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QUANTIFIER ALTERNATION DEPTH IN UNIVERSAL BOOLEAN DOCTRINES

MARCO ABBADINI AND FRANCESCA GUFFANTI

Abstract. We introduce the notion of a quantifier-stratified universal Boolean doctrine. This notion
requires additional structure on a universal Boolean doctrine, accounting for the quantifier alternation
depth of formulas. After proving that every Boolean doctrine over a small base category admits a quantifier
completion, we show how to freely add the first layer of quantifier alternation depth to these doctrines.
To achieve this, we characterize, within the doctrinal setting, the classes of quantifier-free formulas whose
universal closure is valid in some common model.
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2 M. ABBADINI AND F. GUFFANTI

1. Introduction

The source of inspiration for this work has been M. Gehrke’s talk [7] at the conference “Category theory
20→21”. We now briefly recall the setting.

The set F of all formulas in a given first-order language can be decomposed in two different ways. The first
option is to distinguish the formulas based on their quantifier depth, i.e. the depth of nesting of quantifiers.
This gives a stratification F0 ⊆ F1 ⊆ F2 ⊆ . . . of F , where Fn consists of the formulas whose quantifier
depth is at most n. For example, all atomic formulas are in F0, the formula (∀xR(x, y)) ∨ (∀xS(x)) (with
R and S predicate symbols) belongs to F1, and ∀x¬∀xR(x, y) belongs to F2. This is the “Noetherian
induction” way of looking at F .

This stratification is instrumental in proofs that use induction on the quantifier depth.
The second way of decomposing formulas is by looking only at the set of free variables. This second

decomposition is naturally present in the categorical approach to logic initiated by F. W. Lawvere and
relies on the notion of a hyperdoctrine. However, in the doctrinal approach we lose all the information
about the quantifier depths of formulas.

In this paper, we wish to make the first steps in taking up on the invitation at the end of Gehrke’s talk
[7, minute 55]:

“What I wanted to say, mainly, is that I wish you would try to make some nice mathematics
[...] or some nice category theory out of this decoupage of the formulas [= the Noetherian
induction] rather than just this [= the Lawverian way]. I mean, [the Lawverian way] is
important, but [the Noetherian induction] is very useful, technically. Thank you.”

It is worth mentioning that, in our work, we make a slight deviation from the usual notion of depth of
nesting of quantifiers, and we consider the notion of quantifier alternation depth instead. For example, we
place the formula ∀x∀yR(x, y) in F1 and not, in general, in F2. To be more precise, given n ∈ N, we consider
Fn+1 to be the set of Boolean combinations of formulas of the form ∀x1 . . . ∀xm α(x1, . . . , xm, y1, . . . , yl)
where m, l ∈ N and α(x1, . . . , xm, y1, . . . , yl) ∈ Fn; in particular, we stress that m ranges among all natural
numbers. So, in general, ∀x∀y R(x, y) would have quantifier alternation depth 1, and ∀x∀y¬∀z S(x, y, z)
would have quantifier alternation depth 2, while the classical depths of nesting of quantifiers would be 2
and 3, respectively. The name “quantifier alternation depth” is motivated by the fact that we are counting
how many alternations of existential and universal quantifiers appear in a given formula. For example,
∀x∀y ¬∀z S(x, y, z) is equivalent to ∀x∀y ∃z ¬S(x, y, z) (or one might consider ¬∃x∃y∀z S(x, y, z), as well),
in which there are two alternating layers of universal and existential quantifier.

We use this approach because, in the doctrinal setting, one has an abstract notion of a finite set of
variables in which one cannot count the number of variables.

We work in the setting of universal Boolean doctrines, which are a variation of Lawvere’s hyperdoctrines
[13, 14, 15]. The attribute “Boolean” refers to the fact that F can be endowed with a structure of a Boolean
algebra, while “universal” refers to the fact that in F there are universal quantifications of formulas. Of
course, in this Boolean case, the universal and existential quantifiers are interdefinable, so both quantifiers
are considered even if we only mention one of them.

As hinted above, in the categorical interpretation of first-order logic given by universal Boolean doctrines,
we don’t have any information about the quantifier alternation depth of a formula. We address this issue by
proposing a modification of the notion of a universal Boolean doctrine that takes the quantifier alternation
depth into account. To this end, we give three definitions, which carry the same information: we define. . .

(1) . . . a quantifier-free fragment of a universal Boolean doctrine. Roughly speaking, and using the
notation above, the set F of all first-order formulas is given, and the quantifier-free fragment specifies
the set F0 of all quantifier-free formulas;

(2) . . . a quantifier stratification of a universal Boolean doctrine. Roughly speaking, the set F of all first-
order formulas is given, and the quantifier stratification axiomatizes the sequence F0,F1,F2, . . . ;

(3) . . . a quantifier-stratified universal Boolean doctrine. Roughly speaking, the set F of all first-order
formulas is not given anymore, and the quantifier-stratified universal Boolean doctrine provides
directly the stratification F0,F1,F2, . . . The set F can then be obtained as the directed union of
all the layers.
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These definitions are in Section 3, where we also show their equivalence.
After this, we turn to the question: if the relevant structure on F is the structure of a universal Boolean

doctrine, what is the intrinsic relevant structure on F0? It is easily seen that any quantifier-free fragment
is a Boolean doctrine, i.e. a version of a universal Boolean doctrine which does not require the existence
of quantifiers. Conversely, we prove that every Boolean doctrine satisfying a certain smallness assumption
is the quantifier-free fragment of a universal Boolean doctrine. To do so, we show that we can freely add
quantifiers to any Boolean doctrine P over a small base category; in other words, P admits a quantifier
completion P∀. This is done in Section 4.

The rest of the paper is motivated by the following question: given F0, how can one construct the set
F1 obtained by freely adding one layer of quantification? Rephrasing formally: given a Boolean doctrine
P0, letting P∀

0 be its quantifier completion, and letting P0,P1,P2, . . . be the quantifier stratification of P∀
0

associated to the quantifier-free fragment P0 of P∀
0 , how can one construct P1 in terms of P0?

To answer this question, we characterize, within the doctrinal setting, when a finite conjunction of
universal closures of quantifier-free formulas entails a finite disjunction of universal closures of quantifier-
free formulas modulo a quantifier-free theory T (Theorem 6.6). Thanks to some basic properties of Boolean
algebras, this is enough to completely characterize when a Boolean combination of universal closures of
quantifier-free formulas entails another Boolean combination of universal closures of quantifier-free formulas
modulo T (Corollary 6.10). In turn, this characterization gives the recipe for the construction of P1 in
terms of P0 (Section 6.2).

To achieve these results, which are in Section 6, we need a detour about models (Section 5). This detour
has its own interest and contains the most technical part of the paper. Its main result is the following:
given a Boolean doctrine P, we characterize the classes of formulas in P whose universal closure is valid
in some Boolean model of P (Theorem 5.28). The characterization is reminiscent of the notion of an
ultrafilter, and so we call universal ultrafilters the classes satisfying it (Definition 5.12). In the conclusion of
Section 5, we use this characterization to obtain what we need for Section 6: given a quantifier-free theory
T , we characterize when two finite lists (α1, . . . , αī) and (β1, . . . , βj̄) of quantifier-free formulas are such
that every model satisfying the universal closures of all αi’s satisfies the universal closure of at least one βj ;
see Corollary 5.30 (and its generalization Theorem 5.38 in which one specifies a finite number of variables
exempt from universal closure).

To sum up, in this paper we propose a modification of the notion of a universal Boolean doctrine that
takes the quantifier alternation depth into account, we characterize the layer 0, and we show how to freely
obtain the layer 1 from a given layer 0. We believe these to be the first steps for a doctrinal understanding
of the quantifier alternation depth in Boolean doctrines. This investigation opens the way to several further
questions, discussed in Section 7.

2. Preliminaries on doctrines

Hyperdoctrines were introduced by F. W. Lawvere in a series of papers [13, 14, 15] to interpret both
syntax and semantics of first-order theories in the same categorical setting. Lawvere’s investigation in
categorical logic “permits an invariant algebraic treatment of the essential problem of proof theory, though
most of the later work by proof theorists still relies on presentation-dependent formulations” [16, Author’s
commentary]. In this paper we consider Boolean doctrines and universal Boolean doctrines, which are
variations of Lawvere’s hyperdoctrines; points of departure are, among others, the fact that we impose
all the axioms of Boolean algebras and that we do not require the equality predicate. Boolean doctrines
contain enough structure to interpret all logical connectives, while universal Boolean doctrines require
further structure allowing to interpret also quantifiers. Lawvere’s fundamental intuition was that quantifiers
in logic are interpreted as certain adjoints.

Lawvere’s doctrinal setting is amenable to a number of generalizations different from ours; for the inter-
ested reader we mention primary doctrines (where one can interpret finite conjunctions) [18, 19, 6], exis-
tential doctrines (finite conjunctions and existential quantifier) [18], universal doctrines (finite conjunctions
and universal quantifier) [19], elementary doctrines (finite conjunctions and equality) [17, 6] and first-order
doctrines (all logical connectives with the axioms of Heyting algebras and quantifiers) [6].
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Notation 2.1. We let N = {0, 1, . . .} denote the set of natural numbers, including 0.

Notation 2.2. We let BA denote the category of Boolean algebras and Boolean homomorphisms, and Pos

the category of partially ordered sets and order-preserving functions.

Definition 2.3 (Boolean doctrine). For a category C with finite products, a Boolean doctrine over C is a
functor P : Cop → BA. The category C is called the base category of P. For each X ∈ C, P(X) is called a
fiber. For each morphism f : X ′ → X , the function P(f) : P(X)→ P(X ′) is called the reindexing along f .

Definition 2.4 (Boolean doctrine morphism). Let P : C
op → BA and R : D

op → BA be two Boolean
doctrines. A Boolean doctrine morphism from P to R is a pair (M,m) where M : C → D is a functor that
preserves finite products and m : P→ R ◦Mop is a natural transformation.

Cop Dop

BA

Mop

P R

m

Given Boolean doctrine morphisms (M,m) : P→ R and (N, n) : R → S,

Cop Dop Eop

BA

Mop

P
R

Nop

S

m n

their composite (N, n) ◦ (M,m) : P→ S is the pair (N ◦M, n ◦m) : P→ S, where N ◦M is the composite of
the functors between the base categories, and the component at X ∈ C of the natural transformation n ◦m
is defined as (n ◦m)X = nM(X) ◦mX , i.e. the composite of the following functions:

P(X)
mX−−→ R(M(X))

nM(X)
−−−−→ S(NM(X)).

Definition 2.5. We let DoctBA denote the category of Boolean doctrines and Boolean doctrine morphisms
between them.

Although 2-categorical aspects of doctrines would be very natural, we omit them for simplicity.

Definition 2.6 (Universal Boolean doctrine). Given a category C with finite products, a universal Boolean
doctrine over C is a functor P : Cop → BA with the following properties.

(1) (Universal) For allX,Y ∈ C, letting pr1 : X×Y → X denote the projection onto the first coordinate,
the function

P(pr1) : P(X)→ P(X × Y ),

has a right adjoint ∀Y
X (as an order-preserving map between posets). This means that for every

β ∈ P(X × Y ) there is a (necessarily unique) element ∀Y
Xβ ∈ P(X) such that, for every α ∈ P(X),

α ≤ ∀Y
Xβ in P(X) iff P(pr1)(α) ≤ β in P(X × Y ),

(2) (Beck-Chevalley condition) For any morphism f : X ′ → X in C, the following diagram in Pos

commutes.

X P(X × Y ) P(X)

X ′ P(X ′ × Y ) P(X ′)

P(f×idY ) P(f)

∀Y

X′

∀Y
X

f
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Definition 2.7 (Universal Boolean doctrine morphism). Let P : Cop → BA and R : Dop → BA be two
universal Boolean doctrines. A universal Boolean doctrine morphism from P to R is a Boolean doctrine
morphism (M,m) : P→ R such that for every X,Y ∈ C the following diagram commutes.

P(X × Y ) R(M(X)×M(Y ))

P(X) R(M(X))

∀Y
X

mX×Y

∀
M(Y )

M(X)

mX

(2.1)

Remark 2.8. In condition (1), instead of asking for a right adjoint, we can ask for the existence of a left
adjoint ∃Y

X : P(X × Y ) → P(X) of the function P(pr1) (again with the Beck-Chevalley condition). This
property is called existentiality. In this Boolean case, existentiality is equivalent to universality, because the
existential and the universal quantifiers are interdefinable: ∀ = ¬∃¬ and ∃ = ¬∀¬.

Next, we describe the leading example: the universal Boolean doctrine that describes a first-order theory.

Example 2.9 (Syntactic doctrine). Fix a first-order language L = (F,P) (without equality) and a theory
T in the language L. We define a universal Boolean doctrine

LT
T : Ctx

op → BA,

called the syntactic doctrine of (L and) T , as follows. An object of the base category is a finite list of
distinct variables and a morphism between two lists ~x = (x1, . . . , xn) and ~y = (y1, . . . , ym) is an m-tuple

(t1(~x), . . . , tm(~x)) : (x1, . . . , xn)→ (y1, . . . , ym)

of terms in the context ~x. The empty list () is the terminal object in Ctx. The product of two lists ~x and
~y in Ctx is any list whose length is the sum of the lengths of ~x and ~y; if the variables in the two lists are
all distinct, we can write their product as the juxtaposition 〈~x; ~y〉 = (x1 . . . , xn, y1, . . . , ym). The functor

LT
T : Ctx

op → BA sends each list of variables to the poset reflection of the preordered set of well-formed
formulas written with at most those variables ordered by provable consequence in T (so that two formulas

α(~x) and β(~x) are identified in LT
T (~x) if and only if α ⊣⊢T β); the order on LT(~x) is ⊢T for any pair of

representatives. Moreover, LT
T : Ctx

op → BA sends a morphism ~t(~x) : ~x → ~y to the substitution [~t(~x)/~y],
which maps the equivalence class of a formula α(~y) in LT(~y) to the equivalence class of the formula α(~t(~x)/~y)

in LT
T (~x).

The functor LT
T is a universal Boolean doctrine. Indeed, each LT

T (~x) is a Boolean algebra, and every
substitution preserves the Boolean structure. Moreover, given finite lists of variables ~x and ~y, the right
adjoint to LT

T (pr1) : LT
T (~x)→ LT

T (〈~x; ~y〉) (which maps the equivalence class of a formula with variables
from ~x to itself) is

∀y1 . . . ∀ym : LT
T (〈~x; ~y〉)→ LT

T (~x).

The Beck-Chevalley condition follows from the properties of admissible substitutions of variables.
In the rest of the paper, if there is no confusion we usually omit the superscript and write LT instead of

LT
T .

With this example in mind, given a universal Boolean doctrine, we suggest the reader thinking of the
objects of the base category as lists of variables, the morphisms as terms, the fibers as sets of formulas, the
reindexings as substitutions, the Boolean operations as logical connectives, and the adjunctions between
fibers as quantifiers.

Remark 2.10. The setting of universal Boolean doctrines encompasses also many-sorted first-order the-
ories. Indeed, any many-sorted first-order theory gives rise to a syntactic doctrine essentially in the same
way as described in Example 2.9 above.

The following example is useful in defining models of a universal Boolean doctrine.
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Example 2.11 (Subsets doctrine). For a set X , we let P(X) denote the power set Boolean algebra of X .
This gives rise to a universal Boolean doctrine P : Set

op → BA, called the subsets doctrine. The functor P

maps an object to its power set, and maps a function f : X ′ → X to the preimage function

P(f) := f−1[−] : P(X)→P(X ′).

