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Abstract

In recent years, a lot of effort has been put in describing the hydrodynamic behavior of in-
tegrable systems. In this paper, we describe such picture for the Volterra lattice. Specifically,
we are able to explicitly compute the susceptibility matrix and the current-field correlation
matrix in terms of the density of states of the Volterra lattice endowed with a Generalized
Gibbs ensemble. Furthermore, we apply the theory of linear Generalized Hydrodynamics
to describe the Euler scale behavior of the correlation functions. We anticipate that the
solution to the Generalized Hydrodynamics equations develops shocks at ξ0 “ x

t ; so this
linear approximation does not fully describe the behavior of correlation functions. Intrigued
but this fact, we performed several numerical investigations which show that, exactly when
the solution to the hydrodynamic equations develops shock, the correlation functions show
an highly oscillatory behavior. In view of this empirical observation, we believe that at this
point ξ0 the diffusive contribution are not sub-leading corrections to the ballistic transport,
but they are of the same order.

1 Introduction

In recent years, a lot of effort has been put in describing the hydrodynamic behavior of integrable
systems, i.e. dynamical system whose evolution can be explicitly computed in terms of the initial
data. Specifically, it has been a big mathematical challenge to fully describe the correlation
functions of such integrable models. Recently, physicists have introduced a new theory that
aims to describe the behavior of such functions, the so-called Generalized Hydrodynamics [1].
The underline idea of this theory is to obtain a set of hydrodynamic equations describing the
macroscopic evolution of the considered medium; those equations also describes the evolution of
the correlation functions.

Despite not being fully mathematically rigorous, using this theory H. Spohn was able to
describe the behavior of the correlation functions for the Toda lattice [39, 40, 42]. His results
were confirmed by comparing the prediction of the generalized hydrodynamics with numerical
simulations, see [31].

H. Spohn was able to carry out his computation relay on results from Random Matrix theory
(RMT). In particular, he was able to describe the linear approximation of the correlation func-
tion of the Toda lattice, enforcing its relation to the so called Real β ensemble, a random matrix
ensemble whose incluse as a special case the Gaussian β ensemble [6], see also [29]. This is not a
unique feature of the Toda lattice and the Real β ensemble. Indeed, after Spohn breakthrough,
several authors enforced this idea in order to describe statistical properties of the dynamical
systems at hand. For example, in [20], the authors were able to describe the density of states
of the Ablowitz-Ladik lattice in terms of the one of the circular β ensemble [26], independently
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1 INTRODUCTION 2

Spohn obtained an analogous result [41]. In [21,33], the authors obtained a large deviation prin-
ciple linking the Toda lattice and the Ablowitz-Ladik lattice with the Real β ensemble and the
Circular β ensemble respectively. Another interesting result in this direction is [17], in this paper
the authors established connections between the classical Gibbs ensemble for the Exponential
Toda lattice and the Volterra lattice with the Laguerre ensemble [6] and the Antisymmetric
β-ensemble [7], respectively. Finally, we want to mention of the work [18], where the authors
computed explicitly the correlation function for the short range harmonic chain; they were also
able to describe the long time asymptotic of those correlations in great details. Finally, we notice
that the theory of Generalized Hydrodynamics has been used also to describe the soliton gas
picture for several integrable PDE models, see [2, 5, 8–10,16].

In this paper, we consider the Volterra lattice [36] and we compute the susceptibility matrix
and the current-field correlation matrix. Furthermore, we apply the theory of Generalized hydro-
dynamics to describe the Euler scale behavior of the correlation functions. We anticipate that
the solution to the differential equations describing the Euler scale dynamics develops shocks for
some explicit value ξ0 “ x

t ; intrigued by this fact, we perform several numerical experiments to
investigate such behavior.

The Volterra lattice, also known as the discrete KdV equation, describes the motion of 2N
particles on the line with equations

d

dt
aj ” 9aj “ aj paj`1 ´ aj´1q , j “ 1, . . . , 2N. (1.1)

It was originally introduced by Volterra to study population evolution in a hierarchical system
of competing species. It was first solved by Kac and Van Moerbeke in [25] using a discrete
version of inverse scattering due to Flaschka [11]. Equations (1.1) can be considered as a finite-
dimensional approximation of the Korteweg–de Vries equation. The phase space is R2N

` and
we consider periodic boundary conditions aj “ aj`2N for all j P Z. The Volterra lattice is
a reduction of the second flow of the Toda lattice [25]. Indeed, the latter is described by the
dynamical system

9aj “ aj
`

b2j`1 ´ b2j ` aj`1 ´ aj´1

˘

, j “ 1, . . . , 2N,

9bj “ ajpbj`1 ` bjq ´ aj´1pbj ` bj´1q, j “ 1, . . . , 2N,

and equations (1.1) are recovered just by setting bj ” 0. The Hamiltonian structure of the
equations follows from the one of the Toda lattice. On the phase space R2N

` we introduce the
Poisson bracket

taj , aiuVolt “ ajaipδi,j`1 ´ δi,j´1q

and the Hamiltonian H1 “
ř2N

j“1 aj so that the equations of motion (1.1) can be written in the
Hamiltonian form

9aj “ taj , H1uVolt . (1.2)

An elementary constant of motion for the system is H0 “
ś2N

j“1 aj which is independent of
H1. The Volterra lattice is a completely integrable system, and it admits several equivalent Lax
representations, see e.g. [25,36]. The classical one reads

9L1 “ rA1, L1s ,

where

L1 “

2N
ÿ

j“1

aj`1Ej`1,j ` Ej,j`1,

A1 “

2N
ÿ

j“1

paj ` aj`1qEj,j ` Ej,j`2 ,
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where we define the matrix Er,s as pEr,sqij “ δirδ
j
s and Ej`2N,i “ Ej,i`2N “ Ej,i. There exists

also a symmetric formulation due to Moser [36],

9L2 “ rA2, L2s

L2 “

2N
ÿ

j“1

?
ajpEj,j`1 ` Ej`1,jq ,

A2 “
1

2

2N
ÿ

j“1

?
ajaj`1pEj,j`2 ´ Ej`2,jq ,

which assumes that all aj ą 0. Furthermore, as it was noticed in [17], there exists also an
antisymmetric formulation for this Lax pair, indeed a straightforward computation yields

Proposition 1.1. Let aj ą 0 for all j “ 1, . . . , 2N . Then, the dynamical system (1.1) admits
an antisymmetric Lax matrix L3 with companion matrix A3, namely the equations of motion are
equivalent to 9L3 “ rA3, L3s with

L3 “

2N
ÿ

j“1

?
ajpEj,j`1 ´ Ej`1,jq, (1.3)

A3 “
1

2

2N
ÿ

j“1

?
ajaj`1pEj`2,j ´ Ej,j`2q.

In view of the Lax representation L3 ” L, we deduce that tQrnsuNn“1 “ tTr
`

L2n
˘

uNn“1 are
constants of motion for the system, or conserved field, i.e. d

dtTr
`

L2n
˘

“ 0. We notice that
for k P N Tr

`

L2k`1
˘

” 0 in view of the antisymmetric property of the matrix L, and that
2H1 “ Qr1s.

