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Abstract

We investigate the relationship between smoothness and the relative global dimen-

sion. We prove that a smooth ring map B Ñ A between commutative rings implies the

finiteness of the relative global dimension gldimpA,Bq. Conversely, we identify a suffi-

cient condition on B such that the finiteness of gldimpA,Bq implies the smoothness of

the map B Ñ A.

Keywords: relative homology, smooth morphisms, commutative rings, global dimen-

sion.

1 Introduction

Smoothness is a fundamental concept in algebraic geometry, providing a key link between

geometric and algebraic properties of varieties. A fundamental result due to Auslander-

Buchsbaum and Serre (see [AB56, Ser56]) claims that if V is an affine algebraic variety over

a perfect field k with coordinate ring A, then the global dimension of A is finite if and only

if V is smooth. Instead of a map k Ñ A, one can consider a more general case in which k is

replaced by a commutative ring B. A well-established criterion of smoothness in this case

(see [Lod92]) has a number of homological characterizations (see, for instance, [Rod90, AI00]

and references therein).

In this manuscript, we provide a characterization of smoothness via relative global ho-

mology developed by Hochshild [Hoc56], specifically focusing on the relative global di-

mension gldimpA,Bq. Surprisingly, there is little literature on relative homological algebra

for associative algebras. In contrast, a vast body of work exists for relative homological al-

gebra in the context of representations of finite groups — results that have had a profound

impact on modular representation theory and block theory of finite groups (see, for instance,

[Lin18]). However, there has been a recent surge in interest in the application of relative ho-

mological algebra to attack certain homological conjectures for finite-dimensional algebras,
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such as the finitistic dimension conjecture and Han’s conjecture. Interested readers can ex-

plore these recent developments and related work in [XX13, CLMS22, IM21] and references

therein.

The manuscript is structured as follows: In Section 2, we review basic notions in rela-

tive homological algebra, alongside an overview of graded and filtered algebras and mod-

ules. Section 3.1 is devoted to proving the following result: given a smooth commutative

B-algebra A, we establish that the relative global dimension, gldimpA,Bq, is finite. Finally,

in Section 3.2, we study the converse. We present a sufficient condition on B such that the

finiteness of gldimpA,Bq implies the smoothness of the map B Ñ A of commutative rings.

Together with the result of Section 3.1, this leads to the following conclusion (Corollary 8):

if k is a perfect field, B a finitely generated k-algebra, and A a flat Noetherian B-algebra,

locally of finite type, then B Ñ A is smooth if and only if gldimpA,Bq is finite.
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2 Preliminaries

In this section, we introduce some notation and review basic definitions and results needed

for proving our main theorems. We work within the category of associative commutative

rings with identity. Given a ring A, we denote by A´Mod the category of A-modules.

Throughout the text, for a ring map B Ñ A, we denote by Ae the ring A bB A and treat

A as Ae-module via the canonical surjective map µ : A bB A Ñ A, a b a1 ÞÑ aa1.

2.1 Relative (co)homology

In order to describe relative homological algebra (cf. [Hoc56]), we first recall the notion of

relatively projective modules. Given a homomorphism between associative rings B Ñ A,

an A-module M is called relatively B-projective, or pA,Bq-projective, if it satisfies either of the

following equivalent conditions:

(i) the multiplication map µM : A bB M Ñ M is a split epimorphism of A-modules;

(ii) M is isomorphic to a direct summand of the induced module A bB V , for V some

B-module;

(iii) if ever an A-module homomorphism onto M splits as a B-module homomorphism,

then it splits as an A-module homomorphism.
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An exact sequence of A-module homomorphisms:

¨ ¨ ¨ Ñ Mn`1
fn`1

ÝÝÝÑ Mn
fn
ÝÑ Mn´1 Ñ 0

is called pA,Bq-exact if, for each i ě n, the kernel of fi is a direct B-module summand of Mi

(cf. [Hoc56, Section 1]). One may check that a sequence of morphisms tfi : Mi Ñ Mi´1 | i ě

nu is pA,Bq-exact if, and only if,

1) fi ˝ fi`1 “ 0 for all i ą n,

2) there exists a contracting B-homotopy: that is, a sequence of B-module homomor-

phisms hi : Mi Ñ Mi`1, pi ě n ´ 1q such that fi`1hi ` hi´1fi is the identity map on

Mi.