Moreover, given two sets X and Y , the right adjoint ∀Y
X to the order-preserving function pr−1

1 : P(X) →
P(X × Y ) is the function

∀Y
X : P(X × Y ) −→P(X)

S 7−→ {x ∈ X | for all y ∈ Y, (x, y) ∈ S}.

3. Quantifier alternation depth for doctrines

We modify the notion of a universal Boolean doctrine so that the depth of alternation of quantifiers of
the formulas is taken into account.

Consider the example of first-order formulas in Example 2.9. For every n ∈ N and every context ~x we
define the Boolean algebra LTn(~x) (of “formulas with quantifier alternation depth less than or equal to n”)
inductively on n, as follows.

(1) We define LT0(~x) ⊆ LT(~x) as the set of equivalence classes of quantifier-free first-order formulas
with free variables in ~x.

(2) For n ≥ 0, LTn+1(~x) is the Boolean subalgebra of LT(~x) generated by the elements ∀~y α(~x, ~y) for ~y
ranging among contexts and α(~x, ~y) ranging in LTn(~x, ~y).

Moreover, we have a chain of inclusions

LT0(~x) ⊆ LT1(~x) ⊆ LT2(~x) ⊆ . . .

because ∀~y α(~x, ~y) is equivalent to α(~x) whenever ~y is the empty list.
Furthermore, every first-order formula α(~x) belongs to LTn(~x) for some n ∈ N. (This can be proved by

induction on the complexity of α(~x).) In other words,

LT(~x) =
⋃

n∈N

LTn(~x).

The quantifier alternation depth of a formula α(~x) ∈ LT(~x) is the least n such that α(~x) ∈ LTn(~x).

Example 3.1. (1) Consider a language consisting of a unary relation symbol R and the theory with
no axioms. Then R(x) belongs to LT0(x), and hence its quantifier alternation depth is 0.

(2) The formula (∀xR(x))∧P (y) belongs to LT1(x, y), and hence its quantifier alternation depth is less
than or equal to 1.

(3) The formula ∃x (P (x) ∧ ∃yQ(x, y)) belongs to LT1(x, y) because it is equivalent to ∃x∃y (P (x) ∧
Q(x, y)). Therefore, its quantifier depth is less than or equal to 1.

For each n ∈ N, the assignment LTn can be extended to a functor

LTn : Ctx
op → BA, (3.1)

defining the reindexing LTn(~t(~x)) : LTn(~y)→ LTn(~x) along the tuple of terms ~t(~x) : ~x→ ~y as the restriction

of LT(~t(~x)).
The stratification of LT into the sequence LT0, LT1, . . . is the motivating example for the definitions that

follow. Since the notion of a universal Boolean doctrine is blind to the quantifier alternation depth of a
formula, we add further structure to take it into account. We propose three definitions, which we will prove
to carry the same information. The most intrinsic one is the third one.

(1) In Definition 3.2 we define a quantifier-free fragment of a universal Boolean doctrine. A quantifier-
free fragment consists of the class of formulas considered to be quantifier-free. This is enough to
derive the quantifier alternation depth of all formulas, leading to the next definition.

(2) In Definition 3.7 we define a quantifier stratification of a universal Boolean doctrine: we rephrase
the first definition in a way that takes all layers of the quantifier alternation depth as part of the
structure.
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(3) In Definition 3.12 we define a quantifier-stratified universal Boolean doctrine: we provide only the
stratification, and the doctrine can be obtained by taking the directed union of all the layers.

3.1. Definitions of quantifier-stratifications.

Definition 3.2 (Quantifier-free fragment). Let P : Cop → BA be a universal Boolean doctrine. A quantifier-
free fragment of P is a functor P0 : Cop → BA with the following properties.

(1) For every X ∈ C, P0(X) is a Boolean subalgebra of P(X).
(2) For every morphism f : X ′ → X in C, the function P(f) : P(X)→ P(X ′) restricts to the function

P0(f) : P0(X)→ P0(X ′).
(3) For each object X in C, P(X) =

⋃

n∈N
Pn(X), where Pn(X) is the Boolean subalgebra of P(X)

defined inductively on n as follows. The poset P0(X) is already defined; for n ≥ 0, Pn+1(X)
is the Boolean subalgebra of P(X) generated by the union of the images of Pn(X × Y ) under
∀Y

X : P(X × Y )→ P(X), for Y ranging among the objects of C.

Remark 3.3. For every n ≥ 0, Pn(X) ⊆ Pn+1(X). Indeed, X is a particular product ofX with the terminal
object t, and the first projection pr1 : X = X × t→ X is the identity. The function P(pr1) : P(X)→ P(X)
is the identity, and thus its right adjoint ∀t

X : P(X)→ P(X) is also the identity. Thus, the image of Pn(X)
under ∀t

X is Pn(X), which is then contained in Pn+1(X).

Example 3.4. Consider the example of first-order formulas in Example 2.9. The functor LT0 : Ctx
op → BA

as in (3.1) is a quantifier-free fragment of LT.

Example 3.5. Given a universal Boolean doctrine P : Cop → BA, the functor P is a quantifier-free fragment
of P.

Example 3.6. We sketch an example which is both of the type of Example 3.4 and of Example 3.5.
Consider a first-order theory T . For each first-order formula α(~x) add a relation symbol Rα with variables
in ~x, and add the axiom ∀~x (Rα(~x)↔ α(~x)). This gives a new language and a theory T ′ in this language, in

which every first-order formula is equivalent to a quantifier-free formula. Let LT
T ′

be the syntactic doctrine

defined from this new language and this new theory. Its quantifier-free fragment LT
T ′

0 is LT
T ′

itself.

Definition 3.7 (Quantifier stratification). Let P : C
op → BA be a universal Boolean doctrine. A quantifier

stratification of P is a sequence of functors Pn : Cop → BA with the following properties.

(1) For every X ∈ C and every n ∈ N, Pn(X) is an Boolean subalgebra of P(X).
(2) For every morphism f : X ′ → X in C and every n ∈ N, the function P(f) : P(X)→ P(X ′) restricts

to Pn(f) : Pn(X)→ Pn(X ′).
(3) (Chain of inclusions) For every X ∈ C we have a chain of inclusions of Boolean subalgebras

P0(X) ⊆ P1(X) ⊆ P2(X) ⊆ . . . .

(4) (Directed union) For every X ∈ C,

P(X) =
⋃

n∈N

Pn(X).

(5) (Restriction of universal) For every projection pr1 : X×Y → X in C, and every n ∈ N, the function
∀Y

X : P(X × Y )→ P(X) restricts to a function

∀Y
X,n : Pn(X × Y )→ Pn+1(X).

(6) (Generation) For all X ∈ C and n ∈ N, the Boolean algebra Pn+1(X) is generated by the union of
the images of the functions ∀Y

X,n : Pn(X × Y )→ Pn+1(X) for Y ranging in C.

Example 3.8. Consider the example of first-order formulas in Example 2.9. The sequence LTn : Ctx
op →

BA defined in (3.1) is a quantifier stratification of LT.

Example 3.9. Given a universal Boolean doctrine P : Cop → BA, the constant sequence (Pn = P)n∈N is a
quantifier stratification of P.
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Example 3.10. Given a quantifier stratification (Pn)n∈N of P, and given k ∈ N, (Pk+n)n∈N is a quantifier
stratification of P.

Remark 3.11. A universal Boolean doctrine might have distinct stratifications. For example, take any first-
order theory T in which not every formula is equivalent to a quantifier-free formula. Then the quantifiers-
stratification in Example 3.8 of the doctrine corresponding to T differs from the constant quantifiers-
stratification in Example 3.5. However, by Definition 3.7(6), a quantifier stratification (Pn)n of a given
Boolean doctrine P is completely determined by P0 (see Proposition 3.15 below).

A direct axiomatization (without the universal Boolean doctrine as part of the structure) is as follows.

Definition 3.12 (Quantifier-stratified universal Boolean doctrine). A quantifier-stratified universal Boolean
doctrine is a sequence of functors (Pn : Cop → BA)n∈N where C is a category with finite products, such
that, for every X ∈ C and n ∈ N, Pn(X) is a Boolean subalgebra of Pn+1(X), for every morphism
f : X ′ → X in C and every n ∈ N, the function Pn+1(f) : Pn+1(X) → Pn+1(X ′) extends the function
Pn(f) : Pn(X)→ Pn(X ′), and the following conditions hold.

(1) (Universal) For every projection pr1 : X × Y → X in C, n ∈ N, and β ∈ Pn(X × Y ) there is an
element ∀Y

X,nβ ∈ Pn+1(X) such that, for every α ∈ Pn+1(X), we have (denoting with iX×Y,n the

inclusion of Pn(X × Y ) into Pn+1(X × Y ))

α ≤ ∀Y
X,nβ in Pn+1(X)⇐⇒ Pn+1(pr1)(α) ≤ iX×Y,n(β) in Pn+1(X × Y ).

(Note that one such element ∀Y
X,nβ is unique, as we have described its principal downset.)

(2) (Beck-Chevalley) For every morphism f : X ′ → X in C and n ∈ N the following diagram in Pos

commutes.

Pn(X ′ × Y ) Pn+1(X ′)

Pn(X × Y ) Pn+1(X)

Pn(f×idY ) Pn+1(f)

∀Y
X,n

∀Y

X′,n

(3) (Restriction of universal) For all X,Y ∈ C and every n ∈ N, the map ∀Y
X,n+1 restricts to ∀Y

X,n, i.e.
the following diagram in Pos commutes.

Pn(X × Y ) Pn+1(X)

Pn+1(X × Y ) Pn+2(X)

∀Y
X,n

iX×Y,n iX,n+1

∀Y
X,n+1

(4) (Generation) For all X ∈ C and n ∈ N, the Boolean algebra Pn+1(X) is generated by the union of
the images of the functions ∀Y

X,n : Pn(X × Y )→ Pn+1(X) for Y ranging in C.

3.2. Equivalence between the definitions of quantifier-stratifications. We next show the equiva-
lence between Definitions 3.2, 3.7 and 3.12.

Lemma 3.13. Let P : Cop → BA be a universal Boolean doctrine, and let P0 be a quantifier-free fragment
of P. For all n ∈ N and X ∈ C, the assignment Pn(X) can be extended to a functor Pn : Cop → BA such
that the sequence (Pn)n∈N is a quantifier stratification of P.

Proof. First of all, we prove inductively that Pn can be extended to a functor: for any morphism f : X ′ → X
in C, let Pn(f) : Pn(X) → Pn(X ′) be the restriction of P(f) : P(X) → P(X ′). We show inductively that
this restriction is well-defined. The function P0(f) is the restriction of P(f) by definition. Then suppose
that Pn(f) : Pn(X)→ Pn(X ′) is the restriction of P(f). Take a generator ∀Y

Xα ∈ Pn+1(X) for some Y in
C and some α ∈ Pn(X × Y ). Then, using the Beck-Chevalley condition and the inductive hypothesis,

P(f)(∀Y
Xα) = ∀Y

X′P(f × idY )(α) = ∀Y
X′Pn(f × idY )(α),
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and hence P(f)(∀Y
Xα) ∈ Pn+1(X ′). Since P(f) is a Boolean homomorphism, it restricts to the function

Pn+1(f) : Pn+1(X)→ Pn+1(X ′). The sequence (Pn)n∈N is a quantifier stratification of P; indeed, all the
needed properties follow by definition, except for the inclusions Pn(X) ⊆ Pn+1(X), which follow from
Remark 3.3. �

Lemma 3.14. Let (Pn)n∈N be a quanitfier stratification of a universal Boolean doctrine P : Cop → BA.
Then, P0 is a quantifier-free fragment of P.

Proof. For every X ∈ C, P0(X) is a Boolean subalgebra of P(X) and, for any f : X ′ → X , the reindexing
P(f) : P(X) → P(X ′) restricts to P0(f) : P(X) → P(X ′) by (4). Then use (5) and (6) inductively to
observe that for each n ∈ N \ {0}, the Boolean subalgebra of P(X) generated by the union of the images of
Pn−1(X) under ∀Y

X for Y ranging in C is Pn(X), and then by (4) we have that P(X) =
⋃

n∈N
Pn(X), as

claimed. �

Proposition 3.15. There is a 1:1 correspondence between quantifier-free fragments and quantifier stratifica-
tions of a given universal Boolean doctrine. The mutually inverse assignments are described in Lemmas 3.13
and 3.14.

Proof. Let P be a universal Boolean doctrine.
Let P0 be a quantifier-free fragment. Apply Lemma 3.13 to define a quantifier stratification (Pn)n∈N,

and then apply Lemma 3.14 to obtain the quantifier-free fragment P0, which is the same quantifier-free
fragment we started with.

Conversely, let (Pn)n∈N be a quantifier stratification of P. Consider the quantifier-free fragment P0, and
then apply Lemma 3.13 to define a quantifier stratification (P′

n)n∈N, where P′
n(X) is defined inductively in

Definition 3.2. We prove inductively that the functors Pn and P′
n coincide. The base case is immediate.

Let n ∈ N and suppose that Pn and P′
n coincide. The Boolean subalgebras P′

n+1(X) and Pn+1(X) of
P (X) have the same set of generators, and the reindexings are defined in both cases as the restrictions of
the reindexings of P. Therefore, the functors Pn+1 and P′

n+1 coincide. �

Lemma 3.16. Let (Pn)n∈N be a quantifier stratification of a universal Boolean doctrine P : Cop → BA.
Then, (Pn)n∈N is a quantifier-stratified universal Boolean doctrine.

Proof. Let α ∈ Pn+1(X) and β ∈ Pn(X × Y ). We have

α ≤ ∀Y
X,nβ (in Pn+1(X))

⇐⇒ α ≤ ∀Y
Xβ (in P(X))

⇐⇒ P(pr1)(α) ≤ β (in P(X × Y ))

⇐⇒ Pn+1(pr1)(α) ≤ iX×Y,n(β) (in Pn+1(X × Y )).

This proves condition (1) in Definition 3.12. The diagram in Definition 3.12(2) is commutative because it is
the restriction of the diagram defining the Beck-Chevalley condition for P. The diagram in Definition 3.12(3)
is commutative because both ∀Y

X,n and ∀Y
X,n+1 are restrictions of the same function ∀Y

X . Finally, condition

(4) in Definition 3.12 follows from Definition 3.7(6). �

Lemma 3.17. Let (Pn : Cop → BA)n∈N be a quantifier-stratified universal Boolean doctrine. Let P : Cop →
BA be the functor defined as follows. For X ∈ C, we set P(X) =

⋃

n∈N
Pn(X), with the obvious structure

of a Boolean algebra. For a morphism f : X ′ → X in C, the function P(f) : P(X)→ P(X ′) is the obvious
one. Then P is a universal Boolean doctrine, and (Pn)n∈N is a quantifier stratification of P.

Proof. We first prove that P is a universal Boolean doctrine. For every projection pr1 : X × Y → X , define
the function ∀Y

X : P(X × Y ) → P(X) as ∀Y
X :=

⋃

n∈N
∀Y

X,n. This is well-defined by Definition 3.12(3). To

check that ∀Y
X is the right adjoint to P(pr1), let α ∈ P(X) and β ∈ P(X ×Y ). There is n ∈ N large enough
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so that α ∈ Pn+1(X) and β ∈ Pn(X × Y ). Then,

α ≤ ∀Y
Xβ (in P(X))

⇐⇒ α ≤ ∀Y
X,nβ (in Pn+1(X))

⇐⇒ iX×Y,n(α) ≤ Pn+1(pr1)(β) (in Pn+1(X × Y ))

⇐⇒ P(pr1)(α) ≤ β (in P(X × Y )).

