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Coupling between flow and orientation is a central issue in understanding the collective dynamics of active
biofilaments and cells. Active stressess generated by motor activity destroy (quasi-)long-range orientational
order and induce chaotic vortex flows. In cellular and subcellular environment, alignment is also hindered by
heterogeneous filamentous structures in extracellular matrix and various organelles in a cell. Here we address the
effects of a quenched random field on the flow patterns and orientational order in two-dimensional active nematic
liquid crystals. We found that the director dynamics is frozen above a critical disorder strength. For sufficiently
strong randomness, the orientational correlation function decays exponentially with the distance, reproducing
the behavior of passive random-field nematics. In contrast, the flow velocity decreases only gradually as the
randomness is increased, and develops a logarithmic spatial correlation for strong disorder. The threshold
between the activity- and disorder-dominated regimes is specified and its dependence on the activity parameter
is discussed.

Introduction. – Collective motion of cells and biofilaments
are of vital importance to life at various stages, such as cell
division, morphogenesis, cell migration and apoptosis. The
dynamics is driven by molecular motors and facilitated by ori-
entational ordering of active elements that have slender shapes.
While apolar interaction induces nematic order, active stresses
generated by motor activity destroy (quasi-)long-range ori-
entational order and generate chaotic flows with many vor-
tices, which are known as active turbulence [1–3]. The active
nematic turbulence was demonstrated in a two-dimensional
suspension of microtubules and kinesin-motor-complexes[4].
Topological defects are also found in colonies of cells [5–7]
and mutlicellular organisms [8], and their biological functions
have been revealed.

The flow patterns of active nematics can be controlled by
friction with the substrate [9–14], external fields [15–17], and
confinement [18–23]. The effects of uniform external field has
been studied theoretically. A model of an active pump using a
Frederiks twisted cell [15]. A three-dimensional simulation of
active nematics under an electric field found a direct transition
from the actuve turbulence to a uniformly aligned state [16],
while a laning state intervenes in two dimensions [17]. Lan-
ing states are also obtained in numerical simulations with
isotropic [12, 13] or anisotropic [14] friction, and explored
experimentally [9]. Confinement also results in various direc-
tor patterns such as the laning state and vortex lattice [19–23],
Recently, attentions have extended to couplings of active ne-
matics with non-uniform fields, such as friction by micropat-
terned surfaces [24], curvature of epithelial tissues [25], spa-
tially varying activity [26, 27] and composition [28].

On the other hand, the behavior of active nematics in a
randomly heterogeneous environment is an open issue. Cells
in tissues are in contact with extracellular matrix that contain
fibrous material such as cellulose of collagen. Collagen
fibers form anisotropic networks that guide migration of
cells. [29]. Plant cellulose is also used as a scaffold for in
vitro culture of neural stem cells [30]. Microtubules in cells
are entangled with other components of cytoskeletal networks
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such as actins and intermediate filaments, which hinder
alignment. The cytoplasm also contains a number of proteins
that cyclically change their shapes and generate random
hydrodynamic forces. They not only enhance diffusion in
the cell [31], but also may contribute to disorientation of
active cytoskeletal filaments. To elucidate the effects of
heterogeneous anisotropic environments on active nematic
flows, we address the effects of quenched random fields in this
paper. The quenched random field on nematic liquid crystals
has been studied in a model of nematic elastomers [32]. The
numerical study showed that the orientational correlation
function decays exponentially as a function of the distance,
and that the correlation length also decays exponentially with
the disorder strength.

Model. – The orientational order of a two-dimensional ne-
matic liquid crystal is described by the symmetric and traceless
tensor 𝑄𝑖 𝑗 = 𝑆

(
𝑛𝑖𝑛 𝑗 − 1

2𝛿𝑖 𝑗

)
, where 𝑆 is the scalar order pa-

rameter and n = (cos 𝜃, sin 𝜃) is the director. The dynamical
equations of active nematics in the dimensionless form read [2]

(𝜕𝑡 + v ·∇) v =
1

Re
∇2v −∇𝑝 +∇ · 𝛔 (1)

and

(𝜕𝑡 + v ·∇) Q = 𝜆𝑆u + Q · 𝛚 − 𝛚 · Q + 𝛾−1H. (2)

