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We consider the one-dimensional deterministic complex Ginzburg-Landau equation in the regime
of phase turbulence, where the order parameter displays a defect-free chaotic phase dynamics map-
ping to the Kuramoto-Sivashinsky equation, characterized by negative viscosity and a modulational
instability at linear level. In this regime, the dynamical behavior of the large wavelength modes is
captured by the Kardar-Parisi-Zhang (KPZ) universality class, determining their universal scaling
and their statistical properties. These modes exhibit the characteristic KPZ sub-diffusive scaling
with the dynamical critical exponent z = 3/2. We present numerical evidence of the existence of an
additional scale-invariant regime, with the dynamical exponent z = 1, emerging at scales which are
intermediate between the microscopic ones, intrinsic to the modulational instability, and the macro-
scopic ones. We argue that this new scaling regime belongs to the universality class corresponding
to the inviscid limit of the KPZ equation.

I. INTRODUCTION

The complex Ginzburg-Landau equation (CGLE) is a
prototype model for the effective dynamics of spatially
extended systems out of equilibrium, ranging from hydro-
dynamical instabilities [1], pattern formation [2], chemi-
cal turbulence [3], to driven-dissipative bosonic conden-
sates [4]. Its success in providing a reliable qualitative de-
scription of a vast variety of phenomena in terms of a few
parameters has earned the CGLE a conspicuous interest
[3]. Important efforts have been devoted to characteriz-
ing the rich phase diagram of the CGLE, both in one and
in higher spatial dimensions [3, 5–8]. In one dimension,
the CGLE can yield chaotic, non-chaotic and intermit-
tent dynamics. We focus in this paper on the weakly
turbulent regime, also known as phase turbulence, char-
acterized by spatio-temporal chaos in absence of topolog-
ical defects [5, 9–13]. In this regime, the amplitude of the
order parameter weakly fluctuates around a finite steady
value. Its dynamics can be integrated out resulting in
a mapping of the CGLE to the Kuramoto-Sivashinsky
(KS) equation [14, 15] governing the effective dynamics of
the phase. The KS equation is a deterministic nonlinear
model for fluctuating interfaces, which exhibits nontrivial
behavior: indeed, this equation features a negative vis-
cosity, which yields an intrinsic modulational instability
of the linearized equation, saturated at nonlinear level.
This induces a chaotic dynamics when the size of the sys-
tem is large with respect to the typical scale of the insta-
bility pattern [16, 17]. This dynamics exhibits a steady
state, whose essential statistical features are captured by
the celebrated Kardar-Parisi-Zhang (KPZ) equation [18].

Originally introduced for modeling the random growth
of non-equilibrium interfaces [18], the KPZ equation is a
stochastic nonlinear partial differential equation which
has become a paradigm of nonequilibrium criticality, en-
compassing a wide collection of systems counting, be-
sides driven rough interfaces, randomly stirred viscous
fluids [19], directed polymers in random media [20], the

coherence of driven-dissipative bosonic condensates [21–
23], quantum spin chains [24], strongly correlated bosons
[25], and many more [26]. In one dimension, the KPZ
equation yields a universal critical regime characterized
by a sub-diffusive scaling behavior with the exact dynam-
ical critical exponent z = 3/2 [18], as well as by precisely
known non-Gaussian statistics [26, 27]. In the limit of
vanishing nonlinearity, the KPZ equation reduces to the
Edwards-Wilkinson (EW) equation [28], which leads to
a diffusive scaling with z = 2 and Gaussian statistics.
Recently, a new scaling regime, characterized by a dy-
namical exponent z = 1, has been unveiled in different
systems belonging to the KPZ universality class [25, 29–
32]. This new regime emerges in the limit of vanishing
surface tension for the KPZ equation, or equivalently in
the limit of vanishing viscosity for the stochastic Burgers
equation, which governs the dynamics of the velocity of
the interface [25, 29–31]. The functional renormalization
group analysis carried out in Ref. [32] has shown that
this new scaling regime is controlled by a fixed point of
the KPZ equation which had not yet been identified, and
which corresponds to its inviscid limit. This fixed point
was termed “inviscid Burgers” (IB) fixed point and it
describes a new universality class, featuring in particular
the z = 1 dynamical exponent. Its associated univer-
sal scaling function was determined using the functional
renormalization group in Ref. [32].