Since also H0 is conserved, we define

Qr0s “
1

2
lnpH0q ,

and the local conserved fields Qrns

j j “ 1, . . . , N as

Q
rns

j “ p´1qnL2n
j,j n “ 1, . . . , N , Q

r0s

j “
1

2
lnpajq . (1.4)

To compute the correlation functions, we must consider the currents related to the locally
conserved field, specifically

d

dt
Q

rns

j “
p´1qn

2

`

L2n
j,j`2

?
ajaj`1 ´ L2n

j,j´2
?
aj´1aj´2

˘

, n “ 1, . . . , N (1.5)

thus defining

J
rns

j “
p´1qn

2

`

L2n
j,j`2

?
ajaj`1 ` L2n

j´1,j`1
?
aj´1aj

˘

, n “ 1, . . . , N (1.6)

we can rewrite (1.5) as

d

dt
Q

rns

j “ J
rns

j ´ J
rns

j´1 , n “ 1, . . . , N

we notice that L2n
j´1,j`1

?
aj´1aj is basically a boundary term, that allows us to write (1.5) in a

compact form.
For n “ 0 we can define
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J
r0s

j “
1

2
paj`1 ` ajq ,

and we can cast the evolution for Qr0s

j as

d

dt
Q

r0s

j “ J
r0s

j ´ J
r0s

j´1 .

Remark 1.1. We notice that

J
r0s

j “ ´
1

2
Q

r1s

j`1 ,

thus also J r0s

j is a locally conserved field.

Analogously to the conserved fields, we define the total current J rns “
řN

j“1 J
rns

j for n “

1, . . . , N .

1.1 Generalized Gibbs Ensemble

We introduce the generalized Gibbs ensemble for the Volterra lattice (1.1) following [17,32] as

dµVoltpaq “
1

ZVolt,1
N pβ, V q

2N
ź

j“1

a
β{2´1
j 1ają0e

TrpV pLpaqqda, β ą 0, (1.7)

where V : R Ñ R is a polynomial of the form V pxq “ p´1qℓ`1cℓx
2ℓ `

řℓ´1
j“1 cjx

2j , ℓ ě 1, cℓ ą 0,
and

ZVolt,1
N pβ, V q “

ż

R2N
`

2N
ź

j“1

a
β{2´1
j 1ają0e

TrpV pLqqda ă 8 . (1.8)

We recover the standard Gibbs ensemble setting V pxq “ x2{2, in this case the variables aj
are independent and identically distributed according to a random variables with probability
density function fβpxq

fβpxq “
xβ{2´1e´x

Γpβ{2q
,

which is just a scaled χ2 distribution with parameter β. In this case, the partition function
can be computed explicitly:

ZVolt,1
N pβ, x2{2q “ Γpβ{2q2N .

For future computation, it is useful to represent the previous expressions in terms of the variables
txju

2N
j“1 defined as x2j “ aj , such that xj P R`, j “ 1, . . . 2N . In this new set of variables, we

can express the Gibbs measure (1.7) and its normalization (1.8) as

dµVoltpxq “
1

ZVolt,2
N pβ, V q

2N
ź

j“1

xβ´1
j 1xją0e

TrpV pLpx2qqqdx

ZVolt,2
N pβ, V q “

ż

R2N
`

2N
ź

j“1

xβ´1
j 1xją0e

TrpV pLpx2qqqdx ă 8

, β ą 0,

where we defined x2 “ px21. . . . , x
2
2N q. Furthermore, we notice that in the case V pxq “ x2

2 , the
random variables xj are distributed as 2N independent χ-distribution, i.e. their probability
density function is of the form gβpxq
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gβpxq “
xβ´1e´x2

2´1Γ
´

β
2

¯ .

In this case is possible to compute the partition function as

ZVolt,2
N px2{2, βq “ 2´2NΓ

ˆ

β

2

˙2N

.

In this new coordinates, the Lax matrix L (1.3) as

L “

2N
ÿ

j“1

xjpEj,j`1 ´ Ej`1,jq,

The main analytic result of this paper is the explicit computation of the susceptibility matrix
C P MatpR, N ` 1q and the charge-current static correlation matrix B P MatpR, N ` 1q in terms
of the density of states σβ,V of the Volterra lattice endowed with the probability distribution
dµVolt (1.7). The matrices C,B are defined as

Cm,n “ lim
NÑ8

1

2N
Cov

´

Qrns;Qrms
¯

, Bn,m “ lim
NÑ8

1

2N
Cov

´

Qrns; J rms
¯

, m, n “ 0, . . . , N ,

(1.9)
where the covariance

Cov pf ; gq “ E1 rfgs ´ E1 rf sE1 rgs ,

E1 r¨s is the expected value taken with respect to the GGE (1.7) and we adopt the convention
that if we evaluate any quantity at time t “ 0, we omit the time dependence. We notice that
in [32], the authors showed how to compute the correlation matrix C (1.9) for the Volterra lattice
in terms of the Free energy (2.1).

The density of state σβ,V is the probability distribution on R defined as the weak limit of

lim
NÑ8

2N
ÿ

j“1

δ´iwj pxq á σβ,V ,

where ´iwj are the eigenvalues of the lax matrix L (1.3), and δypxq is the delta function centered
at y. Specifically, we can prove the following

Theorem 1.2. Consider the Lax matrix L (1.3) endowed with the GGE (1.7). Define the
susceptibility matrix C and the charge-current correlation matrix B as in (1.9). Then,

C0,0 “
κ2

2
xσβ,V pr1s

dr
q2y ,

C0,n “ Cn,0 “ κxσβ,V r1s
dr

´

“

w2n
‰dr

´ qn r1s
dr

¯

y , n “ 1, . . . , N

Cm,n “ 2xσβ,V

´

“

w2m
‰dr

´ qmr1sdr
¯ ´

“

w2n
‰dr

´ qnr1sdr
¯

y m,n “ 1, . . . , N .

B0,n “ Bn,0 “ ´
1

2
Cn,1 , n “ 0, . . . , N

Bm,n “ ´
2

κ
xσβ,V pveff ´ q1q

“

w2m ´ qm
‰dr “

w2n ´ qn
‰dr

y

Here xϕy “
ş

R ϕpxqdx, σβ,V “ Bβpβρβ,V q, where the derivative is understood in week sense,
and ρβ,V is the minimizer of the following functional
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Fpβ, V qrρs “ ´
β

2

ż ż

R2
`

lnp|x2 ´ y2|qρpxqρpyqdxdy ´

ż

R`

V pixq ` V p´ixq ´ lnpxqρpxqdx

`

ż

R`

lnpρpxqqρpxqdx ,

here, V pxq is a polynomial of the form V pxq “ p´1qℓ`1cℓx
2ℓ `

řℓ´1
j“1 cjx

2j, ℓ ě 1, cℓ ą 0. The
dressing operator rψs

dr is defined as

rψs
dr

“ p1 ´ βTρβ,V q´1ψ, Tψpwq “

ż

R
lnp|w2 ´ z2|qψpzqdz , w P R . (1.10)

qm is the 2mth moment of σβ,V , i.e. qm “
ş

R`
σβ,V pwqw2mdw, veff “

rw2s
dr

r1s
dr and

κ “ Bβ2FVoltpβ, V q , FVoltpβ, V q “ ´ lim
NÑ8

1

2N
ln

`

ZVolt
N pβ, V q

˘

.

Remark 1.2. From the explicit expression of C,B the two matrices are symmetric, this is a
trivial fact for C due to its structure, but it is not for B.

