expansion approach
suggests σ∗ = 2. Later, a new threshold σ∗ = 2 − ηSR

was proposed by Sak [22], currently known as Sak’s crite-
rion, where ηSR is the anomalous dimension in SR limit.
While several numerical studies seemingly support Sak’s
criterion [24, 28, 29], other investigation and theoretical
analysis favor the σ∗ = 2 scenario [30–32].

The problem becomes more subtle for the 2D XY
model. In the SR limit, the Mermin-Wagner theo-
rem forbids the formation of a long-range-order (LRO)
phase [33]. Yet, the model undergoes a BKT transition,
entering a quasi-long-range-order (QLRO) phase [15].
Applying Sak’s criterion to the 2D XY model can be
especially nuanced because, rather than a single fixed
point, the SR critical behavior is governed by an en-
tire line of fixed points with a temperature-dependent
anomalous dimension η(T ), and the phase transition is
of topological type [11, 12, 15]. Conventional strate-
gies for analyzing the XY model, such as mapping it to
Coulomb gas or the sine-Gordon model [34, 35], might
fail in the presence of LR interaction [11]. Furthermore,
the numerical study of this model faces considerable dif-
ficulties, including logarithmic corrections owing to BKT
universality [15, 36], severe finite-size effects, and the es-
calating computational costs associated with LR interac-
tions [37, 38].

Recent field-theoretical studies of the 2D LR XYmodel
predict an exotic phase diagram [11, 12]. An intermedi-
ate QLRO phase is stabilized for 1.75 < σ < 2, below
which the system enters an LRO phase. Intriguingly, a
similar study on the LR Villain model reveals different
behavior [39], despite both models belonging to the same
universality class in the SR limit [40, 41]. This deviation
is particularly notable given that such an intermediate
QLRO phase is absent in previous numerical results of
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FIG. 1. Phase diagram of the long-range XY model in 2D.
The SR regime (σ > 2) exhibits BKT transitions (brown
line) into the QLRO phase. In the non-classical regime
(1 < σ ≤ 2), the system undergoes a second-order transi-
tion (red line) into an LRO phase. Finally, in the classical
regime (σ ≤ 1), the transition (purple lines) is described by
the Gaussian theory. Symbol TCG

c stands for the critical tem-
peratures for the complete-graph (CG) case and TNN

c for the
nearest-neighbor (NN) case.

the LR diluted XY model in 2D [42], a model expected
to share the same critical behaviors as the 2D LR XY
model [42, 43].

In this Letter, we study the 2D LR XY model with
power-law decaying ∼ 1/rd+σ interactions by large-scale
simulations up to a linear size of L = 8192. The phase
diagram of the model, as depicted in Fig. 1, is charac-
terized by three distinct regimes: the classical regime
(σ ≤ 1), the non-classical regime (1 < σ ≤ 2), and the
short-range regime (σ > 2). As expected, for σ < 1,
the critical behaviors are governed by Gaussian mean-
field theory [23], while for σ > 2, the system exhibits
BKT transitions. The non-classical regime (1 < σ ≤ 2)
is of particular interest. The finite-size scaling (FSS)
behaviors in this regime demonstrate that the system
undergoes a second-order transition with σ-dependent
critical exponents. The ferromagnetic low-T phase also
features a power-law decaying spin correlation function
g(x) ∼ g0 + cx−ηℓ originating from the Goldstone mode,
with g0 and c being some constants and ηℓ = 2−σ. More-
over, at σ = 2, we clearly observe that, as the criticality
is gradually approached, the growing behavior of correla-
tion length ξ looks more and more different from that of
the BKT transition and is well-described by a power-law
behavior for a continuous phase transition. By explor-
ing the FSS behaviors at a fixed temperature T < Tc as
a function of σ, we obtain another strong evidence that
σ = 2 is the threshold separating the LRO ferromagnet
from the QLRO phase for σ > 2.

Model, Algorithm and Observables.— Let us consider
the LR interacting XY model on a square lattice of side

length L,

H = −
∑

i<j

J

rd+σ
i,j

Si · Sj , (1)

where Si and Sj are 2-component unit spin vectors at
sites i and j, respectively, and ri,j denotes the distance
between these sites. The summation encompasses all
unique pairs of spins. With periodic boundary condi-
tions, each spin interacts with otherN−1 spins (N = L2)
via the shortest distance. In addition, the interaction
strength J is normalized such that

∑
j>0 J/r

2+σ
0,j = 4, to

satisfy the strict extensitivity of the total energy and thus
to reduce unnecessary finite-size corrections. [29, 44, 45].
The Boltzmann weight of a configuration is exp(−βH),
with β = 1/kBT the inverse temperature (kB = 1 is set).

Substantial computational expense is the primary fac-
tor hindering large-scale simulations of the model. In
conventional Monte Carlo methods, it scales as O(N)
per spin update due to LR interactions. Specialized
techniques have been developed to efficiently simulate
LR interacting systems [29, 37, 38, 45]. We employ
an enhanced version of the Luijten-Blöte (LB) algo-
rithm [37, 45], which utilizes cluster spin updates [46, 47]
alongside an exceedingly efficient cluster construction
procedure. This technique significantly accelerates the
construction of clusters, rendering the computational
time per spin independent of N . Specifically, we incorpo-
rate the clock sampling technique [38] to efficiently sam-
ple bond activation events, substantially improving com-
putational speed and memory usage. Also, it eliminates
the need for a look-up table and alleviates truncation
errors stemming from discrete cumulative probability in-
tegration approximations [45].

Various physical quantities are measured. For a
given configuration, we sample the magnetization den-
sity M = L−2 |∑i Si| and its Fourier transform Mk =
L−2

∣∣∑
i Sie

ik·ri
∣∣. Here, ri denotes the coordinates of

site i and k = (2π/L, 0) is the smallest wave vec-
tor along the x-axis. We then obtain the susceptibil-
ity χ = L2⟨M2⟩, the Fourier-transformed susceptibility
χk = L2⟨M2

k ⟩, where ⟨·⟩ represents the statistical aver-
age. Finally, we define the second-moment correlation
length ξ = 1/ [2 sin(|k|/2)]

√
⟨χ⟩/⟨χk⟩ − 1 [48–51].