Here, v is the normalized flow velocity which satisfies the
incompressibility condition ∇ · v = 0, 𝑝 is the pressure and 𝛔
is the stress tensor. The flow properties are characterized by
the Reynolds number Re, the flow alignment parameter 𝜆, and
the rotational viscosity 𝛾, and 𝑢𝑖 𝑗 = (𝜕𝑖𝑣 𝑗 + 𝜕 𝑗𝑣𝑖)/2 and ω𝑖 𝑗 =

(𝜕𝑖𝑣 𝑗 − 𝜕 𝑗𝑣𝑖)/2 are the symmetric and antisymmetric parts of
velocity gradient tensor, respectively. Hereafter we call 𝜔 =

𝜔𝑥𝑦 the vorticity. We assume 0 < 𝜆 < 1; a positive value of 𝜆
corresponds to elongated or rod-like elements and |𝜆 | < 1 to
the flow-tumbling regime where no stable director orientation
exists in a uniform shear flow [33, 34]. The molecular field
𝐻𝑖 𝑗 is the symmetric and traceless part of −𝛿𝐹/𝛿𝑄𝑖 𝑗 , and is

ar
X

iv
:2

40
4.

08
52

4v
2 

 [
co

nd
-m

at
.s

of
t]

  1
5 

A
pr

 2
02

4

mailto:nariya.uchida@tohoku.ac.jp


2

obtained from the Landau-de Gennes free energy [33]

𝐹 =

∫
𝑓 d2𝑟, (3)

𝑓 =
𝐴

2
Tr Q2 + 𝐶

4

(
Tr Q2

)2
+ 𝐾

2
(∇Q)2 − 1

2
E · Q ·E. (4)

The first two terms of the free energy density control the mag-
nitude of the scalar order parameter 𝑆. Note that the term pro-
portional to Tr Q3 identically vanishes for the two-dimensional
nematic order parameter. The third term is the Frank elastic
energy under the one-constant approximation, and the fourth
term describes the coupling to the quenched random field E.
The molecular field is obtained as

𝐻𝑥𝑥 = −
(
2𝐴 + 𝐶𝑆2

)
𝑄𝑥𝑥 + 2𝐾∇2𝑄𝑥𝑥 +

1
2

(
𝐸2
𝑥 − 𝐸2

𝑦

)
. (5)

𝐻𝑥𝑦 = −
(
2𝐴 + 𝐶𝑆2

)
𝑄𝑥𝑦 + 2𝐾∇2𝑄𝑥𝑦 + 𝐸𝑥𝐸𝑦 . (6)

The stress tensor is the sum of the passive stress

𝛔e = −𝜆𝑆H + Q · H − H · Q, (7)

and the active stress

𝛔a = −𝛼Q. (8)

We assume an extensile active stress and hence the activity
parameter 𝛼 is positive.

We model the quenched random field to be of the form

E = 𝐸0e(r) (9)

where e(r) = (cos 𝜃𝑒, sin 𝜃𝑒) is a random unit vector with
its angle 𝜃𝑒 being a uniformly random number in [0, 2𝜋).
Therefore, it satisfies

⟨e(r)e(r′)⟩ = 1
2

I 𝜉2
𝑒𝛿(r − r′), (10)

where 𝜉𝑒 is the correlation length of the random field. The
contributions of the the random field and Frank elasticity to the
free energy are estimated as 𝐸2

0𝑆0 and 𝐾𝑆2
0/𝑙

2
𝑄

, respectively,
where 𝑆0 is the typical magnitude of the scalar order parameter
and 𝑙𝑄 is the correlation length of Q. The orientational corre-
lation length becomes smaller for a stronger random field, and
its lower bound is given by 𝑙𝑄 ∼ 𝜉𝑒. Therefore, we define the
effective disorder strength as

𝐷𝐾 =
𝐸2

0𝜉
2
𝑒

𝐾𝑆0
. (11)

On the other hand, the contributions to the molecular field by
the random field and the active stress are estimated as 𝐸2

0 and
𝛼, respectively. Thus we are led to the other definition of the
dimensionless disorder strength,

𝐷𝛼 =
𝐸2

0
𝛼
. (12)

