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Empirical complex systems are widely assumed to be characterized not only by pairwise interac-
tions, but also by higher-order (group) interactions that affect collective phenomena, from metabolic
reactions to epidemics. Nevertheless, higher-order networks’ superior descriptive power—compared
to classical pairwise networks—comes with a much increased model complexity and computational
cost. Consequently, it is of paramount importance to establish a quantitative method to determine
when such a modeling framework is advantageous with respect to pairwise models, and to which
extent it provides a parsimonious description of empirical systems. Here, we propose a principled
method, based on information compression, to analyze the reducibility of higher-order networks
to lower-order interactions, by identifying redundancies in diffusion processes while preserving the
relevant functional information. The analysis of a broad spectrum of empirical systems shows that,
although some networks contain non-compressible group interactions, others can be effectively ap-
proximated by lower-order interactions—some technological and biological systems even just by
pairwise interactions. More generally, our findings mark a significant step towards minimizing the
dimensionality of models for complex systems.

INTRODUCTION

Many complex systems exhibit an interconnected
structure that can be encoded by pairwise interactions
between their constituents. Such pairwise interactions
have been used to model biological, social and techno-
logical systems, providing a powerful descriptive and pre-
dictive framework [1–6]. Recently, the analysis of higher-
order structural patterns and dynamical behaviors at-
tracted the attention of the research community as a
powerful framework to model group interactions [7–10],
with applications ranging from neuroscience [11, 12] to
ecology [13] and social sciences [14, 15], highlighting the
emergence of novel phenomena and non-trivial collective
behavior [16–21].

Higher-order networks encode more information than
pairwise interactions: for example, metabolic reactions
are more realistically described by group interactions be-
tween any number of reagents and reactants, capturing
information that would be lost by considering the union
of pairwise interactions instead. However, this modeling
flexibility comes at a cost: new data needs to be ade-
quately recorded and stored as group interactions instead
of pairwise ones, and new analytical [22–25] and compu-
tational [26–28] tools need to be developed. Moreover,
the complexity and computational cost of these tools in-
crease exponentially as larger group interactions are con-
sidered.
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It is therefore crucial to understand under which con-
ditions higher-order representations need to be favored
over classical pairwise ones, and whether it is possible to
devise a grounded procedure to determine which repre-
sentation provides the most parsimonious description of
an empirical system.

A similar challenge was faced nearly a decade ago,
when the advent of temporal and categorical data [29–
31] allowed multilayer representations of complex net-
works [32]. For these representations, a principled ap-
proach was used to show that not all layers, or types of
interaction, are equally informative: Some information
can be discarded or aggregated to reduce the overall com-
plexity of the model without sacrificing its descriptive
power [33, 34]. Although multilayer networks are differ-
ent from higher-order networks, this approach, formally
based on the density matrix formalism [35], provides a
good candidate for the present case. Indeed, the idea is
similar to the widely used information compression algo-
rithms adopted in computer science: by exploiting the
regularities in the data, one can build a compressed rep-
resentation that optimizes the number of bits needed to
describe the data with a model and those to encode the
model itself. Similar approaches have also been used to
coarse-grain complex and multiplex networks [36–38].

Here, we build on this long-standing research line and
propose a principled approach to optimally compress
systems with higher-order interactions—accounting for
the complexity of the data and the complexity of the
model. Specifically, we determine an optimal order of in-
teractions up to which interactions need be considered
to obtain a functionally optimal representation of the
system—larger orders can be safely discarded. Formally,
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we do so by generalizing the concept of network den-
sity matrix [35, 39] to account for higher-order diffusive
dynamics with the multiorder Laplacian [17, 40] and cal-
culate a message length corresponding to each order. By
minimizing this message length, in the spirit of the orig-
inal minimum message length principle [41], we find the
optimal compression of the data which, in turn, corre-
sponds to the most parsimonious functional description
of the system. In the following, we refer to this pro-
cedure as functional reduction. A higher-order network
is fully reducible—to a pairwise network—if the optimal
order is 1, while its reducibility decreases for increas-
ing optimal orders. We demonstrate the validity of our
method by performing an extensive analysis of synthetic
networks and investigate the functional reducibility of a
broad spectrum of real-world higher-order systems.

The advantage of this framework is that it provides a
bridge between network analysis and information theory
by means of a formalism that is largely inspired by quan-
tum statistical physics, which has found a variety of ap-
plications from systems biology [42] to neuroscience [43],
shedding light on fundamental mechanisms such as the
emergence of network sparsity [44] and the renormaliza-
tion group [45].