Results.— Dimensionless quantities, such as the Binder
cumulant [52] and the correlation-length ratio ξ/L [48–
51], are powerful tools in studying phase transitions. Fig-
ure 2 shows that for σ ≤ 2, the ξ/L curves display
the typical FSS behaviors of a second-order transition,
i.e., ξ/L curves of different Ls share a universal inter-
section point at T = Tc and diverge for T < Tc as L
increases [48–51]. The least-square fits, based on the
standard FSS ansatz, successfully give an accurate es-
timation of critical points and critical exponents in the
non-classical regime 1 ≤ σ ≤ 2, as presented in Table I.
As a reference, characteristic FSS behavior of BKT tran-
sitions is observed for σ = 3, where ξ/L curves converge
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FIG. 2. Emergence of the LRO for σ ≤ 2. As temperature T decreases, the correlation-length ratio ξ/L when σ = 1.75 (a) and
2 (b) displays typical scaling behaviors for a system entering into a long-range ordered phase via a continuous phase transition
at Tc: it has an asymptotically universal value at T = Tc and diverges for T < Tc as L increases. In contrast, for σ = 3 (c),
which has a BKT transition, ξ/L for different Ls quickly converges to a smooth function for T < Tc, as a consequence of the
algebraically decaying QLRO. The top left insets further show that in the low-T phase (with β = 1.0, 2.0, 4.0, 8.0), (ξ/L)2 ∼ Lηℓ

with a T -independent exponent ηℓ for σ = 1.75 and ∼ ln(L/L0) for the marginal case σ = 2, with L0 = 0.0025 (the appearance
of this logarithmic divergence is argued in the text). Moreover, the squared magnetization density M2 for T < Tc converges to
non-zero constants as L → ∞, providing direct evidence for the existence of long-range order.

to a non-trivial smooth function for T < Tc [15, 53].
These results suggest a threshold value σ∗ = 2 in the LR
XY model, below which the system develops a long-range
order parameter and becomes a ferromagnet.

The spontaneous O(2) symmetry breaking for σ ≤ 2
naturally implies the existence of Goldstone mode in the
low-T phase. Consider the field-theoretical Hamiltonian
of 2D LR O(N ) models in momentum-space,

βH =

∫
d2q

(2π)2
(
K2

2
q2 +Kσq

σ)Ψ(q) ·Ψ(−q) (2)

+

∫
d2x(

t

2
Ψ2 + uΨ4).

where Ψ is the N -component order parameter field, t
is the distance to criticality, and K2, Kσ, u are cou-
pling constants. For σ < 2, Kσq

σ is the leading term,
and thus K2

2 q2 can be ignored. In the LRO phase where
t < 0, employing the saddle point approximation, Ψ can
then be written in terms of longitudinal and transverse
fluctuations Ψ(x) = ΨL(x) + ΨT (x). In this expan-
sion, the two-point correlation of transverse fluctuation
in the momentum space ⟨ΨT (q)ΨT (−q)⟩ is proportional
to |q|−σ, which results in a power-law correlation in real-
space ⟨ΨT (0)ΨT (x)⟩ ∼ |x|−2+σ. Therefore, for the LR
XY model, the correlation function in the LRO phase is
then, g(x) = g0 + cx−ηℓ , where ηℓ = 2 − σ and c is a
constant. Accordingly, we can derive the leading scaling
term of M2, χk and ξ in the LRO phase for σ < 2,
which scales as M2 ∼ M2

0 + L−ηℓ , χk ∼ L2−ηℓ and
ξ ∼ L1+ηℓ/2. In the marginal case of σ = 2, however,
the exact scaling form of the correlation function is not
straightforward to derive. Nevertheless, it is natural to
expect logarithmic corrections in this case as the anoma-
lous dimension ηℓ vanishes and the LR and SR terms
become degenerate [54, 55]. Hence, we conjecture that,

at σ = 2, M2 ∼ M2
0 + ln(L/L0)

η̂ℓ , χk ∼ L2 ln(L/L′
0)

η̂ℓ

and ξ ∼ L ln(L/L′′
0)

−η̂ℓ/2. Here, η̂ℓ is the exponent of the
logarithmic correction, and L0, L

′
0, L

′′
0 are non-universal

constants. See the Supplemental Material (SM) for de-
tailed derivation and analysis [56].

The upper-left insets of Fig. 2, showing (ξ/L)2 as a
function of lnL, demonstrate distinctive low-T scaling
behaviors of ξ/L for different σ values. For σ = 2, the
data points can be well-described by straight lines of lnL,
which confirms the predicted scaling behavior and indi-
cates η̂ℓ = −1. On the other hand, for σ = 1.75, the
bending-up curvatures mean that divergences of ξ/L are
faster than the logarithmic growth. The least-squares fit
by (ξ/L)2 = c + Lηℓ(a + bL−1), with constants a, b and
c, gives ηℓ = 0.250(4), well consistent with the theoret-
ical prediction. See SM for details of the fit [56], and
values of ηℓ are given in Table I. By contrast, for σ = 3,
ξ/L quickly converges to a constant with increasing L.
Direct evidence of LRO for σ ≤ 2 and T < Tc is pre-
sented in the bottom-right insets of Fig. 2 by showing
the low-T scaling behavior of M2. For σ = 1.75, ex-
trapolating M2 versus L−ηℓ , with ηℓ = 0.25, illustrate

σ βc 1/ν η ηℓ
1.250 0.59961(2) 0.95(2) 0.743(10) 0.747(7)
1.750 0.68380(3) 0.66(4) 0.329(14) 0.250(4)
1.875 0.70737(4) 0.60(2) 0.288(10) 0.122(9)
2.000 0.7315(2) 0.50(3) 0.25(1) 0 (1/ lnL)

TABLE I. Critical point βc and critical exponents of LR XY
model for various σ in the non-classical regime. Here, 1/ν
is the correlation length exponent, and η is the anomalous
dimension. The decaying exponent ηℓ of the low-T correlation
function is theoretically predicted to be ηℓ = 2 − σ. Note
that, for σ = 2, the estimates are seemingly consistent with
1/ν = 1/2 and η = 1/4, and ηℓ = 0 with a multiplicative
logarithmic correction.
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FIG. 3. Deviation of correlation length growth at σ = 2 from
the BKT scaling. The main panel shows a semi-logarithmic
plot of ξ as a function of b/