Disorder-dominated regime. – In the disorder dominated
regime with 𝐷𝐾 ≫ 1 and 𝐷𝛼 ≫ 1, the director will align
with the local director and get frozen. In this case, we have
approximately n(r) = e(r), H = 0 and 𝛔e = 0 in the station-
ary state, and the Frank elastic term in the molecular field is
negligible. Thus, from Eqs.(5),(6), the scalar order parameter
satisfies

−𝑆
(
2𝐴 + 𝐶𝑆2

)
+ 𝐸2

0 = 0, (13)

the solution of which is identified with 𝑆0. The nematic order
parameter is given by

Q(r, 𝑡) = 𝑆0

[
e(r)e(r) − 1

2
I
]
. (14)

Since the molecular field is balanced and vanishes in the steady
state, the flow velocity is determined solely by the active stress.
For Re ≪ 1, the velocity field is obtained by dropping the terms
on the left hand side of Eq.(1) as

0 =
1

Re
∇2v − ∇𝑝 + ∇ · 𝛔a. (15)

Solving (15) under the incompressibility condition and with
(8), we obtain the velocity field in the Fourier representation,

vk = −𝛼Re
I − k̂k̂

𝑘2 ·
(
𝑖k · Qk

)
, (16)

which gives the velocity structure factor

Σ𝑣 (k) =
〈��vk

��2〉
=

(𝛼Re)2

𝑘2

(〈��k̂ · Qk
��2〉 − 〈��k̂ · Qk · k̂

��2〉) . (17)

The correlation function of the nematic order parameter reads
from Eqs.(10,14) as〈
𝑄𝑖 𝑗 (r)𝑄𝑙𝑚 (r′)

〉
=

1
4
𝑆2

0𝜉
2
𝑒

(
𝛿𝑖𝑙𝛿 𝑗𝑚 + 𝛿𝑖𝑚𝛿 𝑗𝑙

)
𝛿(r − r′), (18)

and accordingly〈
𝑄k
𝑖 𝑗𝑄

−k
𝑙𝑚

〉
=

1
4
𝑆2

0𝜉
2
𝑒

(
𝛿𝑖𝑙𝛿 𝑗𝑚 + 𝛿𝑖𝑚𝛿 𝑗𝑙

)
. (19)

Substituting this into Eq.(17), we obtain

Σ𝑣 (k) =
(𝛼Re𝑆0𝜉𝑒)2

4𝑘2 . (20)

The velocity correlation funcion in the real space is given by
the inverse Fourier transform of Σ𝑣 (k) as

⟨v(r) · v(r′)⟩ = − (𝛼Re𝑆0𝜉𝑒)2

8𝜋
ln |r − r′ | . (21)

Numerical simulation. – We solved Eqs.(1,2) numerically
on a square lattice with the fourth-order Runge-Kutta method.
The incompressibility condition is handled by the simplified
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FIG. 1. Snapshots of the director angle 𝜃 (𝑥, 𝑦) in the first column
and velocity v(𝑥, 𝑦) in the second column, for the field strength (a)(b)
𝐸0 = 0, (c)(d) 𝐸0 = 0.4, and (e)(f) 𝐸0 = 0.7. The black arrows show
the velocity field.

MAC method on a staggered lattice [35]. The main sublattice
is used for the field variables Q, 𝑝, 𝛔, u, 𝛚 and H, and the other
two sublattices are assigned to 𝑣𝑥 and 𝑣𝑦 . The calculation is
performed on a 𝑁𝑥 ×𝑁𝑦 lattice with the grid size Δ𝑥 = Δ𝑦 = 2
and the step time increment Δ𝑡 = 0.01. We assumed periodic
boundary conditions and used Fast Fourier Transform to solve
the Laplace equation for the pressure at each time step. For
the numerical analysis, we used the parameter values

𝐴 = −0.16, 𝐶 = 0.89, 𝐾 = 1, (22)
𝜆 = 0.1, Re = 0.1, 𝛾 = 10, 𝛼 = 0.2. (23)

The direction e(r) of the random field is randomly chosen at
each grid point, which means 𝜉𝑒 = 2. The field strength is
varied in the range 0 ≤ 𝐸0 ≤ 0.7. The scalar order parameter
in the passive (𝛼 = 0) and stationary system is obtained from
Eq.(13) as 𝑆0 ≃ 0.60 for 𝐸0 = 0 and 𝑆0 ≃ 0.96 for 𝐸0 = 0.7.
The defect core radius is given by 𝜉 =