One may now develop the concepts of relative projective dimension and relative global

dimension. Given an A-module M , we define the relative projective dimension of M to be

the minimal number n, denoted by pdpA,BqM , such that there is an pA,Bq-exact sequence

(called pA,Bq-projective resolution of M )

0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 Ñ M Ñ 0.

where the Pi are pA,Bq-projectives. If such an exact sequence does not exist, the relative

projective dimension of M is infinite. This definition is equivalent to the corresponding

definition from [XX13, Section 2]. Having relative projective resolutions, the relative derived

functors Tor
pA,Bq
n and ExtnpA,Bq can be defined, and we refer to [Hoc56] for the details.

Remark 2.1. Given an M P A´Mod, one produces the standard pA,Bq-projective resolution

(check [Hoc56, Section 2]) by splicing the short pA,Bq-exact sequences

0 Ñ kerµn Ñ A bB Kn
µn

ÝÑ Kn Ñ 0

with K1 “ M and Ki`1 “ kerµi, when i ě 1.

The relative global dimension gldimpA,Bq of the extension B Ñ A, denoted by gldimpA,Bq,

is defined as:

gldimpA,Bq “ suptpdpA,BqM | M P A´Modu,

if this number exists, and infinity otherwise. The relative global cohomological dimension is

defined as

cdimpA,Bq “ suptn |ExtnpR,SqpA,Y q ‰ 0, for some Y P R´Modu,

in which R “ A bB A, S “ B bB A with the natural map S Ñ R and A with the natural

structure of R-module. These dimensions are related as follows.
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Remark 2.2. From [Hoc56, Corollary 1] we have that cdimpA,Bq can also be calculated as

gldimpA bB A,B bB Aq. Moreover, it is clear from the definition that

cdimpA,Bq “ pdpAbBA,BbBAq A.

Therefore applying ´ bA M to a pA bB A,B bB Aq-resolution of A for each A-module M

one gets that (see also [Hoc56, Corollary 1]):

gldimpA,Bq ď cdimpA,Bq. (2.3)

2.2 Graded and filtered algebras

Recall the basic definition about filtered and graded algebras (cf. [MR87, Chapters 7, 12] and

[NvO82]). An filtered A-algebra R is defined as an A-algebra satisfying the condition

R “
ď

iPN

Ri,

where Ri are R-ideals, subject to the following properties:

(1) RiRj Ď Ri`j ;

(2) Ri`1 Ď Ri;

(3) A “ R0{R1.

Furthermore, if the Ri are flat A-modules for every i, then R is referred to as a flat filtered A-

algebra. Given a filtered A-algebra R, a filtration of an R-module M is defined as a collection

of R-modules Mi, satisfying:

(1) M “
Ť

iPN Mi

(2) RiMj Ď Mi`j

A homomorphism φ : M Ñ N between filtered R-modules M “
Ť

iPNMi and N “
Ť

iPNNi

is said to be a filtered morphism if φpMiq Ď Ni.

Example 1. Consider a homomorphism B Ñ A. Let R “ Ae and J “ kerpµ : Ae Ñ Aq. Then

R is a filtered A-algebra with Ri “ J i and R0 “ Ae. Assuming that B Ñ A is a flat ring map

and J i{J i`1 are flat A-modules, it follows that R is a flat filtered A-algebra.

In conjunction with the concept of filtered algebras and modules, we require the def-

initions of graded algebras and modules. In our context, we focus specifically on non-

negatively graded algebras.

A graded A-algebra R is defined as an A-algebra R “
À

iPNRi, where each Ri is an

additive subgroup of R, satisfying the properties RiRj Ď Ri`j and R0 “ A. Similarly,
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a graded R-module M is a module decomposed as M “
À

iPNMi, where Mi are additive

subgroups of M with RiMj Ď Mi`j .

The elements in Ri are referred to as homogeneous of degree i. Additionally, an ideal I of a

graded A-algebra R is called a homogeneous ideal if it can be generated by homogeneous ele-

ments. Furthermore, R is called graded local if it possesses only one maximal homogeneous

ideal. We denote the homogeneous ideal
À

ią0 Ri by R`.