The fact that the large-scale behavior of the determin-
istic KS equation belongs to the KPZ universality class
was early conjectured [16], and supported by some in-
dications in numerical simulations [33] and perturbative
renormalization group analysis of the noisy KS equation
[34, 35]. Yet, the clear signature of the KPZ universal
scaling in this system has long eluded numerical obser-
vation due to the very large system size and run time
needed. The scaling regime found in early simulations
was rather compatible with the EW one. A definitive ev-
idence of KPZ scaling has only been recently provided by
the massive numerical simulations performed by the au-
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thors of Ref. [36], which allowed them to quantitatively
determine the scaling exponents and the statistical prop-
erties of the one-dimensional deterministic KS equation,
and show that they correspond to the KPZ ones.

In this paper, we present a numerical study of the sta-
tistical properties of the deterministic CGLE in the phase
turbulence regime, and show that, besides the KPZ uni-
versal scaling, also the Inviscid Burgers one arises. We
provide arguments to explain the systematic appearance
of the IB universality in the CGLE, and in the Kuramoto-
Sivashinsky equation. In details, we simulate the deter-
ministic CGLE, starting from random initial conditions,
and we compute the spatio-temporal correlations of the
phase by averaging over independent realizations. We
first show that the scaling behavior of the long wave-
length modes is the EW one (z = 2), as expected for to
the system size considered. We then focus on interme-
diate scales and show that they exhibit a different scal-
ing, with z = 1, corresponding to the IB universality
class. We compute the associated scaling function. Fi-
nally, as proposed for the KS equation in Ref. [35], we
introduce a stochastic white noise in the CGLE and iden-
tify a window of parameters in which the KPZ universal-
ity emerges, despite the small system size and the finite
probability of noise-activated defect formation [37, 38].

II. THE DETERMINISTIC COMPLEX
GINZBURG-LANDAU EQUATION

A. Regime of phase turbulence

We consider the complex Ginzburg Landau equation
defined by:

i∂tψ = iψ + (c2 − i)|ψ|2ψ − (c1 − i)∂2xψ (1)

where ψ is the complex order parameter and c1, c2 are di-
mensionless real coefficients. The homogeneous solution
ψ0 = 1 × e−ic2t is linearly unstable when 1 + c1c2 < 0.
Under this condition, a modulational instability, which
is known as the Benjamin-Feir (BF) instability [3, 39],
triggers a turbulent behavior which, depending on the
values of c1 and c2, is either characterized by the pres-
ence of topological defects, where the amplitude |ψ| goes
to zero, or by defect-free phase modulations [3]. The two
regimes are usually labeled defect and phase turbulence,
respectively. The latter arises if c1, c2 are chosen close to
the BF instability line 1+c1c2 = 0 [13], in which case the
amplitude slightly fluctuates around 1, while the phase
dynamics is mapped to the Kuramoto-Sivashinsky equa-
tion [14, 15]:

∂tθ =
(
ν∂2x + η∂4x

)
θ +

λ

2
(∂xθ)

2 (2)

with ν = 1 + c1c2, η = −c21/2, λ = 2(c2 − c1). We re-
port the derivation of this phase equation in Appendix B.
One readily notices that the instable regime of the CGLE

corresponds to a negative value of the viscosity ν in the
phase equation (2). The instability primarily concerns
the low momentum modes, since the linear dispersion
−νk2 + ηk4 is positive for 0 ≤ k < k0 with k0 =

√
ν/η.

In the following, we focus on the regime of phase turbu-
lence, by appropriately choosing c1 and c2 close to the
BF instability line.

