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Non-equilibrium transport in hybrid semiconductor-superconductor nanowires is crucial for many
quantum phenomena such as generating entangled states via cross Andreev reflection (CAR) pro-
cesses, detecting topological superconductivity, reading out Andreev spin qubits, coupling spin
qubits over long distances and so on. Here, we investigate numerically transport properties of a
proximitized Rashba nanowire that hosts spin-polarized low-energy quasiparticle states. We show
that the spin polarization in such one-dimensional Andreev bands, extended over the entire nanowire
length, can be detected in nonlocal transport measurements with tunnel-coupled side leads that are
spin polarized. Remarkably, we find an exact correspondence between the sign of the nonlocal con-
ductance and the spin density of the superconducting quasiparticles at the side lead position. We
demonstrate that this feature is robust to moderate static disorder. As an example, we show that
such a method can be used to detect spin inversion of the bands, accompanying the topological
phase transition (TPT) for realistic system parameters. Furthermore, we show that such effects can
be used to switch between CAR and elastic cotunneling (ECT) processes by tuning the strength of
either the electric or the magnetic field. These findings hold significant practical implications for
state-of-the-art transport experiments in such hybrid systems.

I. INTRODUCTION

Superconductor-semiconductor hybrid nanostructures
have been of central interest in condensed matter physics
in the last years since they hold significant promise as
platforms for a variety of quantum devices [1–4]. Such
systems can be used to fabricate Cooper pair splitters ca-
pable of efficiently generating high-fidelity spatially sep-
arated spin-entangled states via the crossed Andreev re-
flection (CAR) processes [5–22]. Additionally, semicon-
ductor nanowires with strong Rashba spin-orbit interac-
tion (SOI) proximitized by a bulk superconductors of-
fer a potential avenue for realizing synthetic topological
superconductors, hosting zero-energy Majorana bound
states [23–28]. Moreover, by appropriately gating such
nanowires, one can create arrays of quantum dots cou-
pled via superconducting sections, forming a platform
for realizing fine-tuned versions of topological supercon-
ductors, known as minimal Kitaev chains [29–33], which
host “poor man’s” Majorana bound states. Furthermore,
superconductor-semiconductor hybrids can be used to
create spin qubits in quantum dots that could be manip-
ulated via coupling to superconducting leads [5, 49, 50]
or to create Josephson junctions, which can also host
Andreev bound states (ABSs) again suitable for encod-
ing qubits [34–45]. Another quantum information related
application of such devices is to couple spin qubits hosted
in quantum dot over long distances [5, 46–50]. The pos-
sibility of precise and efficient control between the CAR
and elastic cotunneling (ECT) processes is crucial for re-
alizing all aforementioned devices.

Recent state-of-the-art experiments have demon-
strated unprecedented control over nanofabrication pro-
cesses [51–59] and precise tuning of the parameters of
such devices [60–62]. One of the most accessible exper-
imental methods to investigate and study properties of
quasiparticles hosted in such hybrid structures are quan-

FIG. 1. Schematics of Rashba nanowire (blue cylinder) prox-
imitized by an s-wave superconductor (brown). The mag-
netic field Bx is applied in x direction (nanowire axis) and
the Rashba spin-orbit vector α points in y direction. Such
systems can host low-energy spin-down (up) polarized quasi-
particle states in the trivial (topological) phase. The energy
of these one-dimensional states is limited above by the super-
conducting gap of the three-dimensional s-wave superconduc-
tor. The vertical cones indicate tunnel-coupled side probes
(leads or STM tips) that are oppositely spin polarized (blue
and red arrows) and are placed at some distance away from
the nanowire ends.

tum transport techniques. The local transport spec-
troscopy techniques can provide some insight about local-
ized in-gap quasiparticle states e.g zero energy Majorana
fermions or non-zero energy ABSs via local conductance
peaks as predicted by theory [63–70] and tested exper-
imentally [71–82]. However, one has to keep in mind
that such local transport measurements can be incon-
clusive in detecting topological superconducting phases
since the observed zero-bias peaks can have origins that
are different from Majorana fermions [83–102]. On the
other hand, multiterminal transport techniques can pro-
vide additional information about the system such as su-
perconducting energy gap anisotropy, nonlocal nature of
the quasiparticles, their effective charge associated with
electron and hole composition, induced gap closing, and,
potentially, about the TPT [102–120].

Recently, significant tunability between the CAR and
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ECT processes has been reported in nonlocal quantum
transport experiments in proximitized Rashba nanowires
coupled to quantum dots [62]. This a key step toward
generating fine-tuned topological superconducting phases
within the minimal Kitaev chain model [32, 33] and gen-
erating Bell states in a controllable manner via CAR [18].

Here, we investigate theoretically spin properties of
low-energy quasiparticles hosted in proximitized Rashba
nanowires using nonlocal quantum transport simulation
techniques. In contrast to previous works, we consider
systems with tunnel-coupled side leads that are also spin
polarized. We demonstrate a direct relationship between
the sign of the nonlocal conductance and the sign of the
quasiparticle spin in systems where at least one side lead
is spin polarized. This relationship is observed over a
wide range of system parameters. Moreover, since the
spin density and its sign can be non-uniform along the
nanowire, the ECT and CAR processes, which are corre-
lated with the sign of the nonlocal conductance, depend
on the positions at which the side-coupled spin-polarized
leads are attached. This could be used to detect band in-
version associated with the sign flip of spin and charge of
low-energy quasiparticles [121], which build a low-energy
Andreev band. Thus, this property could serve as an ad-
ditional criterion for verifying topological superconduc-
tivity. We note that the energy of these one-dimensional
states, forming the Andreev band, is limited from above
by the superconducting gap of the three-dimensional par-
ent s-wave superconductor. If the quasiparticle energy is
above this value, the corresponding state is no longer
confined inside the nanowire and, instead, gets delocal-
ized over the entire system including the superconductor.
Thus, the detection scheme proposed here is only appli-
cable to states within the Andreev band but not to higher
energy quasiparticle states.