Hence, ∀Y
X is the right adjoint of P(pr1). The Beck-Chevalley condition follows from (2). So P is indeed a

universal Boolean doctrine.
The sequence (Pn)n∈N is easily seen to be a quantifier stratification of P, as all conditions in Definition 3.7

follow directly from Definition 3.12. �

Proposition 3.18. There is a 1:1 correspondence between universal Boolean doctrines equipped with a quan-
tifier stratification and quantifier-stratified universal Boolean doctrines. The mutually inverse assignments
are described in Lemmas 3.16 and 3.17.

Proof. Let (Pn : Cop → BA)n∈N be a quantifier-stratified universal Boolean doctrine. By Lemma 3.17,
⋃

n∈N
Pn : C

op → BA is a universal Boolean doctrine and (Pn)n∈N a stratification of it. From this, using
Lemma 3.16, we get the quantifier-stratified universal Boolean doctrine (Pn)n∈N, which is the one we started
from.

Conversely, let (Pn)n∈N be a quantifier stratification of a universal Boolean doctrine P : Cop → BA.
Use Lemma 3.16 to get a quantifier-stratified universal Boolean doctrine (Pn)n∈N. By Lemma 3.17,
⋃

n∈N
Pn : Cop → BA is a universal Boolean doctrine and (Pn)n∈N is a stratification of it. Moreover,

⋃

n∈N
Pn = P by assumption, and hence we have obtained again the universal Boolean doctrine P with its

quantifier stratification (Pn)n∈N. �

For each n ∈ N, what are the properties satisfied by the tuples of the form (P0, . . . ,Pn) for some
quantifier-stratified universal Boolean doctrine (Pn)n∈N? The answer for n = 0 (for the case of a small base
category) is in the next section: P0 is a Boolean doctrine. The remaining cases seem to require much more
effort and are left to future work; see Sections 7.1 and 7.2.

4. Quantifier completion of a Boolean doctrine

Via standard techniques of universal many-sorted algebra, we show that we can freely add quantifiers to
any Boolean doctrine P over a small base category; in other words, P admits a quantifier completion P∀

(Corollary 4.23). Towards the aim of showing that P embeds in P∀, we establish a completeness theorem for
Boolean doctrines (Theorem 4.9); this states that distinct elements in a common fiber of a Boolean doctrine
(i.e., distinct formulas in a common context) are separated by Boolean models. Then, using the universal
property of P∀ and the fact that models are morphisms towards the subsets doctrine P, which is universal,
the completeness theorem allows us to prove that P embeds in P∀.

All this shows that every Boolean doctrine is a quantifier-free fragment of its quantifier completion
(Proposition 4.15). Consequently, Boolean doctrines are precisely the quantifier-free fragments of some
universal Boolean doctrine. This answers the question at the end of Section 3 for the case n = 0.

4.1. Completeness theorem for Boolean doctrines.

Definition 4.1 (Boolean model). Let P : Cop → BA be a Boolean doctrine. A Boolean model of P is a
Boolean doctrine morphism (M,m) : P→P, where P is the subsets doctrine.

Cop Set
op

BA

Mop

P P

m
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Definition 4.2 (Universal Boolean model). Let P : Cop → BA be a universal Boolean doctrine. A universal
Boolean model of P is a universal Boolean doctrine morphism (M,m) : P→P.

In the syntactic context, a universal Boolean model (M,m) of LT
T corresponds precisely to a model of

the theory T in the classical sense. The assignment of the functor M on objects encodes the underlying set
of the model, the assignment of M on morphisms encodes the interpretation of the function symbols, and
the natural transformation m encodes the interpretation of the predicate symbols. In detail, the underlying
set M of the model is the value of the functor M at the object (x) (the context with only one variable).
The interpretation I(f) : Mn → M of a function symbol f of arity n is the value of the functor M at the
morphism f : (x1, . . . , xn) → (y). The interpretation I(Q) ⊆ Mn of an atomic formula Q of arity n is
m(x1,...,xn)(Q(x1, . . . , xn)) ∈P(M(x1, . . . , xn)).

Note that in Definitions 4.1 and 4.2 we admit the functor M to assign the empty set to some objects of
C. In the syntactic context, this means that we allow the empty model.

Theorem 4.3. Let P : Cop → BA be a Boolean doctrine and F a subset of P(t). The following conditions
are equivalent.

(1) There is a Boolean model (M,m) : P→P such that F = {α ∈ P(t) | mt(α) = M(t)}.
(2) F is an ultrafilter of P(t).

Proof. (1)⇒ (2). The functor M preserves finite products, and hence M(t) is a singleton. Thus, P(M(t))
is a two-element Boolean algebra. The set F is an ultrafilter because it is the preimage under the Boolean
homomorphism mt : P(t)→P(M(t)) of the top element of the two-element Boolean algebra P(M(t)).

(2)⇒ (1). Set M := Hom(t,−) : C→ Set, and let m : P→P ◦Mop be the natural transformation whose
component at X ∈ C is the function

mX : P(X) −→P(Hom(t, X))

α 7−→ {c : t→ X | P(c)(α) ∈ F}.

The fact that mX is a Boolean homomorphism is easily proved using that F is an ultrafilter and that P(c)
is a Boolean homomorphism for each c : t → X . We prove naturality of m: let X,X ′ ∈ C, let α ∈ P(X),
and let f : X ′ → X and c : t→ X ′ be morphisms in C. We have

c ∈ mX′(P(f)(α)) ⇐⇒ P(c)P(f)(α) ∈ F

⇐⇒ P(f ◦ c)(α) ∈ F

⇐⇒ f ◦ c ∈ mX(α)

⇐⇒ c ∈ (f ◦ −)−1[mX(α)].

Finally, we prove F = {α ∈ P(t) | mt(α) = Hom(t, t)}. Let α ∈ P(t). We have

mt(α) = Hom(t, t) ⇐⇒ idt ∈ mt(α) ⇐⇒ P(idt)(α) ∈ F ⇐⇒ α ∈ F. �

Remark 4.4. We translate Theorem 4.3 to the classic syntactic setting. Let {x1, x2, . . . } be a countable
set of variables, L a language and T a quantifier-free theory in L. Let F be a set of closed formulas (i.e.
formulas with no free variables) which are quantifier-free. The following conditions are equivalent.

(1) There is a model M of T such that F is the set of quantifier-free closed formulas α such that M � α.
(2) The following conditions hold.

(a) For all quantifier-free closed formulas α, β, if α ∈ F and α ⊢T β, then β ∈ F .
(b) For all α1, α2 ∈ F we have α1 ∧ α2 ∈ F .
(c) ⊤ ∈ F .
(d) For all quantifier-free closed formulas α1 and α2, if α1 ∨ α2 ∈ F , then α1 ∈ F or α2 ∈ F .
(e) ⊥ /∈ F .

Remark 4.5 (Adding constants to a doctrine). Let P : Cop → BA be a Boolean doctrine, and let S ∈ C.
We review from [9] the construction that freely adds a constant of type S.
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Let CS be the Kleisli category for the reader comonad S × − : C → C. The category CS has the same
objects as the category C. For a pair of objects X,Y in CS (or, equivalently, in C) a morphism f : X  Y in
CS is a morphism f : S×X → Y in C. The composition of f : X  Y and g : Y  Z is g ◦ 〈pr1, f〉 : X  Z:

S ×X
〈pr1,f〉
−−−−→ S × Y

g
−→ Z.

The identity on the object X in CS is the morphism X  X corresponding to the projection over X in C:

S ×X
pr2−−→ X.

We remark that in this new category, there is a morphism t S, corresponding to idS : S → S, by choosing
S as a product of S and t.

The new doctrine PS : CS
op → BA is defined as follows:

The reindexing of

Y

X

f is

P(S × Y )

P(S ×X).

P(〈pr1,f〉)

The Boolean doctrine PS comes with a canonical Boolean doctrine morphism (LS , lS) : P → PS . The
functor LS : C→ CS maps a morphism f : X → Y to the morphism f ◦ pr2 : X  Y . For an object X , the
corresponding component of the natural transformation is the following:

(lS)X : P(X) −→ PS(X) = P(S ×X)

α 7−→ P(pr2)(α).

The fibers of PS inherit the Boolean structure of the fibers of P.
If the starting Boolean doctrine P is universal, then PS is also universal, and the morphism (LS , lS)

is universal. The universal structure is defined as follows: for a pair of objects X,Y ∈ CS , the universal
quantifier (∀S)Y

X : PS(X × Y )→ PS(X) is

∀Y
S×X : P(S ×X × Y )→ P(S ×X).

All these facts are proved in [9, Section 5].
The Boolean doctrine momorphism (LS , lS) : P → PS and the morphism idS : t  S in CS have the

following universal property [9, Theorems 6.2 and 6.3]:

For every Boolean doctrine R : D
op → BA, Boolean doctrine morphism (M,m) : P→ R and

morphism c : tD →M(S) in D, there is a unique Boolean doctrine morphism (N, n) : PS →
R such that (N, n) ◦ (LS , lS) = (M,m) and N(idS : t S) = c : tD →M(S).

Definition 4.6 (Boolean model at an object). Let P : Cop → BA be a Boolean doctrine, and let S ∈ C. A
Boolean model of P at S is a triple (M,m, s) where (M,m) : P→P is a Boolean doctrine morphism from
P to the subsets doctrine P, and s ∈M(S).

Roughly speaking, a Boolean model of P at S is a Boolean model of P together with a value assignment
of S in the model.

Lemma 4.7. Let P : Cop → BA be a Boolean doctrine, let S ∈ C, let PS be the Boolean doctrine obtained
from P by adding a constant of type S and let (LS , lS) : P→ PS be the canonical Boolean doctrine morphism.
Let (M,m, s) be a Boolean model of P of S and let (N, n) : PS the unique Boolean model of PS such that
(N, n) ◦ (LS , lS) = (M,m) and N(idS : t  S) = {∗} → M(S) is the function that sends ∗ to s ∈ M(S).
Let Y ∈ C and let α ∈ P(S × Y ) = PS(Y ). Then, for all y ∈M(Y ) we have

y ∈ nY (α) ⇐⇒ (s, y) ∈ mS×Y (α).

Proof. Consider the naturality diagram of n with respect to the morphism idS×Y : Y  S × Y in CS :

PS(S × Y ) P(N(S)×N(Y ))

PS(Y ) P(N(S))

nS×Y

nY

PS(idS×Y ) N(idS×Y )−1[−] . (4.1)
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Since LS is the identity on objects, M and N have the same value assignments on objects. The diagram on
the left-hand side below commutes in CS , because the diagram on the right-hand side commutes in C.

Y S × Y

t S × Y S S × S × Y

S Y S Y

pr2

!S×Y

idS

idS×Y

pr3

pr2

〈pr1,pr1,pr2〉

pr2 pr3

pr1

idS

pr2

Since N preserves finite products, the function N(idS×Y ) : N(Y ) → N(S) × N(Y ) maps y ∈ N(Y ) to
(s, y) ∈ N(S)×N(Y ). Moreover, observe that

PS(idS×Y )((lS)S×Y (α)) = P (〈pr1, pr1, pr2〉)(P (〈pr2, pr3〉)(α)) = α. (4.2)

By (4.1), (4.2) and since m = n ◦ lS , we have the following commuting diagram.

P (S × Y )

PS(S × Y ) P(M(S)×M(Y ))

PS(Y ) P(M(S))

nS×Y

nY

PS(idS×Y ) N(idS×Y )−1[−]

(lS)S×Y

idP(S×Y )

mS×Y

Thus,

y ∈ nY (α) ⇐⇒ y ∈ nY (PS(idS×Y )((lS)S×Y (α)))

⇐⇒ N(idS×Y )−1[mS×Y (α)]

⇐⇒ (s, y) ∈ mS×Y (α). �

Theorem 4.8. Let P : Cop → BA be a Boolean doctrine, S ∈ C and F a subset of P(S). The following
conditions are equivalent.

(1) There is a Boolean model (M,m, s) of P at S such that F = {α ∈ P(S) | s ∈ mS(α)}.
(2) F is an ultrafilter of P(S).

Proof. This follows from Theorem 4.3 applied to the Boolean doctrine PS obtained from P by adding a
constant of type S (see Remark 4.5 for the construction). Indeed, since P(S) = PS(t), F is an ultrafilter
of P(S) if and only if F is an ultrafilter of PS(t). By Theorem 4.3 this is equivalent to the existence
of a Boolean model (N, n) : PS → P such that F = {α ∈ PS(t) | nt(α) = N(t)}. By the universal
property of PS , the Boolean model (N, n) is uniquely determined by its precomposition (M,m) : P → P

with the canonical morphism (LS , lS) : P → PS and by the evaluation of idS : t  S through N , namely
s ∈ N(S) = M(S). To conclude, we take α ∈ PS(t) = P(S). By Lemma 4.7, we have

s ∈ mS(α) ⇐⇒ nt(α) = N(t). �

Theorem 4.9 (Completeness for Boolean doctrines). Let P : Cop → BA be a Boolean doctrine, let S ∈ C

and let ϕ, ψ ∈ P(S) be such that ϕ � ψ. Then there is a Boolean model (M,m) : P → P such that
mS(ϕ) * mS(ψ).

Proof. By the ultrafilter lemma for Boolean algebras, there is an ultrafilter F ⊆ P(S) such that ϕ ∈ F
and ψ /∈ F . By Theorem 4.8 there are a Boolean model (M,m) : P → P and s ∈ M(S) such that
F = {α ∈ P(S) | s ∈ mS(α)}. Since ϕ ∈ F , s ∈ mS(ϕ). Since ψ /∈ F , s /∈ mS(ψ). Thus, mS(ϕ) * mS(ψ). �
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4.2. Existence of the quantifier completion. In this subsection, we show that the forgetful functor
from the category of universal Boolean doctrines with a small base category to the category of Boolean
doctrines with a small base category has a left adjoint.

Definition 4.10. Let P : Cop → BA be a Boolean doctrine. The quantifier completion of P is a Boolean
doctrine morphism (I, i) : P→ P∀, where P∀ : C′op → BA is a universal Boolean doctrine, with the following
universal property: for every universal Boolean doctrine R : Dop → BA and for every Boolean doctrine
morphism (M,m) : P → R there is a unique universal Boolean doctrine morphism (N, n) : P∀ → R such
that (M,m) = (N, n) ◦ (I, i).

P P∀

R

(I,i)

(M,m)
(N,n) (4.3)

Remark 4.11 (Change of base). Let P,R be Boolean doctrines and (M,m) : P → R a Boolean doctrine
morphism. We can factor (M,m) as the composition of two Boolean doctrine morphisms as follows:

Cop Cop Dop

BA.

P R

idop
C Mop

R◦Mop

m id

Remark 4.12. In Remark 4.11, if we additionally ask for the Boolean doctrine R to be universal, it is easy to
see that the Boolean doctrine R◦Mop is universal, and that in the factorization of (M,m) = (M, id)◦(idC,m)
the Boolean doctrine morphism (M, id) : R ◦Mop → R is universal. Moreover, if also P and (M,m) are
universal, then (idC,m) is universal.

Proposition 4.13. Let P : Cop → BA be a Boolean doctrine and suppose it has a quantifier completion
(I, i) : P→ P∀. Then the functor I : C→ C′ is an isomorphism of categories.

Proof. Consider the factorisation of (I, i) : P → P∀ as (I, id) ◦ (idC, i), with (idC, i) : P → P∀ ◦ Iop and
(I, id) : P∀ ◦ Iop → P∀ as in Remark 4.11. By the universal property of the quantifier completion applied to
(idC, i), there is a unique universal Boolean doctrine morphism (G, g) : P∀ → P∀◦Iop such that (G, g)◦(I, i) =
(idC, i).