B. Large scale behavior

The statistical properties of the large wavelength fluc-
tuations of the KS phase are expected to belong to the
KPZ universality class [16], which means that their effec-
tive macroscopic dynamics can be described by the KPZ
equation [18]:

∂tθ = νeff∂
2
xθ +

λeff
2

(∂xθ)
2 + ξ(x, t) (3)

where νeff > 0 and ξ(x, t) is a white noise with
⟨ξ(x, t)ξ(x′, t′)⟩ = 2Deffδ(x−x′)δ(t−t′). However, it was
shown that a sufficiently large system size is required for
KPZ universality to emerge, while smaller systems were
observed to display EW scaling [36].
We emphasize that if one considers from the start

a noisy version of the CGLE (1) and chooses c1, c2
within the stable region (implying ν > 0 in (2)), the
term proportional to ∂4x becomes subdominant and the
phase dynamics simply inherits the stochastic nature
of the CGLE. In this case, one directly obtains the
KPZ equation [21, 22]. This is the case for driven-
dissipative bosonic condensates described by the gener-
alized stochastic Gross-Pitaevskii equation, in which the
large-scale coherence, controlled by phase fluctuations,
was shown to exhibit the KPZ scaling [21–23] and non-
Gaussian statistics [40, 41] even in small systems.
Conversely, in the deterministic case and in the unsta-

ble regime where ν < 0, the phase dynamics maps to
the deterministic KS equation, and the parameters νeff
and Deff of the effective KPZ equation are not primarily
determined, but are generated by the chaotic dynam-
ics. The perturbative renormalization group analysis of
Ref. [35] showed the emergence of a positive macroscopic
viscosity from the noisy microscopic KS equation. In-
deed, they find that while coarse-graining by including
the fluctuations from small to large scales, the effective
viscosity changes sign, from the microscopic value ν < 0
to an effective value νeff > 0 in the macroscopic limit.
We emphasize that in this process, the viscosity crosses
zero at some intermediate scale: this is the very origin of
the appearance of the IB regime at intermediate scales
[42]. Note that the Galilean invariance of the KS equa-
tion imposes λeff = λ at all scales, although in practice
the value of λeff may be renormalized by effect of the
space discretization [33] or, as in the present case, of the
higher-order nonlinearities neglected when mapping the
CGLE to the KS equation (see Appendix B).
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In order to characterize the statistical properties of the
phase dynamics, we analyze both the transient regime
and the steady state. In the transient regime, i.e. during
the kinetic roughening, the dynamical scaling behavior of
the interface θ(x, t) is captured by the structure function,
defined as

S(k, t) = ⟨θ(k, t)θ(−k, t)⟩ (4)

where in the deterministic case ⟨.⟩ denotes the average
over independent trajectories with randomly chosen ini-
tial conditions, while for the stochastic equation, in Sec.
III C, the average is over independent noise realizations.
The choice (4) is particularly suited when different scal-
ing behaviors coexist at different scales k [43]. The
Family-Vicsek scaling Ansatz [44] for S(k, t) reads:

S(k, t) = k−(2χ+1)s(kzt) (5)

where χ is the roughness critical exponent, z is the dy-
namical critical exponent, and s(y) is a universal scal-
ing function with the properties s(y → 0) ∼ y2χ+1 and
s(y → ∞) → s0. For each mode k, the structure function
converges to the stationary average occupation when the
time tss(k) ∼ k−z has elapsed.
In the steady state, we focus on the velocity field u =

∂xθ and compute the temporal correlations of its Fourier
modes C(k, t) = ⟨u(k, t + t0)u

∗(k, t0)⟩, with t0 > tss(k)
for all the modes k considered. The correlations exhibit
the scaling behavior

C(k, t) = C(k, 0)f (kzt) (6)

where f(y) is a universal scaling function and the expo-
nents χ, z are the same as in Eq. (5). Note that t in
Eq. (5) is the absolute time whereas it denotes in Eq. (6)
the time delay.

C. KPZ fixed points

The KPZ equation (3) can be rescaled to obtain a sin-
gle relevant parameter g = λ2D/ν3. Depending on the
value of g, there are three possible scaling regimes, con-
trolled by the corresponding fixed points:

i) the KPZ regime (g finite): χ = 1/2, z = 3/2 and
f = fKPZ given by the universal KPZ scaling func-
tion, exactly calculated in Ref. [27]

ii) the EW regime (g = 0): χ = 1/2, z = 2 and
f = fEW the universal scaling function of the linear
theory, given by

fEW(y) =
D

ν
e−

√
νy2

(7)

iii) the IB regime (g = ∞): χ = 1/2, z = 1 and
f = f IB computed via the functional renormaliza-
tion group in Ref. [32]. The short-time asymptotic

behavior of f IB was shown to endow a simple Gaus-
sian form [29, 30, 32]:

f IB(y ≪ y0) ∼ e−ay2

. (8)