√︁
𝐾/|𝐴| ≃ 2.5. The

balance between the activity and Frank elasticity defines the
lengthscale 𝑙𝛼 =

√︁
𝐾/𝛼 ≃ 2.2. The system size is fixed to

𝑁𝑥 = 𝑁𝑦 = 128 so that 𝐿 = 𝑁𝑥Δ𝑥 = 𝑁𝑦Δ𝑦 = 256. For the
initial conditions, we set the velocity to zero and assumed
small random fluctuations around zero for Q(r, 0), assuming
a quench from the isotropic quiescent state. To be precise,
the scalar order parameter and the director angle at each
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FIG. 2. Mean square of (a) the time-derivative of 𝑄𝑖 𝑗 and (b)
flow velocity as a function of the field strength. Error bars show
the standard deviation in the time course averaged over 10 samples.
Insets: semi-log plots.

grid point are randomly chosen in the ranges [0, 0.1] and
[0, 2𝜋], respectively. We observed the total kinetic energy
as a function of time to confirm that the system reached
dynamical steady states, typically by 𝑡 = 10000 for active
turbulence states. We calculated the data over the time
window 40000 < 𝑡 ≤ 80000 with the time interval 𝑡0 = 100,
and took the ensemble average over 10 independent samples.

Spatial patterns and orientational freezing. – In Fig. 1,
we show the snapshots of the director angle 𝜃 (r, 𝑡) and the
vorticity 𝜔(r, 𝑡) in the dynamical steady states for 𝛼 = 0.2.
For 𝐸0 = 0, active turbulence containing topological defects
and vortices are reproduced [Fig.1(a)(b)]. For 𝐸0 = 0.4, the
director pattern becomes jaggy while maintaining the charac-
teristic large-scale structure of nematic defects. The velocity
field is smoother but wiggly streams appear [Fig.1(c)(d)]. For
𝐸 = 0.7, the director orientation becomes completely random,
and the flow pattern obtains fibrous structures of various size
and magnitude [Fig.1(e)(f)].

The dynamics slows down as we increase the field strength.
In Fig. 2, we show the mean square of the time-derivative
of the order parameter ¤𝑄𝑖 𝑗 and flow velocity. The director
shows a marked slowdown above 𝐸0 = 0.2, and the decay
becomes almost exponential above 𝐸0 = 0.44, at which ¤𝑄2

𝑖 𝑗
is

already below 4 percent of its value at 𝐸0 = 0. The director
dynamics completely freezes at 𝐸0 = 0.52. On the other
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FIG. 3. (a) Director correlation function 𝐶𝜃 (𝑟) (inset: semi-log
plots). The dashed lines show the exponential function exp(−𝑟/𝑟𝜃 )
with 𝑟𝜃 = 1.7. (b) Velocity Correlation function. The dashed line
shows the logarithmic function −𝐴 ln(𝑟/𝑟𝑣) with 𝐴 = 0.31 and 𝑟𝑣 =

78.

hand, the mean square velocity decreases only gradually as
we increase the randomness. The decay above 𝐸0 = 0.44
is roughly exponential but has a much smaller decay rate
than that of the director. For 𝐸0 = 0.7, the strongest field
we studied, the mean square velocity still remains at about 6
percent of its value at 𝐸0 = 0. Note that the effective disorder
strengths are 𝐷𝐾 ≃ 0.97 and 𝐷𝛼 ≃ 0.96 for 𝐸0 = 0.44, which
are both close to unity. Therefore, it would be reasonable to
discriminate the medium and strong disorder regimes at this
value of 𝐸0.

Correlation functions and correlation lengths. – In Fig. 3,
we show the spatial correlation functions for the director angle
and flow velocity, which are defined by

𝐶𝜃 (r) =
⟨𝜃 (r + r′, 𝑡)𝜃 (r′, 𝑡)⟩

⟨𝜃 (r′, 𝑡)2⟩
(24)

and

𝐶𝑣 (r) =
⟨v(r + r′, 𝑡) · v(r′, 𝑡)⟩

⟨v(r′, 𝑡)2⟩
, (25)

respectively, where ⟨· · ·⟩ indicates averages over r′ and 𝑡, and
10 independent samples. By symmetry, the correlation func-
tions are functions of the distance only. We show their profiles
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FIG. 4. (a) The director correlation length 𝑙𝜃 and velocity correlation
length 𝑙𝑣 as a functions of 𝐸0. (b) The ratio 𝑙𝑣/𝑙𝜃 versus 𝐸0. (c) 𝑙𝜃
and 𝑙𝑣 versus the mean flow velocity 𝑣rms. The dashed lines show the
power law 𝑙 ∝ 𝑥1/2, 𝑥, 𝑥2.