P P∀

P∀ ◦ Iop

(I,i)

∃!(G,g)
(idC,i)

Now we use the universal property again, this time applied to (I, i): the identity (idC′ , id) : P∀ → P∀ is the
unique universal Boolean doctrine morphism (N, n) : P∀ → P∀ such that (N, n) ◦ (I, i) = (I, i). Since (I, id)
is a universal Boolean doctrine morphism and since

(I, id) ◦ (G, g) ◦ (I, i) = (I, id) ◦ (idC, i) = (I, i),

we have (I, id) ◦ (G, g) = (idC′ , id).

P P∀

P∀ ◦ Iop

P∀

(I,i)

(idC,i) (G,g)

(I,id)(I,i)

(id
C′ ,id)

So, looking at the functors between the base categories, we obtain G◦I = idC and I◦G = idC′ , as desired. �
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In Proposition 4.13 above we proved that the functor between the base categories in a quantifier com-
pletion is an isomorphism of categories, so from now on we will suppose the quantifier completion (when it
exists) to be of the form (idC, i) : P→ P∀.

Lemma 4.14. Let P : Cop → BA be a Boolean doctrine and suppose that it admits a quantifier completion
(idC, i) : P→ P∀. Then every component of the natural transformation i is injective.

Proof. Let X ∈ C and ϕ, ψ ∈ P(X) be such that ϕ � ψ. By Theorem 4.9 there is a Boolean model
(M,m) : P → P such that mX(ϕ) * mX(ψ). By the universal property of (idC, i) with respect to (M,m)

there is a universal Boolean model (N, n) : P∀ →P such that (N,m) = (M, n) ◦ (idC, i). It follows that

nX(iX(ϕ)) = mX(ϕ) * mX(ψ) = nX(iX(ψ)),

thus iX(ϕ) * iX(ψ). �

With a bit of set-theoretic stretching, we can thus assume that the components of the natural transfor-
mation i are inclusions of Boolean subalgebras.

Proposition 4.15. Let P : Cop → BA be a Boolean doctrine and suppose it has a quantifier completion
(idC, i) : P→ P∀. Then P is a quantifier-free fragment of P∀.

Proof. In light of Lemma 4.14, we are left to prove (3) in Definition 3.2. Define the doctrine R as follows.
The base category of R is C. For each X ∈ C, set R(X) as the Boolean subalgebra

⋃

n∈N
Rn(X) of

P∀(X), where Rn(X) is the Boolean subalgebra of P∀(X) defined by induction on n as follows. We set
R0(X) := P(X). For n ≥ 0, Rn+1(X) is the Boolean subalgebra of P∀(X) generated by the union of
the images of Rn(X × Y ) under ∀Y : P∀(X × Y ) → P∀(X), for Y ranging among the objects of C. This
is a universal Boolean doctrine. We also have a morphism (idC, ι) : R → P∀ that, componentwise, is the
inclusion: condition (3) in Definition 3.2 is equivalent to asking that ι is componentwise surjective.

By the universal property of (idC, i) : P → P∀, there is a unique universal Boolean doctrine morphism
(M,m) : P∀ → R such that the following diagram commutes.

P P∀

R

(idC,i)

(idC,i|)
(M,m)

Since both the composite P∀ (M,m)
−−−−→ R

(idC ,ι)
−−−−→ P∀ and the identity of P∀ make the outer triangle below

commute,

P P∀

R

P∀

(idC,i)

(idC,i|)

(idC,i)

(M,m)

(idC,ι)

by the universal property of (idC, i), the composition (idC, ι) ◦ (M,m) is the identity of P∀. It follows that
ι is surjective, as desired. �

In the following, we show that it is enough to check the universal property of a quantifier completion
(idC, i) : P → P∀ over universal Boolean doctrines based on C having the identity as functor between the
base categories.

Lemma 4.16. Let P : Cop → BA be a Boolean doctrine. Let P∀ : Cop → BA be a universal Boolean
doctrine and (idC, i) : P → P∀ be a Boolean doctrine morphism with the following universal property: for
every universal Boolean doctrine R : Cop → BA and for every Boolean doctrine morphism of the form
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(idC,m) : P → R there is a unique universal Boolean morphism (idC, n) : P∀ → R such that (idC,m) =
(idC, n) ◦ (idC, i).

P P∀

R

(idC,i)

(idC,m)
(idC,n)

Then, (idC, i) : P→ P∀ is a quantifier completion of P.

Proof. Let R : Dop → BA be universal Boolean doctrine and let (M,m) : P → R be a Boolean doctrine
morphism. By Remarks 4.11 and 4.12 we can factor (M,m) = (M, id)◦(idC,m), where (idC,m) : P→ R◦Mop

is a Boolean doctrine morphism and (M, id) : R ◦Mop → R is a universal Boolean doctrine morphism. By
the universal property of (idC, i) with respect to the Boolean doctrine morphism (idC,m), there is a unique
universal Boolean doctrine morphism (idC, n) : P∀ → R ◦Mop such that (idC,m) = (idC, n) ◦ (idC, i).

P P∀

R ◦Mop

R

(idC,i)

(idC,m)

(M,m)

(idC,n)

(M,id)

We consider (M, n) = (M, id) ◦ (idC, n). This is a universal Boolean doctrine morphism making (4.3)
commute. We conclude by proving uniqueness. Let (N ′, n′) : P∀ → R be a universal Boolean doctrine
morphism making (4.3) commute. Observe that N ′ = M ◦ idC = M . Moreover, we can factor (N ′, n′) =
(M, n′) as (M, id) ◦ (idC, n

′), so it is enough to prove that (idC, n) = (idC, n
′). By Remark 4.12, (idC, n) is a

universal Boolean doctrine morphism, and thus, by the universal property, the equality (idC, n) = (idC, n
′)

holds if and only if the equality (idC, n) ◦ (idC, i) = (idC, n
′) ◦ (idC, i) holds, but the latter follows from the

equality (M,m) = (M,n′) ◦ (idC, i). �

In the remainder of this subsection, we prove that every Boolean doctrine over a small base category
has a quantifier completion. The idea for the proof is that a universal boolean doctrine is defined by quasi-
equations (also known as quasi-identities, or implications), and classes defined by quasi-equations have free
algebras.

Definition 4.17. Let C be a category with finite products.

(1) We let Doct
C

BA denote the category whose objects are Boolean doctrines over C and whose morphisms
are natural transformations.

(2) We let Doct
C

∀BA denote the category whose objects are universal Boolean doctrines over C and whose
morphisms from P : C

op → BA to R : C
op → BA are natural transformations m : P → R such that

the following diagram commutes for all X,Y ∈ C.

P(X × Y ) R(X × Y )

P(X) R(X)

∀Y
X

mX×Y

∀Y
X

mX

(4.4)

Remark 4.18 (Universal Boolean doctrines as many-sorted algebras). Let C be a small category with finite

products. We present Doct
C

∀BA
as a quasi-variety of many-sorted algebras (and homomorphism).

First, we describe a many-sorted algebraic language LC. The set of objects of C is taken as the set of
sorts. We equip each sort with the signature of a Boolean algebra. Moreover, for each morphism f : X → Y
in C, we consider a unary function symbol f from sort Y to sort X . Finally, for each binary product diagram

X
pr1←−− Z

pr2−−→ Y , we consider a unary function symbol ∀Y
X,pr1,pr2

from sort Z to sort X .
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Next, we let V be the class of many-sorted algebras P in the language LC satisfying the following quasi-
equational axioms (we write PX for the value of P at the sort X , and we write Pf for the interpretation of
the function symbol f : X → Y in P).

(1) Each sort satisfies the axioms of a boolean algebra.
(2) For each morphism f : X → Y , the function symbol Pf satisfies the axioms of a boolean homomor-

phism, i.e. for each Boolean function symbol g(x1, . . . , xn), we have the axiom

For all α1, . . . , αn ∈ PY , Pf (gPY
(α1, . . . , αn)) = gPX

(Pf (α1), . . . ,Pf (αn)).

(3) For each object X ,

For all α ∈ PX , PidX
(α) = α.

(4) Given two morphisms X
f
−→ Y

g
−→ Z, we have the axiom

For all α ∈ PZ , Pf (Pg(α)) = Pg◦f (α).

(5) For each binary product diagram X
pr1←−− Z

pr2−−→ Y , we have the axioms

For all α ∈ PX and all β ∈ PZ , α ≤ ∀
Y
X,pr1,pr2

(β) ⇐⇒ Ppr1
(α) ≤ β.

(6) For all objects X,X ′, Y, Z, Z ′, for every morphism f : X ′ → X , and for all binary product diagrams

X
pr1←−− Z

pr2−−→ Y and X ′ pr′
1←−− Z

pr′
2−−→ Y , we have the axiom

For all α ∈ PZ , ∀
Y
X′,pr′

1,pr′
2
(Pf×idY

(α)) = Pf (∀Y
X,pr1,pr2

(α)).

A many-sorted algebra in this signature satisfying the axioms above is the same thing as a universal
Boolean doctrine over C. Indeed,

• (1) guarantees that we have an assignment on objects from C to BA.
• (2) guarantees that we have an assignment on morphisms from C to BA.
• (3) guarantees that the identity is preserved, and (4) guarantees that the composition is preserved,

so that we have a functor Cop → BA.
• (5) guarantees that the universal quantifier is a right adjoint.
• (6) guarantees that the Beck-Chevalley condition is satisfied.

A homomorphism m of many-sorted algebras in V is the same thing as a morphism in Doct
C

∀BA
. Indeed,

• The preservation of the Boolean function symbols guarantees that mX is a Boolean homomorphism
for each X ∈ C.

• The preservation of the unary function symbols associated to the morphisms of C guarantees the
naturality of m.

• The preservation of the unary function symbols ∀Y
X,pr1,pr2

guarantee the commutativity of (4.4).

Remark 4.19. Using the notation of Remark 4.18, we let L′ be the sublanguage of LC consisting of
all function symbols of LC excluding quantifiers. Then, a quantifier-free fragment of a universal Boolean
doctrine P (Definition 3.2) is just a L′-subalgebra of P that LC-generates P.

Theorem 4.20 ([4, Corollary 1, p. 129]). A class of many-sorted algebras closed under subalgebras and
products has all free algebras.

The theorem above means the following. Let L be a many-sorted language, with S as the set of sorts,
and let A be a class of algebras closed under subalgebras and products. The forgetful functor A → Set

S has
a left adjoint. As in the one-sorted case [3, Chapter VI, Section 7], the free A-algebra over a many-sorted
set X = (Xi)i∈S is the image of the word algebra W over X (which might fail to belong to A) under
the homomorphism W →

∏

i∈I Ai, for Ai ranging among the quotients of W belonging to A. Although
[3, Chapter VI, Section 7] assumes all the sorts to be nonempty, the argument goes through without this
assumption, which is not required, for example, in the textbook [1].

Theorem 4.20 has the following generalization.
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Theorem 4.21. Let L+ be a many-sorted language and L− be a sublanguage of L+. Let A+ be a class of
L+-algebras closed under products and subalgebras and let A− be a class of L−-algebras containing all the
L−-reducts of the algebras in A+. The forgetful functor A+ → A− has a left adjoint.

Proof. Let S denote the set of sorts of the language L+. Let (Ai)i∈S ∈ A−. Consider the many-sorted
language L′, with the same set of sorts as L+ and with function symbols the same as those of L+ and
additionally, for each sort i ∈ S and each a ∈ Ai, a constant symbol ca at sort i. Let A′ be the class of
algebras A = (Ai)i∈S in the language L′ such that the L+-reduct of A belongs to A+ and such that, for every
function symbol f in L−, and every a1, . . . , an in appropriate sorts we have f(ca1 , . . . , can

) = cf(a1,dots,an).
It is easy to see that A′ is closed under subalgebras and products. Therefore, by Theorem 4.20, the forgetful
functor A′ → Set has a left adjoint. Let F = (Fi)i∈S be the free A′-algebra over the empty S-sorted set
(∅)i∈S . The L+-reduct of F belongs to A+, and the L−-reduct of F belongs to A− because A− contains
all the L−-reducts of the algebras in A+. We have an obvious many-sorted map from A to F assigning to
a the constant ca. This is a L−-homomorphism from A to the L−-reduct of F . It has the desired universal
property. �

Theorem 4.22. Let C be a small category with finite products and let P : Cop → BA be a Boolean doctrine.
There is a universal Boolean doctrine P∀ : Cop → BA and a Boolean doctrine morphism (idC, i) : P → P∀

with the following universal property: for every universal Boolean doctrine R : Cop → BA and for every
Boolean doctrine morphism (idC,m) : P→ R there is a unique universal Boolean morphism (idC, n) : P∀ →
R such that (idC,m) = (idC, n) ◦ (idC, i).

P P∀

R

(idC,i)

(idC,m)
(idC,n)

Proof. In the one-sorted context, it is a standard fact that any class defined by quasi-equations is closed
under products and subalgebras (see e.g. [5, Theorem 2.25, (a)⇒ (c)]). The same is true in the many-sorted

context. Apply Theorem 4.21 to the forgetful functor Doct
C

∀BA → Doct
C

BA. �

Corollary 4.23. Let C be a small category with finite products and let P : Cop → BA be a Boolean doctrine.
Then P has a quantifier completion.

Proof. It follows from Theorem 4.22 and Lemma 4.16. �

Remark 4.24. Let C be a small category with finite products. Using the notation of Remark 4.18, we let
L′ be the sublanguage of LC consisting of all function symbols of LC excluding quantifiers. Theorem 4.22
shows that Boolean doctrines over C are precisely the L′-subreducts of universal Boolean doctrines over C,
i.e. the L′-algebras obtained as L′-subalgebras of some universal Boolean doctrine over C.

Example 4.25. Let L be a first-order language and T a theory whose axioms are all quantifier-free. Let
LT : Ctx

op → BA be the syntactic doctrine as in Example 2.9 and LT0 be the quantifier-free fragment of LT as
in Example 3.4. We prove that (idCtx, i) : LT0 → LT is a quantifier completion of LT0. Let R : Ctx

op → BA be
a universal Boolean doctrine and (idCtx,m) : LT0 → R be a Boolean doctrine morphism. Define n : LT→ R

as follows.

n~x : LT(~x) −→ R(~x)

∀~y β(~x, ~y) 7−→ ∀~y
~xm(~x,~y)(β(~x, ~y)) for β(~x, ~y) ∈ LT0(~x, ~y),

extended by induction on the complexity of the formulas. In particular, if α(~x) ∈ LT0(~x), we have

n~x(i~x(α(~x))) = n~x(∀()α(~x)) = ∀()
~x m~x(α(~x)) = m~x(α(~x)),

and thus n ◦ i = m. Since every axiom in T is quantifier-free, n is well-defined on the equivalence classes
of the formulas: for every ϕ ∈ T , the function n() : LT()→ R() maps ϕ to m()(ϕ) = ⊤R(). The naturality
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of n follows from the properties of admissible substitutions of variables. We check universality, i.e. that the
following diagram is commutative.

LT(~x, ~z) R(~x, ~z)

LT(~x) R(~x)

n(~x,~z)

∀~z ∀~z
~x

n~x

To do so, at first we check that it commutes on every element of the form ∀~y β(~x, ~z, ~y) with β(~x, ~z, ~y) ∈
LT0(~x, ~z, ~y). Then, by induction on the complexity of formulas in LT(~x, ~z), we can show the commutativity
of the diagram. We proved that there is a Boolean morphism (idCtx, n) : LT → R such that (idCtx,m) =
(idCtx, n) ◦ (idCtx, i). To prove uniqueness, let (idCtx, n

′) : LT → R be a universal Boolean morphism such
that (idCtx,m) = (idCtx, n

′) ◦ (idCtx, i). Let β(~x, ~y) be in LT0(~x, ~y):

n′
~x(∀~y β(~x, ~y)) = ∀~y

~xn
′
(~x,~z)β(~x, ~y) by universality

= ∀~y
~xm(~x,~z)β(~x, ~y) since n′ ◦ i = m

= n~x(∀~y β(~x, ~y)).