In one dimension, the only attractive fixed point in
the infrared (at large distance) for any finite g is the
KPZ fixed point. However, in a finite-size system, the
other two EW and IB fixed points, although repulsive in
the infrared, can influence the scaling properties of the
system when g is respectively very small or very large,
especially for the intermediate modes [30, 32].
Let us emphasize that in one dimension all the three

regimes of the KPZ equation share a common value
χ = 1/2 for the roughness exponent. This implies that
the stationary state is characterized by a flat energy spec-
trum C(k, 0) = ⟨|u(k)|2⟩ = k2S(t > tss, k) = s0 = 2D

ν .
The equipartition of energy is a consequence of the “ac-
cidental” time-reversal symmetry of the KPZ equation
in one dimension, whereby the spatial properties of the
stationary interface coincides with the equilibrium one
(i.e. the Brownian interface of the diffusive EW case)
[26]. The associated fluctuation-dissipation relation [45]
constrains the effective macroscopic viscosity and noise
strength to conserve the ratio they have at the micro-
scopic level. We underline that the ratio νeff/Deff is not
defined for the deterministic KS equation, for which the
time-reversal symmetry is an emergent property at large
scales [35].
More subtle is the inviscid limit of the KPZ (Burgers)

equation. Indeed, the typical solutions of the inviscid
Burgers equation in an infinite system generate dissipa-
tive shocks in a finite time [19, 46]. However, in the
presence of an ultraviolet cutoff and if the time evolu-
tion is energy-conserving, the system evolves instead to
a thermalized state with the equilibrium static exponent
χ = 1/2, and a dynamical exponent z = 1 [29, 30, 32].
This implies that the inviscid limit ν → 0 is approached
by preserving a constant finite ratio ν/D, thus coincid-
ing with the deterministic limit. As a final remark, we
mention that the authors of Ref. [31] characterized the
scaling behavior of an inviscid and noisy version of the
KPZ equation, which breaks the time-reversal symmetry.
In this case, they report an anomalous kinetic roughen-
ing behavior with different local and global roughness
exponents (χloc = 1 ̸= χ = 1/2), while conserving the
dynamical exponent z = 1. To fully understand the con-
nection between this regime and the thermalized one of
Ref. [29, 30, 32] is an exciting, although non-trivial task.

III. RESULTS

We have performed numerical simulations of the
CGLE (1) with random initial conditions ψ(t = 0, x) =
1 + σ(x), where σ(x) ∈ C is a random complex number
drawn independently for every x from a Gaussian distri-
bution of zero mean and variance 0.01 [47]. We consider
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the equation in its dimensionless form (1), with a space
discretization chosen as dx = 1.0 or dx = 1.5 – the change
corresponding to a slightly modified weight of the kinetic
term with respect to the others in the CGLE. We study
the statistical properties of the interface defined as the
unwrapped phase θ(x, t) = Arg(ψ(x, t)) + 2πj, where j
is an integer chosen in order for the temporal evolution
to be smooth in time, i.e. θ(x, t+ δt)− θ(x, t) ∈ (−π, π].
We first present the results for the large-scale behavior,
which exhibits the EW scaling, then discuss the behavior
of the intermediate scales where we find the IB scaling,
and finally show that, adding a small noise, the KPZ scal-
ing emerges at the large scales, replacing the EW regime.

A. Kinetic roughening behavior

The structure function S(t, k) in the transient roughen-
ing regime is displayed in Fig. 1. During the early evolu-
tion, i.e. for t ≲ 500 - not represented, the population of
unstable low momentum modes k < k0 is transferred to
the dissipative sector k > k0 via nonlinear coupling, un-
til a typical cellular structure arises, whose wavenumber
corresponds to the local maximum observed in S(t, k).
Thereafter, the roughening process progressively fills the
low momentum sector. The structure function is found
to endow the scaling Ansatz (5), and the collapse ob-
tained with the EW exponents z = 2, χ = 1/2, shown in
Fig. 1, is excellent. The scaling function coincides with