The explicit computation of these two matrices allows us to apply the theory of generalized
Hydrodynamics and deduce the behavior of the space-time correlation functions at the Euler
scale. Specifically, we argue that defining

SN
m,npj, tq “ lim

NÑ8
Cov

´

Q
rms

j ptq;Q
rns

0 p0q

¯

,

its approximation on the Euler scale is

lim
NÑ8

SN
m,npj, tq

x“
j

2N
» Sm,npx, tq ,

where

Sm,npx, tq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

κ2

2 xσβ,V δpx` tpveff ´ q1qpκq´1q

´

pr1s
dr

q2
¯

y m,n “ 0 ,

xκσβ,V δpx` tpveff ´ q1qpκq´1q r1s
dr Ξrwnsy m “ 0 ,

xκσβ,V δpx` tpveff ´ q1qpκq´1q r1s
dr Ξrwmsy n “ 0 ,

2xΞrwmsΞrwnsσβ,V δpx` tpveff ´ q1qpκq´1qy m,n ‰ 0 ,

. (1.11)

and Ξϕ “ rϕ´ xσβ,V ϕys
dr. We anticipate that the function Sm,npx, tq is not continuous

for all px, tq; the two main reasons are that the density σβ,V has support just on the positive
real axis, and that the function T rw2spxq (1.10) is even. Intrigued by this fact, we performed
several numerical investigation to compare the numerical correlation functions and the prediction
obtained from the linearized Generalized Hydrodynamic (GHD). We extensively analyze them
in the last section of our paper, here we summarize our findings

• The GHD correctly predict the ballistic scaling of the correlation functions; i.e.

lim
NÑ8

SN
m,npj, tq „

1

t
f

ˆ

x´ vt

ct

˙

for some function f and constant v, c.
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• The approximation Sm,npx, tq is not continuous for x
t “ ξ0 “

q1´veffp0q

κ

• In a space-time neighbor of the points px, tq such that ξ0 “ x
t , i.e. where Sm,npx, tq is not

continuous, the numerical correlation functions show an highly oscillatory behavior.

The combination of these facts lead us to believe that, in order to obtain a more accurate
prediction, one has to consider also some diffusive effect as described in [37]. Specifically, we
believe that at the point ξ0 the diffusive effects are not a sub-leading correction to the transport
dynamics, but they are of the same order. We notice, that this is not the first time that such
effect has been noticed, see [28, 35,38]. Nevertheless, up to our knowledge, this is the first time
that such behavior is present in a classical integrable chain at equilibrium.

The manuscript is organized as follows. In section 2, we present the theoretical framework
that we exploit to prove Theorem 1.2. Specifically, we recall the results in [32], and we used
them to compute the susceptibility matrix C and the charge-current matrix B (1.9) in terms of
the free energy (2.1); furthermore, we formally describe the density of states of the model. In
section 3, we introduce the Antisymmetric Gaussian β ensemble in the high temperature regime;
this is a random matrix ensemble introduced by [7], we enforce several results related to this
ensemble in order to prove Theorem 1.2. In section 4, we prove Theorem 1.2. In section 5, we
apply the theory of generalized hydrodynamics to obtain the linear order approximation of the
correlation functions for the Volterra lattice. Finally, in section 6, we describe the numerical
results that we obtained and the procedure that we applied.

2 Theoretical Framework

In this section, we recall several known results that we use to prove Theorem 1.2. In particular,
we use the results in [21,32].

2.1 Average Conserved fields

In [32], the authors were able to compute the susceptibility matrix C (1.9) in terms of the free
energy of the model, which is defined as

FVoltpβ, V q “ ´ lim
NÑ8

1

2N
ln

´

ZVolt,2
N pβ, V q

¯

. (2.1)

Specifically, they were able to prove the following

Corollary 2.1 (cf. [32], Corollary 3.13). Consider Qrns

j (1.4), the Generalized Gibbs ensemble
dµVoltpaq (1.7), and the free energy FVoltpβ, V q (2.1). For any fixed n,m P N the following holds
true

lim
NÑ8

1

2N
E1

”

Qrns
ı

“ ´iBtFVoltpβ, V ` p´1qn`1itx2nq|t“0
,

lim
NÑ8

1

2N
E1

”

Qr0s
ı

“ ´BβFVoltpβ, V q

lim
NÑ8

1

2N
Cov

´

Qrns;Qrms
¯

“ Bt1Bt2FVoltpβ, V ` p´1qn`1it1x
2n ` p´1qm`1it2x

2mq|t1“t2“0
,

lim
NÑ8

1

2N
Cov

´

Qrns;Qr0s
¯

“ ´iBtBβFVoltpβ, V ` p´1qn`1itx2nq|t“0
,

lim
NÑ8

1

2N
Cov

´

Qr0s;Qr0s
¯

“ ´B2
βFVoltpβ, V q ,

where the expected value is taken with respect to the Generalized Gibbs ensemble dµVoltpaq

(1.7).
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We notice that the result in [32] is not stated in this way, but this form is more suitable for
our analysis.

2.2 Currents

To continue our analysis, we have to compute the average of the currents. This is usually a
difficult task since we do not have a clear connection between the currents averages and some
matrix model or the Gibbs ensemble, as in the case of the local conserved fields. Surprisingly,
in this case, as it happened for the Toda lattice , we can compute explicitly these quantities by
applying the same kind of idea as Spohn [39], and formalized in [32]. Specifically, we are able
to prove the following:

Lemma 2.2. Consider the Volterra lattice (1.1) endowed with the GGE (1.7), and define the
currents J rns as in (1.6), then for all fixed n P N

lim
NÑ8

1

2N
E1

”

J rns
ı

“ ´
1

2

ż β

0
Bt1Bt2FVoltpy, V ` it1x

2 ` p´1qn`1it2x
2nqdy , (2.2)

where FVoltpβ, V q is the free energy (2.1).

To prove this lemma, we need a corollary of result from [32] about the exponential decay
of spatial correlation functions of local function, which are functions on the phase space R2N

`

depending on a finite number of consecutive variables. To formally introduce this idea, we need
some definitions.

Given a differentiable function F : R2N
` Ñ C, we define its support as the set

suppF :“

"

ℓ P t1, . . . , 2Nu :
BF

Baℓ
ı 0

*

and its diameter as
diam psuppF q :“ sup

i,jPsuppF
d2N pi, jq ` 1,

where dkpi,jq is the periodic distance

dkpi,jq :“ min p|i´ j|, k ´ |i´ j|q .

Note that 0 ď d2N pi, jq ď N .
We say that a function F is local if diam psuppF q is uniformly bounded in N , i.e. there

exists a constant c P N such that diam psuppF q ď c, and c is independent of N .
Another important class of functions that we consider are the so-called cyclic functions,

which are a class of function invariant under left or right shift of the variables. More specifically,
for any ℓ P Z, and x “ px1, x2, . . . , x2N q P R2N

` we define the cyclic shift of order ℓ as the map

Sℓ : R2N Ñ R2N , pSℓxqj :“ xppj`ℓ´1q mod 2Nq`1.

For example S1 and S´1 are the left respectively right shifts:

S1px1, x2, . . . , x2N q :“ px2, . . . , x2N , x1q, S´1px1, x2, . . . , x2N q :“ px2N , x1, . . . , x2N´1q.

One can immediately check that for any ℓ, ℓ1 P Z:

Sℓ ˝ Sℓ1 “ Sℓ`ℓ1 , S´1
ℓ “ S´ℓ, S0 “ 1, Sℓ`2N “ Sℓ.

Consider now a function H : R2N
` Ñ C; we denote by SℓH : R2N

` Ñ C the function

pSℓHqpaq :“ HpSℓaq, @a P R2N
` .

Clearly Sℓ is a linear operator. We can now define cyclic functions:
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Definition 2.1 (Cyclic functions). A function H : R2N
` Ñ C is called cyclic if S1H “ H.

It is easy to construct cyclic functions as follows: given a function h : R2N
` Ñ C we define

the new function H by

Hpaq :“
2N´1
ÿ

ℓ“0

pSℓhqpaq.