√
t for various L at σ = 2 (blue

dots), 3 (red dots) and NN XY case (black dots), where the
reduced temperature is t = (T −Tc)/Tc, and b = 1, 1.25, 1.625
respectively. For the σ = 3 and NN XY case, the linear behav-
ior of ξ demonstrates an exponential growth of ξ, characteriz-
ing the BKT transition. However, for σ = 2, the growth of ξ
deviates more and more from the BKT behavior as the system
approaches the critical point. The inset shows a double-log
plot of ξ versus 1/t for σ = 2, revealing a power-law behavior
of ξ, thus highlighting the second-order phase transition.

finite magnetization in the L → ∞ limit. For σ = 2,
we fit the FSS ansatz M2(L) ∼ c + a ln(L/b)−1 and the
extrapolation in the limit L → ∞ demonstrate ferro-
magnetic phase. Analysis of the specific heat-like quan-
tity, included in SM [56], also illustrates the second-order
transitions for σ ≤ 2. Our results provide compelling ev-
idence that as long as σ ≤ 2, the LR XY model enters a
ferromagnetic phase through a second-order phase tran-
sition. This finding, however, is inconsistent with the
phase diagram suggested in Ref. [11, 12], where the BKT
transition is predicted to persist for 1.75 < σ ≤ 2.

To resolve this inconsistency, revealing the type of
phase transition for σ = 2 becomes rather crucial. Note
that our simulations are already up to L = 8192; it
is extremely difficult to improve the precision of criti-
cal exponents further. Hence, we adopt an alternative
route by investigating the growth of correlation length
ξ as it approaches Tc. In the context of RG, near a
BKT fixed point, ξ exhibits an exponential divergence,
ξ ∼ exp

(
b/
√
t
)
, where t denotes the reduced temper-

ature t = (Tc − T )/Tc and b is a non-universal con-
stant [36]. Conversely, ξ diverges algebraically, ξ ∼ t−ν ,
near a second-order transition. We first accurately de-
termine the critical points Tc(σ = 2) = 1.3671(4) and
Tc(σ = 3) = 1.109(2) by FSS analysis of ξ/L, and then
study the growth of ξ as a function of t. We plot ξ against
b/
√
t on a semi-log scale for various L for both σ = 2,

3 and the NN case, as shown in Fig. 3. For σ = 3 and
the NN case, data points of different Ls converge onto a
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FIG. 4. Low-T transitions at σ = 2 with T = 1. (a) ξ/L vs. σ
for various L. The system enters the LRO phase when σ ≤ 2.
The inset shows good data collapse of ξ/(L ln(L/L0)

1/2) vs.
σ̃ ln(L/L1), where σ̃ = σ − 2, L0 = 2.9 and L1 = 3. (b)
χkL

−2 ln(L/L′
0) vs. σ for various L, with L′

0 = 2.9. The
scaled χk curves have a clear crossing point at σ = 2 as
demonstrated in both panel (b) and its inset.

single linear trajectory consistent with the typical BKT
divergence of ξ. For σ = 2, when sufficiently away from
Tc, the correlation length behaves seemingly like that for
σ = 3. However, as t approaches 0, the behavior of ξ
becomes increasingly different from SR cases and clearly
distinct from the exponential growth, suggesting a differ-
ent universality class. In contrast, the log-log plot in the
inset shows ξ can be well-described by an algebraic scal-
ing t−1.85. Note that ν = 1.85 slightly differs from the
central value of the FSS fitting results 1/ν = 0.50(3) but
is still within two error bars. The ξ growth for σ = 1.875
also follows a power-law behavior as t−1.62 with an ex-
ponent ν = 1.62 clearly different from that for σ = 2
(see SM [56]). These results strongly suggest that in-
stead of being BKT-type, the phase transition at σ = 2
is a second-order transition, thus precluding the scenario
proposed in Ref. [11].

The previous analysis demonstrates the logarithmic
behavior of ξ/L and χk in the low-T phase at σ = 2.
Hence, to further explore the low-T physics at σ = 2, we
fix the temperature at T = 1.0, which is below the crit-
ical point Tc(σ = 2) = 1.3671(4) but sufficiently higher
than the ground state, and study the behaviors of ξ and
χk as a function of σ. Fig. 4 (a) shows that the system
undergoes three phases as σ decreases. It first enters the
QLRO phase from the disordered paramagnetic phase via
a BKT transition at σ ≈ 4.0; as σ further declines, ξ/L
curves begin diverging near σ = 2, indicating the transi-
tion into LRO phases. We also plot χkL

−2 ln(L/L′
0) as
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a function of σ for various L in Fig. 4 (b), with a con-
stant L′

0 = 2.9. These curves exhibit an intersection at
σ = 2, consistent with theoretical predictions. A zoom-
in plot in the inset better displays this crossing. More-
over, considering the logarithmic corrections at σ = 2
and T < Tc, we conjecture the scaling of ξ near σ = 2 as
ξ = L ln(L/L0)

1
2 g(σ̃ ln (L/L1)), where σ̃ = σ − 2, g is an

universal scaling function and L0, L1 are unknown con-
stants. As shown in the inset, the scaled ξ data points
collapse on the same curve, further supporting the σ∗ = 2
scenario. See SM for more detail on the low-T proper-
ties [56]. Finally, in the thermodynamic limit, the mag-
netization density is finite in the LRO phase while van-
ishing in the QLRO phase, manifesting as a discontinuity
in the order parameter at σ = 2. The QLRO phase does
not exist at T = 1 when σ ≤ 2, inconsistent with the
predicted low-T behavior in Ref. [11].

Conclusion and Outlook.— Our results reveal that the
2D LR XY model enters a ferromagnetic phase at low
temperatures through a second-order transition for σ ≤
2; in other words, the threshold value is σ∗ = 2. The
low-T scaling behaviors are consistent with theoretical
predictions. The power-law growth of ξ near the critical
point further demonstrates that the phase transition at
σ = 2 is second-order, excluding the scenario predicted
in Ref [11]. Finally, for σ = 2 and T < Tc, the observed
multiplicative logarithmic corrections also indicate the
marginal nature of this point.