RESULTS

A. Density matrix for higher-order networks

The flow of information between nodes in a (pair-
wise) network can be modeled by different dynamical
processes. Arguably, the simplest and most successful
of these processes is diffusion, that can be described by
means of the propagator e−τL, where L the combinato-
rial Laplacian and τ is the diffusion time. In particular,
the information flow from node i to node j is described
by the component

(
e−τL

)
ij
. Network states can then be

encoded by a density matrix [35, 39] defined as

ρτ =
e−τL

Z
, (1)

where the partition function Z = Tr
(
e−τL

)
ensures a

unit trace for this operator.
Here, we generalize density matrices to higher-order

networks. The most general formalism to encode higher-
order networks is that of hypergraphs [8]. A hypergraph
is defined by a set of nodes and a set of hyperedges that
represent the interactions between any number of those
nodes. A hyperedge is said to be of order d if it involves
d + 1 nodes: a 0-hyperedge is a node, a 1-hyperedge is
a 2-node interaction, a 2-hyperedge is a 3-node interac-
tion, and so on. Simplicial complexes are a special case
of hypergraph that is also commonly used: they addi-
tionally require that each subset of each hyperedge is
included, too. In a hypergraph H with maximum order
dmax, diffusion between nodes through hyperedges of or-
der up to D ≤ dmax can be described by the multiorder

Laplacian [40, 46]

L[D] ≡ L(D, mul) =

D∑
d=1

γd
⟨K(d)⟩

L(d), (2)

which is a weighted sum of the Laplacians L(d) at each or-
der d up to order D [47]. At each order, the weight is de-
fined by a real coefficient γd (which we set to 1 for simplic-
ity) and the averaged generalized degrees

〈
K(d)

〉
. Each

d-order Laplacian is defined by L
(d)
ij = K

(d)
i δij − 1

dA
(d)
ij ,

in terms of the generalized degrees K(d) and adjacency
matrix A(d) of order d. The matrix L[D] satisfies all
the properties expected from a Laplacian: it is posi-
tive semidefinite and its rows (columns) sum to zero (see
Methods for details).
Accordingly, the multiorder density matrix of hyper-

graph H, up to order d, is defined as

ρ[d]
τ =

e−τL[d]

Z
, (3)

with the partition function Z = Tr
(
e−τL[d]

)
. Just like

its pairwise analog in Eq. (1), this operator satisfies all
the expected properties of a density matrix: it is positive
definite and its eigenvalues sum up to one. Importantly,
the diffusion time τ plays the role of a topological scale
parameter: small values of τ allow information to diffuse
only to neighboring nodes, probing only short-scale struc-
tures. Larger values of τ , instead, allow the diffusion to
reach more remote parts of the hypergraph and describe
large-scale structures. In this context, the meaning of
“small” and “large” depends on the network structure,
and can be estimated with respect to the magnitude of
the largest (1/λmax) and smallest (1/λmin) eigenvalues of
the Laplacians, respectively.

B. Quantifying the reducibility of a hypergraph

We approach the reducibility of a hypergraph as a
problem of model selection. We formulate that problem
as follows: given a hypergraph H with maximum order
dmax, is H an optimal representation of itself, or is con-
sidering only its hyperedges up to a given order d < dmax

sufficient? Formally, we treat the density matrix ρ[dmax]

as data and ρ[d] as a model of the data. Formulated in
this way, we need to find the “optimal” model of the data,
that is, to evaluate the optimal order dopt. To define “op-
timal”, we use the minimum message length formalism:
the model needs to represent the data as accurately as
possible while remaining as simple as possible, akin to
Occam’s Razor. The steps of the methods are illustrated
in Fig. 1: (a) start from an original hypergraph, (b) cal-
culate the optimal largest order dopt by minimizing the
message length, and (c) reduce the original hypergraph
to an optimal hypergraph, that is, one with orders only
up to dopt without losing functional information.
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FIG. 1. Functional reducibility of higher-order networks. Illustration of our method with an example hypergraph.
Given (a) an original hypergraph with interactions of orders up to dmax (= 3, here), (b) we compute the message length, a
trade-off between information loss and model complexity, of the same hypergraph, but considering orders only up to d. We
determine the optimal order dopt as that that minimizes the message length. Finally, (c) we reduce the original hypergraph to
an optimal version by considering orders up to dopt.