Moreover, we identify parameter regimes for which the
quasiparticle charge is nearly zero, indicating an equal
amount of electron and hole components even though the
system undergoes band inversion. In such a regime, the
sign of nonlocal conductance related to the quasiparticle
spin are particularly robust to onsite disorder. For com-
pleteness, we also calculate the local conductance, which
also depends on the spin polarization of the probed quasi-
particle states, obtaining results consistent with the spin-
selective Andreev reflection process [122–128]. On the
other hand, in setups with two normal leads, we obtain
a very good mapping between the sign of nonlocal con-
ductance and the sign of quasiparticle charge as expected
theoretically [20, 110] and verified experimentally [62].

Our findings describe a general phenomenon and can
be used to precisely detect the local spin density of quasi-
particles not only in proximitized Rashba nanowires but
also in other systems hosting spin-polarized quasipar-
ticle states such as Yu-Shiba-Rusinov states [130–133],
spin chains [134–145], Andreev spin qubits [34, 38, 41–
45], Caroli-de Gennes-Matricorn and Majorana vortex
states [24, 146–149] etc. Furthermore, our results offer
insights for designing devices functioning as Cooper pair

splitters and for realizing poor man’s Majorana fermions
in minimal Kitaev chain models in which precise tunabil-
ity over ECT and CAR processes is crucial [32, 33, 62].
In our simulations, we employ realistic parameters. It is
noteworthy that the coupling of side-leads to nanowires
has already been experimentally demonstrated, both for
normal leads [119], for quantum dots [85, 150, 151], and,
notably, for ferromagnetic leads [18]. Hence, our predic-
tions are directly amenable to experimental verification.

II. MODEL

As an example of a system that can host spin polarized
low-energy one-dimensional Andreev band with quasi-
particle wavefunctions extended over the entire length
of the nanowire, we consider a Rashba nanowire proxim-
itized by a three-dimensional s-wave superconductor. It
was shown that low-energy quasiparticle states in such
systems for certain parameter ranges have a well-defined
spin polarization [121]. To be specific, we consider a one-
dimensional Rashba nanowire aligned along the x-axis
and placed on top of an s-wave superconductor in the
presence of an external magnetic field applied along the
nanowire axis (see Fig. 1). The system can be modeled
by the tight-binding Hamiltonian:

H =

N−1∑
j=0

[Ψ†
j+1(−tτzσ0 − iα̃τzσy)Ψj + H.c.]

+

N∑
j=0

Ψ†
j [(2t− µ)τzσ0 + ∆scτyσy + ∆Zτzσx]Ψj , (1)

where Ψj = (cj↑, cj↓, c
†
j↑, c

†
j↓)T is given in standard

Nambu representation. The creation operator c†jσ acts
on an electron with spin σ located at site j in a chain
of N sites with lattice constant a. The Zeeman energy
∆Z = gµBBx/2 is determined by the strength of the ex-
ternal magnetic field applied along the x-axis, Bx, and by
the g-factor. The proximity effect by the s-wave super-
conductor is responsible for inducing a uniform supercon-
ducting pairing term ∆sc in the nanowire. The chemical
potential of the nanowire µ is calculated from the SOI
energy and t = ℏ2/(2m∗a2) is the hopping amplitude,
where m∗ is the effective mass and a the lattice spac-
ing used in the effective tight binding modeling. The
Pauli matrices σi (τi) act on spin (particle-hole) space
and α̃ = α/(2a) is the spin-flip hopping amplitude result-
ing from the Rashba SOI characterized by the strength
α and ESO = α̃2/t is the associated SOI energy. In order
to find the energy spectrum En and corresponding wave-
functions Φn(j) labeled by the index n = 1, ..., 4N we
diagonalize the Hamiltonian H numerically. The quasi-
particle spin and charge density distribution for given en-
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ergy eigenstates En are defined, respectively, as follows:

Sx(j, En) = Φ†
n(j)τzσxΦn(j) (2)

Q(j, En) = Φ†
n(j)τzσ0Φn(j) (3)

Below, we show that the transport properties of the in-
vestigated system strongly depends on these quantities.

In order to investigate the transport properties of the
system, we employ the Blonder-Tinkham-Klapwijk for-
malism [152] in which the zero-temperature nonlocal con-
ductance Gij(E) between leads i and j is given by

Gij(E) =
e2

h
[T ee

ij (E) − The
ij (E)] (4)

and the local conductance by

Gii(E) =
e2

h
[Ni −Ree

ii (E) + Rhe
ii (E)], (5)

where T ee
ij (E) [Ree

ii (E)] and The
ij (E) [Rhe

ii (E)] are, respec-
tively, the amplitudes of the normal (electron-electron)
and Andreev (electron-hole) transmission [reflection] pro-
cess for the charge carriers with energy E injected in
the system from j-th lead and transmitted towards
the i-th lead, where i, j = L,R label the left and
right leads. The number of modes in the leads is de-
noted by Ni. For the system considered here, the
conductance Gij(E) is calculated numerically using the
Kwant [153] package and Adaptive [154] for the opti-
mal parameter sampling. In all displayed results, the
conductance is expressed in units of e2/h. In our sim-
ulations, the leads are modeled by the Hamiltonian
Hlead(k) = (2t[1 − cos(ka)] − µlead)τzσ0 + Mxτzσx,
which for Mx = 0 describes the normal (unpolarized)
lead and for Mx < 0 (Mx > 0) the corresponding spin
up (down) polarized leads.