Remark 2.4. There exists a natural construction to pass from a filtered ring to a graded ring,

achieved through the grading functor gr. Given a filtered A-algebra R, one constructs the

associated graded ring grpRq “
À

iPN Ri{Ri`1. This is naturally a graded A-algebra. Moreover,

if A is a local ring with maximal ideal m, then grpRq becomes a graded local A-algebra with

maximal ideal m ‘ R`.

For any filtered R-module M , we can also construct grpMq “
À

iPNMi{Mi`1, equipped

with a grpRq-module structure. If φ : M Ñ N is a homomorphism of filtered R-modules,

then there exists a grpRq-homomorphism grpφq : grpMq Ñ grpNq.

Lemma 2. Given a flat filtered A-algebra R with R “
Ť

iPNRi such that Ri{Ri`1 are flat A-

modules, for each i, one has

grpR bA Mq “ grpRq bA grpMq

for any filtered R-module M .

Proof. For a filtered R-module M , there exists a natural filtration of R bA M :

pR bA Mqn “
ÿ

i`j“n

Ri bA Mj .

The fact that each summand on the right-hand side is an R-submodule of R bA M follows

from R being a flat filtration, with Ri{Ri`1 also being flat. Furthermore, we have the natural

exact sequence:

0 Ñ
ÿ

i`j“n`1

Ri bA Mj Ñ
ÿ

i`j“n

Ri bA Mj Ñ
à

i`j“n

Ri{Ri`1 bA Mj{Mj`1 Ñ 0,

which concludes the proof.

Remark 2.5. In what follows, we utilize two types of localization functors with respect to a

given prime ideal in a graded A-algebra. Let p be a prime ideal in the graded A-algebra R.

Define two sets: Sp “ Rzp and Sppq “ hpRqzp, where hpRq denotes the set of homogeneous

elements in R, and consider the A-algebras Rp “ S´1
p R and Rppq “ S´1

ppq
R. Then Rp is a local

ring with maximal ideal pRp, while Rppq is a local graded ring with homogeneous maximal

ideal ppqgRppq, where ppqg denotes the homogenization of the ideal p, i.e. the homogeneous

ideal contained in p such that no other homogeneous ideal contained in p contains it. For

further details, refer to [NvO82, Chp B, III-1 to 3].
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3 Relative global dimension and smoothness

3.1 Relative global dimension of smooth algebras

For commutative noetherian algebras, the notion of smooth algebras is well-established (cf.

[Lod92, Appendix E] and references therein). An ideal J of a ring R is said to be a locally

complete intersection if, for every maximal ideal m of R, the ideal Jm is generated by an Am-

regular sequence. Moreover, for a noetherian ring B and a B-algebra A of essentially finite

type, A is called smooth if the ring map B Ñ A is flat and the ideal kerpµ : Ae Ñ Aq is a locally

complete intersection. In this case, we say that A is a smooth commutative noetherian B-

algebra. Throughout this section, denote by J the kernel of multiplication map µ : Ae Ñ A,

and by ΩA|B the A-bimodule J{J2.

Remark 3.1. Observe that there are two types of maximal ideals in Ae: A first type of the form

µ´1pmq for some maximal ideal m of A. Furthermore, the localization of A, as an Ae-module,

at these ideals is equal to Am. The second type consists of those n where the localization of A

as an Ae-module is trivial, that is, µpnq “ A. Moreover, localizing Jk{Jk`1 as an Ae-module

at a maximal ideal of the form µ´1pmq is equivalent to localizing it as an A-module at m.

Remark 3.2. One consequence of the definition of smoothness above, which is sometimes

used as part of the definition of smoothness for noetherian B-algebras, is that the A-module

ΩA|B is finite and projective. Another consequence is that if we consider the filtration as

the one in Example 1 then grpAe
µ´1pmqq, where m is a maximal ideal of A, is isomorphic to

Amrx1, ..., xns, where the xi are determined by the regular sequence generating the ideal

Jµ´1pmq.

Proposition 3. A smooth Noetherian B-algebra A satisfies the following conditions

(i) pdgrpAeq A is finite;

(ii) grpAeq is a projective A-module.