the EW one given by sEW(y) = 2Deff

νeff

(
1− e−2

√
νeffy

2
)

with the argument y = kt1/2. We find νeff ≈ 12 and
Deff ≈ 4.7× 10−3. These numbers, together with the ef-
fective non-linearity λeff ≈ λ = 2(c1 − c2), give the KPZ
coupling geff ≈ 1.7 × 10−4. Following Refs. [33, 48], we
can estimate the threshold system size and crossover time
needed for the effective KS dynamics to exhibit the KPZ
behavior, for which we obtain respectively Lc ≈ 6× 105,
tc = 6×108, thus confirming a posteriori the expectation
of the EW scaling emerging for our system size.

B. Inviscid Burgers regime

We now focus on the intermediate-scale modes, for
which the spectrum becomes stationary at short times,
typically for t ≳ 500. We analyze the correlations C(t, k)
in the stationary state. The energy spectrum, given by
C(k, 0), is displayed in Fig. 2. It exhibits a plateau at
small k resulting from equipartition of energy. In order
to identify the potential scaling regimes, we first compute
the scale-dependent correlation time τ1/2(k) defined for

each mode k from C(t = τ1/2, k) = 1
2C(t = 0, k). It is

expected to behave as τ1/2 ∼ kz in a scaling regime. The
result, displayed in Fig. 2, clearly shows two distinct scal-
ing behaviors: for small k, we retrieve the diffusive EW
regime with z = 2, while at intermediate k we observe

a different power-law dependence which is τ1/2 ∼ k−1.
To further characterize this scaling regime, we select the
modes k within the z = 1 scaling region, and compute
the full correlation C(k, t), which is shown in Fig. 3. The
level lines coincide with constant y = kt, which indicates
that z = 1 in the scaling Ansatz (6). We indeed obtain
a remarkable collapse of the spatio-temporal data when
plotted in the scaling variable kt, as shown in Fig. 3.
Furthermore, the short-time behavior of f(y) is found in
excellent agreement with the analytical prediction in the
IB regime, Eq. (8), obtained by the FRG calculation [32].
The full shape of f(y) is also qualitatively compatible
with the FRG result for f IB and with its estimate in the
numerical simulations of the Galerkin-truncated inviscid
Burgers equation [29, 30], which both exhibit a negative
dip at a finite value of y after the initial Gaussian de-
cay. However, the depth and position of the negative dip
we observe here do not quantitatively compare with the
values found in these works. This discrepancy is likely
to originate in another essential difference of our work
with the “ideal” IB regime of Refs. [29, 30, 32]. At the
intermediate scales considered here, the roughness expo-
nent is slightly lower than χ = 1/2, as can be observed
in the energy spectrum of Fig. 2, where a residual slope
replaces the plateau for these intermediate modes. The
extracted value for χ has been found to depend on the
parameters, ranging from 0.28 to 0.43 when c1, c2 take
values within the square (2.70, -0.80), (2.10, -0.80), (2.10,
-0.60), (2.70, -0.60). This signals that the equipartition
of energy is not perfectly established for the modes that
exhibit the IB scaling z = 1. We remind that in order for
the equipartition to settle while approaching the inviscid
limit of the stochastic Burgers equation, it is crucial that
the noise obeys the fluctuation-dissipation relation [30].
In our case, the random noise and the positive viscos-
ity are effective properties of the small k modes, emerg-
ing from the underlying chaotic dynamics of the CGLE.
As a consequence, it is not guaranteed that they fulfill
the time-reversal symmetry. We can thus reasonably ex-
pect a quantitative difference in the shape of the scaling
function f IB. A more detailed characterization of the
IB regime emerging within the KS equation can be ob-
tained by means of functional renormalization group [42].
Nevertheless, the results presented here suggest that the
value of the dynamical exponent z = 1 and the qual-
itative shape of f IB are robust against a weak loss of
equipartition. The more general analyzis of the inviscid
regime for different types of noise, breaking the time-
reversal symmetry would be interesting, but is left for
future work.