The corresponding band structure of the leads EL,R(k)
as a function of momentum k is schematically depicted
on Fig. 2 together with the band structure of the proxim-
itized Rashba nanowire ERNW (k) and quasiparticle spin
Sx(k) = Φ†(k)τzσxΦ(k) (see App. A for details). Again,
the spin quantization axis is assumed to be in the x di-
rection, along the applied magnetic field. The leads are
tunnel-coupled to the nanowire at the positions xL and
xR, respectively, for the left and the right lead with pos-
itive hopping amplitude tΓ(< t).

For the purpose of this study, we choose system pa-
rameters that are within experimental reach and for
regimes where one can get a substantial number of ex-
tended quasiparticle states forming the one-dimensional
Andreev band inside the superconducting gap of the
three-dimensional s-wave superconductor (long nanowire
limit L = 10 µm). To be specific, we choose the fol-
lowing parameters for Rashba nanowires: effective mass
m∗ = 0.014m0, g-factor g = 50, ∆sc = 0.25 meV, and
α = 50 meVnm (ESO = 0.23 meV). In case for spin up
(down) polarized leads µlead = 0 and Mx = −0.3 meV
(Mx = 0.3 meV) and for the normal lead µlead = 0.3 meV

FIG. 2. Energy bands of the left spin up polarized lead
EL(k), the proximitized Rashba nanowire ERNW (k) and the
right lead which is either (a) spin-down or (b) spin-up polar-
ized or (c) normal ER(k). The x component (along B-field)
of the spin polarization of quasiparticles from the Andreev
band, Sx(k), is indicated by the colorbar. Shaded gray ar-
eas mark an energy window ∆i < E < ∆ex in which spin
sensitive transport occurs. Among many possible scattering
processes, we denote the dominant ones contributing to the
nonlocal conductances (b) GL(+)R(−), (c) GL(+)R(+), and (d)
GL(+)R(N), which are either CAR (negative conductance) or
ECT (positive conductance) processes. The strength of the
corresponding signal (high or low) is reflected in the line thick-
ness. Empty circles denote holes while filled ones denote elec-
trons and half-filled ones correspond to quasiparticles in the
nanowire. We set the following parameters for the nanowire:
µ = 0, t = 0.27 meV, ∆sc = 0.25 meV, ∆Z = 0.2 meV
(nontopological phase), α = 50 meVnm (ESO = 0.23 meV).
For the spin up (down) polarized leads, we set µlead = 0 and
Mx = −0.3 meV (Mx = 0.3 meV) and, for the normal lead,
we set µlead = 0.3 meV and Mx = 0.

and Mx = 0. For the purpose of numerical efficiency we
set a = 100 nm corresponding to t ≈ 0.27 meV and
N = 100. However, we have checked that for a = 10 nm
(t ≈ 27 meV) and N = 1000 the key results are very
similar (see App. C for details). To study the depen-
dence on the Zeeman energy, we set µ = 0, and vary ∆Z

between 0 and 2∆sc = 0.5 meV. To study the depen-
dence on the chemical potential µ, we fix the Zeeman en-
ergy to ∆Z=0.4 meV and change µ between -0.6 and 0.6
meV. In most cases the leads are attached symmetrically
around the nanowire center at the positions xL = (1/4)L
and xR = (3/4)L, unless stated otherwise. However,
as shown for disordered systems and in App. B, as long
as the leads are attached sufficiently far away from the
nanowire ends the main features of the spin-dependent
nonlocal conductance are not affected. Here, we work in
the tunneling regime with tΓ < t, so individual quasi-
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particle states can be resolved in transport simulations
and compared with the local spin and charge densities of
the quasiparticels from the Andreev band obtained from
finite-size calculations. Furthermore, the weak coupling
regime between the spin polarized lead and the nanowire
can be advantageous in suppressing its potentially di-
minishing effects on superconductivity in case of spin
polarized leads. Here, we choose parameters for InAs
in order to demonstrate that the conductance inversion
(spin-dependent nonlocal conductance) can be observed
for realistic parameter values. However, we would like to
emphasize that the spin-dependent behavior–switching
of the conductance sign–has a rather universal character
and can be used for quasiparticle spin detection in other
systems and for other parameter regimes.

III. RESULTS

A. Schematic picture of nonlocal transport

We present first a schematic (physical) picture of the
dominant processes contributing to the nonlocal conduc-
tance GLR for three different configurations of the leads,
which is then followed by the presentation of exact nu-
merical results in subsequent sections. Regarding the
proximitized Rashba nanowire, the extended Andreev
band quasiparticles with energies ERNW (k) < ∆sc have
a certain sign of the spin if the exterior gap exceeds the
interior one, ∆i < ∆ex, which for µ = 0 is satisfied if
0 < ∆Z < 2∆sc. In the topologically trivial state (here,
∆Z < ∆sc for µ = 0), the quasiparticle states with the
lowest positive energy around k ≈ 0 have negative spin
polarization Sx(k) as illustrated on Fig. 2(a)-(c) (middle
panels).