Preliminary investigations for the 2D LR Heisenberg
model demonstrate that the algebraic interaction would
induce a long-range ordered ferromagnet as long as σ ≤ 2,
while the system is in the disordered paramagnetic phase
for σ > 2 and T > 0 [57]. These combined messages
make us conjecture that, for all the O(N ) spin models,
including the Ising model that has been extensively in the
literature, the threshold value between the non-classical
and the SR regime is always σ∗ = 2 and, thus, the Sak’s
criterion is most probably irrelevant. Undergoing stud-
ies are taken to test our conjecture. The success of this
work suggests that, instead of simply improving over the
estimate of critical exponents, one can study the sys-
tem in an extended parameter space–e.g., the geometric
structures of the Ising model and the self-avoid random
walk (SAW), which corresponds to N → 0 limit of the
O(N ) spin model [58]. In addition, the topology of our
phase diagram differs from that of the LR quantum XXZ
chain [12, 59], which implies that the direct mapping [60]
might be invalid here, posing an open question about
the correspondence between LR classical and LR quan-
tum model. Finally, we emphasize that our work may be
of timely application in cutting-edge experiments, like
trapped ions and Rydberg-atom arrays, that are of LR
interactions.
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ical Review Letters 109, 025303 (2012).

[4] M. Saffman, T. G. Walker, and K. Mølmer, Reviews of
Modern Physics 82, 2313 (2010).

[5] M. Lu, N. Q. Burdick, and B. L. Lev, Physical Review
Letters 108, 215301 (2012).

[6] P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild,
A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch,
Nature 491, 87 (2012).

[7] O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gor-
shkov, M. D. Lukin, and V. Vuletić, Nature 502, 71
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89, 025703 (2002).

[29] T. Horita, H. Suwa, and S. Todo, Physical Review E 95,
012143 (2017).

[30] A. C. D. van Enter, Physical Review B 26, 1336 (1982).
[31] P. Grassberger, Journal of Statistical Physics 153, 289

(2013).
[32] T. Blanchard, M. Picco, and M. A. Rajabpour, Euro-

physics Letters 101, 56003 (2013).
[33] N. D. Mermin and H. Wagner, Physical Review Letters

17, 1133 (1966).
[34] P. Minnhagen, Reviews of Modern Physics 59, 1001

(1987).
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[42] F. Cescatti, M. Ibáñez-Berganza, A. Vezzani, and R. Bu-

rioni, Physical Review B 100, 054203 (2019).
[43] M. I. Berganza and L. Leuzzi, Physical Review B 88,

144104 (2013).
[44] A. Filinov, N. V. Prokof’ev, and M. Bonitz, Physical Re-

view Letters 105, 070401 (2010).
[45] E. Luijten and H. W. J. Blöte, Physical Review B 56,
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Supplemental Material for

“Two-dimensional XY Ferromagnet Induced by Long-range Interaction”

I. THE GROWTH OF THE CORRELATION LENGTH

In Fig. S1, we show the growth of the correlation length ξ to demonstrate the universalities for

different σ values, identifying the threshold between short-range and long-range universalities as

σ∗ = 2.

In Fig. S1(a), a semi-log plot of ξ versus b/
√
t is presented. Here, t = (T − Tc)/Tc and b =

1.25, 1.625 for σ = 3 and the nearest-neighbor (NN) case, respectively, while b = 1 for others. The

straight black line demonstrates that the correlation length follows ξ ∼ exp(b/
√
t) for σ = 3 and

the NN case, characterizing a typical BKT transition. Notably, the data collapse well, indicating

that both σ = 3 and NN cases belong to the universality class of the 2D short-range XY model.

Moreover, two curved lines, colored dark green and dark blue, indicate a power-law behavior for

σ = 2 and 1.875, respectively. This behavior can be seen more clearly in Fig. S1(b). Additionally,

as b/
√
t increases, the system size truncates the correlation length, resulting in plateaus.

As for Fig. S1(b), we present a log-log plot of ξ versus b2/t, where the y-axis represents the

square of b/
√
t, as in Fig. S1(a). The straight dark-green and dark-blue lines indicate a power-law

growth, ξ ∼ t−ν , for σ = 1.875 and 2, implying a continuous phase transition. Moreover, the slope

of these lines allows us to extract the critical exponent ν. Notably, these values are consistent with

those listed in our main text, supporting our assertion that σ∗ = 2.

II. LOW TEMPERATURE PROPERTIES

To explore the properties of the low-temperature phase, we conducted simulations for σ =

1.25, 1.75, 1.875, 2, 3 at β = 1, 2, 4, 8, where β is the inverse temperature. The σ = 3 case is

included for comparison. The behaviors of M2 and χk reveal the system’s ferromagnetic nature

and algebraically decaying correlation function at low temperatures, which we will elaborate on in

detail later. Additionally, we present some fitting details of ξ/L, simplifying our presentation to

fitting tables only for σ = 1.75 and 2 at β = 1 and 4.
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FIG. S1: The growth of the correlation length ξ with respect to the reduced temperature t = (T −Tc)/Tc is

shown for σ = 1.875 (green dots), 2 (blue dots), 3 (red dots), and the NN case (black dots). (a) The semi-

logarithmic plot of ξ versus b/
√
t, where b = 1 for σ = 1.875 and σ = 2, and b = 1.25 for σ = 3 and b = 1.625

for the NN case. The straight black line indicates exponential growth, suggesting that ξ ∼ exp(b/
√
t) for

σ = 3 and the NN case. (b) The log-log plot of ξ versus b2/t. The straight dark-green and dark-blue lines

indicate a power-law growth, with ξ ∼ t−ν for σ = 1.875 and 2, respectively.

A. The existence of long-range order

In this subsection, we demonstrate that for σ ⩽ 2, the system exhibits spontaneous magnetiza-

tion, and continuous symmetry is broken. The fitting of M2 can reveal the presence of spontaneous

magnetization. If it does not exist, M2 exhibits a power-law behavior as a function of L, allowing

us to fit M2 using the formula:

M2 = L−ηℓ(a0 + b1L
−ω) (S1)

where ηℓ is a special exponent in low temperature, which only depends on σ, and we reckon that

ηℓ = 2 − σ, which will be explained in the next subsection. Otherwise, M2 can be fitted to the

formula:

M2 = g0 + L−ηℓ(a0 + b1L
−ω), (S2)

where g0 represents the strength of spontaneous magnetization and the term b1L
−ω is related to

finite-size correction. Specifically, for σ = 2 at low temperatures, as mentioned in the main text and

the subsequent subsection, χk exhibits logarithmic behavior: χk ∼ a0L
2(lnL+ c1)

η̂ℓ . According to

the fitting results presented in the following subsection, we assume η̂ℓ = −1. Thus, in the absence
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of spontaneous magnetization and in consistency with χk, M
2 is expected to behave as:

M2 = a0(lnL+ c1)
η̂ℓ , (S3)

otherwise should behave as:

M2 = g0 + a0(lnL+ c1)
η̂ℓ . (S4)

We first attempted to fit M2 using Eq.(S1) and Eq.(S3) for σ < 2 and σ = 2, respectively.