C. Adding noise: crossover to KPZ

In this section, we discuss the effect of adding a
stochastic noise of small amplitude to the CGLE on the
large-scale scaling behavior of the phase turbulence. We
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FIG. 1. Scaling behavior of the structure function compared with the EW theory (7), with χ = 1/2, z = 2. The plotted window
is 2π/L < k < 2k0. The parameters are: c1 = 3.5, c2 = −0.6 (k0 = 0.36), L = 49152, dx = 1.5, Nsim = 1024

FIG. 2. Top panel: energy spectrum C(0, k) = ⟨|u(k)|2⟩.
Bottom panel: correlation time τ1/2, defined as C(τ1/2, k) =
1
2
C(0, k). The parameters are: c1 = 2.1, c2 = −0.8 (k0 =

0.434), L = 8192, dx = 1.0, Nsim = 1024. The solid lines
represent the ∼ k−z behaviors.

thus consider the equation

i∂tψ = iψ + (c2 − i)|ψ|2ψ − (c1 − i)∂2xψ +
√
σξ (9)

where ξ(x, t) is a complex white noise with ⟨ξ(x, t)⟩ = 0
and ⟨ξ(x, t)ξ∗(x′, t′)⟩ = 2δ(x−x′)δ(t−t′). We replace the
statistical average over trajectories starting from differ-
ent initial conditions with an average over independent
realizations of the noise.

For the KS equation, the stochastic formulation yields
considerable advantages. At a theoretical level, it allows
one to cast the problem into a field theory and study it
by means of dynamical renormalization group [34, 35] or
non-perturbative functional renormalization group [42].
At a numerical level, it allows one to observe the KPZ
universality emerging at large scales for much smaller

system sizes since the effective non-linearity geff is higher
[35]. However, for the CGLE, the addition of noise is
more subtle. The noisy CGLE, widely employed as a
mean-field model for open quantum fluids [4, 49], ex-
hibits a richer phase diagram than its deterministic ver-
sion [37, 38]. In particular, it was shown that, at large
noise, the compact nature of the phase becomes crucial
since topological defects (phase slips or space-time vor-
tices in 1D) can be thermally activated by the noise,
breaking down the analogy with growing interfaces. In
tuning the noise amplitude σ, we are thus restrained to
small values in order not to enter the vortex-turbulent
phase of Ref. [37, 38]. We observe that the region of
defect-free phase turbulence in the (c1, c2) phase diagram
shrinks as the noise amplitude is increased. We could ob-
tain such a regime only for small noise amplitude σ ≲ 0.1
and by tuning c1, c2 closer to the BF instability line.

The effect of the noise on the kinetic roughen-
ing properties of the phase is again encoded in the
scale-dependent correlation time τα(k), with α =
C(τα, k)/C(k, 0) ∈ (0, 1] (which is a slight generaliza-
tion of the τ1/2 defined in Sec. III B corresponding to
α = 0.5). We show in Fig. 4 the behavior of τ̄ = ⟨τα⟩α,
where an average over 0.3 ≤ α ≤ 0.6 is performed in or-
der to increase the statistics. First, we find that the IB
regime with z = 1 is always present at the intermediate
scales, robust to the addition of a small noise. Let us
now comment on the behavior at the large scales (small
k modes). For the smallest value of the noise σ = 0.01,
they follow the same scaling as for the deterministic case,
i.e. we identify the EW regime with τ̄ ∼ k−2. At inter-
mediate noise, here σ = 0.05, the EW regime is replaced
by the KPZ one, with τ̄ ∼ k−3/2. This corroborates
the results found for the KS equation when adding noise.
However, for stronger noise, here σ = 0.10, the large
scale behavior is affected by the presence of defects, which
eventually destroy the KPZ regime, since the phase can
no longer be unwrapped. In this regime we find τ̄ ≃
constant as expected in presence of vortices. In fact, as
shown in Refs. [37, 38], since defects are formed in ran-
domly located space-time points, the phase trajectories
are characterized by a finite homogeneous density of un-
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FIG. 3. Scaling behavior of the correlations C(k, t) in the IB regime. Left panel: correlation decay C(t, k)/C(0, k). Right panel:

collapse onto the scaling function f(y = kt1/z) with z = 1. The plotted window is 2π/L < k < 2k0. The dashed line shows the
fitted asymptotic Gaussian behavior of f IB at short times, also plotted in logarithmic scale in the inset. The parameters are:
c1 = 2.7, c2 = −0.8 (k0 = 0.44), L = 2048, dx = 1.0, Nsim = 1024.