As illustrated in Fig. 2, we define the message length
L as the sum of the information loss – the opposite of
the model accuracy – of the model, measured by a suit-
ably generalized Kullback-Leibler divergence DKL, and
the model complexity C (see Methods for details):

L
(
ρ[dmax]
τ |ρ[d]

τ

)
= DKL

(
ρ[dmax]
τ |ρ[d]

τ

)
+ C

(
ρ[d]
τ

)
. (4)

Note that by definition, there is no information
loss when considering all possible orders, i.e.,

DKL

(
ρ
[dmax]
τ |ρ[dmax]

τ

)
= 0. Accordingly, the opti-

mal order dopt is that that minimizes the message
length:

dopt = argmin
d

L
(
ρ[dmax]
τ |ρ[d]

τ

)
. (5)

Finally, we define the reducibility of the hypergraph as

χ(H) =
dmax − dopt
dmax − 1

, (6)

which measures the ratio between the number of orders
to reduce and the maximum number of orders to re-
duce, dmax − 1. By construction, χ(H) = 0 for a hyper-
graph that is not reducible at all, i.e., dopt = dmax, while
χ(H) = 1 for a hypergraph that is maximally reducible,
that is, it can be optimally reduced to its pairwise inter-
actions, dopt = 1.

C. Rescaling the diffusion time τ at each order

As mentioned above, a topological scale τ may be large
for some networks but low for others, which is a challenge
when the aim is to compare networks. To overcome this
problem, we rescale τ to ensure an appropriate diffusion
time for each structure, and we exploit examples of hy-
pergraphs with certain regularities to define a baseline
and characterize the scaling relation.

Specifically, there is a class of hypergraphs for which
Laplacians of different orders are proportional, i.e.,
L(d) ∝ L(d′). This occurs in very regular structures in-
cluding complete hypergraphs and some simplicial com-
plex lattices (see Methods). In this case, since the Lapla-
cian matrices govern the flow of information, all orders
and all their combinations encode the same functional
information. Consequently, we expect to see these struc-
tures to be functionally invariant under reduction—i.e.,
the message length should not change as one reduces the
hypergraph.
However, without rescaling, the summation of Lapla-

cian matrices according to Eq. 2 simply strengthens the
flow pathways in the original hypergraph, making it dif-
ferent from its reduced versions. To correct for this effect,
we rescale τ to allow meaningful comparisons between
hypergraphs of different orders.
Since the density matrix only depends on the product

of τL(d), this can be achieved by selecting a value of
diffusion time τ , and then rescaling it to obtain a new
τ ′(d) at each order like so:

τ ′(d) =
dmax

d
τ. (7)

This ensures that the multiorder density matrices are all
equal

ρ
[d]
τ ′(d) = ρ

[dmax]
τ ∀d, (8)

in the special case of hypergraphs with proportional
Laplacian matrices, and gives a flat message length in
those extreme structures (Fig. S1).
For illustration purposes, we set τ = 1/λN in numer-

ical experiments, unless otherwise stated, where λN is
the largest eigenvalue of the multiorder Laplacian of the
original hypergraph L[dmax].
Physically, this rescaling simply means that we adapt

the topological scale at which we probe the hypergraph as
we consider more orders, to highlight the distribution of
flow pathways rather than their accumulated strengths.
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FIG. 2. Message length is the sum of information loss
and model complexity. Example curve for a random sim-
plicial complex. The minimum message length is indicated by
the vertical line. Parameters were set to N = 100 nodes and
wiring probabilities pd = 50/Nd at order d with dmax = 4.

We use this rescaling of τ at each order, in all hyper-
graphs (see Methods for details). In other words, we com-

pute the message length L
(
ρ
[dmax]
τ |ρ[d]

τ ′(d)

)
where the τ of

the reduced hypergraph is rescaled, contrary to Eq. (4).

D. Random structures

We now investigate the reducibility of two types of
heterogeneous random structures: random hypergraphs
and random simplicial complexes. To do so, we compute
the optimal order as described above.

A random hypergraph is defined by a number of nodes
N and a set of wiring probability pd for each order re-
quired. At each order d, a hyperdedge is created for any
combination of d+1 nodes with probability pd, similarly
to Erdős-Rényi networks. Random simplicial complexes
are built in the same manner before adding the missing
subfaces of all simplices, to respect the condition of in-
clusion. In both cases, we set N = 100, pd = 50/Nd and
dmax = 4.

Figure 3 shows the message length considering orders
from 1 to 4, for 100 realizations of each type of random
structure. In random hypergaphs (Fig. 3a), the optimal
order is the maximum, dopt = 4 = dmax. This means
that those random hypergraphs, at this diffusion scale
τ = 1/λN , are not reducible, i.e., χ = 0. Instead, in the
random simplicial complex case, dopt = 3, reflecting a
higher reducibility χ = 1/3.