Proof. [(i)] A homogeneous maximal ideal m in

grpAeq “ Ae{J ‘ J{J2 ‘ ¨ ¨ ¨ ‘ J i{J i`1 ‘ . . .

always has the form

m “ n ‘ J{J2 ‘ ¨ ¨ ¨ ‘ J i{J i`1 ‘ . . . ,

where n is a maximal ideal in R. This shows that grpAeqpmq “ pR{Jqnrx1, ..., xns. For ideals

of the form n “ µ´1pm̃q for some maximal ideal m̃ in A we have pAe{Jqn “ Am̃ and, for

those which are not of this form, then grpAeqpmq “ 0. Therefore, from this point on, we only

consider those maximal ideals of Ae that are the inverse image of a maximal ideal in A by

the multiplication.

Now, observe the compatibility of the following localizations, for a given homogeneous

maximal ideal m of grpAeq:

pgrpAeqqm “ ppgrpAeqqpmqqme ,

6



where me is the extension of m in grpAeqpmq. From our description of grpAeqpmq and [BH93,

Proposition 1.5.15], we have pdgrpAeqm Aµpmq ď n. Note that the number of variables in the

polynomial ring grpAeqpmq is equal to the rank of Jµ´1pmq{J
2
µ´1pmq. Since ΩA|B is a finite and

projective A-module, its rank is locally constant [Sta18, Tag 00NV], and therefore

pdgrpAeq A “ suptpdgrpAeqm Aµpmqu ď l,

with the supremum taken for m being in the set of graded maximal ideals of grpAeq and l

the maximal rank of the free Aµpmq-modules pΩA|Bqµpmq.

[(ii)] This follows from Remark 3.2. As grpRq is an A-direct sum of the A-modules

J i{J i`1, which, when localized at each maximal ideal of A, become the Am-modules of the

form Jk
µ´1pmq{J

i`1
µ´1pmq

. These modules are projective Am-modules for every i, and moreover,

they are free by the isomorphism given in [Eis95, Ex.17.16]. Therefore, each J i{J i`1 is A-

projective and we get the claim.

Remark 3.3. One immediate consequence of the proposition is that, for commutative rings,

being a smooth noetherian B-algebra implies homological smoothness, that is, A has a finite

projective resolution of finitely generated Ae-modules.

Theorem 4. The relative global dimension gldimpA,Bq is finite for a smooth gradually finite B-

algebra. Moreover, it is bounded by the projective dimension of A as a grpAeq-module.

Proof. We begin the proof by constructing a standard pAe, Aq-projective resolution of A,

where each term of the resolution is of the form Ae bA V for some A-module V . Note

that the multiplication map µ : Ae Ñ A induces the pAe, Aq-exact sequence

0 Ñ J Ñ Ae µ
ÝÑ A Ñ 0, (3.4)

where J “ kerpµq. Then proceeding as in Remark 2.1, we obtain the long pAe, Aq-exact

sequence by splicing the corresponding sequence of short pAe, Aq-exact sequences:

K1 � r

$$
■■

■■
■■

■■
■

... //

  
❆❆

❆❆
❆❆

❆❆
Ae bA Kn´1

// ... //

>>

Ae bA J

## ##
●●

●●
●●

●●
●●

// Ae // A

Kn

88rrrrrrrrrr
J

??⑧⑧⑧⑧⑧⑧⑧⑧

Observe that we can view this sequence as a resolution of filtered A-modules, where

we induce the filtration inductively from the filtration of (3.4) and by taking the product

filtration, as in the proof of Lemma 2.

Now, we consider the graded resolution associated with this filtered resolution. Since

grpAeq is a projective A-module and by Lemma 2, we conclude that this is also a grpRq-

projective resolution of A. Using the fact that A has finite projective dimension as a grpAeq-

module, there exists a positive integern such that truncating the resolution at degreen yields
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a projective grpAeq-module grKn. Applying [MR87, Cor 12.2.9], one can verify that grKn is

isomorphic to grAe bA Q, where Q is a projective A-module graded by A. Using the same

argument as in the proof of [MR87, Theorem 12.3.4], we conclude that the corresponding

term Kn is pAe, Aq-projective, as it is isomorphic to Ae bA Q. Therefore, pdpAe,Aq A is finite,

and by (2.3), gldimpA,Bq is also finite.