However, we were unable to obtain appropriate fitting results. In other words, regardless of how

we adjusted ω and Lmin (the minimal L used for fitting), χ2/DF remained large (≫ 1), where DF

refers to the degree of freedom in the fitting. Subsequently, for σ < 2 and σ = 2, we proceeded to

fit M2 using Eq.(S2) and Eq.(S4), with the results shown in Table SI and Table SII, respectively.

Figure S2(a) clearly demonstrates the fitting results for M2 for σ = 1.25, 1.75, 1.875, and 2 at

different temperatures, where high fitting quality suggests the existence of spontaneous magneti-

zation at low temperatures. For comparison, we also fit M2 to Eq.(S1) for the case of σ = 3, which

yielded satisfactory results. The improved fitting outcomes suggest the absence of spontaneous

magnetization. Figure S3 clearly shows the power-law relationship between M2 and L for the case

of σ = 3, consistent with the absence of spontaneous magnetization.

TABLE SI: Fits of M2 to Eq. (S2) for σ = 1.75

β Lmin g0 a0 b1 ω χ2/DF

1.0 128 0.50006(8) 0.1848(5) 0.37(1) 0.75 3.2/5

192 0.49997(9) 0.1855(6) 0.35(1) 0.75 2.0/4

256 0.4999(1) 0.1861(7) 0.33(2) 0.75 1.2/3

4.0 32 0.88938(2) 0.0453(1) 0.0356(5) 0.45 4.4/8

48 0.88936(2) 0.0453(1) 0.0353(7) 0.45 4.0/7

64 0.88938(2) 0.0452(2) 0.0359(9) 0.45 3.3/6

96 0.88939(3) 0.0452(2) 0.036(1) 0.45 3.2/5

128 0.88935(3) 0.0455(2) 0.034(1) 0.45 1.6/4

256 0.88933(6) 0.0456(5) 0.033(3) 0.45 1.5/3

B. The Goldstone mode

In this subsection, we demonstrate the algebraic correlation function in the low temperature,

i.e., g(x) = g0 + c · x−ηℓ , induced by the Goldstone mode excitation under continuous symmetry

breaking. It can be shown by theory and numerical results that ηℓ = 2− σ for σ < 2.
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FIG. S2: M2 versus L for σ = 1.25, 1.75, 1.875, 2 at different temperatures, i.e., β = 1, 2, 4, 8. The solid

lines represent the curves fitted to the data for the corresponding temperatures, and the fitting formulas are

given by Eq.(S2) and Eq.(S4), respectively, for σ < 2 and σ = 2. The dashed lines represent the final value

of M2 in the limit of infinite system size, as determined by the fitting results.

TABLE SII: Fits of M2 to Eq. (S4) for σ = 2

β Lmin g0 a0 c1 χ2/DF

1.0 128 0.241(2) 2.85(5) 5.4(1) 4.6/5

192 0.239(3) 2.90(7) 5.5(1) 3.7/4

256 0.240(4) 2.9(1) 5.5(2) 3.7/3

384 0.232(8) 3.1(2) 5.9(4) 2.2/2

4.0 64 0.8117(5) 0.92(1) 6.33(8) 3.3/7

96 0.8116(7) 0.92(1) 6.3(1) 3.3/6

128 0.812(1) 0.91(2) 6.3(1) 3.1/5

192 0.812(1) 0.92(3) 6.4(2) 3.1/4
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FIG. S3: M2 (a) and ξ/L (b) versus L for σ = 3. Double logarithmic coordinates are adopted in (a), and

only the horizontal axis is on a logarithmic scale in (b).

Theoretical derivation. Hamiltonian in momentum-space is written as:

βH =

∫
ddq

(2π)d
(
t

2
+

K2

2
q2 +Kσq

σ)Ψ(q) ·Ψ(−q)+

∫
ddq1
(2π)d

∫
ddq2
(2π)d

∫
ddq3
(2π)d

uΨ(q1) ·Ψ(q2) ·Ψ(q3) ·Ψ(−q1 − q2 − q3).

(S5)

For σ < 2, Kσq
σ is the leading term, and hence K2

2 q2 can be ignored. Also, for the simplicity of

computation, the Hamiltonian is transformed to:

βH =

∫
ddq

(2π)d
Kσq

σΨ(q) ·Ψ(−q) +

∫
ddx(

t

2
Ψ2 + uΨ4). (S6)

In the last subsection, we have shown that there exist spontaneous magnetization and continuous

symmetry breaking in low temperatures for σ ⩽ 2. Thus in the following, we adopt saddle point

approximation and consider small fluctuation around it. Under saddle point approximation, the

Hamiltonian becomes:

βH = V (
t

2
Ψ

2
+ uΨ

4
), (S7)

where V refers to the system volume. Thus,

Ψ =




0 , t > 0
√

−t
4u , t < 0

. (S8)

Since only the transverse fluctuation matters, we ignore the longitudinal fluctuation and treat the

transverse fluctuation as a small amount. The spin field is written as (for simplicity, only consider

the case of d = 2):

Ψ(x) = ΨL(x)êl +ΨT (x)êt = Ψêl +ΨT (x)êt. (S9)
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Its Fourier transformation is:

Ψ(q) =

∫
ddx Ψ(x)e−iq·x = (2π)dδ(q) ·Ψ · êl +ΨT (q) · êt. (S10)

By substituting Eq. (S9), (S8), (S10) into Eq. (S6) (Note that all derivations are conducted under

the condition of low temperature, hence m =
√

−t
4u ) and simplifying (Neglect small terms of third

order and higher), we can obtain:

βH = V (
t

2
Ψ

2
+ uΨ

4
) +

1

V

∑

q

Kσq
σ · |ΨT (q)|2. (S11)

Thus the probability of a particular fluctuation configuration is given by:

P ({ΨT (q)}) ∝ e−βH ∝
∏

q

exp (
Kσ

V
qσ · |ΨT (q)|2). (S12)

Hence, the two-point correlation function in the momentum space is:

⟨ΨT (q)ΨT (q
′)⟩ = δq,−q′V

2Kσqσ
, (S13)

and in the real space is:

⟨ΨT (x)ΨT (x
′)⟩ = 1

V 2

∑

q,q′
⟨ϕ(q)ϕ(q′)⟩eiq·x+iq′·x′

=
1

V

∑

q

eiq(x−x′)

2Kσqσ

=
1

2Kσ

∫
ddq

(2π)d
eiq(x−x′)

qσ
.