FIG. 4. Correlation time τ̄ averaged over 10 values of α ∈
[0.3, 0.6] where α = C(k, τα)/C(k, 0). The parameters are:
c1 = 1.9, c2 = −0.70 (k0 = 0.35), L = 4096, dx = 1.0,
Nsim = 1024. The solid lines are guidelines to identify the
different scaling behaviors.

correlated phase jumps. As a result, at length scales be-
yond the average vortex distance lv, the phase dynamics
can be interpreted as the result of a random deposition
process, implying a scale-independent correlation time,
i.e. τ(k ≲ 2π/lv) ∼ constant.

In order to fully characterize the KPZ regime for the
intermediate noise value, we proceed as for the IB regime.
We select the low modes for which τ̄ ∼ k−3/2, and com-
pute the full correlation C(t, k) function in this window,
shown in Fig. 5. The level lines are now observed at con-
stant y = k3/2t as expected for the KPZ regime. More-

over, a very good collapse is obtained, and the scaling
function extracted from the numerical data compares ac-
curately with the exact KPZ scaling function fKPZ of
Ref. [27]. Thus, our results show that adding a noise,
provided it is small enough to prevent the proliferation
of defects, allows one to observe the KPZ scaling regime
without having to resort to very large system sizes. This
confirms that the phase turbulence of the CGLE equa-
tion belongs to the KPZ universality class. Moreover, the
IB regime systematically appears at intermediate scales,
and is an intrinsic feature of this system. Its origin can
be traced to the necessary vanishing of the effective vis-
cosity to crossover from a negative microscopic value to
an effective positive value at large scales.

IV. CONCLUSIONS AND PERSPECTIVES

We have studied the phase turbulence of the deter-
ministic complex Ginzburg Landau equation in one spa-
tial dimension, focusing on the statistical behavior of the
large and intermediate wavelength modes. In this regime,
the phase dynamics maps to the Kuramoto-Sivashinsky
equation. This chaotic dynamics results in an effective
noise, and generates an effective positive viscosity at large
scales. These elements, together with the intrinsic non-
linearity of the phase dynamics, yield that the critical
behavior of the CGLE belongs to the 1D KPZ univer-
sality class. In our numerical simulations, we have first
recovered the known results, namely we observe at large
scales the EW scaling expected for the system size con-
sidered, smaller than the typical size necessary for the
KPZ behavior to settle.
Focusing on the scales intermediate between the wave-

length of the instability pattern and the onset of the EW



7

FIG. 5. Scaling behavior of the correlations C(k, t) in the KPZ regime. Left panel: correlation decay C(t, k)/C(0, k). Right

panel: collapse onto the scaling function f(y = kt1/z) with z = 3/2. The plotted window is 2π/L < k < 2k0. The dashed
line shows the exact KPZ scaling function fKPZ from [27]. The parameters are: c1 = 1.9, c2 = −0.7 (k0 = 0.35), σ = 0.05,
L = 4096, dx = 1.0, Nsim = 1024.

(KPZ) behavior, we have evidenced the emergence of an
additional, distinct scaling regime, characterized by the
dynamical exponent z = 1. We have argued that this
regime corresponds to the inviscid limit of the KPZ equa-
tion, which has recently been shown to be controlled by a
genuine fixed point, the inviscid Burgers one, of the KPZ
equation in one dimension. Indeed, while the viscosity
crosses over from a negative value at the microscopic scale
in the KS equation to a positive value at the macroscopic
scale in the effective KPZ equation, it has to vanish at
some intermediate scale. This generates a region of scales
with vanishingly small viscosity, and these scales are in-
herently controlled by the IB fixed point. This explains
the systematic appearance of the IB scaling z = 1 in the
CGLE, and KS equation.