When the left lead is spin-up (+) and the right lead
spin-down polarized (-), the spin of the injected charge
carrier with positive energy matches the negative spin
of quasiparticles in the proximitized region. However,
due to spin mismatch it cannot enter the left lead as
an electron and has to be transformed into hole which
is spin-down polarized (see Fig. 2(a) for details). This
leads to a strong CAR dominated nonlocal conductance
GL(+)R(−) signal characterized by a negative sign.

Next, we consider the case with two spin-up polar-
ized leads. Here, even though the injected spin-up polar-
ized charge carrier with positive energy does not match
the spin direction of the spin-down quasiparticle in the
proximitized region, transport can still occur due to the
presence of SOI, however, with low probability transfer
amplitude giving rise to a small CAR signal. However,
when we look at negative energies, the spin polarizations
of electrons in both leads and of the quasiparticle in the
nanowire are the same. Thus, the injected electron can
easily enter the proximitized region and leave it as an
electron with the same spin. In such a scenario nonlo-
cal transport is dominated by strong ECT as depicted in
Fig. 2(b) with a positive sign of the nonlocal conductance

GL(+)R(+).
Finally, we consider the case with the left lead being

spin-up polarized while the right lead is normal (unpo-
larized). Due to spin degeneracy in the right lead, the
electron can freely enter the proximitized region regard-
less of the quasiparticle spin polarization and enter the
left lead as spin-down (up) hole (electron). This sup-
ports strong CAR (ECT) dominated nonlocal conduc-
tances for positive (negative) energies (see Fig. 2(c) for
details). In the following sections, we support the pic-
ture presented here by exact numerical simulations of the
spin-dependent quantum transport.

B. Quasiparticle spin detection

We next study numerically the low-energy states and
their spin and charge densities for Rashba nanowires and
the corresponding local and nonlocal conductances. In
these calculations, we tune either the Zeeman energy ∆Z

or the chemical potential µ symmetrically around given
critical values corresponding to the TPT. To study the
spin-dependent transport, like before, we consider differ-
ent configurations of the leads attached to the system: i)
leads with the same spin polarization (either up or down),
ii) leads with opposite spin polarization, and iii) a setup
where the left lead is spin polarized while the right lead
is normal (unpolarized).

First, we calculate numerically the energy spectrum
for finite-size nanowires as function of ∆Z together with
the local quasiparticle spin Sx(j, En) [see Fig. 3(a)] for
selected positions xL or xR at which the leads will be
attached in the transport simulations. This will allow us
to compare and relate the sign of the local quasiparticle
spin with the sign of the nonlocal conductance. We note
that for the uniform system without disorder the spin
density profile of selected bulk states are symmetric with
respect to the center of the nanowire: Sx(x) = Sx(L−x)
as presented in Fig. 3(d). We observe that the quasi-
particle spin Sx(xL) of the low-energy quasiparticles at
position xL (which should be sufficiently far away from
the nanowire end) changes its sign when the system un-
dergoes the TPT as the Zeeman energy passes the critical
value ∆c

Z = ∆sc for µ = 0.
We start the discussion with presenting results from

transport simulations for systems with two leads that
have the same spin polarization either up (+) or down
(-). We observe a strong positive nonlocal conductance
GL(±)R(±)(∆Z , EF ) = GR(±)L(±)(∆Z , EF ), if the spin of
the probed ABS is the same as the spin of the electrons in
the leads. In this case the transport is dominated by ECT
processes. For example, when the leads are spin up (spin
down) polarized one can observe strong positive nonlocal
conductance signals as depicted on Fig. 3(b’) [Fig. 3(b”)]
for energies corresponding to the lowest bulk states and
values of the Zeeman energies for which corresponding
quasiparticle states also have positive (negative) sign of
the local spin density at the positions of the leads. The
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FIG. 3. (a) Energy spectrum of proximitized Rashba nanowire as a function of Zeeman energy ∆Z induced by the magnetic field
Bx applied along the nanowire axis, which also defines the spin quantization axis. The color bar represents the x-component of
the spin density, Sx(j, En), for a given energy eigenstate En at position j = xL/a and xR/a with xL/a = 25 or xR/a = 75 (here
the spin density is symmetric with respect to the nanowire center). On panel (a’) the color bar represents the quasiparticle
charge Q(j, En). The vertical dashed line indicates the critical value of ∆c

Z = ∆sc at which the system undergoes a gap
closing and reopening at the TPT point characterized by spin inversion of the lowest-energy states. The nonlocal conductance
GLR(∆Z , E) = GRL(∆Z , E) for systems with (b) normal - spin unpolarized (degenerate) leads, (b’) both spin-up and (b”)
spin-down polarized leads. The colored arrows on the insets denote the spin polarization of the leads. The corresponding local
conductance GLL,RR(∆Z , E) is plotted on the panels (c)-(c”). The corresponding strength of local conductance signals (c’,
c”) is consistent with the spin-selective Andreev reflection. Quasiparticle (d) spin Sx(x,En) and (e) charge density for the
two lowest nonzero energy ABSs in the trival (∆Z=0.2 meV) and topological (∆Z=0.3 meV) phase with negative and positive
spin density, respectively, and almost zero charge density in both cases. On panels (b’, b”), one can observe strong positive
(weak negative) nonlocal conductance signal related with dominant ECT (CAR) process when the spin of the leads matches
(are opposite to) local spin polarization of ABS. In contrast to spin, we note that we do not observe any correlations between
(b) nonlocal conductance and (a’) quasiparticle charge for the system with normal leads as the quasiparticle charge is almost
zero (a’, e). The nanowire-lead coupling is set to tΓ = 0.4t ≈ 0.1 meV while the rest of the parameters are as in Fig. 2.