Since n~x and n′
~x have the same value on generators and are both Boolean homomorphisms, they coincide.

By Lemma 4.16, (idCtx, i) : LT0 → LT is a quantifier completion of LT0.

Remark 4.26 (The existential completion of a primary doctrine). The quantifier completion of a Boolean
doctrine P is not the same thing as the existential completion (in the sense of [22]) of P seen as a primary
doctrine. We give more details for the reader interested in the difference between the two completions.

A primary doctrine is a functor P : Cop → InfSL where C is a category with finite products and InfSL is
the category of inf-semilattices. The existential completion of a primary doctrine P consists of an existential
(and thus primary) doctrine Pe and a primary doctrine morphism (idC, ι) : P → Pe satisfying a suitable
universal property. Roughly speaking, Pe freely adds the existential quantifier to P.

In our setting, we want to add the universal quantifier to Boolean doctrines. Of course, adding the
universal or the existential quantifier to a Boolean doctrine is the same process. However, to obtain the
quantifier completion of a Boolean doctrine we cannot apply D. Trotta’s construction (recalled below) of
the existential completion of a primary doctrine [22, Section 4].

Before recalling Trotta’s construction, we start with the logical intuition. Let A be the set of formulas
in the {∧,⊤}-fragment of a given first-order theory. The set of (equivalence classes of) formulas of the form
∃~xα(~x, ~y) with α ∈ A is closed under finite meets and existential quantification, and contains A. With
this observation in mind, we recall the construction of the existential completion of a primary doctrine
P : C

op → InfSL with C small. For every object A ∈ C consider the set EA := {(C,α) | C ∈ C, α ∈ P(A×C)}
equipped with the preorder

(C,α) ≤ (C′, α′) ⇐⇒ there is g : A× C → C′ such that α ≤ P(〈pr1, g〉)(α
′) in P(A× C).

Then, for every object A ∈ C, Pe(A) is the poset reflection of the preorder. With an abuse of notation,
we do not distinguish between elements and their equivalence classes. This assignment can be extended
to morphisms of C to obtain an existential doctrine Pe. The intuition in the syntactic setting is that an
element (C,α) ∈ EA shall be understood as the formula ∃C α(A,C).

If we start from a Boolean doctrine P : Cop → BA, by forgetting the Boolean structure we obtain a primary
doctrine P : Cop → InfSL. However, when we compute the existential completion (idC, ι) : P → Pe of P,
the primary doctrine Pe is not necessarily a Boolean doctrine, nor, even when it is, the primary doctrine
morphism (idC, ι) is necessarily a Boolean doctrine morphism. From a logical perspective, this failure can be
observed when we consider formulas such as ¬∃xα(x), or ∃x¬∃y α(x, y), which are in general not equivalent
to existential closures of quantifier-free formulas. At a formal level, we propose two counterexamples: in
Example 4.27 we provide a Boolean doctrine P such that Pe is not a Boolean doctrine. In Example 4.28 we
provide a Boolean doctrine P such that Pe is a Boolean doctrine but the doctrine morphism (idC, ι) : P→ Pe

does not preserve the bottom element.
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Example 4.27. Let C be the two-object posetal category 0 < 1. Let P : Cop → BA be the Boolean
doctrine with P(0) = {∗}, P(1) = {⊥,⊤}, and P(0 < 1) the unique function P(1) → P(0). The doctrine
Pe : Cop → InfSL has the following assignment on the object 1:

Pe(1) = {(0, ∗) � (1,⊥) � (1,⊤)}.

The three-element chain Pe(1) is not a Boolean algebra, and thus Pe is not a Boolean doctrine.

Example 4.28. Let C be the two-object posetal category 0 < 1. Let P : Cop → BA be the Boolean doctrine
with P(0) = P(1) = {∗}, and P(0 < 1) = id{∗}. The primary doctrine Pe : Cop → InfSL has the following
assignment on objects and morphisms.

Pe(1) {(0, ∗) � (1, ∗)}

Pe(0) {(0, ∗) = (1, ∗)}

!

=

=

The functor Pe is a Boolean doctrine. However, the component at the object 1 of the natural transformation
ι : P→ Pe does not preserve the bottom element:

ι1 : P(1) −→ Pe(1)

∗ 7−→ (1, ∗) 6= (0, ∗).

We conclude the section by introducing the problems addressed in the next ones. Let P0 : Cop → BA

be a Boolean doctrine, with C small. By Corollary 4.23, P0 has a quantifier completion (idC, i) : P0 → P∀
0 .

By Proposition 4.15, P0 is a quantifier-free fragment of P∀
0 . For each S ∈ C, define P1(S) as the Boolean

subalgebra of P∀
0(S) generated by the union of the images of P0(S × Y ) under ∀Y

S : P∀
0(S × Y ) → P∀

0(S),
for Y ranging in C, as in Definition 3.2(3). This gives a subfunctor P1 of P∀. Intuitively, P1 freely adds
one layer of quantification to P0.

One of the main remaining goals, reached only in Section 6, is to describe P1 explicitly. For example, when
should a formula (∀xα(x))∧(∀y β(y)) be below another formula (∀z γ(z))∨(∀w δ(w))? Our approach to the
question is via models. In this light, one possible answer is: when every model of P0 satisfying ∀xα(x) and
∀y β(y) also satisfies ∀z γ(z) or ∀w δ(w); equivalently, when there is no model of P0 that satisfies ∀xα(x),
∀y β(y), ¬∀z γ(z) and ¬∀w δ(w). In the next two sections we take a detour to investigate the relationship
between models of Boolean doctrines and one layer of quantification. To this end, we will introduce the
notions of universal filters and universal ideals. Universal filters axiomatize classes of universally valid
formulas (in some family of models), while universal ideals axiomatize classes of universally invalid formulas
(in some family of models). The answer above can then be formulated as: when the universal filter generated
by α and β does not intersect the universal ideal generated by γ and δ. In turn, this amounts to an explicit
condition about the Boolean doctrine P0 and the elements α, β, γ and δ.

5. Characterization of classes of universally valid formulas

This section contains the mathematical heart of the paper. To illustrate its main result, we introduce
the following notation.

Notation 5.1. Let (M,m) be a Boolean model of a Boolean doctrine P : Cop → BA. For each X ∈ C,
define

F
(M,m)
X

:= {α ∈ P(X) | for all x ∈M(X), x ∈ mX(α)}.

Remark 5.2. We translate Notation 5.1 to the classic syntactic setting. Let {x1, x2, . . . } be a countable
set of variables, L a language, T a quantifier-free theory in L, and M a model for T . To further simplify,
instead of taking contexts as arbitrary tuples of distinct variables, we consider only contexts of the type
(x1, . . . , xn) for some n ∈ N. For each n ∈ N we define

FM
n := {α(x1, . . . , xn) quantifier-free |M � ∀x1 . . . ∀xn α(x1, . . . , xn)}.
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The end result of this section (Theorem 5.28) is a characterization of the families of the form (F
(M,m)
X )X∈C

for some model (M,m), at least in the case where the base category C is small; these families are captured
axiomatically by the notion of a universal ultrafilter, introduced in Definition 5.12 below.

To obtain Theorem 5.28, we will need the auxiliary notions of universal filters and of universal ideals. To
motivate these, we extend Notation 5.1 as follows.

Notation 5.3. Let M be a class of Boolean models of a Boolean doctrine P : Cop → BA. For each X ∈ C

define

FM
X := {α ∈ P(X) | for all (M,m) ∈ M, for all x ∈M(X), x ∈ mX(α)},

IM
X := {α ∈ P(X) | for all (M,m) ∈ M, not all x ∈M(X) satisfy x ∈ mX(α)}.

Roughly speaking,

• FM consists of all the formulas whose “universal closure” is valid in all elements of M,
• IM consists of all the formulas whose “universal closure” is invalid in all elements of M.

Remark 5.4. We translate Notation 5.3 to the classic syntactic setting. Let {x1, x2, . . . } be a countable
set of variables, L a language, T a quantifier-free theory in L and M a class of models for T . To further
simplify, instead of taking contexts as arbitrary tuples of distinct variables, we consider only contexts of the
type (x1, . . . , xn) for some n ∈ N. For each n ∈ N we define

FM
n := {α(x1, . . . , xn) quantifier-free | for all M ∈ M, M � ∀x1 . . . ∀xn α(x1, . . . , xn)},

IM
n := {α(x1, . . . , xn) quantifier-free | for all M ∈ M, M 2 ∀x1 . . . ∀xn α(x1, . . . , xn)}.

In the next pages, we introduce the notions of universal filters and universal ideals. The notion of a
universal filter characterizes the families of the form FM forM an arbitrary class of models, i.e. the classes
of formulas that are universally true in all members of a certain class of models. The notion of a universal
ideal characterizes the classes of the form IM forM an arbitrary class of models, i.e. the classes of formulas
that are universally invalid in all members of a certain class of models. While we use the notions of universal
filters and ideals to prove the main result of this section (Theorem 5.28), the mentioned characterization of
universal filters, resp. ideals) as classes of the form FM, resp. IM is not needed, and so we postpone it to
the appendix: see Theorems A.5 and A.9.

5.1. Universal filters, ideals and ultrafilters. We introduce universal filters, meant to characterize the
families of the form FM for M an arbitrary class of models (see Notation 5.3).

Definition 5.5 (Universal filter). Let P : Cop → BA be a Boolean doctrine. A universal filter for P is a
family (FX)X∈C, with FX ⊆ P(X) for each X ∈ C, with the following properties.

(1) For all f : X → Y and α ∈ FY , P(f)(α) ∈ FX .
(2) For all X ∈ C, FX is a filter of P(X).

Remark 5.6. We translate Definition 5.5 to the classic syntactic setting. Let {x1, x2, . . . } be a set of
variables, L a language and T a quantifier-free theory in L. A universal filter for T is a family (Fn)n∈N,
with Fn a set of quantifier-free L-formulas with x1, . . . , xn as (possibly dummy) free variables, with the
following properties.

(1) For all n,m ∈ N, every α(x1, . . . , xm) ∈ Fm and every m-tuple (fi(x1, . . . , xn))i=1,...,m of n-ary
terms,

α(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) ∈ Fn.

(2) For all n ∈ N,
(a) for all quantifier-free formulas α(x1, . . . , xn) and β(x1, . . . , xn), if α(x1, . . . , xn) ∈ Fn and

α(x1, . . . , xn) ⊢T β(x1, . . . , xn), then β(x1, . . . , xn) ∈ Fn;
(b) for all α1(x1, . . . , xn), α2(x1, . . . , xn) ∈ Fn we have α1(x1, . . . , xn) ∧ α2(x1, . . . , xn) ∈ Fn;
(c) ⊤(x1, . . . , xn) ∈ Fn (where ⊤(x1, . . . , xn) is the constant “true” with n dummy variables).

If the family (FM
n )n∈N is defined by a class M of models as in Remark 5.4, it is easy to check that

(FM
n )n∈N satisfies the conditions above.
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Example 5.7. Let P : Cop → BA be a Boolean doctrine. The family ({⊤P(X)})X∈C is a universal filter for
P.

An arbitrary (componentwise) intersection of universal filters for a given Boolean doctrine P is a universal
filter. Therefore, we can define the universal filter generated by a family (AX)X∈C as the smallest universal
filter containing the family.

Lemma 5.8 (Description of the universal filter generated by a family). Let P : Cop → BA be a Boolean
doctrine. Let (AX)X∈C be a family with AX ⊆ P(X) for each X ∈ C. The universal filter for P generated
by (AX)X∈C is the family (FX)X∈C where for each X ∈ C FX is the set of ϕ ∈ P(X) such that there are
Y1, . . . , Yn ∈ C, (αi ∈ AYi

)i=1,...,n and (fi : X → Yi)i=1,...,n such that, in P(X),

n∧

i=1

P(fi)(αi) ≤ ϕ.

Proof. It is easily seen that family F = (FX)X∈C contains A = (AX)X∈C and is contained in any universal
filter containing A. We are left to show that F is a universal filter. The family F is closed under reindexings
because, if g : Y → X is a morphism in C and

∧n
i=1 P(fi)(αi) ≤ ϕ, then

n∧

i=1

P(fi ◦ g)(αi) = P(f)

(
n∧

i=1

P(fi)(αi)

)

≤ P(f)(ϕ).

It is easy to see that, for each X ∈ C, FX is upward closed, is closed under binary meets, and contains
⊤P(X) (take n = 0). �

We introduce universal ideals, meant to characterize the families of the form IM for M an arbitrary
class of models (see Notation 5.3).

Definition 5.9 (Universal ideal). Let P : Cop → BA be a Boolean doctrine. A universal ideal for P is a
family (IX)X∈C, with IX ⊆ P(X) for each X ∈ C, with the following properties.

(1) For all m ∈ N, (fj : X → Y )j=1,...,m and α ∈ P(Y ), if
∧m

j=1 P(fi)(α) ∈ IX then α ∈ IY .

(2) For all X ∈ C, IX is downward closed.
(3) For all α1 ∈ IX1 and α2 ∈ IX2 , P(pr1)(α1) ∨P(pr2)(α2) ∈ IX1×X2 .
(4) ⊥P(t) ∈ It.

Remark 5.10. We translate Definition 5.9 to the classic syntactic setting. Let {x1, x2, . . . } be a set of
variables, L a language and T a quantifier-free theory in L. A universal ideal for T is a family (In)n∈N, with
In a set of quantifier-free L-formulas with x1, . . . , xn as (possibly dummy) free variables, with the following
properties.

(1) For all p, q,m ∈ N, every (m · q)-tuple (fj,k(x1, . . . , xp))j∈{1,...,m}, k∈{1,...,q} of p-ary terms and every
quantifier-free formula α(x1, . . . , xq), if

m∧

j=1

α(fj,1(x1, . . . , xp), . . . , fj,p(x1, . . . , xp)) ∈ Ip,

then

α(x1, . . . , xq) ∈ Iq.

(2) For all n ∈ N, all quantifier-free formulas α(x1, . . . , xn) and β(x1, . . . , xn), if β(x1, . . . , xn) ∈ In and
α(x1, . . . , xn) ⊢T β(x1, . . . , xn), then α(x1, . . . , xn) ∈ In.

(3) For all n1, n2 ∈ N, α1(x1, . . . , xn1 ) ∈ In1 and α2(x1, . . . , xn2 ) ∈ In2 , we have

α1(x1, . . . , xn1 ) ∨ α2(xn1+1, . . . , xn1+n2 ) ∈ In1+n2 ;

(4) For all n ∈ N, ⊥(x1, . . . , xn) ∈ In (where ⊥(x1, . . . , xn) is the constant “false” with n dummy
variables).

These conditions are satisfied by any family (IM
n )n∈N defined by a class M of models as in Remark 5.4.
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An arbitrary intersection of universal ideals for a given Boolean doctrine P is a universal ideal. Therefore,
we can define the universal ideal generated by a family (AX)X∈C as the smallest universal ideal containing
the family.