We have also considered the noisy version of the CGLE,
widely used in the context of driven-dissipative quantum
fluids. By focusing on the weakly unstable region of the
parameter space, we have shown that the KPZ scaling
could be observed, enhanced by the presence of the noise,
although the region of validity of the phase description
shrinks due to noise-activated defects. This result allows
us, on the one hand, to confirm that the phase turbu-
lent regime of the CGLE belongs to the KPZ universality
class. On the other hand, it represents a yet unexplored
regime of the noisy CGLE, for which the weakly unsta-
ble regime (phase turbulence) is found to be resilient to
a small noise. This opens up the route to potential appli-
cations to generic open systems in which the microscopic
fluctuations are not negligible in the hydrodynamical de-
scription, such as exciton-polariton condensates.
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Appendix A: Stability analysis

The stability of the homogeneous rotating solution
ψ0 = e−ic2t is studied by considering the linearized evo-
lution of plane waves on top of ψ0. The dispersion is
given by

ω±(k) =− i(1 + k2) ±

±
√
−(1 + k2)2 + 2(1 + c1c2)k2 + (1 + c21)k

4 .

We define ω±(k) = ϵ±(k) + iγ±(k), where a positive
growth rate γ± gives the instability condition. For small
enough k, the square-root is purely imaginary. The rate
γ−(k) is always negative, we thus focus on γ+(k) and
expand it up to fourth order in k to obtain

γ+(k) = −(1 + c1c2)k
2 − 1

2
c21(1 + c22)k

4 + ...

= νk2 + τk4 + ...

The instability onset is controlled by the sign of ν =
1 + c1c2. When ν < 0, some low wavelength modes are
unstable, approximately 0 < k < k0 =

√
ν/τ .
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Appendix B: Phase equation

In this Appendix, we detail the mapping from the
CGLE to the phase equation. The CGLE is given by

i∂tψ = iψ + (c2 − i)|ψ|2ψ − (c1 − i)∂2xψ. (B1)

In the amplitude-phase representation ψ =
√
ρ eiθ, it

yields the two coupled equations for the amplitude and
for the phase

∂tρ
2ρ = 1− ρ +

+
{

∂2
xρ
2ρ − (∂xρ)

2

4ρ2 − (∂xθ)
2
}
− c1

{
∂2xθ +

∂xρ∂xθ
ρ

}
∂tθ = −c2ρ +

+ c1

{
∂2
xρ
2ρ − (∂xρ)

2

4ρ2 − (∂xθ)
2
}
−
{
∂2xθ +

∂xρ∂xθ
ρ

}
.

We emphasize that small rigid (∂x · = 0) fluctuations of
the amplitude around 1 have a relaxation time of order 1
(for this choice of units), while no such time-scale appears
explicitly for the phase dynamics. This is a known conse-
quence of the U(1) symmetry of the CGLE, which leads
to assume that slow phase modulations dominate the
fluctuations at the macroscopic scale. The fast fluctua-
tions of the amplitude around its stationary homogeneous
value can thus be neglected, so that its modulations can

be considered as enslaved to the slow phase dynamics.
By inserting the Ansatz ρ = 1+w(θ, ∂2xθ, (∂xθ)

2, ...) and
substituting it into the amplitude equation, one obtains

w =
(
−c1∂2xθ − (∂xθ)

2
)
. By inserting w into the phase

equation, considering linear terms up to order 4, we ob-
tain:

∂tθ = (1+ c1c2)∂
2
xθ−

c21
2
∂4xθ+(c1− c2) (∂xθ)2+ ... (B2)

which is the KS equation with ν = 1+c1c2, τ = − c21
2 and

λ = 2(c1 − c2). The higher-order nonlinear terms, pro-
portional to ∂xθ∂

3
xθ and ∂2xθ(∂xθ)

2, have been neglected.
They are considered as unimportant in the long wave-
length dynamics, while their effect is relevant for the
short scales, when studying for instance the divergences
which lead to the breakdown of the phase description [5].

We underline that the expression of τ obtained here
is different from the one obtained from expanding the
growth rate γ+(k) in perturbations in Appendix A. The
reason of the discrepancy is that γ+(k) can be considered
as a phase-like branch only for small k. Unlike the pure
phase diffusion νk2, the order 4 term is affected since at
increasing k the off-diagonal perturbations, mixing phase
and amplitude, become larger.
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Winding number instability in the Phase-Turbulence
regime of the complex Ginzburg-Landau equation, Phys-

ical Review Letters 77, 267–270 (1996).
[11] R. Montagne, E. Hernández-Garćıa, A. Amengual, and
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