H is clearly cyclic and we say that H is generated by h, we remark that these definition were
introduced in this context in [15,19].
Remark 2.1. According to the previous definition, the conserved field Qrns and the currents
J rns of the Volterra lattice are cyclic; furthermore, their seed are local functions. Given these
properties, we call these seeds Qrns

j local conserved fields and J rns

j local currents .
Given these definitions, we can state the following corollary:

Corollary 2.3 (Decay of correlations). Consider the Volterra lattice (1.1) endowed with the
GGE (1.7), and let I, J : R2N

` Ñ R be two local functions with the same support of diameter k.
Assume that they are integrable with respect to the GGE (1.7). Write 2N “ kM ` ℓ, and let
j P t1, . . . ,Mu. Then, there exists some 0 ă µ ă 1 such that

E1 rIpaqSjJpaqs ´ E1 rIpaqsE1 rSjJpaqs “ OpµdM pj,0qq .

With the previous corollary, we can prove Lemma 2.2

Proof of Lemma 2.2. First, we notice that in view of the cyclic property of the total currents

lim
NÑ8

1

2N
E1

”

J rns
ı

“ E1

”

J
rns

1

ı

.

Moreover, we have the following chain of equality

BβE1

”

J
rns

1

ı

“ Cov
´

J
rns

1 ;Qr0s
¯

“

2N
ÿ

j“1

Cov
´

J
rns

1 ;Q
r0s

j

¯

. (2.3)

Assume that the following equality holds

lim
NÑ8

Cov
´

J
rns

1 ;Q
rms

1

¯

“ lim
NÑ8

Cov
´

Q
rns

1 ; J
rms

2N´j`2

¯

, (2.4)

then we can recast (2.3) as

BβE1

”

J
rns

1

ı

“

2N
ÿ

j“1

Cov
´

Q
rns

1 ; J
r0s

2N´j`2

¯

Remark1.1
“ ´

1

2

2N
ÿ

j“1

Cov
´

Q
rns

1 ;Q
r1s

j

¯

.

Furthermore, we notice that limβÑ0 E1

”

J
rns

1

ı

“ 0, thus, applying Corollary 2.1, we deduce the
following

lim
NÑ8

1

2N
E1

”

J rns
ı

“ ´
1

2

ż β

0
Bt1Bt2FVoltpx, V ` it1x

2 ` p´1qn`1it2x
2nqdx .

So, we have just to show that (2.4) holds. Consider the following chain of equality

Cov
´

J
rns

j´1ptq ´ J
rns

j ptq;Q
rms

1 p0q

¯

“ ´
d

dt
Cov

´

Q
rns

j ptq;Q
rms

1 p0q

¯

“ ´
d

dt
Cov

´

Q
rns

j p0q;Q
rms

1 p´tq
¯

“ ´
d

dt
Cov

´

Q
rns

1 p0q;Q
rms

2N´j`2p´tq
¯

“ Cov
´

Q
rns

1 p0q; J
rms

2N´j`2p´tq ´ J
rms

2N´j`1p´tq
¯

.
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Setting Bjfpjq “ fpjq ´ fpj ´ 1q, we proved that

Bj

´

Cov
´

Q
rns

1 p0q; J
rms

2N´j`2p0q

¯

´ Cov
´

Q
rms

1 p0q; J
rns

j p0q

¯¯

“ 0 .

Thus, Cov
´

Q
rns

1 p0q; J
rms

2N´j`2p0q

¯

´Cov
´

Q
rms

1 p0q; J
rms

j p0q

¯

is independent of j, but all the func-
tion involved are local function, so we can apply Corollary 2.3 to show (2.4) holds. So we
conclude.

2.3 Density of states

Another fundamental quantity to compute the linearized correlation functions is the so called
density of states of the matrix L. We recall that it is defined as the weak limit of the empir-
ical spectral measures, i.e. as the probability measure dνVβ pxq such that for any bounded and
continuous function f

lim
NÑ8

1

N

ż

R`

N
ÿ

j“1

fpxqδwj pxq “

ż

R`

fpxqdνβ,V pxq , (2.5)

where ˘iwj are the eigenvalues of L (1.3), and we assume that the wj are positive and in
decreasing order. We notice that since the matrix L (1.3) is anti symmetric the eigenvalues are
purely imaginary number and they come in pair, meaning that if iwj is an eigenvalue then also
´iwj is also an eigenvalue.

Furthermore, in view of (2.5) and Corollary 2.1, we deduce that

lim
NÑ8

1

2N
E1

”

Qrns
ı

“ ´iBtFVoltpβ, V ` p´1qn`1itx2nq|t“0
“

ż

R`

w2ndνβ,V , @n P N , n ą 0 .

3 Antisymmetric Gaussian β ensemble in the high temperature
regime

The Antisymmetric β ensemble is a random matrix ensemble introduced by Dumitriu and For-
rester in [7]; it has the following matrix representation

Q “

¨

˚

˚

˚

˚

˚

˚

˝

0 y1
´y1 0 y2

. . . . . . . . .
. . . . . . y2N´1

´y2N´1 0

˛

‹

‹

‹

‹

‹

‹

‚

, (3.1)

and the entries of the matrix Q are distributed according to

dµAG “
1

ZAG
N prβ, V q

2N´1
ź

j“1

y
rβp2N´jq{2´1
j 1yją0 exppTr pV pQpyqqqqdy , (3.2)

here V pxq can be any function that makes (3.2) normalizable, but for our purpose we will consider
V pxq polynomial of the form V pxq “ p´1qℓ`1cℓx

2ℓ `
řℓ´1

j“1 cjx
2j , cℓ ą 0. For V pxq “ x2{2, it is

possible to explicitly compute the partition function ZAG
N prβ, x2{2q as

ZAG
N prβ, x2{2q “ 2´2N

2N
ź

j“1

Γ

˜

rβp2N ´ jq

4

¸
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We are interested in the high-temperature regime for this model, so we set rβ “
β
N , and we

rewrite the previous density as

dµAG “
1

ZAG
N

´

β
N , V

¯

2N´1
ź

j“1

y
βp1´

j
2N q´1

j exppTr pV pQpyqqqqdy yj ě 0 (3.3)

This regime was introduced in [13], where the authors computed the density of states for this
model in the case V pxq “ x2{2. In this particular regime, the partition function ZAG

N

´

β
N , x

2{2
¯

read

ZAG
N

ˆ

β

N
,
x2

2

˙

“ 2´2N
2N
ź

j“1

Γ

¨

˝

β
´

1 ´
j
2N

¯

2

˛

‚

Theorem 3.1. Consider the anti-symmetric β ensemble in the high temperature regime (3.3)
with potential V pxq “ x2{2. The the density of states ρβ,V pyq reads

ρβ,V pyq “
1

Γ
´

β
2 ` 1

¯

Γ
´

β
2

¯

|y|

|W 1´β
2

,0
p´y2q|2

, (3.4)

where Wκ,µ is the Whittaker function [4, 13.14].