The only difference between these two cases is that
the hyperedges between different orders are correlated
(nested) in random simplicial complexes but not in ran-
dom hypergraphs. To test the effect of this feature,
we start from random simplicial complexes and gradu-
ally change them to random hypergraphs by shuffling
their hyperedges. Specifically, we change each hyper-
edge into another inexisting hyperedge with probability
pshuffle. For pshuffle = 1, the result is a random hyper-
graph, and Fig. S2 shows the results that confirm the
above pattern.
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FIG. 3. Reducibility of random higher-order networks.
(a) Random hypergraphs and (b) random simplicial com-
plexes, 100 realizations for each. The minimum message
length is indicated by the vertical line. Parameters were set
to N = 100 nodes and wiring probabilities pd = 50/Nd at
order d with dmax = 4.

1. Effect of the diffusion time τ and density

As mentioned above, τ acts as a topological scale. Dif-
fusion processes with different values of τ are thus ex-
pected to “see” different structures, which may result in
different optimal order and reduced hypergraph. To illus-
trate this, we compute the message length curves for the
random simplicial complex case, for five values of τ evenly
spaced on a logarithmic scale, and where the second and
fourth are 1/λN and 1/λ2, respectively. Figure S3 shows
that as the topological scale increases (larger τ), the mes-
sage length (i) increases overall and (ii) the reducibility
decreases to χ = 0. Figure S5 shows the same results for
three values of the hyperedge density, where we can see
that for higher densities, the message length curve be-
comes much more flat with no clear minimum (see Fig-
ure S5), suggesting a functional similarity between the
large-scale structure at all orders.
We similarly tested the effect of the sole density on

the reducibility (Figs. S4 and S5). In general, the overall
density coefficient does not seem to significantly affect
the reducibility.

E. Real-world hypergraphs

We now investigate how reducible real-world hy-
pergraphs are by considering 22 empirical hypergraph
datasets from 4 categories: coauthorships, face-to-face
contacts, biological systems, and online communications
(“technological”).
First, we observe a great variety in the reducilibity

values (Fig. 4) and the associated message length curves
(Fig. S6). Fig. 4a-c show three examples with curves of
very different shapes and with different reduciblity. Sec-
ond, we note that datasets from different categories seem
to be distinctively reducible: all coauthorship datasets
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FIG. 4. Empirical datasets show different levels of re-
ducibility. We show the message length again the largest or-
der considered in (a) congress-bills, (b) sfhh-conference,
and (c) dawn. (a) Reducibility χ for datasets by category. All
reducibility values are reported in Table I.

are not reducible (χ = 0), half of the technological
datasets are fully reducible (tag datasets, χ = 1) and
the other half is not (email datasets, χ = 0), whereas
most contact datasets have medium values of reducibil-
ity. The number of nodes, the maximum and optimal
orders, and the hypergraph reducibility are reported for
all datasets in Table I, and a description of the datasets
is provided in Methods.

In Fig. S7, we also show the reducibility values against
structural parameters of the hypergraphs: number of
nodes, number of edges, density, and maximum order.
We did not observe clear correlations with any of those
parameters. In particular, the reducibility takes many
values between 0 and 1 for any value of the structural pa-
rameters, which confirms the variety of reducibility val-
ues in the empirical datasets.

DISCUSSION

All areas of natural and social science, as well as engi-
neering ones, are undergoing a deluge of publicly avail-
able data with complex structure. This data allows for
building more detailed and powerful models of systems
from areas such as physics, biology, sociology, and tech-
nology. One class of such models is networks that en-
code group interactions rather than just pairwise ones:
higher-order networks. Higher-order networks provide a
natural framework for modeling systems where interac-
tions between more than two units occur, such as chem-
ical reactions of metabolic interest or social interactions.
However, they are usually projected—by design—to pair-
wise interactions when data is gathered, and higher-order

Dataset Category N dmax dopt χ

coauth-mag-geology 1980 coauthorship 1350 17 17 0.00
coauth-mag-geology 1981 coauthorship 464 17 17 0.00
coauth-mag-geology 1982 coauthorship 1331 17 17 0.00
coauth-mag-geology 1983 coauthorship 535 14 14 0.00
congress-bills other 1718 399 353 0.12
kaggle-whats-cooking other 6714 64 64 0.00
contact-high-school contact 327 4 3 0.33
contact-primary-school contact 242 4 2 0.67
hospital-lyon contact 75 4 2 0.67
hypertext-conference contact 113 5 3 0.50
invs13 contact 92 3 2 0.50
invs15 contact 217 3 2 0.50
science-gallery contact 410 4 4 0.00
sfhh-conference contact 403 8 5 0.43
malawi-village contact 84 3 2 0.50
dawn bio 2290 15 1 1.00
ndc-classes bio 628 38 11 0.73
ndc-substances bio 3065 24 23 0.04
email-enron technology 143 36 36 0.00
email-eu technology 986 39 39 0.00
tags-ask-ubuntu technology 3021 4 1 1.00
tags-math-sx technology 1627 4 1 1.00

TABLE I. Reducibility of real-world higher-order net-
works. We report the number of nodes N , the maximum
order dmax, the optimal order dopt, the reducibility χ, and
the category of a range of higher-order networks from em-
pirical datasets. The reducibility values are shown for each
category in Fig. 4.

information is inevitably lost. By preserving that infor-
mation, higher-order networks have the potential to yield
a more reliable model of some empirical systems. Never-
theless, higher-order networks with novel challenges: new
theoretical and computational methods have to be devel-
oped, while algorithms become exponentially more com-
plex for increasing order of the interactions. It is thus of
paramount importance to understand under which condi-
tions one should opt for higher-order modeling—or keep
using traditional pairwise models.