(S14)

Consider the integration (Note that our derivation is under the condition of σ < 2 = d):

∫
ddq

(2π)d
eiq·x

qσ
=

∫
dΩ

(2π)d

∫
dq

eiqx cos θ

qσ−d+1

= xσ−d

∫
dΩ

(2π)d

∫
dy

eiy cos θ

yσ−d+1

∼ xσ−d.

(S15)

The correlation function:

g(x) = ⟨Ψ(x) ·Ψ(0)⟩

= Ψ
2
+ ⟨ΨT (x) ·ΨT (0)⟩

= Ψ
2
+ c · xσ−d.

(S16)

Hence, for σ < 2 at low temperatures, the correlation function takes on an algebraic form: g(x) =

g0 + c · x−ηℓ , with ηℓ = 2− σ. It’s noteworthy that the derivation above is applicable only at low
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k

L

1
2
4
8
βc
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FIG. S4: χ̃k versus L at different temperatures for σ = 1.25, 1.75, 2, and 3. χ̃k represents χk multiplied

by a constant to make the first data point at different temperatures (L = 64) overlap. Black and red lines

represent the fitting curves of data at β = 4 and β = βc, respectively. The insets plot the relationship between

χ̃kL
2−ηℓ and L (in (a), (b), (c)) and the relationship between χ̃k ln (L/L0) and L (in (d)), respectively. At

low temperatures, the curves flatten out and finally converge to a constant, indicating the scaling behavior:

χk ∼ L2−ηℓ for σ < 2 and χk ∼ ln (L/L0) for σ = 2. However, for σ = 1.75, 1.875, and 2, χk exhibits clearly

different scaling behaviors at the critical point and low temperatures.

temperatures. Near or at the critical temperature, the system exhibits little to no spontaneous

magnetization, and fluctuations play a significant role that cannot be considered negligible anymore.

Therefore, the correlation function may exhibit different behaviors at low temperatures compared

to the critical temperature, as will be seen in the subsequent analysis of χk.

Fitting of χk. Considering the correlation function has the form: g(x) = g0 + c · x−ηℓ , then it
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can be shown that χk ∼ Ld−ηℓ :

χk = Ld|mk|2

=
Ld

L2d
(
∑

j

Sj · eik·xj )(
∑

i

Si · e−ik·xi)

=
1

Ld

∑

ij

(Si · Sj) · eik·(xj−xi)

=
1

Ld

∑

i

∑

x

g(x)eik·x =
∑

x

g(x)eik·x =
∑

x

x−ηℓeik·x ∝ Ld−ηℓ .

Therefore, through χk, we can study the exponent ηℓ. Figure S4 plots χ̃k versus L, where χ̃k rep-

resents χk multiplied by a constant to make the first data point (L = 64) at different temperatures

overlap.

As shown in Fig. S4, the relationship between χk and L gradually approaches a power-law

behavior, which indicates an algebraic decay of correlation function: g(x) = g0+c ·x−ηℓ . Moreover,

χ̃k at different low temperatures almost remain overlapped, and small deviations may come from

the finite size effect, suggesting that ηℓ only depends on σ. For σ = 1.75, 1.875 and 2, χ̃k at the

critical point clearly separates with that at low temperatures, which indicates that the power-law

decaying term of the correlation function has different exponents for low temperatures and the

critical temperature. These numerical results are consistent with our theoretical derivation. To

further support our theory, for σ < 2, we fit the data to the formula:

χk = L2−ηℓ(a0 + b1L
−ω) + c, (S17)

where the constant term comes from the analytic part of the free energy and ηℓ is fixed at 2 − σ.

During the fitting, it’s observed that c always stays very close to 0. Thus we also try to fix c = 0

in the fitting. Some results are presented in Table SIII. Actually for σ = 1.25, 1.75, 1.875, data at

all temperatures (β = 1, 2, 4, 8) can be fitted well to Eq. (S17).

For σ = 2, in Eq. (S5), two terms, i.e., K2
2 q2 and Kσq

σ, become degenerate which may cause

logarithmic corrections. So, we first attempt to use χk = L2(ln (L/L0))
η̂ℓ(a0 + b1L

−ω) for fitting.

Then we find the term b1L
−ω is redundant. After removing that term, we fit the data to the

formula:

χk = a0L
2(lnL+ c1)

η̂ℓ + c, (S18)

where c is also found to be very close to 0, it is fixed at 0 for the fitting. Some results are

displayed in Table SIV. It is apparent that at different temperatures (including β = 2, 8, which
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FIG. S5: L2/χk versus L for σ = 2 at β = 1, 2, 4, 8. The horizontal axis is on a logarithmic scale. The solid

lines represent straight lines fitted to the data at corresponding temperatures. The good fit demonstrates

that L2/χk has a linear relationship with lnL. The inset plots data points at the critical temperature, and

its exponential growth behavior indicates a power-law relationship between L2/χk and L.

are not shown here), the value of η̂ℓ obtained from the fitting consistently hovers around -1. For

simplicity, we assume η̂ℓ precisely equals -1. Based on this assumption, we re-fit the data with

η̂ℓ fixed at -1, and the results are also presented in Table SIV. As indicated by the table, the

satisfactory fitting results support our hypothesis. Figure S5 visually demonstrates that at various

low temperatures, L2/χk and lnL have a linear relationship, specifically, L2/χk ∼ a lnL + b.

Consequently, χk ∼ a0L
2(lnL + c1)

−1. However, at the critical point, in contrast to the behavior

observed at low temperatures, L2/χk and L demonstrate a power-law relationship.

C. Fitting of ξ/L

The quantity ξ/L can further reveal the properties of low-temperature phase. In this subsection,

we provide a numerical estimate of ηℓ through the fitting of (ξ/L)2, and further demonstrate

system’s ferromagnetic nature at low temperature for the case of σ ⩽ 2.