The relation between this model and the Volterra lattice was underlined in [17,32]. Specifi-
cally, defining the free energy for this model as

FAGpβ, V q “ ´ lim
NÑ8

1

2N
ZAG
N

ˆ

β

N
, V

˙

, (3.5)

from [32, Remark 2.16] we deduce the following Corollary

Corollary 3.2. Consider Qrns

j (1.4), the Generalized Gibbs ensemble dµVoltpaq (1.7), the free
energy FVoltpβ, V q (2.1), and the free energy FAGpβ, V q (3.5), then for any fixed n,m P N the
following holds true

BβpβFAGpβ, V qq “ FVoltpβ, V q

lim
NÑ8

1

2N
E1

”

Qrns
ı

“ ´iBtBβpβFAGpβ, V ` p´1qn`1itx2nqq|t“0
,

lim
NÑ8

1

2N
E1

”

Qr0s
ı

“ ´B2
βpβFAGpβ, V qq

lim
NÑ8

1

2N
Cov

´

Qrns;Qrms
¯

“ Bt1Bt2BβpβFAGpβ, V ` p´1qn`1it1x
2n ` p´1qm`1it2x

2mqq|t1“t2“0
,

lim
NÑ8

1

2N
Cov

´

Qrns;Qr0s
¯

“ ´iBtB
2
βpβFAGpβ, V ` p´1qn`1itx2nqq|t“0

,

lim
NÑ8

1

2N
Cov

´

Qr0s;Qr0s
¯

“ ´B3
βpβFAGpβ, V qq ,

where the expected value is taken with respect to the Generalized Gibbs ensemble dµVoltpaq

(1.7).
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3.1 Density of states

The density of states ρβ,V for the Anti-symmetric β ensemble can be computed explicitly when
the potential V pxq “ x2{2. For general polynomial potential, we can characterize the density
of states for this ensemble using a Large Deviation principle (LDP) [3]. This is not surprising,
indeed for all the β ensembles this is true, see [12]. In our case, the LDP is a corollary of [14,
Theorem 1.2] in combination with the result of Dumitriu–Forrester [7], who were able to compute
explicitly the joint eigenvalue density of the Anti-symmetric Gaussian β ensemble

Theorem 3.3. Consider the anti-symmetric β ensemble (3.2), and let iwj j “ 1, . . . , N be the
first N ordered eigenvalues w1 ě w2 ě . . . ě wN ą 0 of the matrix Q (3.1) endowed with the
distribution (3.2), where the potential V pxq is such that

lim
|x|Ñ8

|V pxq|

lnp|x|q
“ `8 , (3.6)

then the probability density function (PDF) for w1, . . . , wN is given by

1

C
N,rβ,V

N
ź

j“1

w
rβ{2´1
j e

řN
j“1 V pwjq`V p´wjq

ź

1ďjăiďN

`

w2
j ´ w2

i

˘
rβ
dw .

For V pxq “ x2{2 , one can explicitly evaluate CN,β{N,x2{2 as

C
N,rβ,x2{2

“
1

N !

N
ź

j“1

Γ
´

1 `
j rβ
2

¯

Γ
´

p2j´1q rβ
4

¯

2Γ
´

1 `
rβ
2

¯

Furthermore, let qj j “ 1, . . . , N be the (positive) first component of the the independent
eigenvector corresponding to iwj. Then, the vector pq1, . . . , qN q has a Dirichlet distribution
DN rprβ{2qN s (here prβ{2qN denotes rβ{2 repeated N times).

We notice that the previous theorem is stated in [7] just for the case V pxq “ x2{2, but it
is easy to generalize for potential V pxq satisfying condition (3.6). One of the key step of the
proof of Dumitriu and Forrester is the explicit computation of the Jacobian of Φ : y Ñ pw,qq.
Specifically, they proved the following:

2N
ź

j“1

2y
rβj{2´1
j dy “

˜

c
rβ
q

N
ź

j“1

q
rβ´1
j dq

¸ ˜

ζN prβq

N
ź

j“1

w
rβ{2´1
j

ź

1ďjăiďN

`

w2
j ´ w2

i

˘
rβ
dw

¸

(3.7)

Where, c
rβ
q “ 2N´1Γ

´

1
2

rβN
¯

Γ
´

1
2

rβ
¯´N

which normalize to 1 the first term, and ζN prβq is
given by

ζN prβq “ C´1

N,rβ,x2{2

2N
ź

j“1

Γ

˜

rβj

2

¸

1

N !
. (3.8)

We are interested in the high temperature regime for this ensemble, so by setting rβ “ β{N , we
deduce the following

Corollary 3.4. In the same hypotheses as before, let rβ “ β{N , then the probability density
function (PDF) for w1, . . . , wN P R` is given by

1

CN,β{N,V

N
ź

j“1

w
β
2N

´1

j e
řN

j“1 V piwjq`V p´iwjq
ź

1ďjăiďN

`

w2
j ´ w2

i

˘

β
N dw .
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Furthermore, for V pxq “ x2{2 , one can explicitly evaluate CN,β{N,x2{2 as

CN,β{N,x2{2 “
1

N !

N
ź

j“1

Γ
´

1 `
jβ
2N

¯

Γ
´

p2j´1qβ
4N

¯

2Γ
´

1 `
β
2N

¯

Using the previous result combined with [14, Theorem 1.1] we deduce the following

Theorem 3.5. Consider the functional FAGpβ, V qrρs defined as

FAGpβ, V qrρs “ ´
β

2

ż ż

R2
`

lnp|x2 ´ y2|qρpxqρpyqdxdy ´

ż

R`

pV pixq ` V p´ixq ` lnp|x|qqρpxqdx

`

ż

R`

lnpρp|x|qqρp|x|qdx

(3.9)

here ρpxq is an absolutely continuous measure with respect to the Lebesgue one, has support on the
positive real line. The previous functional has a unique minimizer ρβ,V pxq, which is absolutely
continuous with respect to the Lebesgue measure. In particular, ρβ,V pxq is the density of states
of the Anti-symmetric β ensemble in the high temperature regime. Furthermore,

FAGpβ, V q “
1

2
FAGpβ, V qrρVβ s `

1

2

ż 1

0
ln

ˆ

β

2
x

˙

dx´
lnp2q

2
.

Proof. First from the definition of Free energy and (3.7) we deduce that

FAGpβ, V q “ ´ lim
NÑ8

1

2N
ln

`

ZAG
N pβ{N,V q

˘

“ ´ lim
NÑ8

1

2N
ln

ˆ

ζN

ˆ

β

N

˙˙

´ lim
NÑ8

1

2N
ln

˜

ż

w1ăw2ă...ăwn

N
ź

j“1

w
β
2N

´1

j e
řN

j“1 V piwjq`V p´iwjq
ź

1ďjăiďN

`

w2
j ´ w2

i

˘

β
N dw

¸

.

The first term can be explicitly computed as

´ lim
NÑ8

1

2N
ln

ˆ

ζN

ˆ

β

N

˙˙

(3.8)
“

1

2

ˆ
ż 1

0
ln

ˆ

β

2
x

˙

dx´ lnp2q

˙

. (3.10)

For the second term, we can apply theorem [14, Theorem 1.1], to deduce that

´ lim
NÑ8

1

2N
ln

˜

ż

w1ăw2ă...ăwn

N
ź

j“1

w
β
2N

´1

j e
řN

j“1 V piwjq`V p´iwjq
ź

1ďjăiďN

`

w2
j ´ w2

i

˘

β
N dw

¸

“
1

2
min

rρPPpR`q
FAGpβ, V qrrρs ,

where PpR`q is the space of probability measure with support on the positive real line and

rFAGpβ, V qrrρs “ ´
β

2

ż ż

R2
`

lnp|x2 ´ y2|qρpxqρpyqdxdy ´

ż

R`

pV pixq ` V p´ixq ´ lnpxqqρpxqdx

`

ż

R`

lnprρpxqqρpxqdx .

Combining the previous expression with (3.10), we deduce the claim.
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Remark 3.1. We notice that, following the same procedure as in [21,33], it would be possible to
obtain a LDP also for the Volterra lattice, and generalize Corollary 3.2 for a general potential
satisfying (3.6).

4 On the way to the matrix C and B

From Corollary 3.2, we know that

BβpβFAGpβ, V qq “ FVoltpβ, V q ,

which combined with Theorem 3.5 gives

FVoltpβ, V q “ Bβ

ˆ

β

2
FAGpβ, V qrρβ,V s

˙

`
lnpβq

2
´ lnp2q .