Here, we have provided a principled method, at the
edge between statistical physics and information theory,
to guide researchers in identifying the most suitable rep-
resentation for their data. Our method is based on min-
imizing a suitable message length, encoding both the
number of bits required to describe the data given a
model and the number of bits required to describe the
model, to find the optimal order of group interactions.
Orders above the optimal one can be safely discarded
because they provide only redundant information about
the system while increasing model complexity and the
computational cost for its analysis.

Remarkably, we show that not all systems require a
higher-order model to be described and that even within
the same class of systems, there is some level of variabil-
ity. We started by testing the method on extremely regu-
lar cases, where the message length was flat for all orders,
as computed analytically. We then applied the method
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to random structures, where results indicate that random
hypergraphs are non-reducible: i.e., they are best repre-
sented by considering all possible orders of interaction.
This result is expected because random hypergraphs are
the most uncorrelated model possible: hyperedges are
uncorrelated within each order, just like in Erdős-Rényi
random graphs, but hyperedges of different orders are
also uncorrelated, yielding incompressibility of the rep-
resentation. In other words, all orders are relevant to
describe the system’s structure and dynamics, since they
encode genuine uncorrelated noise that is incompressible.
Conversely, random simplicial complexes were reducible
because hyperedges at different orders are correlated by
design: the presence of correlation introduces some level
of redundancy that is captured by our method.

Finally, we applied our method to empirical datasets
that contain group interactions. The large variety of re-
ducibility values obtained indicates that while the extra
information encoded in higher-order networks may be op-
timal for some systems, others can be optimally repre-
sented with lower orders and in some cases even with
only pairwise interactions. It is also important to note
that the category of systems to which the datasets belong
appears to be correlated with its reducibility, although
more datasets are needed to perform a systematic and
quantitative analysis of this phenomenon. Our results
challenge the widespread assumption that complex net-
work data must necessarily be investigated through the
lens of higher-order dynamics. In fact, there are com-
pletely reducible and non-reducible systems, with a com-
plete spectrum of cases between these two extremal cases,
demonstrating that some orders might be irrelevant or
uninformative to describe an empirical system. In the
next future, for instance, it will be important to gather
novel datasets from biological sciences to test if, and in
which cases, complex networks such as metabolomes and
connectomes are either reducible or irreducible, to under-
stand under which conditions higher-order mechanisms
and behaviors are essential for the function of those sys-
tems as largely assumed nowadays.

The detection of redundancies, together with a prin-
cipled approach to exploit the presence of regularities
to identify a compressed representation of the data, has
the potential to enhance our understanding of empir-
ical higher-order systems, and contributes to the in-
creasing interest in dimensionality reduction of such net-
works [48–50]. The main advantage of our framework is
that it builds on a consolidated formalism that is firmly
grounded on the statistical physics of strongly correlated
systems. As in the case of multilayer systems [33], we
think that it is remarkable that it is possible to tackle
such challenges by capitalizing on a formal analogy be-
tween quantum and higher-order systems, which can be
further exploited to gain novel insights about the struc-
tural and functional organization of complex systems.

METHODS

F. Multiorder Laplacian for hypergraphs

The Laplacian matrix L of a graph is defined as Lij =
Kiδij − Aij , where Ki is the degree of node i, δij is the
Kronecker delta, and A is the adjacency matrix. For
hypergraphs, we can define dmax Laplacian matrices, one
for each order of interaction. The Laplacian of order d
can be defined as [17, 40]

L
(d)
ij = K

(d)
i δij −

1

d
A

(d)
ij , (9)

where K
(d)
i is the degree of order d of node i, i.e., the

number of d-hyperedges connected to node i, while A(d)

is the adjacency matrix of order d, whose elements A
(d)
ij

counts the number of d-hyperedges connected to nodes i
and j.
We can hence define the multiorder Laplacian up to an

order D as [17, 40]

L[D] = L(D,mul) =

D∑
d=1

γd
⟨k(d)⟩

L(d), (10)

where γd is a tuning parameter of interactions of order
d, while ⟨K(d)⟩ is the average degree of order d. For
simplicity, in this study, we always set γd = 1.
Note that in general, a hypergraph does not need to

have hyperedges at every order below D, unless it is a
simplicial complex. If there is no hyperedge of order d,
both the Laplacian and the average degree in Eq. (2)
vanish and the result is undefined. In those cases, the
sum thus needs to be taken over all orders below D that
exist: D = {d ≤ D : ⟨K(d)⟩ > 0}.