Lemma 5.11 (Description of the universal ideal generated by a family). Let P : Cop → BA be a Boolean
doctrine. Let (AX)X∈C be a family with AX ⊆ P(X) for each X ∈ C. The universal ideal for P generated
by (AX)X∈C is the family (IX)X∈C where for each X ∈ C IX is the set of ϕ ∈ P(X) such that there are
Y1, . . . , Yn ∈ C, α1 ∈ AY1 , . . . , αn ∈ AYn

and (fj :
∏n

i=1 Yi → X)j=1,...,m such that, in P(
∏n

i=1 Yi),
m∧

j=1

P(fj)(ϕ) ≤
n∨

i=1

P(pri)(αi).

Proof. The family (IX)X∈C contains (AX)X∈C: indeed, for X ∈ C and ϕ ∈ AX , take n = 1, m = 1 and f the
identity on X . Moreover, it is easily seen that any universal ideal containing (AX)X∈C contains (IX)X∈C.

We are left to show that (IX)X∈C is a universal ideal.
Let (fj : X → Y )j=1,...,m and α ∈ P(Y ) with

∧m
j=1 P(fi)(α) ∈ IX . There are Z1, . . . , Zn ∈ C, β1 ∈

AZ1 , . . . , βn ∈ AZn
and (gk :

∏n
i=1 Zi → X)k=1,...p such that

p
∧

k=1

P(gk)





m∧

j=1

P(fi)(α)



 ≤
n∨

i=1

P(pri)(βi).

Therefore,
∧

j∈{1,...,m}, k∈{1,...,p}

P(fi ◦ gk)(α) ≤
n∨

i=1

P(pri)(βi).

By (3) and (4) in Definition 5.9,
∨n

i=1 P(pri)(βi) ∈ IΠn
i=1

Zi
. By Definition 5.9(2), universal ideals are

downward closed; thus,
∧

j∈{1,...,m}, k∈{1,...,p} P(fi ◦ gk)(α) ∈ IΠn
i=1

Zi
. By Definition 5.9(1), α ∈ IY .

For each X ∈ C, IX is clearly downward closed.
Let α1 ∈ IX1 and α2 ∈ IX2 . By definition of (IX)X∈C, there are objects {Yi}n

i=1, {Zk}
p
k=1, elements

{βi ∈ AYi
}n

i=1, {γk ∈ AZk
}p

k=1 and morphisms (fj :
∏n

i=1 Yi → X1)j=1,...,m, (gh :
∏p

k=1 Zk → X2)h=1,...,q

such that
m∧

j=1

P(fj)(α1) ≤
n∨

i=1

P(pri)(βi) and

q
∧

h=1

P(gh)(α2) ≤
p
∨

k=1

P(prk)(γk).

Then P(pr1)(α1)∨P(pr2)(α2) ∈ IX1×X2 : indeed, consider the morphisms (fj×gh : (
∏n

i=1 Yi)×(
∏p

k=1 Zk)→
X1 ×X2)j∈{1,...,m}, h∈{1...,q} and compute:

m∧

j=1

q
∧

h=1

P(fj × gh)
(
P(pr1)(α1) ∨P(pr2)(α2)

)
=

m∧

j=1

q
∧

h=1

(
P(pr1)P(fj)(α1) ∨P(pr2)P(gh)(α2)

)

= P(pr1)





m∧

j=1

P(fj)(α1)



 ∨P(pr2)

(
q
∧

h=1

P(gh)(α2)

)

≤ P(pr1)

(
n∨

i=1

P(pri)(βi)

)

∨P(pr2)

(
p
∨

k=1

P(prk)(γk)

)

=

(
n∨

i=1

P(pri)(βi)

)

∨

(
p
∨

k=1

P(prn+k)(γk)

)

.

Finally, ⊥P(t) belongs to It: take n = 0, m = 1 and f1 = idt. �

The following notion of a universal ultrafilter is meant to characterize the classes of the form (F
(M,m)
X )X∈C

for some Boolean model (M,m) of P, where we recall from Notation 5.1, that, for each X ∈ C,

F
(M,m)
X

:= {α ∈ P(X) | for all x ∈M(X), x ∈ mX(α)}.
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This characterization is the main result of this section and will be proved in Theorem 5.28.

Definition 5.12 (Universal ultrafilter). Let P : Cop → BA be a Boolean doctrine. A universal ultrafilter
for P is a family (FX)X∈C, with FX ⊆ P(X) for all X ∈ C, with the following properties.

(1) For all f : X → Y and α ∈ FY , P(f)(α) ∈ FX .
(2) For all X ∈ C, FX is a filter of P(X).
(3) For all α1 ∈ P(X1) and α2 ∈ P(X2), if P(pr1)(α1) ∨ P(pr2)(α2) ∈ FX1×X2 then α1 ∈ FX1 or

α2 ∈ FX2 .
(4) ⊥P(t) /∈ Ft.

Remark 5.13. We translate Definition 5.12 to the classic syntactic setting. Let {x1, x2, . . . } be a set
of variables, L a language and T a quantifier-free theory in L. A universal ultrafilter for T is a family
(Fn)n∈N, with Fn a set of quantifier-free L-formulas with x1, . . . , xn as (possibly dummy) free variables,
with the following properties.

(1) For all n,m ∈ N, every α(x1, . . . , xm) ∈ Fm and every m-tuple (fi(x1, . . . , xn))i=1,...,n of n-ary
terms,

α(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) ∈ Fn.

(2) For all n ∈ N,
(a) for all quantifier-free formulas α(x1, . . . , xn), β(x1, . . . , xn), if α(x1, . . . , xn) ⊢T β(x1, . . . , xn)

and α(x1, . . . , xn) ∈ Fn , then β(x1, . . . , xn) ∈ Fn;
(b) for all α1(x1, . . . , xn), α2(x1, . . . , xn) ∈ Fn we have α1(x1, . . . , xn) ∧ α2(x1, . . . , xn) ∈ Fn;
(c) ⊤(x1, . . . , xn) ∈ Fn (where ⊤(x1, . . . , xn) is the constant “true” with n dummy variables).

(3) For all n1, n2 ∈ N, for all quantifier-free formulas α1(x1, . . . , xn1 ) and α2(x1, . . . , xn2), if

α1(x1, . . . , xn1 ) ∨ α2(xn1+1, . . . , xn1+n2) ∈ Fn1+n2 ,

then α1(x1, . . . , xn1 ) ∈ Fn1 or α2(x1, . . . , xn2 ) ∈ Fn2 .
(4) For all n ∈ N, ⊥(x1, . . . , xn) /∈ Fn.

For every model M of T , it is easy to check that the family (Fn)n∈N defined by

Fn := {α(x1, . . . , xn) quantifier-free |M � ∀x1 . . . ∀xn α(x1, . . . , xn)},

is a universal filter in the sense above.

Remark 5.14. Let P : C
op → BA be a Boolean doctrine, and let (FX)X∈C be a universal ultrafilter for P.

By (2), (3) and (4) in Definition 5.12, Ft is a filter of P(t) whose complement is an ideal, and so it is an
ultrafilter of P(t) (in the classic sense).

Definition 5.15 (Universal ultraideal). Let P : C
op → BA be a Boolean doctrine. A universal ultraideal

for P is a family (IX)X∈C, with IX ⊆ P(X) for each X ∈ C, such that

(1) For all f : X → Y and α ∈ P(Y ), if P(f)(α) ∈ IX then α ∈ IY .
(2) For all X ∈ C, P(X) \ IX is a filter of P(X).
(3) For all α1 ∈ IX1 and α2 ∈ IX2 , we have P(pr1)(α1) ∨P(pr2)(α2) ∈ IX1×X2 .
(4) ⊥P(t) ∈ Ft.

Lemma 5.16. Let P : Cop → BA be a Boolean doctrine, let A := (AX)X∈C be a family with AX ⊆ P(X)
for each X ∈ C, and set B := (P(X) \AX)X∈C. The following conditions are equivalent.

(1) The family A is a universal ultrafilter.
(2) The family A is a universal filter and the family B is a universal ideal.
(3) The family B is a universal ultraideal.

Proof. Immediate. �

Lemma 5.17. Let P : Cop → BA be a Boolean doctrine, let A = (AX)X∈C and B = (BX)X∈C be families
with AX ⊆ P(X) and BX ⊆ P(X) for each X ∈ C. The following conditions are equivalent.

(1) The universal filter for P generated by A intersects the universal ideal for P generated by B.
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(2) There are Y1, . . . , Yn, Z1, . . . , Zm ∈ C, α1 ∈ AY1 , . . . , αn ∈ AYn
, β1 ∈ BZ1 , . . . , βm ∈ BZm

,
(fi :

∏m
j=1 Zj → Yi)i=1,...,n such that (in P(

∏m
j=1 Zj))

n∧

i=1

P(fi)(αi) ≤
m∨

j=1

P(prj)(βj).

Proof. (1) ⇒ (2). Suppose that the filter F generated by A intersects the ideal I generated by B, i.e. there
are X ∈ C and ϕ ∈ FX ∩ IX . By Lemma 5.8, from ϕ ∈ FX we deduce the existence of W1, . . . ,Wn ∈ C,
γ1 ∈ AW1 , . . . , γq ∈ AWq

and (hi : X →Wi)i=1,...,q such that, in P(X),

q
∧

i=1

P(hi)(γi) ≤ ϕ.

By Lemma 5.11, from ϕ ∈ IX we deduce the existence of Z1, . . . , Zm ∈ C, β1 ∈ BZ1 , . . . , βm ∈ BZm
and

(gk :
∏m

j=1 Zj → X)k=1,...,p such that, in P(
∏m

j=1 Zj),

p
∧

k=1

P(gk)(ϕ) ≤
m∨

j=1

P(prj)(βj).

Therefore, in P(
∏m

j=1 Zj),

p
∧

k=1

q
∧

i=1

P(hi ◦ gk)(γi) =

p
∧

k=1

P(gk)

(
q
∧

i=1

P(hi)(γi)

)

≤
p
∧

k=1

P(gk)(ϕ) ≤
m∨

j=1

P(prj)(βj).

We set n as pq, the sequence Y1, . . . , Yn as

W1, . . . ,W1
︸ ︷︷ ︸

p times

, W2, . . . ,W2
︸ ︷︷ ︸

p times

, . . . , Wq, . . . ,Wq
︸ ︷︷ ︸

p times

,

the sequence α1, . . . , αn as

γ1, . . . , γ1
︸ ︷︷ ︸

p times

, γ2, . . . , γ2
︸ ︷︷ ︸

p times

, . . . , γq, . . . , γq
︸ ︷︷ ︸

p times

,

and the sequence f1, . . . , fn as

h1 ◦ g1, . . . , h1 ◦ gp, h2 ◦ g1, . . . , h2 ◦ gp, . . . , hq ◦ g1, . . . , hq ◦ gp.

(2)⇒ (1). This is straightforward from the closure properties of universal filters and universal ideals. �

Lemma 5.18. Let P : Cop → BA be a Boolean doctrine, F = (FX)X∈C a universal filter and I = (IX)X∈C

a universal ideal. Let Y ∈ C and α ∈ P(Y ).

(1) The universal filter generated by F and α intersects I (at some fiber) if and only if there are X ∈ C,
n ∈ N, (fi : X → Y )i=1,...,n and β ∈ FX such that β ∧

∧n
i=1 P(fi)(α) ∈ IX .

(2) The universal ideal generated by I and α intersects F (at some fiber) if and only if there is X ∈ C

with IX ∩ FX 6= ∅ or there are Z ∈ C, γ ∈ IZ such that P(pr1)(α) ∨P(pr2)(γ) ∈ FY ×Z .

Proof. This is straightforward from Lemma 5.17 and the closure properties of universal filters and universal
ideals. �

Lemma 5.19. Let P : C
op → BA be a Boolean doctrine. Let ī, j̄ ∈ N, let Y1, . . . , Yī, Z1, . . . , Zj̄ ∈ C, let

(αi ∈ P(Yi))i=1,...,̄i, and let (βj ∈ P(Zj))j=1,...,j̄. The following conditions are equivalent.

(1) The universal filter generated by α1, . . . , αī intersects the universal ideal generated by β1, . . . , βj̄.

(2) There are n ∈ N, l1, . . . , ln ∈ {1, . . . , ī}, and (gi :
∏j̄

j=1 Zj → Yli
)i=1,...,n such that (in P(

∏j̄
j=1 Zj))

n∧

i=1

P(gi)(αli
) ≤

j̄
∨

j=1

P(prj)(βj).
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Proof. By Lemma 5.17, the universal filter generated by α1, . . . , αī intersects the universal ideal gener-
ated by β1, . . . , βj̄ if and only if there are n,m ∈ N, l1, . . . , ln ∈ {1, . . . , ī}, k1, . . . , km ∈ {1, . . . , j̄}, and

(fi :
∏m

h=1 Zkh
→ Yli

)i=1,...,n, such that (in
∏m

h=1 Zkh
)

n∧

i=1

P(fi)(αli
) ≤

m∨

h=1

P(prh)(βkh
).

Therefore, the implication (2) ⇒ (1) in the statement of the lemma holds (take m = j̄, kh = h and
gi = fi). For the implication (1)⇒ (2), suppose

n∧

i=1

P(fi)(αli
) ≤

m∨

h=1

P(prh)(βkh
). (5.1)

For each i = {1, . . . , n}, set gi :
∏j̄

j=1 Zj → Yli
as the composite

j̄
∏

j=1

Zj

〈prk1
,...,prkm

〉
−−−−−−−−−→

m∏

h=1

Zkh

fi−→ Yli

Therefore, we get, in P(
∏j̄

j=1 Zj),

n∧

i=1

P(gi)(αli
) =

n∧

i=1

P(fi ◦ 〈prk1
, . . . ,prkm

〉)(αli
)

=

n∧

i=1

P(〈prk1
, . . . ,prkm

〉)(P(fi)(αli
))

= P(〈prk1
, . . . ,prkm

〉)

(
n∧

i=1

P(fi)(αli
)

)

≤ P(〈prk1
, . . . ,prkm

〉)

(
m∨

h=1

P(prh)(βkh
)

)

by (5.1)

=

m∨

h=1

P(〈prk1
, . . . ,prkm

〉)(P(prh)(βkh
))

=
m∨

h=1

P(prh ◦〈prk1
, . . . ,prkm

〉)(βkh
)

=

m∨

h=1

P(prkh
)(βkh

)

≤
q
∨

j=1

P(prj)(βj). �

Remark 5.20. For the reader interested in the translation of the condition (2) in Lemma 5.19 to the classic
syntactic setting, we refer to Remark 5.31 below.

5.2. Universal ultrafilter lemma. One version of the classical ultrafilter lemma is: in a Boolean algebra,
every filter disjoint from an ideal I can be extended to a prime filter disjoint from I (see [21, Thm. 6] in
the larger context of lattices, and see also the earlier result by G. Birkhoff [2, Thm. 21.1]). We give an
analogous version in our context.

Theorem 5.21 (Universal ultrafilter lemma). Let P : Cop → BA be a Boolean doctrine, (FX)X∈C be a
universal filter and (IX)X∈C be a universal ideal. Suppose that, for all X ∈ C, FX ∩ IX = ∅. There is a
universal ultrafilter that, componentwise, extends F and is disjoint from I.
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Proof. Let A be the class of pairs ((GX)X∈C, (JX)X∈C) such that G is a universal filter of P that extends F
componentwise, J is a universal ideal of P that extends I componentwise, and G and J are componentwise
disjoint. We order A by componentwise inclusion. Any nonempty chain of A admits an upper bound: the
componentwise union. Therefore, by Zorn’s lemma (for classes), (F, I) admits an upper bound (G, J) that
is maximal in A.