As the system size increases, ξ/L quickly reduces to 0 for the disordered phase, converges to

a constant for the quasi-long-range-order phase, and diverges for the ferromagnetic phase. The
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TABLE SIII: Fits of χk to Eq. (S17) for σ = 1.75

β Lmin a0 b1 ω c χ2/DF

1.0 32 0.0100(1) 0.060(4) -0.69(2) -0.00016(2) 7.5/9

48 0.0097(2) 0.052(5) -0.64(3) -0.00013(2) 5.2/8

64 0.0094(2) 0.043(4) -0.58(4) -0.00010(3) 3.2/7

96 0.0096(4) 0.05(1) -0.62(6) -0.00012(3) 3.0/6

128 0.0095(5) 0.05(1) -0.6(1) -0.00012(5) 3.0/5

192 0.009(1) 0.03(1) -0.5(2) -0.0001(1) 2.6/4

64 0.00829(6) 0.032(1) -0.47(1) 0 7.2/8

96 0.00823(8) 0.030(2) -0.45(2) 0 6.0/7

128 0.0082(1) 0.027(2) -0.43(2) 0 4.7/6

192 0.0080(1) 0.023(2) -0.39(3) 0 2.8/5

256 0.0081(1) 0.026(4) -0.42(4) 0 2.4/4

4.0 32 0.00252(7) 0.0097(7) -0.57(3) -0.000036(8) 3.6/9

48 0.0025(1) 0.009(1) -0.55(5) -0.00003(1) 3.5/8

64 0.0025(1) 0.010(2) -0.59(7) -0.00004(1) 3.2/7

96 0.0023(2) 0.007(1) -0.43(9) -0.00001(2) 2.0/6

128 0.0024(2) 0.008(3) -0.5(1) -0.00003(2) 1.8/5

192 0.0020(9) 0.005(2) -0.3(2) 0.00000(5) 1.5/4

48 0.00213(2) 0.0071(3) -0.43(1) 0 6.3/9

64 0.00212(3) 0.0068(4) -0.42(2) 0 5.9/8

96 0.00206(2) 0.0058(3) -0.37(1) 0 2.1/7

128 0.00206(3) 0.0058(5) -0.37(2) 0 2.1/6

192 0.00202(5) 0.0051(6) -0.34(3) 0 1.5/5

insets of Figure 2 in the main text display the variation of (ξ/L)2 with respect to L. As mentioned

in the main text, ξ/L = 1/ [2L sin(|k|/2)]
√

⟨M2⟩/⟨M2
k ⟩ − 1. For σ < 2, where M2

k ∼ L−ηℓ and

M2 ∼ Const, then ξ/L ∼ Lηℓ/2. Therefore, we fit (ξ/L)2 to the formula:

(ξ/L)2 = Lηℓ(a0 + b1L
−1) + c, (S19)

where c comes from the analytic part of freedom energy, and b1L
−1 refers to the finite-size-correction

term. Then we find b1L
−1 is redundant, that is, removing the term merely changes the fitting

results. Thus we ignore the correction term b1L
−ω and fit (ξ/L)2 to the formula:

(ξ/L)2 = c+ aLηℓ (S20)

at β = 1, 2, 4, 8 for the cases of σ = 1.25, 1.75, 1.875. Here, c can be seen as a correction term with
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TABLE SIV: Fits of χk to Eq. (S18) for σ = 2

β Lmin η̂ℓ c1 a0 χ2/DF

1.0 48 -0.99(2) -0.8(1) 0.0108(7) 3.5/8

64 -0.98(3) -0.8(1) 0.011(1) 3.5/7

96 -0.99(5) -0.8(2) 0.011(1) 3.5/6

128 -0.94(6) -1.0(3) 0.009(1) 2.8/5

192 -0.9(1) -1.0(6) 0.009(3) 2.8/4

96 -1 -1.06(1) 0.01918(7) 4.0/7

128 -1 -1.06(2) 0.01919(9) 4.0/6

192 -1 -1.09(2) 0.01907(9) 2.0/5

256 -1 -1.10(3) 0.0190(1) 1.9/4

384 -1 -1.13(5) 0.0189(1) 1.5/3

4.0 32 -1.03(2) -0.5(1) 0.0063(4) 4.9/9

48 -1.05(4) -0.3(2) 0.0067(7) 4.6/8

64 -1.04(6) -0.4(3) 0.007(1) 4.6/7

96 -1.13(9) 0.1(5) 0.008(2) 3.5/6

128 -1.1(1) 0.1(7) 0.008(3) 3.5/5

192 -1.1(2) -0(1) 0.007(4) 3.4/4

32 -1 -0.57(1) 0.00587(2) 5.4/10

48 -1 -0.57(2) 0.00587(2) 5.4/9

64 -1 -0.58(2) 0.00585(3) 4.9/8

96 -1 -0.57(3) 0.00586(4) 4.8/7

128 -1 -0.60(4) 0.00583(5) 4.3/6

192 -1 -0.64(6) 0.00579(6) 3.5/5

256 -1 -0.61(8) 0.00582(8) 3.2/4

its exponent being −ηℓ. Table SV presents the estimates of ηℓ for different parameters. While for

σ = 2, M2
k ∼ [ln (L/L0)]

−1, M2 ∼ Const, then ξ/L ∼ [ln (L/L0)]
1/2. Hence (ξ/L)2 is fitted to:

(ξ/L)2 = a0(lnL+ c). (S21)

Fitting results are shown in Table SVI. Figures S6 and S3(b) illustrate the variation of (ξ/L)2 with

respect to L, as well as the fitting curves for σ = 1.25, 1.75, 1.875, 2, and 3. The different behaviors

of ξ/L for σ ≤ 2 and σ > 2 indicate distinct low-temperature characteristics. The diverging

behavior of ξ/L for σ ≤ 2 further demonstrates the ferromagnetic nature at low temperatures.
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FIG. S6: (ξ/L)2 versus L for σ = 1.25, 1.75, 1.875, 2 at β = 1, 2, 4, 8. Double logarithmic coordinates are

used in (a), (b), and (c), and only the horizontal axis is on a logarithmic scale in (d). The solid lines

represent fitting curves. The fitting formula is given by Eq. (S20) for σ < 2 and Eq. (S21) for σ = 2. From

the graph, it is observed that as L increases, (ξ/L)2 tends to diverge, following a power-law behavior for

σ < 2 and a logarithmic behavior for σ = 2. Error bars are within symbols if not visible.

TABLE SV: Estimates of ηℓ for different parameters are provided. The fitting formula used is Eq.

(S20). The data in the ’low-T’ column combines the data from the previous four temperatures.