FIG. 4. Same as for Fig. 3 but now as a function of chemical potential µ while the Zeeman energy is set to ∆Z = 0.4 meV.
(a’) For a wide range of µ, one can clearly see nonzero values of the quasiparticle charge. As a consequence, the sign of the
nonlocal conductance GL(N)R(N)(µ,E) for systems with normal leads in panel (b) corresponds quite well to the quasiparticle
charge shown in panel (a’). Again, there is a strong positive nonlocal conductance signal for the case when the spin of the
probed ABSs is the same as the spin polarization of the leads.
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FIG. 5. Nonlocal conductance maps (a) GL(+)R(−)(∆Z , E)
and (b) GR(+)L(−)(∆Z , E) for the same parameters as in
Fig. 3 but here leads have opposite spin polarizations as
indicated in the inset to the panel (a) for the clean system:
the left (right) lead is spin-up (down) spin polarized. When
the spin of injected charge carriers from the lead is the same
as (opposite to) the spin polarization of the probed ABS,
there is a strong negative (weak positive) nonlocal conduc-
tance. This means that now nonlocal transport is dominated
by CAR process. This behavior can be used to tune the am-
plitude of CAR processes, being essential for generating en-
tangled states via Cooper pair splitting processes. Results for
systems with moderate disorder |δµj | ≤ ∆sc are depicted on
panels (a’, b’) and show that the observed behavior of spin-
dependent conductance is robust against disorder.

appearance of weak negative nonlocal conductance sig-
nals (CAR) is due to the presence of SOI in the nanowire
that allows for normally forbidden spin-flip transport
processes. On the other hand, by analyzing plots of the
local conductance shown in Fig. 3(c’) and (c”), we no-
tice that conductance peaks are more (less) pronounced
when the spin polarization in the leads matches (does not
match) the spin polarization of the probed quasiparticles.
This observation is consistent with so-called SSAR pro-
cesses [122–128]. We obtain analogous results with ECT
dominated signals when the chemical potential deviates
from µ = 0 while ∆Z is fixed (see Fig. 4). In this case,

there are two TPTs at µ±
c = ±

√
∆2

Z − ∆2
sc. Still, we

again can identify these TPTs by simply looking at the
sign of the nonlocal conductances.

Next, we study setups in which the left and right
leads have opposite spin polarizations. Strong non-
local conductance signals GL(+)R(−)(∆Z , E) are ob-
served in Fig. 5(a) and GL(+)R(−)(µ,E) in Fig. 6(a)
[GR(−)L(+)(∆Z , E) in Fig. 5(b) and GR(−)L(+)(µ,E) in
Fig. 6(b)] when the spin of the injected carriers in the

FIG. 6. The same as for Fig. 5 but now the chemical potential
µ is varied and the Zeeman energy is kept fixed to ∆Z = 0.4
meV. Here, we can see again that the transport is dominated
by CAR processes (negative conductance), which can be con-
troled by tuning µ (e.g. via backgate).

right (left) lead matches the local spin polarization of
ABSs in the nanowire at a given bias. We note that
sgn[GLR(∆Z , E)] = −sgn[GRL(∆Z , E)]. In such a setup,
the nonlocal transport is dominated by CAR processes,
a fact that can be advantageous for realization of Cooper
pair splitters. The nonlocal conductance has a small pos-
itive value when the injected carriers have spin opposite
to the probed ABS states, which is possible, again, due
to SOI in the proximitized nanowire.

We have also considered the case when the left lead is
spin polarized and the right one is normal - spin unpo-
larized (spin degenerate). In such a setup, the nonlocal
conductance GL(±)R(N) has a strong positive (negative)
value when the polarization of the left lead is the same
as (opposite to) the spin polarization of the low-energy
quasiparticles from the Andreev band. Such gate config-
urations make the system an ideal platform for detecting
the sign of the local spin polarization of quasiparticles,
which is directly linked to the sign of the nonlocal conduc-
tance. Therefore, such setups are very suitable for the de-
tection of spin inversion of the one-dimensional Andreev
bands induced by the TPT. Furthermore, such setups are
optimal for switching between ECT and CAR processes
in Rashba nanowires either by tuning the magnetic field
[see Fig. 7(a,b)] or the chemical potential [see Fig. 8(a,b)].
For this case, we have also calculated GL(±)R(N)(xL) as
a function of the position of the left lead while the po-
sition of the right one is fixed. We plot it together with
quasiparticle spin and charge densities for the system
in the topological as well as nontopological phase, see
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FIG. 7. Nonlocal conductance maps GL(±)R(N)(∆Z , E)
for systems where right lead is normal (spin unpolarized)
and left lead is either (a) spin-up or (b) spin-down polar-
ized as indicated on insets. Here, we observe the exact
(anti) correspondence between the sign of the local spin
density of a given quasiparticle and nonlocal conductance
GL(±)R(N)(∆Z , E). When the left lead has same (opposite)
spin polarization as the probed quasiparticle, the nonlocal
conductance GL(±)R(N)(∆Z , E) has a large positive (nega-
tive) value. For this case, the conductance signal is strongest
and such a setup would be most optimal for probing quasi-
particle spin polarization via nonlocal transport and tuning
between ECT and CAR behavior. For completeness, we plot
GR(N)L(±)(∆Z , E) - the carriers are injected from spin-up and
spin-down polarized leads, respectively, on panels (a’) and
(b’). The signal is much weaker when the spin polarization
of the quasiparticles is opposite to that in the spin-polarized
lead.