For the following computations, it is more convenient to absorb β into the measure ρ by setting
ϱ “ βρ, in this way we get the modified functional from βFAGpβ, V qrβ´1ϱs “ Frϱs ´ β ln pβq,
where

Frϱs “ ´
1

2

ż ż

R2
`

lnp|x2´y2|qϱpxqϱpyqdxdy´

ż

R`

pV pixq`V p´ixq´lnp|x|qqϱpxqdx`

ż

R`

lnpϱpxqqϱpxqdx ,

(4.1)
which has to be minimized under the condition that

ϱ ě 0

ż

R`

ϱpxqdx “ β .

We define the unique minimizer rϱ‹. Then

FVoltpβ, V q “
1

2
BβFrrϱ‹s ´ lnp2q ´

1

2
.

The minimizer ϱ‹ is characterized by the Euler-Lagrange equation

´

ż

R
lnp|x2 ´ y2|qϱ‹pyqdy ´ pV pixq ` V p´ixqq ` lnp|x|q ` lnpϱ‹q ` 1 ´ µpβ, V q “ 0 , (4.2)

where µpβ, V q is a function depending on β, V .
To obtain the free energy of the Volterra lattice, we differentiate the functional as

BβFrϱ‹s “ ´

ż

R2

lnp|x2 ´ y2|qBβϱ
‹pxqϱ‹pyqdxdy ´

ż

R
pV pixq ` V p´ixq ´ lnp|x|qqBβϱ

‹pxqdx

`

ż

R
lnpϱ‹qBβϱ

‹pxq `

ż

R
Bβϱ

‹pxq

“ ´

ż

R2

lnp|x2 ´ y2|qBβϱ
‹pxqϱ‹pyqdxdy ´

ż

R
pV pixq ` V p´ixq ´ lnp|x|qqBβϱ

‹pxqdx

`

ż

R
lnpϱ‹qBβϱ

‹pxq ` 1 .

By testing (4.2) against Bβϱ
‹ we deduce that

BβFrϱ‹s “ µpβ, V q ,
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which implies that

FVoltpβ, V q “
µpβ, V q

2
´ lnp2q ´

1

2
. (4.3)

Consider now the following chain of equality

Bµϱ
‹ “ Bµpβρβ,V q “ Bβpβρβ,V qpBβµq´1 “ σβ,V κ

´1 ,

where we defined

κ “ 2BβFVoltpβ, V q “ ´E1 rlnpa1qs .

Following Spohn, we define a new measure σ “ σβ,V κ
´1, and we notice that xσy “ κ´1.

The measure σ, ϱ‹ play a crucial role in the computation of the matrices B,C, to simplify
the notation we drop the upper index ‹ from ϱ‹ . Before proceeding with the computation of
such matrices,we have to introduce the following operator

Tψpwq “

ż

R`

lnp|w2 ´ z2|qψpzqdz w P R , (4.4)

and using this operator we can introduce the dressing of a function ψ

rψs
dr

“ ψ ` Tϱ rψs
dr , rψs

dr
“ p1 ´ Tϱq´1ψ , (4.5)

here ϱ is just a multiplicative operator. We notice that the dressing of any real function according
to (4.5) is even. Furthermore, by differentiating the Euler-Lagrange equation with respect to µ
we deduce the following chain of equality

σ “ p1 ´ ϱT q
´1 ϱ “ ϱ p1 ´ Tϱq

´1
r1s “ ϱ r1s

dr , (4.6)

where we used the fact that p1 ´ ρT q
´1 ρ “ ρ p1 ´ Tρq

´1
r1s for any measure ρ.

Using this notation, we can express the moments of the Volterra lattice as

qn “ E1

”

Q
rns

0

ı

“ κxσw2ny ,

where for any function f we defined xfy “
ş

R`
fpwqdw.

The following Proposition contains several properties of the dressing operator and the mea-
sure ϱ that we use to compute the matrices B,C.

Proposition 4.1. Consider the measure ϱ defined as the unique minizier of (4.1), the operator
T defined in (4.4) and the dressing operator (4.5). Then the following holds true

1. for any function f
p1 ´ ϱT q´1rϱf s “ ϱp1 ´ Tϱq´1rf s ,

2. for any function f, g
xp1 ´ ϱT q´1rf sgy “ xf rgs

dr
y , (4.7)

3. for any variable d

BdBµϱ “ p1 ´ ϱT q´1Bdϱp1 ´ Tϱq´1r1s (4.8)

4. for any function f

Bµxσfy “ xσ r1s
dr

rf s
dr

y . (4.9)
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5. Consider the perturbed potential V pxq Ñ V pxq ` p´1qn`1itnx
2n then

Btnµpβ, V pxq ` p´1qn`1itnx
2nq|tn“0

“ 2iqn .

6. For any function ψ

Btn

`

p1 ´ TϱpV ` p´1qn`1itnλ
2nqq´1pψq

˘

|tn“0
“ p1´Tϱq´1

´

TBtnϱpV ` p´1qn`1itnλ
2nq|tn“0

rψs
dr

¯

.

(4.10)

Proof. (1) It is equivalent to prove that

ϱf “ p1 ´ ϱT q
“

ϱp1 ´ Tϱq´1rf s
‰

,

which follows from straightforward computations.
(2) For any function y, h the following equality holds

xyp1 ´ Tϱqhy “ xhp1 ´ ϱT qyy ,

which leads to (4.7) setting y “ p1 ´ ϱT q´1f, h “ p1 ´ Tϱq´1g.
(3) By Differentiating the equality

p1 ´ ϱT qσ “ ϱ ,

we deduce

p1 ´ ϱT qBdσ “ Bdϱp1 ` Tσq .

If we can prove that p1 ` Tσq “ p1 ´ Tϱq´1 we conclude.

1 ` Tσ “ 1 ` Tϱp1 ´ Tϱq´1r1s “ p1 ´ Tϱqp1 ´ Tϱq´1r1s ` Tϱp1 ´ Tϱq´1r1s “ p1 ´ Tϱq´1r1s ,

so we conclude.
(4) From the previous relation we deduce the following chain of equality

Bµxσfy
(4.8)
“ xp1 ´ ϱT q´1σp1 ´ Tϱq´1r1sfy

(4.7)
“ xσ r1s

dr
rf s

dr
y

(5) By differentiating the Euler-Lagrange equation (4.2) with respect to tn, we deduce that

´

ż

R`

lnp|x2 ´ y2|qBtnϱpyq|tn“0
dy ` p´1qn`12ix2n `

BV ϱ|tn“0

ϱ|tn“0

` p´1qnBV µpβ, V q|tn“0
“ 0 ,

Testing the previous variational equation against σ we deduce,

p´1qn`12ixw2nσy´xσTBtnϱ|tn“0
y`xp1`TσqBV ϱ|tn“0

y “ xBtnµpβ, V q|tn“0
σy “ p´1qn`1Btnµpβ, V q|tn“0

κ´1 ,

which leads to the conclusion.
(6) From (4.5) we take the derivative with respect to tn, getting that

p1 ´ TϱqBtn rψs
dr

“ TBtmϱ rψs
dr ,

which leads to the conclusion. Here, we have omitted the explicit dependence of ϱ from the
potential, and the evaluation at 0.
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4.1 The matrix C

The aim of this section is to compute the correlation matrix C defined as

Cm,n “

2N
ÿ

j“1

Cov
´

Q
rns

j ;Q
rms

0

¯

.