σ β = 1 β = 2 β = 4 β = 8 low-T theory

1.25 0.751(3) 0.754(4) 0.751(5) 0.743(7) 0.747(7) 0.75

1.75 0.237(6) 0.247(3) 0.253(3) 0.250(4) 0.250(4) 0.25

1.875 0.098(8) 0.121(8) 0.123(7) 0.121(9) 0.122(9) 0.125

III. PHASE TRANSITION INDUCED BY VARYING σ AT LOW TEMPERATURE

NEAR σ = 2

As shown in the phase diagram (Figure 1 in the main text), varying σ at low temperatures

(T ) leads to a transition at σ = 2, as illustrated in Figure 4 of the main text. In this section, we

apply the previously conjectured scaling forms of χk and ξ/L at σ = 2 to fit the critical σ at a low
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TABLE SVI: Fits of (ξ/L)2 to (S21) for σ = 2

β Lmin c a0 χ2/DF

1.0 128 0.29(5) 0.503(4) 6.3/6

192 0.33(6) 0.500(4) 5.2/5

256 0.41(7) 0.494(5) 3.2/4

4.0 64 -0.38(2) 1.922(4) 4.3/9

96 -0.37(2) 1.918(4) 3.6/8

128 -0.38(3) 1.920(6) 3.5/7

192 -0.39(4) 1.923(7) 3.3/6

256 -0.35(5) 1.916(9) 2.5/5

temperature (β = 1), similarly to fitting the critical temperature.

As mentioned previously, due to ηℓ = 0 in the case of σ = 2, there are certain distinctive

characteristics, e.g., χk ∝ 1/ ln (L/L0), ξ/L ∝ (ln (L/L0))
1
2 , which were fitted in the last section.

In what follows, we introduce the correction form and fit χk and ξ/L, respectively.

Fitting of χk. Near σ = 2, we propose:

χk =
L2

ln (L/L0)
g(σ̃ ln (L/L1)

ŷσ , uLyu). (S22)

where σ̃ = σ−σc
σc

, and uLyu represents the irrelevant term. After a Taylor expansion, the specific

fitting formula is:

χk =
L2

ln (L/L0)
[a0 + b1σ̃ ln (L/L1)

ŷσ + c1L
y1 ], (S23)

where y1 < 0, is the exponent for the irrelevant term. According to the fitting of χk at β = 1 in

the last section (Table SIV), L0 = e1.1. We try different values of y1 during the fitting process, and

the best results are shown in Table SVII. According to the fitting results, the data points collapse

onto a single curve in Fig. S7.

Fitting of ξ/L. Similarly, near σ = 2, we propose:

(ξ/L)2 = ln (L/L0)g(σ̃ ln (L/L1)
ŷσ , uLyu). (S24)

After a Taylor expansion, the specific fitting formula is:

(ξ/L)2 = ln (L/L0)(a0 + b1σ̃ ln (L/L1)
ŷσ + b2σ̃

2 ln (L/L1)
2ŷσ + b3σ̃

3 ln (L/L1)
3ŷσ + c1L

y1), (S25)

where L0 = e−0.33, as determined by the previous fitting results (Table SVI). The fitting results are

presented in Table SVIII. According to these results, the data points collapse onto a single curve

in Fig. S8.



14

0.005

0.02

0.035

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

χ̃
k

σ̃ ln (L/L1)
ŷσ
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FIG. S7: Data collapse according to the fitting form in Eq. (S23): χ̃k = ln (L/L0)
L2 χk − c1L

y1 . The values for

each parameter are listed in Table SVII.
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FIG. S8: Data collapse according to the fitting form in Eq. (S25): (ξ̃/L)2 = ln (L/L0)
−1 · (ξ/L)2 − c1L

y1 .

The values for each parameter are listed in Table SVIII.

As shown in the tables, σc obtained from the fitting is always around 2, which demonstrates

the consistency of our results.
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TABLE SVII: Fits of χk to (S23), y1 chosen to be -1

Lmin σc L1 ŷσ a0 b1 c1 χ2/DF

16 2.006(1) 5.4(3) 0.91(2) 0.01931(3) 0.0176(7) -0.0198(5) 77.4/72

32 2.005(1) 6.2(7) 0.87(3) 0.01926(5) 0.019(1) -0.018(1) 65.6/65

64 2.007(2) 6(1) 0.88(5) 0.01935(8) 0.019(2) -0.023(3) 52.7/52

128 2.005(3) 10(3) 0.79(8) 0.0193(1) 0.024(4) -0.017(8) 42.6/43

256 2.011(6) 3(5) 1.0(3) 0.0196(2) 0.01(1) -0.05(2) 29.5/30

TABLE SVIII: Fits of ξ/L to (S25), y1 chosen to be -1

Lmin σc L1 ŷσ a0 b1 b2 b3 c1 χ2/DF

32 1.992(1) 6.3(5) 0.96(3) 0.511(1) -0.58(3) 0.52(7) -0.28(6) -1.12(3) 67.9/63

64 1.990(1) 6(1) 1.00(5) 0.515(2) -0.54(6) 0.4(1) -0.21(8) -1.27(8) 45.6/50

128 1.985(2) 10(2) 0.89(6) 0.522(3) -0.7(1) 0.8(2) -0.5(2) -1.8(2) 32.0/41

256 1.989(3) 3(3) 1.1(2) 0.516(5) -0.4(2) 0.2(2) -0.1(1) -1.1(5) 19.1/28

IV. THE PROPERTIES OF THE SPECIFIC HEAT-LIKE QUANTITY

In Fig. S9, we plot the specific heat-like quantity CNN versus temperature T for σ = 1.25, 1.75, 2

and 3. Here, the quantity is defined as

CNN = L2
(
⟨ε2⟩ − ⟨ε⟩2

)
, (S26)

where the nearest-neighbor energy defined as ε = L−2
∑

⟨ij⟩ Si · Sj . Noting the computational

complexity in measurements arising from long-range interactions, we only compute the energy of

nearest neighbors.

We can see that the behaviors are slightly different for σ ≤ 2 and σ > 2. For σ = 1.25, 1.75 and

2, the peaks are sharper than in the σ = 3 case, which characterizes a continuous phase transition.

In contrast, the peak is smoother for σ = 3, indicating a BKT phase transition. Thus, this implies

that a continuous phase transition occurs for σ ≤ 2, while a BKT phase transition occurs for σ > 2.
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FIG. S9: The plot of CNN versus T is shown for σ = 1.25 (a), σ = 1.75 (b), σ = 2 (c), and σ = 3 (d). The

sharp peaks for σ ≤ 2 indicate a second-order phase transition. In contrast, the peak for σ = 3 appears

smoother, indicating a BKT phase transition.