along the 𝑥-axis in Fig. 3. The angular correlation function
𝐶𝜃 (𝑟) is a monotonically decreasing function with a positive
curvature [Fig. 3(a)]. For 𝐸0 = 0.7, it is fitted by the expo-
nentional function 𝐶𝜃 (𝑟) = exp(−𝑟/𝑟𝜃 ) with 𝑟𝜃 = 1.7. The
semi-logarithmic plot in the inset of Fig. 3(a) shows that the
exponential decay also holds for the medium disorder case
𝐸0 = 0.4, up to 𝑟 ≈ 30.

The velocity correlation function decays more slowly than
the angular one, and turns negative at 𝑟 ≈ 0.3𝐿 for all the values
of 𝐸0 studied [Fig. 3(b)]. It is monotonically decreasing up to
𝑟 = 0.5𝐿, but should converge to zero for 𝑟 → ∞. The function
has a negative curvature in a narrow range near 𝑟 = 0, which
becomes narrower for a larger field strength. For 𝐸0 = 0.7, it is
nicely fitted by the logarithmic function 𝐶𝑣 (𝑟) = −𝐴 ln(𝑟/𝑟𝑣)
with 𝐴 = 0.31 and 𝑟𝑣 = 78, in the range 2 < 𝑟 < 𝑟𝑣 .

We define the correlation lengths 𝑙𝜃 and 𝑙𝑣 by𝐶𝜃 (𝑙𝜃 ) = 1/2
and 𝐶𝑣 (𝑙𝑣) = 1/2, respectively. They are plotted in Fig. 4(a)
as functions of the field strength. The angular correlation
length shows a rapid decay between 𝐸0 = 0.2 and 0.5. The
decay of the velocity correlation length is slower and roughly
linear. The ratio 𝑙𝑣/𝑙𝜃 plotted in Fig. 4(b) increases to 16 at
𝐸0 = 0.7 from 3.4 at 𝐸0 = 0. The correlation lengths are
plotted versus the root mean square velocity 𝑣rms = ⟨𝑣2⟩1/2 in
Fig. 4(c). We find that ℓ𝜃 ≈ 𝑣

1/2
rms holds in the whole range,

while ℓ𝑣 seems to scale as ℓ𝜃 ≈ 𝑣2
rms in the weak disorder

regime and crossses over to a slower decay with ℓ𝜃 ≈ 𝑣rms in
the strong disorder regime.

Discussion. – The exponential decay of the angular cor-
relation function 𝐶𝜃 (𝑟) in the strong and medium disorder
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regimes [Fig. 3(a)] is in agreement with the previous result on
2D random-field nematics [32]. This suggests that the direc-
tor texture is determined by balance between the random field
and Frank elasticity, and is little affected by the active flow.
Earlier studies on the random-field XY model found correla-
tion decay faster than exponential in two dimensions [36, 37].
The difference is attributed to the different symmetry of ran-
dom anisotropy in nematics and the XY model [32]. Without
the randomness, the angular correlation function decays faster
than exponential as seen in Fig. 3(a). In this case, the correla-
tion functions are characterized by the vortex size [38], and the
velocity correlation function 𝐶𝑣 (𝑟) has a negative curvature at
short distances, as seen in Fig. 3(b) and in agreement with
the analytical result [38]. As we increase the random field,
the range with a negative curvature shrinks and the velocity
correlation function is better approximated by the logarithmic
function. This is in agreement with the analytical result for
the strong disorder [Eq.(21)], and reflects the structure of the
Green function of the Stokes equation in two dimensions. In
three dimensions, the velocity correlation function should de-
cay as 1/𝑟 in the strong disorder limit. Note also that the
effective disorder strengths are 𝐷𝐾 ≃ 2.0 and 𝐷𝛼 ≃ 2.5 for
𝐸0 = 0.7, and are not large enough to ensure the constantness
of the scalar order parameter. However, we confirmed that the
correlation function for 𝑆 decays to a constant at 𝑟 ≃ 2, which
underpins the agreement of 𝐶𝑣 (𝑟) with the analytical result.