We start with C0,0

C0,0
Cor2.1

“ ´ B2
βFVoltpβ, V q

(4.3)
“ ´

1

2
B2
βµpβ, V q “ ´

1

2
Bβκ

“ ´
1

2
Bβ

1

xσy
“
κ2

2
Bβxσy “

κ2

2
BβµBµxσy

(4.9)
“

κ3

2
xσpr1s

dr
q2y

(4.11)

Next we consider C0,n “ Cn,0, from Corollary 2.1 we deduce that

C0,n “ Bβxκσw2ny “ pBβκqxσw2ny ` κBβxσw2ny

(4.11)´(4.9)
“ ´κ3xσpr1s

dr
q2yxσw2ny ` κ2xσ r1s

dr “

w2n
‰dr

y

“ ´κ2xσpr1s
dr

q2yqn ` κ2xσ r1s
dr “

w2n
‰dr

y “ κ2xσ r1s
dr

´

“

w2n
‰dr

´ qn r1s
dr

¯

y

Finally, we have to compute Cn,m “ Cm,n, from Corollary 2.1 we deduce that

Cn,m “ iBtnxκσpV ´itnw
2nqw2my|tn“0

“ i
Btnκ|tn“0

κ
qm`ixκw2mBtnσpV `p´1qn`1itnw

2nq|tn“0
y .

We have iBtnκ|tn“0
“ ´2Cn,0. Regarding the second derivative we use the free energy

Frϱs “ ´
1

2

ż ż

R2
`

lnp|w2 ´ λ2|qϱpwqϱpλqdwdλ`

ż

R`

p´V piwq ´ V p´iwq ` 2itnw
2nqϱpwq

`

ż

R`

lnp|w|qqϱpwqdw `

ż

R`

lnpϱpwqqqϱpwqdw

so that

δF
δϱ

“ ´

ż

R
lnp|w2 ´ λ2|qϱpλqdλ´ pV piwq ` V p´iwqq ` 2itnw

2n ` lnp|w|q ` lnpϱq ` 1 ´ µpβ, V q

“ ´Tϱpwq ´ pV pwq ` V p´|w|qq ` 2itnw
2n ` lnp|w|q ` lnpϱq ` 1 ´ µpβ, V q “ 0 ,

Taking the derivative with respect to tn we obtain the equations

2iw2n ´ T

ˆ

B

Btn
ϱpwq

˙

`

B

Btn
ϱpwq

ϱpwq
´

B

Btn
µpβ, V q “ 0

so that
p1 ´ ϱT q

ˆ

B

Btn
ϱpwq

˙

“

ˆ

B

Btn
µ´ 2iw2n

˙

ϱpwq (4.12)

Now taking the derivative with respect to µ we obtain

p1 ´ ϱT q

ˆ

B

Btn
σpwq

˙

´ σT

ˆ

B

Btn
ϱpwq

˙

“

ˆ

B

Btn
µ´ 2iw2n

˙

σpwq
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Applying (4.12), we deduce

p1 ´ ϱT q

ˆ

B

Btn
σpwq

˙

“
σpwq

ϱpwq
p1 ´ ϱT q´1

`

2iqn ´ 2iw2n
˘

ϱpwq

so that

xBtnσpV ` tnw
2nqw2my “ xw2mp1 ´ ϱT q´1

ˆ

σ

ϱ
p1 ´ ϱT q´1

`

2iqn ´ 2iw2n
˘

ϱpwq

˙

y

“ ´2ixσ
“

w2m
‰dr

´

“

w2n
‰dr

´ qnr1sdr
¯

y .

So we deduce that

Cn,m “ 2κxσ
´

“

w2m
‰dr

´ qmr1sdr
¯ ´

“

w2n
‰dr

´ qnr1sdr
¯

y .

4.2 The matrix B

The matrix B is the matrix of static covariance between the conserved fields and currents,
specifically is defined as

Bn,m “ lim
NÑ8

1

2N
Cov

´

Qrns; J rms
¯

.

A priori, this matrix is not symmetric, but, as we show in this section, it is.
First, we start by computing Bn,0 “ limNÑ8p2Nq´1Cov

`

Qrns; J r0s
˘

. From Remark 1.1, we
deduce that

Bn,0 “ ´
1

2
lim

NÑ8
p2Nq´1Cov

´

Qrns;Qr1s
¯

“ ´
1

2
Cn,1 .

To compute the remaining part of the matrix B, we need to express E1

”

J
rns

0

ı

(2.2) using
our new notation

E1

”

J
rns

0

ı

“ ´
1

2

ż β

0
B2
t1,t2FVoltpy, V ´ it1x

2 ´ it2x
2nqdy

“ ´
1

4
βBt1Bt2FAGpβ, V ´ it1x

2 ´ it2x
2nq “ ´

1

2
iBtnxϱpV ´ itnw

2nqw2y

(4.12)
“ xϱ

“

w2
‰dr

pw2n ´ qnqy

.

Defining

veff “

“

w2
‰dr

r1s
dr , (4.13)

we can recast the previous expression as

E1

”

J
rns

0

ı

“ xσveffpw2n ´ qnqy “ xσpveff ´ q1qpw2n ´ qnqy . (4.14)

We can now compute Bn,m as follows

Bn,m “ ´iBtnE1

”

J
rms

0

ı

(4.14)
“ ´iBtnxϱp

“

w2
‰dr

´ q1 r1s
dr

qpw2m ´ qmqy

(4.10)´(4.12)
“ ´2xϱpw2m ´ qmq

“

w2n ´ qn
‰dr

p
“

w2
‰dr

´ q1 r1s
dr

qy

´ 4xTϱ
“

w2m ´ qm
‰dr

ϱ
“

w2n ´ qn
‰dr

p
“

w2
‰dr

´ q1 r1s
dr

qy

(4.5)
“ ´2xϱ

“

w2m ´ qm
‰dr “

w2n ´ qn
‰dr

p
“

w2
‰dr

´ q1 r1s
dr

qy “ ´2xσpveff ´ q1q
“

w2m ´ qm
‰dr “

w2n ´ qn
‰dr

y

.
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From the previous equation, we deduce that B is actually symmetric.

Remark 4.1. We notice that from our definition of veffpwq, one can deduce the following Collision
rate ansatz for the effective velocity

veff “ w2 ` Tσrveffs ´ veffTσr1s ,

Proof. Multiplying the definition of veff by σ we deduce that

σveff “ p1 ´ ϱT q´1rϱw2s ,

which also reads

p1 ´ ϱT qrσveffs “ ϱw2 .

From equation (4.6), we deduce that σ
ϱ “ 1 ` Tσr1s thus

veffp1 ` Tσr1sq “ w2 ` Tσrveffs , (4.15)

rearranging the previous equation we deduce our claim.

For later computation, the basis of moments that we are considering while computing the
matrices B,C is not convenient. For this reason we introduce the space C ‘ L2pσ, t1uKq, where
by L2pσ, t1uKq we denote the space of square integrable function with respect to σ such that
they are orthogonal to the constant function. Defining the operator Ξ and its aadjoint Ξ˚ as

Ξϕ “ rϕ´ xκσϕys
dr , Ξ˚ψ “ p1 ´ ϱT q´1ψ ´ κσxr1s

dr ψy .

Using the notation that we have just introduced, we define the following matrix operators

C “

˜

κ3

2 xσpr1s
dr

q2y κxΞ˚κσ r1s
dr

|

κ|Ξ˚κσ r1s
dr

y 2Ξ˚κσΞ

¸

,

B “ ´
1

κ

˜

κ3

2 xσpr1s
dr

q2pveff ´ q1qy κxΞ˚κσpveff ´ q1q r1s
dr

|

κ|Ξ˚κσpveff ´ q1q r1s
dr

y 2Ξ˚κσpveff ´ q1qΞ

¸

.