3.2 Smoothness of algebras with finite (co)homological dimension

Theorem 5. Suppose A is a noetherian flat B-algebra locally of finite type. If cdimpA,Bq is finite,

then A is a smooth B-algebra.

Proof. Consider the same resolution as in the proof of Theorem 4 from the natural exact se-

quence given by the multiplication morphism. Applying the additiveness of the Tor functor

and the adjunction isomorphism

TorA
e

i pAe bA M,´q – TorAi pM,´q, i ě 0

one checks that each pAe, Aq-projective module is A-flat and hence J and Ki are all A-flat

(as kernels of flat modules). Since cdimpA,Bq is a finite module Kn is pAe, Aq-projective for

some n, implying that fdAe A is also finite (in which fdR M denotes the flat dimension of

a R-module M ). As was shown in [Rod90] if fdAe A ă 8 then B Ñ A has geometrically

regular fibers. But, for B-algebras of finite type, this is equivalent to being smooth by [Sta18,

Tag 038X].

Jointly with Theorem 4 we get the following

Corollary 6. Let A be a flat noetherian B-algebra locally of finite type. A is smooth if and only if

cdimpA,Bq is finite.

It is natural to inquire whether the finiteness of gldimpA,Bq implies that the B-algebra

A is smooth. Notably, there are well-known counterexamples in the case where B “ k and

k is a non-perfect field. Indeed, let k “ Fpptq be a transcendental extension of the finite

field Fp, the k-algebra A “ krxs{pxp ´ tq has global dimension zero (being a field) but it is

not a smooth k-algebra (because A bk A is a local ring with nilpotent elements and hence

has infinite global dimension). This underscores the need for additional conditions on B to

ensure the validity of the claim. Below we provide some sufficient conditions on B under

which the question holds true.

Theorem 7. Let k be a perfect field, and B a finitely generated k-algebra. Suppose A is a flat

noetherian B-algebra, locally of finite type, with finite gldimpA,Bq. Then A is smooth.

Proof. Using the fiberwise criterion of smoothness and the fact that smoothness is local on

the target (meaning that it is sufficient to check it for closed points, see [Sta18, Tag 02G1] and

[GW23, Proposition 6.15]), we prove that:
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p1q gldimpA bB kpmqq is finite,

p2q kpmq is a perfect field,

for every maximal ideal m in B. Item p2q is a direct consequence of the general Nullstellen-

satz theorem as stated in [WK16, Theorem 5.6.7], and the fact that algebraic extensions of a

perfect field are also perfect. To prove p1q, we consider an Ab kpmq-module M treated as an

A-module, and take the standard pA,Bq-projective resolution of M :

K1 � r

$$
■■

■■
■■

■■
■

... //

  
❆❆

❆❆
❆❆

❆❆
A bB Kn´1

// ... //

>>

A bB M

$$ $$
■■

■■
■■

■■
■

// A bB M // M,

Kn

99ssssssssss
K0

::✉✉✉✉✉✉✉✉✉

As gldimpA,Bq is finite, then Kn is pA,Bq-projective for some n. Note that A bB M ,

Ki, and A bB Ki all have structures as A bB kpmq-modules. Furthermore, since all of these

A bB kpmq-modules can be viewed as kpmq-vector spaces, we conclude that A bB M and

A bB Ki are A bB kpmq-free modules. The same argument shows that Kn is a A b kpmq-

projective module. This proves that gldimpA bB kpmqq is finite.

To complete the proof, we utilize the fact that for perfect fields kpmq, being geometrically

regular over kpmq is equivalent to being regular over kpmq by [Bou22, Chp X, Section 6.4].

Additionally, being geometrically regular over a field is equivalent to the smoothness of the

fiber over kpmq, as per [Sta18, Tag 038X].

The previous theorem, together with Theorem 4, yield the following result.

Corollary 8. Let k be a perfect field, B a finitely generated k-algebra, and A a flat Noetherian B-

algebra, locally of finite type. Then A is smooth if and only if gldimpA,Bq is finite.
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