G. Information loss as Kullback-Leibler divergence
between two hypergraphs

The state of the original hypergraph H is stored in the
multiorder density matrix

ρ[dmax]
τ = e−τL[dmax]

/Z [dmax], (11)

and the state of the a reduced hypergraph where we con-
sider orders up to d is given by

ρ[d]
τ = e−τL[d]

/Z [d]. (12)

To perform model selection and determine the optimal

order dopt to represent the hypergraph, we treat ρ
[dmax]
τ

as data and ρ
[d]
τ as a model of it. The first key aspect of

a good model is that it must describe the data as accu-
rately as possible. We can quantity the modeling error, or
information loss, with the Kullback-Leibler (KL) entropy
divergence between the data and the model, defined as

DKL

(
ρ[dmax]
τ |ρ[d]

τ

)
= −S[dmax] + S ([dmax]|[d]) ≥ 0, (13)
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where S[dmax] = −Tr
(
ρ
[dmax]
τ logρ

[dmax]
τ

)
is the Von Neu-

mann entropy of the hypergraph and S([dmax]|[d]) =

−Tr
(
ρ
[dmax]
τ logρ

[d]
τ

)
is the cross-entropy between the

hypergraph and its reduced form.
The Von Neumann entropy of a hypergraph can also

be written as

S[d] = −Tr
(
ρ[d]
τ logρ[d]

τ

)
=

∑
i

λi log λi, (14)

where {λi} are the eigenvalues of the density matrix. The
Von Neumann entropy S[d] is zero if only one eigenvalue
is non-zero (“pure state”, in the language of quantum
mechanics), and maximal equal to logN if all eigenvalues
are equal (“maximally mixed state”, in the language of
quantum mechanics). This occurs when all eigenvalues
are zero: N isolated nodes.

The information loss DKL takes positive values propor-
tionally to the inaccuracy of the mode, and reaches zero
at d = dmax—as the data is the most accurate model of
itself.

H. Model complexity

Accuracy, or in contrast, information loss, is insuffi-
cient to determine the optimal model and thus the order
d. In fact, a model can always be made more accurate by
overfitting. Thus, high model accuracy must be balanced
with low model complexity.

We measure the complexity of the model in terms of
its entropic deviation from the simplest possible model:
a network of isolated nodes. We know that the entropy
of N isolated nodes is given by Siso = logN . This gives
an upper bound on the Von Neumann entropy of a hy-
pergraph, guaranteeing that S[d] ≤ Siso. Therefore, we
define the model complexity C as:

C
(
ρ[d]
τ

)
= Siso − S[d]. (15)

By definition, the model complexity is non-negative, C ≥
0, and is expected to be lower when the eigenvalues of ρ

[d]
τ

are all similar, and larger when they are more diverse.

I. Minimizing the message length

We can now define the message length L by combining
the information loss in Eq. (13) and the model complexity
in Eq. (15):

L
(
ρ[dmax]
τ |ρ[d]

τ

)
= DKL

(
ρ[dmax]
τ |ρ[d]

τ

)
+ C

(
ρ[d]
τ

)
. (16)

By definition, minimizing the message length corresponds
to maximizing the accuracy of the model and, at the
same time, minimizing the model complexity (Occam’s

Razor). To obtain the best compression, we find the
smallest order d which gives

dopt = min
d

L
(
ρ[dmax]
τ |ρ[d]

τ

)
. (17)

It is worth mentioning that the propagation scale τ
works as a resolution parameter. When τ is very large,
the process approaches the steady state, and the net-
work topology becomes irrelevant and, consequently, any
model can be a good model. Whereas, at very small
τ , the field evolution is linear and through the paths of
length ≈ 1, exhibiting maximum resolution. Although
we explore a variety of values of τ , we mainly focus on
a characteristic propagation scale τc, the largest τ for
which a linearization of the time evolution operator is still
valid. Assume the eigenvalues of the Laplacian are given
by {λℓ} where ℓ = 1, 2, ...N and let λN be the largest of
them. Then, the eigenvalues of the time-evolution opera-
tor e−τL are given by {e−τλℓ}. Here, τc = 1/λN , ensuring
that the last eigenvalue of the time evolution operator is
reasonably linearizable e−τcλN ≈ 1− τcλN . This ensures
an acceptable linearization for the rest of the eigenvalues
since λN is the largest eigenvalue of the Laplacian.