We prove that G and J are componentwise complementary. Since G and J are componentwise disjoint,
it is enough to show P(Y ) = GY ∪ JY for all Y ∈ C. By way of contradiction, suppose this is not the case.
So there are Y ∈ C and α ∈ P(Y ) such that α /∈ GY ∪ JY . Let (G′

X)X be the universal filter generated by
G and α, and (J ′

X)X the universal ideal generated by J and α. By maximality of (G, J) in A, G′ intersects
J and G intersects J ′. By Lemma 5.18(1), there are X ∈ C, (fi : X → Y )i=1,...,n, β ∈ GX such that

β ∧
n∧

i=1

P(fi)(α) ∈ JX .

By Lemma 5.18(2), and since G and J are componentwise disjoint, there are Z ∈ C and γ ∈ JZ such that

P(pr1)(α) ∨P(pr2)(γ) ∈ GY ×Z .

The universal filter G is closed under reindexings: thus for every i = 1, . . . , n,

P(pr1)P(fi)(α) ∨P(pr2)(γ) = P(fi × idZ)(P(pr1)(α) ∨P(pr2)(γ)) ∈ GX×Z ,

where we have reindexed P(pr1)(α) ∨P(pr2)(γ) along fi × idZ : X ×Z → Y ×Z. Moreover, since β ∈ GX ,

P(pr1)(β) ∈ GX×Z .

By distributivity of the lattice P(X × Z), in P(X × Z) we have

P(pr1)(β) ∧
n∧

i=1

(
P(pr1)P(fi)(α) ∨P(pr2)(γ)

)
(5.2)

= P(pr1)(β) ∧
(
P(pr1)

(
n∧

i=1

P(fi)(α)
)
∨P(pr2)(γ)

)

=
(
P(pr1)(β) ∧P(pr1)

(
n∧

i=1

P(fi)(α)
))
∨
(
P(pr1)(β) ∧P(pr2)(γ)

)

= P(pr1)
(
β ∧

n∧

i=1

P(fi)(α)
)
∨
(
P(pr1)(β) ∧P(pr2)(γ)

)
.

≤ P(pr1)
(
β ∧

n∧

i=1

P(fi)(α)
)
∨P(pr2)(γ). (5.3)

Since GX×Z is a filter, the conjunction in (5.2) belongs to GX×Z . Moreover, the element in (5.3) belongs
to JX×Z . Since JX×Z is downward closed, the element in (5.2) belongs to JX×Z , as well. Therefore,
GX×Z ∩ JX×Z 6= ∅, a contradiction. �

Remark 5.22. In our proof we did not use the classical ultrafilter lemma for Boolean algebras. In turn,
the latter follows from Theorem 5.21: take C as the trivial category with one object and one morphism.

5.3. Richness of a Boolean doctrine with respect to a universal ultrafilter. We want to build
models out of universal ultrafilters. This (as everything in life) is easy if we have richness. Recall that a
maximally consistent deductively closed first-order theory T is rich if for every formula ∃xβ(x) ∈ T there is
a 0-ary term c (a “witness”) such that β(c) ∈ T . Given such a theory T , we can easily find a model of T—
namely, the set of all 0-ary terms, with the obvious interpretation of the function and predicate symbols. We
take inspiration from this definition to define richness for a doctrine with respect to a universal ultrafilter.
Recall that the formulas in the universal ultrafilter are meant to be those whose universal closure is valid
(in a certain model). Richness says that, for every formula α(x) whose universal closure is not valid (i.e.
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which does not belong to the universal ultrafilter), there is a constant c witnessing this failure (i.e. such
that α(c) does not belong to the universal ultrafilter).

Definition 5.23 (Richness). Let P : Cop → BA be a Boolean doctrine and let (FX)X∈C be a universal
ultrafilter for P. We say that P is rich with respect to (FX)X∈C if, for all X ∈ C and α ∈ P(X) \ FX , there
is c : t→ X such that P(c)(α) /∈ Ft.

Remark 5.24. We translate Definition 5.23 to the classic syntactic setting. Let {x1, x2, . . . } be a set of
variables, L a language, T a quantifier-free theory in L, and (Fn)n∈N a universal ultrafilter for T in the sense
of Remark 5.13. The theory T is rich with respect to (Fn)n∈N if, for every n ∈ N and every quantifier-free
formula α(x1, . . . , xn) not belonging to Fn, there are 0-ary terms (i.e. term-definable constants) c1, . . . , cn

such that α(c1, . . . , cn) does not belong to F0.

The following shows how to obtain a model out of a universal ultrafilter in the rich case.

Proposition 5.25. Let P : Cop → BA be a Boolean doctrine and let (FX)X∈C be a universal ultrafilter for
P such that P is rich with respect to (FX)X∈C. There is a Boolean model (M,m) of P such that, for all
X ∈ C,

FX = {α ∈ P(X) | for all x ∈M(X), x ∈ mX(α)}.

Proof. By Remark 5.14, Ft is an ultrafilter of the Boolean algebra P(t). Thus, as in the proof of the
implication (2) ⇒ (1) of Theorem 4.3, we obtain a Boolean model (M,m) : P → P by setting M as
Hom(t,−) : C→ Set, and m : P→P ◦Mop as the natural transformation whose component at X ∈ C is

mX : P(X) −→P(Hom(t, X))

α 7−→ {c : t→ X | P(c)(α) ∈ Ft}.

To conclude, let X ∈ C, and let us prove FX = {α ∈ P(X) | for all x ∈ M(X), x ∈ mX(α)}. We first
prove the left-to-right inclusion. Let α ∈ FX , and let x ∈M(X) = Hom(t, X). We shall prove x ∈ mX(α).
We have mX(α) = {c : t → X | P(c)(α) ∈ Ft}. So, it is enough to prove P(x)(α) ∈ Ft. This follows
from α ∈ FX since F is closed under reindexings by Definition 5.12(1). Conversely, suppose α /∈ FX . By
definition of richness, there is c : t→ X such that P(c)(α) /∈ Ft, so that c /∈ mX(α). �

We want to obtain a model out of a universal ultrafilter also in the non-rich case. To do so, we will produce
a rich theory out of the non-rich one. For this, the idea is to extend the language C, adding new constants
meant to witness the failure of universal closures of the formulas not belonging to the universal ultrafilter F .
Once we have added the constants, we interpret the formulas in F in the extended language C′, producing
a new class of formulas G. However, G might fail to be a universal ultrafilter in the extended language
because of the new formulas involving the new constants. To remedy this, we will use the universal ultrafilter
lemma (relying on the axiom of choice) to extend G to a universal ultrafilter F ′ in the extended language
(Lemma 5.26). However, we might lack some witnesses for the new formulas (involving the new constants)
not belonging to F ′. This calls for an iterative process, where at each step we add new constants and use
the universal ultrafilter lemma: the rich theory will be obtained as a colimit after ω steps (Theorem 5.27).

In the following lemma, we address a single iteration of this process. This, together with the universal
ultrafilter lemma, is the main technical lemma of the paper.

Lemma 5.26 (Extension to richness: first step). Let P : Cop → BA be a Boolean doctrine, with C small,
and let (FX)X∈C be a universal ultrafilter for P. There are a small category C′ with the same objects of C,
a Boolean doctrine P′ : C′op → BA, a Boolean doctrine morphism (R, r) : P → P′ such that R : C → C′ is
the identity on objects, and a universal ultrafilter (F ′

X)X∈C′ for P′ with the following properties.

(1) For every X ∈ C, FX = r−1
X [F ′

X ].
(2) For every X ∈ C and for every α ∈ P(X) \ FX , there is a morphism c : tC′ → X in C′ such that

P′(c)(rX (α)) /∈ F ′
t

C′
.

Before starting the proof, we give an informal outline of it. For every context X ∈ C and every formula
σ ∈ IX := P(X) \ FX , we will add to the language a constant cσ in the context X . We will denote by G
the universal filter generated by the formulas in F seen in this new language. Moreover, we will denote
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by J the universal ideal generated by the formulas belonging to IX (for X ranging among contexts), seen
in this new language, together with the formulas σ(cσ/X) obtained by substituting cσ to X in σ, for each
context X ∈ C and formula σ ∈ IX . We will prove that G and J are disjoint, and then we will extend G to
a universal ultrafilter F ′ disjoint from J .

Proof of Lemma 5.26. Let A be the set of finite subsets of {(X,α) | X ∈ C, α ∈ P(X) \ FX}, partially
ordered by inclusion. The poset A is directed.

Let X̄ =
{

(X1, α1), . . . , (Xn, αn)
}

and Ȳ =
{

(Y1, β1), . . . , (Ym, βm)
}

. Whenever X̄ ⊆ Ȳ in A, there exists
a unique function τ : {1, . . . , n} → {1, . . . ,m} induced by the inclusion such that (Xi, αi) = (Yτ(i), βτ(i)) for
all i = 1, . . . , n.

Define the following diagram on A:

A DoctBA

∅ P : Cop → BA

X̄ =
{

(X1, α1), . . . , (Xn, αn)
}

PΠn
a=1Xa

: C
op
Πn

a=1Xa
→ BA

Ȳ =
{

(Y1, β1), . . . , (Ym, βm)
}

PΠm
b=1

Yb
: C

op
Πm

b=1
Yb
→ BA

D

⊆
⊆

(LX̄Ȳ ,lX̄Ȳ )

(LX̄ ,lX̄)

where D(X̄) is the Boolean doctrine PΠn
a=1Xa

: C
op
Πn

a=1Xa
→ BA obtained from P by adding a constant of

type
∏n

a=1 Xa, and D(∅ ⊆ X̄) is the canonical Boolean doctrine morphism (LX̄ , lX̄) : P → PΠaXa
, and

D(X̄ ⊆ Ȳ ) is the unique Boolean doctrine morphism (LX̄Ȳ , lX̄Ȳ ) : PΠaXa
→ PΠbYb

such that

(LX̄Ȳ , lX̄Ȳ ) ◦ (LX̄ , lX̄) = (LȲ , lȲ ) and LX̄Ȳ (idΠaXa
: t ΠaXa) = 〈prτ(1), . . . ,prτ(n)〉 : t ΠaXa.

defined by the universal property of PΠaXa
. Here 〈prτ(1), . . . ,prτ(n)〉 is the projection on the corresponding

components from the object
∏m

b=1 Yb to the object
∏n

a=1 Xa, since Xi appears as the τ(i)-th component of

Ȳ . We refer the reader to Remark 4.5 to have more details about these constructions.
The diagram D : A → DoctBA is a directed.
Take the colimit of D in DoctBA, P′ : C′op → BA, computed as in [10, Sections 2.2 and 3.1]. Objects in the

base category C
′ are the same as C, since for every X̄, Ȳ ∈ A the functor LX̄Ȳ acts like the identity on objects.

A morphism [f, X̄ ] in C′ from A to B—written as [f, X̄ ] : A 99K B—is the equivalence class of a morphism
f :
∏n

a=1 Xa×A→ B for some fixed X̄ = {(X1, α1), . . . , (Xn, αn)} ∈ A. We have [(f, X̄)] = [(f ′, Ȳ )] in C
′,

for some f ′ :
∏m

b=1 Yb × A → B with Ȳ = {(Y1, β1), . . . , (Ym, βm)} ∈ A, if and only if there is Z̄ ∈ A such

that X̄ ⊆ Z̄ ⊇ Ȳ making the following diagram commute.

∏n
a=1 Xa ×A

∏s
c=1 Zc ×A B

∏m
b=1 Yb ×A

〈prτ(1),...,prτ(n)〉×idA
f

〈prτ′(1),...,prτ′(m)〉×idA
f ′

Here τ and τ ′ are induced by X̄ ⊆ Z̄ and Ȳ ⊆ Z̄ in A respectively.
For any object A, the fiber P′(A) is the colimit of D in BA restricted to the fibers: P′(A) is the set

of equivalence classes of the form [(ϕ, X̄)] for some ϕ ∈ P(
∏n

a=1 Xa × A), where [(ϕ, X̄)] = [(ϕ′, Ȳ )], for

ϕ′ ∈ P (
∏m

b=1 Yb×A) if and only if there is Z̄ ∈ A such that X̄ ⊆ Z̄ ⊆ Ȳ with induced function τ and τ ′ such
that P(〈prτ(1), . . . ,prτ(n)〉 × idA)(ϕ) = P(〈prτ ′(1), . . . ,prτ ′(m)〉 × idA)(ϕ′) in P(

∏s
c=1 Zc × A). Reindexing
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is defined in a common list of A: if [(f, X̄)] : A 99K B and [(ψ, Ȳ )] ∈ P′(B), take X̄ ⊆ Z̄ ⊇ Ȳ ; then

P′([(f, X̄)])[(ψ, Ȳ )] = [P(〈prτ ′(1), . . . ,prτ ′(m), f ◦ (〈prτ(1), . . . ,prτ(n)〉 × idA)〉)(ψ), Z̄ ].

∏
Zc × A

∏
Xa ×A B

∏
Zc × B

∏
Yb ×B

〈prτ(1),...,prτ(n)〉×idA f

〈prτ′(1),...,prτ′(m)〉×idB

〈pr1,...,prs,f◦(〈prτ(1),...,prτ(n)〉×idA)〉

We call (R, r) : P → P′ the colimit map from D(∅) = P to the colimit P′. Recall once again that the
objects of C and C′ are the same.

For each X ∈ C, set IX := P(X) \ FX . Let G be the universal filter for P′ generated by (rX [FX ])X∈C.
For X ∈ C and σ ∈ IX , we let cσ denote the morphism [idX , {(X,σ)}] : t 99K X in C′. Let J be the universal
ideal generated by (rX [IX ])X∈C and by the following subset of P′(t):

{P′(cα)(rX(α)) | X ∈ C, α ∈ IX}.

To show that G and J are componentwise disjoint, let us suppose that G and J intersect, and let us prove
a contradiction.

By Lemma 5.17, there are Y1, . . . , Yn, Z1, . . . , Zm, S1, . . . , Sp ∈ C, (αi ∈ FYi
)i=1,...,n, (γj ∈ IZj

)j=1,...,m,

(σk ∈ ISk
)k=1,...,p, ([fi, Ū

i] :
∏m

j=1 Zj 99K Yi)i=1,...,n such that in P′(
∏m

j=1 Zj)

n∧

i=1

P′([fi, Ū
i])(rYi

(αi)) ≤
m∨

j=1

P′(prj)(rZj
(γj)) ∨

p
∨

k=1

P′(!Πj Zj
)P′(cσk

)(rSk
(σk)). (5.4)

We prove that it is enough to take n = 1. Indeed, let W̄ = {(W1, ω1), . . . , (Ww , ωw)} be the union
of all entries in Ū i for i = 1, . . . , n, where each Ū i is {(U i

1, µ
i
1), . . . , (U i

ui
, µi

ui
)}. In particular, for every

i = 1, . . . , n there is a unique function τ i : {1, . . . , ui} → {1, . . . , w} such that (U i
h, µ

i
h) = (Wτ i(h), ωτ i(h)) for

h = 1, . . . , ui. We can now compute the conjunction in a common fiber.

(
w∏

a=1

Wa

)

×





m∏

j=1

Zj




〈pr

τi(1),...,pr
τi(ui)〉×idΠj Zj

−−−−−−−−−−−−−−−−−−→

(
ui∏

h=1

U i
h

)

×





m∏

j=1

Zj




fi−→ Yi

Set α :=
∧n

i=1 P(〈prτ i(1), . . . ,prτ i(ui)〉 × idΠjZj
)P(fi)(αi) in P((

∏z
a=1 Wa)× (

∏m
j=1 Zj)). We have

n∧

i=1

P′([fi, Ū
i])(rYi

(αi)) =
n∧

i=1

P′([fi, Ū
i])([αi,∅]))

=

n∧

i=1

[P(fi)(αi), Ū
i]

=

n∧

i=1

[P(〈prτ i(1), . . . ,prτ i(ui)〉 × idΠjZj
)P(fi)(αi), W̄ ]

=

[
n∧

i=1

P(〈prτ i(1), . . . ,prτ i(ui)〉 × idΠjZj
)P(fi)(αi), W̄

]

= [α, W̄ ]

= P′([idΠaWa×ΠjZj
, W̄ ])([α,∅])

= P′([idΠaWa×ΠjZj
, W̄ ])(rΠaWa×ΠjZj

(α)).