The dependences of the angular and velocity correlation
lengths on the field strength are also in marked contrast. For
weak disorder, both lengths are proportinal to the vortex size
and the ratio 𝑙𝑣/𝑙𝜃 is small. For strong disorder, the velocity
correlation decays only logarithmically even when the angular
correlation length is zero, and thus 𝑙𝑣/𝑙𝜃 diverges in the strong
disorder limit. The slowing down of the increase of 𝑙𝑣/𝑙𝜃 in
the strong disorder regime [Fig. 4(b)] is explained by fact that
the angular correlation length has a lower bound determined
by the defect core size.

The apparent scaling of 𝑙𝜃 and 𝑙𝑣 as functions of the mean
flow velocity allows only partial interpretation. The depen-
dence 𝑙𝑣 ≈ 𝑣rms in the strong disorder regime is understood
by replacing 𝜉𝑒 by ℓ𝜃 in the analytical result [Eq.(21)]. To
be precise, using Eq. (17) with the characteristic wavenumber

𝑘 ∼ 1/𝑙𝜃 and its inverse Fourier transform, we obtain

𝑣rms ∼ 𝛼Re𝑆0𝑙𝜃 . (26)

The stronger dependence of 𝑙𝑣 on 𝑣rms in the weak disor-
der regime is a combined effect of activity, quenced disorder
and Frank elasticity, for which analytical treatment is lacking.
The previous studies [38, 39] suggested the scaling relations
𝑙𝜃 ∝ 𝛼−1/2 and 𝑣rms ∝ 𝛼1/2 for 2D active nematics with 2D
orientational order parameter and without quenched disorder.
It means that the active flow suppresses angular correlation and
𝑙𝜃 ∝ 𝑣−1

rms. In contrast, the quenched disorder suppresses both
angular correlation and active flow, and we found the positive
correlation between the two.

Finally, we consider the competition between the active flow
and random field. The flow-aligning effect on the nematic or-
der parameter is represented by the term 𝜆𝑆u in Eq. (2), the
magnitude of which is estimated as 𝜆𝑆0𝑣rms/𝑙𝑣 . The contri-
bution of the random field in the term 𝛾−1H is estimated as
𝛾−1𝐸2

0𝑆0. Averaging it over the area 𝑙2
𝜃

of an orientation-
ally correlated region, which contains 𝑁 ∼ (𝑙𝜃/𝜉𝑒)2 sites,
we get 𝛾−1𝐸2

0𝑆0/
√
𝑁 ∼ 𝛾−1𝐸2

0𝑆0𝜉𝑒/𝑙𝜃 . Thus the ratio be-
tween the flow-aligning and random-field terms is estimated
as 𝛾𝜆𝑣rms𝑙𝜃/(𝐸2

0 𝑙𝑣𝜉𝑒). In our simulation, this ratio becomes
0.25 for 𝐸0 = 0.2, which confirms the observation that the ac-
tive flow has a minor effect in the medium (0.2 < 𝐸0 < 0.44)
and strong (𝐸0 > 0.44) disorder regimes. It is also consistent
the fact that the mean flow velocity and correlation lengths
start to decrease around 𝐸0 = 0.2. The dependence of the
threshold on the activity parameter 𝛼 is obtained by substitut-
ing 𝑣rms ∝ 𝛼 and the scaling relation 𝑙𝜃 ∼ 𝑙𝑣 ∼ 𝑙𝛼 =

√︁
𝐾/𝛼 (for

𝐸0 = 0) into the above ratio, as 𝐸𝑐 ∝ 𝛼1/2. This dependence
coincides with that of the stability threshold of the uniformly
aligned state under an uniform external field [17], but has a
different physical origin as we averaged the random field over
an orientationally correlated region in the present work.

In summary, quenched disorder introduces unique twists
into the physics of active nematics. For strong disorder,
the director texture is frozen and determined by the balance
between the randomness and Frank elasticity, while active
flow with long-range correlation remains and facilitates
material transport. We hope that the present work stimulates
experimental studies on the flow properties of cellular and
subcellular systems with orientational order.
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