J. Rescaling τ

1. Complete hypergraph

In some extremely regular structures, such as com-
plete hypergraphs or some simplicial complex lattices,
the Laplacians at all orders are proportional. For exam-
ple, for complete hypergraphs,

L(d) =
K(d)

N − 1
L(1), (18)

and consequently

L[d] =
d

N − 1
L(1) = dL[1]. (19)

Another direct but useful consequence of this is the re-
lationship between the multiorder Laplacians at any two
orders

L[d] =
d

d′
L[d′]. (20)

Since by definition Eq. (3), the density matrix ρ
[d]
τ de-

pends only on the product τL[d], we can write

ρ[d]
τ =

e−τdL[1]

Tr
(
e−τdL[1]

) = ρ
[1]
τ̃ (21)

where τ̃ = dτ , or equivalently, between two orders

ρ[d]
τ = ρ

[d′]
d
d′ τ

. (22)
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Hence, instead of selecting a single diffusion time τ for
all orders, we can select a different, more appropriate
diffusion time at each order. Specifically, we can select
a main τ , and rescale it at each order to ensure that
the density matrices are the same. One could choose the
rescaling so that the density matrices would be equal to

any of them non-rescaled, e.g. to ρ
[1]
τ . However, to ensure

that the information loss vanishes when considering all

possible orders, DKL

(
ρ
[dmax]
τ |ρ[dmax]

τ

)
= 0, we need to set

all of them equal to ρ
[1]
τ . This is achieved by rescaling

the diffusion time by

τ ′(d) =
dmax

d
τ (23)

so that

ρ
[d]
τ ′(d) = ρ

[d]
dmax

d τ
,= ρ

[dmax]
τ . (24)

2. General case of proportional Laplacians

In general, the Laplacian of order d is proportional
to that of order 1, L(d) ∝ L(1), when their respective
adjacency matrices are proportional, that is

A(d) = dB(d)A(1). (25)

where B(d) is a coefficient that may depend on the or-
der d. Indeed, by definition, the generalized degree and

adjacency matrix are related by K
(d)
i = 1

d

∑
j A

(d)
ij , and

thus we also have

K(d) = B(d)K(1), (26)

ensuring that the Laplacian matrices are proportional,
L(d) = B(d)L(1).
Equation (26) implies that

B(d) = ⟨K(d)⟩/⟨K(1)⟩, (27)

and hence, the multiorder Laplacian up to order d is given
by

L[d] =
d

⟨K(1)⟩
L(1) = dL[1] (28)

which is consistent with the complete hypergraph case in
Eq. (18), where we have ⟨K(1)⟩ = N − 1. The rest of
the derivation is thus the same as in the complete graph
case: rescaling τ per order as

τ ′(d) =
dmax

d
τ (29)

ensures

ρ
[d]
τ ′(d) = ρ

[d]
dmax

d τ
,= ρ

[dmax]
τ . (30)

Note again that, in general, a hypergraph does not
need to have hyperedges at every order below D, unless

it is a simplicial complex. If there is no hyperedge at
some orders d, Eq. (28) must be adjusted, as the factor
d comes from the number of orders present. The set of
orders present is in general D = {i ≤ d : ⟨K(i)⟩ > 0},
so that Eq. (28) becomes L[d] = |D|L[1] and Eq. (29)
becomes τ ′(d) = dmax

|D| τ .

3. Higher-order lattices

For a triangular lattice in which every triangle is pro-
moted to a 2-simplex, each node is part of six 1-simplices
and six 2-simplices. Furthermore, each 1-simplex of the
lattice is part of two different 2-simplices. This means
that each pair of nodes share two 2-simplices if they share
one 1-simplex, and zero otherwise. Formally:

k
(2)
i = 6 = k

(1)
i and A

(2)
ij = 2A

(1)
ij , (31)

so that B(2) = 1.

K. Description of the datasets

We assigned a category to each of the 22 empirical
datasets. All datasets are accessible via XGI [26] and
stored at https://zenodo.org/communities/xgi/.
Each of the coauthorship datasets corresponds to pa-

pers published in a single year (1980, 1981, 1982, 1983).
A node represents an author, and a hyperedge represents
a publication marked with the “Geology” tag in the Mi-
crosoft Academic Graph [51].
In the contact datasets, a node represents a person

and a hyperedge represents a group or people in close
proximity at a given time. Most of the original datasets
are from the SocioPatterns collaboration [52, 53].
The biological datasets include two constructed in [24]