Fig. 9. We note again that the sign of the nonlocal con-
ductance is correlated with the sign of the local spin den-
sity. We also note that when the leads are attached to the
ends of the system, the sign of the nonlocal conductance
does not change when the system undergoes a TPT since
the local spin density has the same sign at the ends of
the nanowire (see Fig. 9 for details) in both topological
and nontopological phases. Here, on purpose, we choose
shorter nanowires L = 3 µm to illustrate clearly the case
when the sign of the quasiparticle spin density Sx(x) is
position dependent [see orange curve on Fig. 9(b)]. As
a consequence, in this case the sign of the nonlocal con-
ductances GL(±)R(N)(xL) depends on the position of the
left lead [see solid and dashed black curves on Fig. 9(b)].

Finally, we show that our results are robust against
disorder, by adding random on-site fluctuations to the
onsite chemical potential µi = µ + δµi in Eq. (1) with
|δµi| ≤ ∆sc as shown on Fig. 10(d). One can see that
the presence of disorder affects the energy levels [see

FIG. 8. The same as in Fig. 7 but now as a function of chem-
ical potential µ while the Zeeman energy is set to ∆Z = 0.4
meV. One can again observe the perfect correspondence be-
tween the spin polarization of the probed quasiparticles and
the sign of the nonlocal conductance GLR(µ,E). Here, tun-
ning between the CAR and ECT dominating regimes can be
realized by changing the chemical potential.

Fig. 10(a)] compared to the clean system [see Fig. 3(a)],
however, the sign of the local spin density is very ro-
bust to such disorder [see Fig 10 (a,e)]. Moreover, as
a consequence, our transport study shows that the sign
of the nonlocal conductance is also not affected by the
disorder [see Fig. 5(a, b’), Fig. 6(a,b’), Fig. 5(a,b’),
Fig. 10(b,b’,b”,c,c’,c”)]. Importantly, in the charge neu-
trality regime where µ = 0 and where the band inversion
is driven by the Zeeman energy, the spin-dependent non-
local conductances are clearly more robust to the onsite
disorder [see Fig. 5(a’,b’), Fig. 10(b,b’, b”,c,c’,c”)] than
in the case when µ ̸= 0 [see Fig. 6(a’,b’)].

As a summary, in Table I, we list schematically all the
considered spin configurations of the left and right leads
together with spin polarization of the lowest nonzero
energy states in the Rashba nanowire and the corre-
sponding information about the sign (distinguishing be-
tween CAR or ECT dominating channels) as well as the
strength of the local and nonlocal conductance signals.

C. Quasiparticle charge detection

For the goal of detecting the quasiparticle charge, we
consider a setup with two normal (unpolarized) leads.
First, we start with calculating the local quasiparticle
charge Q(En) as a function of Zeeman energy ∆Z for
states at a given energy. The energy spectrum of the
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SRNW
x Sx < 0 Sx > 0 Sx < 0 Sx > 0 Sx < 0 Sx > 0 Sx < 0 Sx > 0

← → ← → ← → ← →
Lead: L,R: L,R: L,R: L,R: L: R: L: R: L: R: L: R:

Gij / Slead
x Sx > 0 Sx > 0 Sx < 0 Sx < 0 Sx > 0 Sx < 0 Sx > 0 Sx < 0 Sx > 0 Sx = 0 Sx > 0 Sx = 0

→ → ← ← → ← → ← → ⇄ → ⇄

GLL Low High High Low Low High Low High

GRR Low High High Low High Low ≈ 0 ≈ 0

GLR CAR/Low ECT/High ECT/High CAR/Low CAR/High ECT/Low ECT/High CAR/High

GRL CAR/Low ECT/High ECT/High CAR/High ECT/Low CAR/High CAR/Low CAR/High

TABLE I. Summary of results obtained for different configurations of the spin polarization of the lowest nonzero energy state
in a Rashba nanowire, SRNW

x , and the spin polarization of the leads, SL,R
x , and their correspondence with the value of the

local (Gii) and nonlocal conductance (Gij), i, j = L,R. The table also contains information about the leading processes
contributing to the nonlocal conductance, being either ECT or CAR, corresponding to the positive or negative sign of the
nonlocal conductance, respectively.

finite-size system is depicted in the Fig. 3(b) where the
blue/red color indicates the negative/positive sign of the
quasiparticle charge Q(En) for a given energy eigenstate
at selected position at which the normal lead will be at-
tached in case of transport simulations. Here, we con-
sider the charge neutrality regime where µ = 0. In such
a case, both before (∆Z < ∆sc) and after (∆Z > ∆sc)
the TPT, the quasiparticle charge is very close to zero.
In addition, if one looks closely at the two lowest energy
quasiparticle, one finds that the corresponding quasipar-
ticle charge density along the nanowire is also almost
zero with some small oscillations at the nanowire ends
as depicted in the Fig. 3(e) and Fig. 9. This means
that the low-energy quasiparticles are composed of ap-
proximately equal amount of particle and hole parts.
This is also consistent with the analytical predictions
for k ≈ 0, Q(k) ≈ sign(∆Z − ∆sc)[ℏ2k2/(2m∆sc)] (see
App. A). In such a scenario, when the two leads at-
tached to the system are normal (unpolarized), there is
no visible change in sign of the nonlocal conductance
GL(N)R(N)(∆Z , E) = GR(N)L(N)(∆Z , E) [see Fig. 3(b)]
before and after the TPT.