In this notation we can recast the matrices B,C as

C0,0 “ C0,0 , Cn,0 “ Cn,0 “ C0,1rwns , Cm,n “ Cn,m “ xwm;C1,1rwnsy ,

and analogously for B.

5 Linearized Hydrodynamics

In this section, we compute the correlation functions of the Volterra lattice using the theory of
Generalized Hydrodynamics. We start by computing the Euler equation for the density. We
start from the continuity equation

BtQ
rns

j “ ´BxJ
rns

j , (5.1)

which, by averaging on a GGE with slowly varying parameters, become

BtxQ
rns

j yϵ “ ´BxxJ
rns

j yϵ , (5.2)

where by x¨yϵ we denote the parameter with slow variation, and by Bx¨ the discrete spatial
derivative.
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After a normalization procedure, which still needs some rigorous justification, the previous
equation implies that the density σ and the normalization κ evolve according to the following
system of quasi-linear equations

Btκ “ Bxq1 , Btpκσq ` Bxppveff ´ q1qσq “ 0 , (5.3)

at Euler scale.
As in the case of Toda lattice, the previous equations can be put in linear form by the

following change of coordinates

ϱ “ σp1 ` Tσq´1r1s ,

in this new variable the equations reads (5.3)

κBtϱ` pveff ´ q1qBxϱ “ 0 ,

the proof is analogous to the one in [39]. To solve this equations there is a major problem: they
develop shock if the velocity veffpwq ´ q1 ă 0 since the density is defined just for positive x.
We notice that this behavior is an effect of the linearization procedure. We expect that if we
would to consider a more accurate description of the model by making a second order average
approximation of equation (5.1), i.e. adding a damping term in the form of a Drude weight, the
evolution would be smooth and the shock disappear. For a more general discussion, we refer
to [42, Chapter 12] and [37].

Despite that, we can still apply the theory of GHD (Landau-Lifshitz theory) to describe
the correlation functions. For a general introduction see [42, Chapter 7]. The structure of the
matrices B,C is the same as in [39, 42], thus following the exact same reasoning, we can guess
the general structure of the correlation

Spj, tq
x“

j
2N

„ Spx, tq “

˜

κ3

2 xσδpx` tpveff ´ q1qκ´1q

´

pr1s
dr

q2
¯

y κxΞ˚κσδpx` tpveff ´ q1qκ´1q r1s
dr

|

κ|Ξκσδpx` tpveff ´ q1qκ´1q r1s
dr

y 2Ξ˚σκδpx` tpveff ´ q1qκ´1qΞ

¸

.

(5.4)
As we already noticed, this equations develops shock. Here this effect is clearer in view of

the structure of the effective velocity veffpwq, see Figure 1. Indeed, by looking at the collision
rate ansatz (4.15), one immediately deduces that the effective velocity is an even function, and
it is not singular, thus it is not a one to one transform of R into R`. So equations (5.4) are not
continuous for some values of x

t “ ξ0 that we can compute explicitly as

ξ0 “ ´
veffp0q ´ q1

κ
.

Intrigued by this behavior, we performed several numerical simulation to understand to
which extent the linear approximation captures the behavior of the correlation functions.

6 Numerical Results

In this section, we present the numerical results that we obtained, in the last part of this
section we present the method that we used to numerically simulate both the classical correlation
functions and the GHD predictions.
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Figure 1: veff for β “ 1.5, V pxq “ x2

2

6.1 Description of the results

We compared the GHD prediction of the correlation functions of the Volterra lattice with the
molecular dynamics simulation for three different temperature corresponding to β “ 1; 1.5, see
figure 2.

In each of these cases, we have evaluated the GHD approximations (also called Landau-
Lifshitz approximation) Spx, tq (5.4) of the correlators for all 0 ď n ď m ď 1 using the numerical
scheme that we describe in 6.2.2. Their graphs are displayed in Figures 2 as dashed black
lines. The colored lines represent the molecular dynamics simulations. According to the ballistic
scaling predicted in (5.4), we plot tSm,npj, tq as a function of j{t for t “ 200, 400, 600. Here
the values of Sm,npj, tq is approximated using the numerical scheme that we describe in section
6.2.1.

The agreement between the molecular dynamics simulation and the prediction of the GHD
is astonishing for negative values of ξ “ x

t , but for positive values of such parameter the GHD
prediction does not capture the oscillation of the correlation functions. The main reason is that
the relation ξ “ ´

veffpwq´q1
κβ

is not a bijection between R and R`, thus the prediction of the

GHD develop a singularity at ξ0 “ ´
veffp0q´q1

κβ
, which is exactly where the molecular dynamics

simulations show an highly oscillatory behavior. For this reason, we believe that one has to
consider some extra diffusive terms when approximating (5.2) in order to get a more precise
description of the correlation functions for this model, as it is described in [37]. Specifically, we
believe that at the point ξ0 the diffusive effects are not a sub-leading correction to the transport
dynamics, but they are of the same order.

6.2 Numerical simulation

This subsection is divided into two parts. In the first part we present the numerical scheme
that we used to simulate the evolution of the Volterra lattice and to compute the correlation
functions. In the second part, we present the numerical scheme that we used to compute the
prediction of the Generalized Hydrodynamics.

6.2.1 Molecular dynamics simulations

We approximate the expectation value that is contained in the MD-definition of the correlations
Sm,n in equation (1.2) by a standard Rounge–Kutta method (RK45), whose implementation
program is written in Python, and can be found at [30]. First, we generate the random initial
conditions distributed according to the Gibbs measure, as given by (1.7) for the i.i.d. random
variables pajq

2N
j“1, which are distributed according to a scaled χ2 random variable. We generate
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Figure 2: Volterra correlation functions: GHD predictions vs molecular dynamics simulation.
Left panels: number of particles: 3000, trials: 106, β “ 1.1. Right panels: number of particles:
3000, trials: 106, β “ 1.5
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this random vector with Numpy v1.23’s native function random.default_rng().chisquare [22].
Having chosen the initial conditions in such a manner, we solve equation (1.2).

For the evolution, we use a standard Rounge-Kutta algorithm of order 5 (RK45), we decided
not to use the native Scipy v1.12.0’s algorithm [43], but we implemented it, in this way we
could used the library Numba [27] to speed up the computations.

Our approximation for the expectation Sm,n is then extracted from 106 trials with indepen-
dent initial conditions. Here we take the empirical mean of all trials where for each trial we also
take the mean of the N “ 3000 sets of data that are generated by choosing each site on the ring
for j “ 0.

We want to mention that almost all the pictures that appeared in this paper are made using
the Python library matplotlib [23].

6.2.2 Solving linearized GHD

To numerically solve the linearized GHD equations, we use a numerical method similar to the
one from [31,34]. First, Eq. (3.4) is expressed in terms of Whittaker function Wµ,κpzq [4], which
is readily available in Mathematica [24]. This provides the solution to minimization problem
(3.9).

Then, we use a simple finite element discretization of the w-dependent functions by hat
functions, resulting in piece-wise linear functions on a uniform grid. After precomputing the
integral operator T in (4.4) for such hat functions, the dressing transformation (4.5) becomes a
linear system of equations, which can be solved numerically. This procedure yields rw2sdr, and
subsequently σ via (4.6) and veff via (4.13).

To evaluate the correlation functions in (1.11), we note that the delta-function in the inte-
grand results in a parametrized curve, with the first coordinate (corresponding to x{t) equal to
´

veffpwq´q1
κ from (1.11), and the second coordinate equal to the remaining terms in the integrand

divided by the Jacobi factor | d
dwveffpwq| resulting from the delta-function.
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