with data from the National Drug Code Directory
(NDC). In ndc-classes, a node represents a label (a short
text description of a drug’s function) and a hyperedge
represents a set of those labels applied to a given drug.
In ndc-substances, a node represents a substance and
a hyperedege is the set of substances in a given drug.
The Drug Abuse Warning Network (DAWN) is a na-
tional health surveillance system that records drug use
that contributes to hospital emergency department vis-
its throughout the United States. A node represents a
drug, and a hyperedge is the set of drugs used by a given
patient (as reported by the patient) in an emergency de-
partment visit. For a period of time, the recording system
only recorded the first 16 drugs reported by a patient, so
the dataset only uses the first 16 drugs (at most).
The technological datasets include two email datasets

and two tag ones. In the email datasets, a node repre-
sents an email address and a hyperedge is the set of all
recipient addresses included in an email, including the
sender’s. In the tags datasets, a node represents a tag,
and a hyperedge is a set of tags associated to a question

https://zenodo.org/communities/xgi/
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on online Stack Exchange forums (Mathematics Stack
Exchange and Ask Ubuntu). The tag datasets were con-
structed in [24] with data from the Stack Exchange data
dump.

The other datasets contain two datasets. In congress-

bills, constructed in [24], a node represents a member of
the US Congress and a hyperedge is the set of members
co-sponsoring a bill between 1973-2016. In kaggle-whats-
cooking [54], a node represents a food ingredient and a
hyperedge is the set of ingredients used in a given recipe.
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[30] P. Holme and J. Saramäki, Temporal networks, Phys.
Rep. 519, 97 (2012).

[31] F. Battiston, V. Nicosia, and V. Latora, Structural mea-
sures for multiplex networks, Phys. Rev. E 89, 032804
(2014).
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Supplementary Material: Functional reducibility of higher-order networks
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FIG. S1. Hypergraphs with proportional Laplacians at each order have a flat message length. (a) Complete
hypergraph, (b) triangular lattice flag complex. Parameters were set to 10 and 35 nodes, respectively with dmax = 4 and 2,
respectively.
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hypergraph. From left to right, the nestedness between hyperedges of different orders decreases, and each point corresponds to
one of 100 shuffling realizations. The minimum message length is indicated by the vertical dashed grey line. Parameters were
set to N = 100 nodes and wiring probabilities pd = 50/Nd at order d with dmax = 4.
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FIG. S3. Effect of τ . We show the message length for a random simplicial complex, as a function of order d, for increasing
values of the base diffusion time τ (from left to right). The second and fourth values are τN = 1/λN and τ2 = 1/λ2 based on
eigenvalues of the multiorder density matrix. Other values are chosen to be evenly spaced in logarithmic scale. The minimum
message length is indicated by the vertical line. Parameters were set to N = 100 nodes and wiring probabilities pd = 50/Nd

at order d with dmax = 4. Stars indicate a statistically significant different between two distributions (t-test, s stars indicate
p < 10−s).
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FIG. S4. Effect of density. We show the message length for a random simplicial complex, as a function of order d, for
increasing values of the density coefficient (from left to right), i.e., wiring probabilities are pd = 20/Nd, pd = 50/Nd, and
pd = 100/Nd at order d. The minimum message length is indicated by the vertical line. Parameters were set to N = 100
nodes and dmax = 4, with τ = 1/λN . Stars indicate a statistically significant different between two distributions (t-test, s stars
indicate p < 10−s).
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FIG. S5. Effect of density and diffusion time. We show the message length for a random simplicial complex, as a function
of order d, for increasing values of the base diffusion time τ (from left to right) and density (from top to bottom). The second
and fourth values of diffusion time are τN = 1/λN and τ2 = 1/λ2 based on eigenvalues of the multiorder density matrix. Other
values are chosen to be evenly spaced in logarithmic scale. The minimum message length is indicated by the vertical line.
Parameters were set to N = 100 nodes and wiring probabilities are pd = 20/Nd, pd = 50/Nd, and pd = 100/Nd at order d.
with dmax = 4. Stars indicate a statistically significant different between two distributions (t-test, s stars indicate p < 10−s,
“ns” is non-significant).
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FIG. S6. Message length as a function of the order for all 22 empirical datasets. We assigned a category to each
dataset: coauthorship (dark blue), other (green), contact (yellow), biology (orange), technology (red). Vertical lines indicate
the optimal order in each case. Note the variety of shapes of those message length curves.
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FIG. S7. Reducibility against structural parameters for all 22 empirical datasets. We show the reducibility of each
of the 22 empirical datasets against (a) its number of nodes N , (b) number of hyperedges M , (c) the ratio between the two
N/M , and (d) the largest order in the hypergraph dmax. The reducibility can take very different values even for a fixed value
of one of the parameters. For example, sparse hypergraphs (low N/M) take values of chi between 0 and 1.
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