On the other hand, the system can be tuned away from
the charge neutrality point (µ = 0), e.g. when the TPT
(the band inversion) is driven by the change of chemical
potential µ while the Zeeman energy is fixed to a value
that is greater than the induced superconducting gap, i.e.
∆Z > ∆sc. Here, in contrast to the previously consid-
ered regime, the quasiparticle charge is generally nonzero
for a wide range of parameters and, more importantly, it
changes its sign [see Fig. 4(a’)] around the critical values

of the chemical potential µ±
c = ±

√
∆2

Z − ∆2
sc for which

the energy gap in the spectrum closes and the Andreev
bands get inverted. As a consequence, the sign of the
nonlocal conductance GL(N)R(N)(µ,E) is flipped accord-

ingly around the TPT points µ±
c [see Fig. 4(b)]. This

is in general agreement with theoretical [20, 110] and ex-
perimental studies [62].

FIG. 9. Nonlocal conductance GL(±)R(N) for the system
with the left lead being spin-up/down (±) polarized and the
right lead being normal (N) as function of position of the
left lead which changes from xL = 0 to the nanowire center
xL/a = L/2/a, while the right lead is fixed to xR/a = 55. The
energy of the injected charge carries matches that of the low-
est quasiparticles from the Andreev band (smallest positive
nonzero energy). Here, Q(x/a) and Sx(x/a) denote quasi-
particle charge and spin density profile, respectively, for the
system (a) in the nontopological phase for ∆Z = 0.3 meV and
(b) in the topological phase for ∆Z = 0.4 meV, while the TPT
occurs at ∆c

Z = ∆sc = 0.35 meV. The charge density is almost
zero, while the spin density is negative in the nontopological
phase and positive in topological one. Here, we show that the
sign of the nonlocal conductance GL(±)R(N) perfectly matches
with the sign and magnitude of the spin density at a given
point. Here, L = 3 µm, a = 30 nm(t ≈ 3 meV), N = 100,
α = 40 meVnm (ESO = 0.15 meV), tΓ = 0.15t ≈ 0.45 meV.

IV. CONCLUSIONS

We analyzed in detail spin and transport properties of
a proximitized Rashba nanowire in a three-terminal setup
with grounded superconductor and with tunnel-coupled
side normal or spin polarized leads. We have consid-
ered several configurations of the spin polarization of the
leads, revealing a distinct correspondence between the
sign of the nonlocal conductance and the sign of the lo-
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FIG. 10. The same as in Fig. 3 but for system with static disorder |δµi| ≤ ∆sc, the profile of which is depicted on panel
(d). Comparing to the clean system, the spin-dependent conductances are slightly affected, however, the main spin signature
is still visible. (e) Even though the spatial profile of spin densities is significantly affected, the overall sign is preserved. (e’)
As expected, the biggest change can be seen in the charge density that takes much higher values comparable to the spin
polarization, however, they are strongly oscillating around zero, which does not affect significantly the conductances.

cal quasiparticle spin density. In particular, in the setups
featuring two leads with the same or opposite spin po-
larizations, we observed a dominance of either the ECT
or CAR processes, if the spin of the probed quasiparticle
state matches the spin of the injected charge carrier in the
lead. Alternatively, employing one normal and one spin-
polarized lead facilitated the precise mapping between
the sign of the nonlocal conductance and the spin polar-
ization of the probed quasiparticle state. Furthermore,
nonlocal conductances in setups with two normal leads
provide information solely pertaining to the quasiparticle
charge, rather than spin. We showed that such a behav-
ior can be used to detect the TPT which involves band
inversion and a related sign inversion of spin and charge
of the lowest energy states. Moreover, we showed that a
Rashba nanowire with tunnel-coupled side leads can be
a versatile platform for tuning between CAR and ECT
processes. This functionality holds promise for applica-
tions such as Cooper pair splitters and minimal Kitaev
chain systems of quantum dots hosted in proximitized
Rashba nanowires. Importantly, our findings highlight
the importance of coupling leads to regions away from
the nanowire ends, which gives additional insight into
the charge and spin density characteristics of quasiparti-
cles. We expect that our results will be particularly useful
to experimentalists working on hybrid superconductor-
semiconductor systems.

While our study focused on spin-polarized leads, we
expect analogous outcomes for systems featuring spin-
polarized quantum dots [150, 151]. However, this case
can add complexity in tuning dot levels to match the
energy levels of the probed quasiparticle states and tak-
ing into account Coulomb charging physics in the quan-

tum dots. In summary, our work presents a novel avenue
for detecting quasiparticle spin polarization and study-
ing CAR and ECT dominated regimes through measur-
ing the spin density profiles of the lowest energy Andreev
bound states with tunnel-coupled side normal or spin po-
larized leads.
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Appendix A: Hamiltonian in momentum space

The bulk energy bands of the system can be
studied in momentum space by imposing periodic
boundary conditions. In order to write H in
the momentum space one can use Fourier trans-
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formed operators cjσ =
∑

j ckσe
−ijka/

√
N , and

Ψk = (ck↑, ck↓, c
†
−k↓,−c†−k↑)T . The corresponding

Hamiltonian takes the form H =
∑

k Ψ†
kH(k)Ψk with

H(k) = [2t− 2t cos(ka) − µ + 2α̃ sin(ka)σy] τz

+ ∆scτx + ∆Zσx. (A1)

and in the continuum limit ka ≪ 1 [155], we get

H(k) =

(
ℏ2k2

2m
− µ + αkσy

)
τz + ∆scτx + ∆Zσx. (A2)

The continuum model and its discretized tight bind-
ing version are related by the hopping amplitude t =
ℏ2/(2ma2) [69]. Regarding the parameters, we use the
same notation as in the main text. By diagonalizing H(k)
[see Eq. (A1) or (A2)], we obtain analytical expressions

for the eigenvalues Eλη
RNW (k) and corresponding eigen-

states Φλη(k) whose explicit forms can be found in the
supplemental material to Ref. [121]. As a results one gets
four energy bands (see ERNW (k) in the middle panels of
Fig. 2), labeled by λ and η, where λ = 1 (λ = 1̄) la-
bels bands with positive (negative) energy and η = 1̄ the
bands closest to the Fermi level. However, in the main
text for the purpose of clarity we skipped energy band
labels λη. The corresponding bulk quasiparticle spin and
charge can be calculated as follows:

Sλη
x (k) = Φ†

λη(k)σxΦλη(k), (A3)

Qλη(k) = − Φ†
λη(k)τzσ0Φλη(k), (A4)

which for k ≈ 0 take the approximate analytical
forms [121]

Sλ1̄
x (k) ≈ λsign(∆Z − ∆sc)

[
1 − (αk)2

2(∆Z − ∆sc)2

]
, (A5)

Qλ1̄(k) ≈ λsign(∆Z − ∆sc)
ℏ2k2

2m∆sc
. (A6)

Appendix B: Shorter Wire Limit

In this Appendix, we consider the setup with left lead
being spin up/down polarized and the right lead be-
ing normal. The corresponding nonlocal conductances
GL(±)R(N)(∆Z , E) for the nanowire of the length L =
3 µm (N = 100, a = 30 nm, t ≈ 3 meV, tΓ = 0.15t ≈ 0.45
meV, xL/a = 45, xR/a = 55) and L = 1 µm (N = 100,
a = 10 nm, t ≈ 27.21 meV, tΓ = 0.15t ≈ 4.1 meV,
xL/a = 45, xR/a = 55) are presented on Fig. 11(a,b)
and Fig. 12(a,b), respectively. Here, we choose the dis-
tances between the gates as d = xR − xL = 300 nm and
d = xR − xL = 100 nm. The corresponding energy spec-
trum calculated as a function of Zeeman energy ∆Z for
the proximitized nanowire is shown in Fig. 11 (c,d) and

FIG. 11. The maps of nonlocal conductance (a)
GL(+)R(N)(∆Z , E), (b) GL(−)R(N)(∆Z , E) for the nanowire
of length L = 3 µm (N = 100, a = 30 nm, t ≈ 3 meV,
tΓ = 0.15t ≈ 0.45 meV). The energy spectrum of the nanowire
together with (c) local quasiparticle spin Sx(E, xL) and (d)
local quasiparticle charge Q(E, xL) at xL = 45a. Here, the
superconducting gap in the nanowire is set to ∆sc = 0.35 meV
and α = 40 meVnm (ESO = 0.15 meV). Again, there is perfect
correspondence between the sign of local spin of the probed
quasiparticles [see panel (c)] and the sign of nonlocal conduc-
tance GLR(∆Z , E) [see panels (a,b)].

FIG. 12. The same as Fig. 11 but for the length L = 1 µm
(N = 100, a = 10 nm, t ≈ 27.21 meV, tΓ = 0.15t ≈ 4.1 meV).
In a short nanowire, in the topological phase, we also get an
oscillating signal around zero energy from two overlapping
Majorana bound states.
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Fig. 12 (c,d). On panels labeled by (c) [(d)] of Fig. 11
and Fig. 12, the color represents the sign and strength
of quasiparticle spin [charge]. There is again a perfect
correspondence between the sign of the nonlocal conduc-
tance [panels (a,b)] and the sign of the local quasipar-
ticle spin [panel (c)]. Here, however, in the topological
phase, one notices the oscillations around zero energy re-
sulting from the overlap of two Majorana bound states
localized at the opposite ends of the nanowire. These
oscillations manifests themselve also in nonzero nonlocal
conductance signal in short Rashba nanowires in which
the Majorana bound state has non-zero support at points
at which we attach the leads.

Appendix C: Lattice spacing, numerical check

As we mentioned in the main text, for the purpose
of numerical efficiency, we set the effective tight bind-
ing lattice spacing to a = 100 nm in order to study the
long wire limit (L = 10 µm with N = 100). Here, we
show that, for 10 times smaller lattice spacing a = 10
nm (L = 10 µm with N = 1000, t ≈ 27.21 meV,
tΓ = 0.2t ≈ 5.45 meV), the key results are almost iden-
tical. As an example, we consider the setup with left

lead being spin-up polarized and right lead being unpo-
larized and compare directly the corresponding nonlocal
conductance map GL(+)R(N)(∆Z , E) for the parameters

a = 100 nm (N = 100) and a = 10 nm (N = 1000), see
Fig. 13.

FIG. 13. The comparison of the nonlocal conductance
GL(+)R(N)(∆Z , E) obtained for different lattice parameters
for the same nanowire length L = 10 µm. Results for
a = 100 nm and N = 100 [as in the main text, see Fig. 7(a)]
and for a = 10 nm and N = 1000 are presented on panel (a)
and (a’), respectively. In the regime of interest, |E| < ∆sc,
the obtained results are almost identical.
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