We can replace all the Yi’s, αi’s and [fi, Ū
i]’s with the single object Y :=

∏

a Wa×
∏

j Zj , the single element

α (which belongs to FY since F is closed under reindexing and conjunctions), and the single morphism
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[idΠaWa×ΠjZj
, W̄ ] :

∏

j Zj 99K Y . This shows that we can take n = 1. So we replace (5.4) with

P′([f, Ū ])(rY (α)) ≤
m∨

j=1

P′(prj)(rZj
(γj)) ∨

p
∨

k=1

P′(!Πj Zj
)P′(cσk

)(rSk
(σk)). (5.5)

We next show that it is enough to take m = 1, as well. Indeed, using the fact that R preserves products
and using naturality of r:

m∨

j=1

P′(prj)(rZj
(γj)) =

m∨

j=1

P′(R(prj))(rZj
(γj)) =

m∨

j=1

rΠjZj
P(prj)(γj) = rΠj Zj





m∨

j=1

P(prj)(γj)



.

We can replace all the Zj ’s and γj ’s with the single object Z :=
∏

j Zj and the single element γ :=
∨m

j=1 P(prj)(γj), which belongs to IZ by (3) and (4) in Definition 5.9. This shows that it is enough to take

m = 1. We rewrite (5.5) as

P′([f, Ū ])(rY (α)) ≤ rZ(γ) ∨
p
∨

k=1

P′(!Z)P′(cσk
)(rSk

(σk)). (5.6)

Without loss of generality, we can suppose that the pairs (S1, σk), . . . , (Sp, σp) are pairwise distinct.

We define S̄ := {(S1, σ1), . . . , (Sp, σp)}. We compute the disjunction
∨p

k=1 P′(!Z)P′(cσk
)(rSk

(σk)) on the
right-hand side of (5.6):

p
∨

k=1

P′(!Z)P′(cσk
)(rSk

(σk)) =

p
∨

k=1

P′(!Z)P′([idSk
, {(Sk, σk)}])([σk,∅])

=

p
∨

k=1

P′(!Z)([σk, {(Sk, σk)}])

= P′(!Z)

(
p
∨

k=1

[σk, {(Sk, σk)}]

)

= P′(!Z)

([
p
∨

k=1

P(prk)(σk), S̄

])

.

We rewrite (5.6) as

P′([f, Ū ])(rY (α)) ≤ rZ(γ) ∨P′(!Z)

([
p
∨

k=1

P(prk)(σk), S̄

])

. (5.7)

We compute the left-hand and right-hand side of (5.7) in any upper bound Ē = {(E1, ε1), . . . , (Ee, εe)}
in A of Ū and S̄. Given such an Ē, there is a function λ : {1, . . . , u} → {1, . . . , e} induced by the inclusion,
which is the unique one such that (Uh, µh) = (Eλ(h), ελ(h)) for h = 1, . . . , u. Similarly, there is a unique
function θ : {1, . . . , p} → {1, . . . , e} such that (Sk, σk) = (Eθ(k), εθ(k)) for k = 1, . . . , p.

p
∏

k=1

Sk

〈prθ(1),...,prθ(p)〉
←−−−−−−−−−−−

(
e∏

l=1

El

)

× Z
〈prλ(1),...,prλ(u)〉×idZ

−−−−−−−−−−−−−−→

(
u∏

h=1

Uh

)

× Z
f
−→ Y

We compute the left-hand side of (5.7):

P′([f, Ū ])(rY (α)) = P′([f, Ū ])([α,∅]) =
[

P(〈prλ(1), . . . ,prλ(u)〉 × idZ)P(f)(α), Ē
]

.
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We compute the right-hand side of (5.7):

rZ(γ) ∨P′(!Z)

([
p
∨

k=1

P(prk)(σk), S̄

])

= [γ,∅] ∨P′(!Z)

([
p
∨

k=1

P(prk)(σk), S̄

])

= [P(pre+1)(γ), Ē] ∨

[

P(〈prθ(1), . . . ,prθ(p)〉)

(
p
∨

k=1

P(prk)(σk)

)

, Ē

]

=

[

P(pre+1)(γ) ∨
p
∨

k=1

P(prθ(k))(σk), Ē

]

.

Therefore, we rewrite (5.7) as

[

P(〈prλ(1), . . . ,prλ(u)〉 × idZ)P(f)(α), Ē
]

≤

[

P(pre+1)(γ) ∨
p
∨

k=1

P(prθ(k))(σk), Ē

]

.

It follows that, for a sufficiently large upper bound Ē of Ū and S̄, in the fiber P((
∏e

l=1 El)×Z) we have

P(〈prλ(1), . . . ,prλ(u)〉 × idZ)P(f)(α) ≤ P(pre+1)(γ) ∨
p
∨

k=1

P(prθ(k))(σk). (5.8)

Since α ∈ FY and since F is closed under reindexings, it follows that the left-hand side of (5.8) belongs
to F(ΠlEl)×Z . Then, since F is upward closed, also the right-hand side of (5.8) belongs to F(ΠlEl)×Z . This
disjunction equals

P(pre+1)(γ) ∨

(
p
∨

k=1

P(prθ(k))(σk)

)

∨




∨

i∈{1,...,e}\Im(θ)

P(pri)(⊥P(Ei))



.

This is a disjunction of reindexings of elements of I along projections. Indeed, γ ∈ IZ , σk ∈ ISk
, and for

all i ∈ {1, . . . , e} \ Im(θ) we have ⊥P(Ei) ∈ IEi
because ⊥P(Ei) ≤ εi ∈ IEi

. Therefore, by Definition 5.9(3),
the element in the right-hand side of (5.8) belongs to IΠlEl×Z . Since it also belongs to FΠlEl×Z , we have
reached a contradiction with the assumption that F and I are componentwise disjoint. This proves our
claim that G and J are componentwise disjoint.

Since G and J are disjoint, by Theorem 5.21 there is a universal ultrafilter F ′ for P′ that extends G and
is disjoint from J . We check that F ′ satisfies the desired properties. Since F ′ extends G and G is generated
by (rX [FX ])X∈C, for every X ∈ C we have FX ⊆ r−1

X [F ′
X ]. For the converse inclusion, let α ∈ P(X) and

suppose α /∈ FX , i.e. α ∈ IX . Then rX(α) ∈ JX , which implies rX(α) /∈ F ′
X because JX and F ′

X are disjoint.

This proves that for all X ∈ C we have FX = r−1
X [F ′

X ], which is condition (1) in the statement. We are left
to check the condition (2) of the statement, i.e. that for all X ∈ C and α ∈ P(X) \ FX there is a morphism
c : t 99K X in C′ such that P′(c)(rX(α)) /∈ F ′

t. Since α ∈ IX , we can take c := cα = [idX , {(X,α)}]. Recall
that P′(cα)(rX(α)) ∈ P′(t) is a generator of J , which is disjoint from F ′; hence P′(cα)(rX(α)) /∈ F ′

t
, as

desired. �

In the following theorem, we show how to produce a rich theory from an arbitrary one. We accomplish
this using Lemma 5.26 ω times. The desired rich theory is obtained as the colimit. Note that this rich
theory is not canonically determined by the original one, because in each step we use the axiom of choice
(in the form of the universal ultrafilter lemma).

Theorem 5.27 (Extension to richness). Let P : Cop → BA be a Boolean doctrine, with C small, and let
(FX)X∈C be a universal ultrafilter for P. There are a category C′ with the same objects of C, a Boolean
doctrine P′ : C′op → BA, a Boolean doctrine morphism (R, r) : P→ P′ such that R : C → C′ is the identity
on objects, and a universal ultrafilter (F ′

X)X∈C′ for P′ such that P′ is rich with respect to (F ′
X)X∈C′ , and

moreover, for all X ∈ C, FX = r−1
X [F ′

X ].

Proof. We define a sequence (Pn : (Cn)op → BA) of Boolean doctrines with Cn small and having the same
objects of C, together with a sequence ((Rn, rn) : Pn → Pn+1)n∈N of Boolean doctrine morphisms where
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each Rn : C → C′ is the identity on objects, and a sequence (Fn)n∈N with Fn a universal ultrafilter for Pn

with the following properties.

(1) C0 = C, P0 = P and F 0 = F .

(2) For all n ∈ N and X ∈ Cn, Fn
X = (rn

X)
−1

[Fn+1
X ].

(3) For all n ∈ N, X ∈ Cn and α ∈ Pn(X) \ Fn
X , there is a morphism c : tCn+1 → X in Cn+1 such that

Pn+1(c)(rn
X (α)) /∈ Fn+1

t
Cn+1

.

We define these sequences inductively (with the aid of the axiom of dependent choice). For the base
case, set C0 := C, P0 := P and F 0 := F . For the inductive case, for any n ∈ N, given Cn, Pn and Fn,
apply Lemma 5.26 to find Cn+1, Pn+1, (Rn, rn) and Fn+1. This gives us the sequences with the desired
properties. The sequence allows us to define a directed diagram of Boolean doctrines indexed by the poset
(N,≤) of natural numbers:

P0 (R0,r0)
−−−−→ P1 (R1,r1)

−−−−→ P2 → · · · → Pn (Rn,rn)
−−−−−→ Pn+1 → . . .

For every n ≤ m ∈ N, we call (Rn;m, rn;m) the composite

(Rm−1, rm−1) ◦ · · · ◦ (Rn+1, rn+1) ◦ (Rn, rn) : Pn −→ Pm.

Let P′ : C′op → BA be the colimit of this diagram, and call (Qn, qn) : Pn → P′ the colimit morphism
for every n ∈ N. In particular we define the desired Boolean docrtrine morphism (R, r) : P→ P′ from the
statement as (R, r) := (Q0, q0).

We collect here some properties of this colimit. We can choose the colimit in a way such that C′ has
the same objects of C, and for each n the functor Qn : C → C′ is the identity on objects. Since the colimit
category C′ is computed in Cat, by [10, Section 2.2], for every morphism g : X → Y in C′ there are n ∈ N
and f : X → Y in Cn such that g = Qn(f).

P0(X) P1(X) P2(X) . . . Pn(X) . . .

P′(X)

r0
X r2

X
r

n−1
X rn

X

q0
X

r1
X

q1
X q2

X
qn

X

r
0;2
X

Moreover, for every X ∈ C and every β ∈ P′(X), there are n ∈ N and α ∈ Pn(X) such that β = qn
Y (α).

Morever, for every α ∈ Pn(X) and β ∈ Pm(X), we have

qn
X(α) ≤ qm

X(β) if and only if there is k ≥ n,m such that r
n;k
X (α) ≤ r

m;k
X (β).

For every X ∈ C, let F ′
X :=

⋃

n∈N
qn

X [Fn
X ]. Similarly, for every X ∈ C, let I ′

X :=
⋃

n∈N
qn

X [In
X ], where for

every X ∈ C and every n ∈ N, In
X := Pn(X) \ Fn

X .
We are going to prove that F ′ is a universal filter and I ′ is a universal ideal. Roughly speaking, these

facts hold because universal filters and universal ideals are defined by closure conditions involving finitely
many elements, and thus they are preserved in a directed colimit.

We first prove that F ′ is a universal filter. Let f : X → Y be a morphism in C′ and α ∈ F ′
Y . We

prove that P′(f)(α) ∈ F ′
X . There are n,m ∈ N, g : X → Y in Cn and β ∈ Fm

Y such that Qn(g) = f and
qm

Y (β) = α. We take k ≥ n,m and compute

P′(f)(α) = P′(Qn(g))(qm
Y (β)) = P′(Qk(Rn;k(g)))(qk

Y (rm;k
Y (β))) = qk

X(Pk(Rn;k(g))(rm;k
Y (β))).

By (2), rm;k
Y (β) ∈ F k

Y . Then, since F k is closed under reindexing, Pk(Rn;k(g))(rm;k
Y (β)) ∈ F k

X ; hence, by

definition of F ′
X , P′(f)(α) = qk

X(Pk(Rn;k(g))(rm;k
Y (β))) ∈ F ′

X .
We show that, for every X ∈ C, F ′

X is a filter. Since ⊤P(X) ∈ F
0
X , we have ⊤P′(X) = q0

X(⊤P(X)) ∈ F
′
X .

Let n,m ∈ N, α ∈ Fn
X and β ∈ Fm

X . For k ≥ n,m we have

qn
X(α) ∧ qm

X(β) = qk
X(rn;k

X (α)) ∧ qk
X(rm;k

X (β)) = qk
X(rn;k

X (α) ∧ r
m;k
X (β)). (5.9)
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By (2) we deduce that both r
n;k
X (α) and r

m;k
X (β) belong to F k

X . Since F k
X is a filter, the conjunction in (5.9)

belongs to F k
X . Therefore, F ′

X is closed under binary meets. We next show that F ′
X is upward closed. Let

n,m ∈ N, α ∈ Fn
X and β ∈ Pm(X) be such that qn

X(α) ≤ qm
X(β). There is k ≥ n,m such that r

n;k
X (α) ≤

r
m;k
X (β). By (2) we have r

n;k
X (α) ∈ F k

X , and hence r
m;k
X (β) ∈ F k

X . Thus, qm
X(β) = qk

X(rm;k
X (β)) ∈ F ′

X , as
desired. This shows that F ′ is a universal filter.

We now show that I ′ is a universal ideal. Let n,m ∈ N, X,Y ∈ C, (fj : X → Y )j=1,...,m morphisms in C
′,

α ∈ Pn(Y ) such that
∧m

j=1 P′(fj)(qn(α)) ∈ I ′
X . We prove that qn

Y (α) ∈ I ′
Y . For every j = 1, . . . ,m, there

are nj ∈ N and a morphism gj : X → Y in Cnj such that fj = Qnj (gj). So for every k ≥ n, n1, . . . , nm we
compute:

m∧

j=1

P′(fj)(qn(α)) =

m∧

j=1

P′(Qnj (gj))(qn
Y (α))

=

m∧

j=1

P′(Qk(Rnj ;k(gj)))(qk
Y (rn;k

Y (α)))

=

m∧

j=1

qk
X(Pk(Rnj ;k(gj))(rn;k

Y (α)))

= qk
X





m∧

j=1

Pk(Rnj ;k(gj))(rn;k
Y (α))



.

Since qk
X

(
∧m

j=1 Pk(Rnj ;k(gj))(rn;k
Y (α))

)

∈ Ik
X , there are t ∈ N and β ∈ It

X such that

qk
X





m∧

j=1

Pk(Rnj ;k(gj))(rn;k
Y (α))



 = qt
X(β)

in P′(X). Hence there is s ≥ k, t such that

r
k;s
X





m∧

j=1

Pk(Rnj ;k(gj))(rn;k
Y (α))



 = r
t;s
X (β).

Moreover,

r
k;s
X





m∧

j=1

Pk(Rnj ;k(gj))(rn;k
Y (α))



 =

m∧

j=1

r
k;s
X (Pk(Rnj ;k(gj))(rn;k

Y (α)))

=

m∧

j=1

Ps(Rk;s(Rnj ;k(gj)))(rk;s
Y (rn;k

Y (α)))

=

m∧

j=1

Ps(Rnj ;s(gj))(rn;s
Y (α)).

Observe that r
t;s
X (β) ∈ Is

X . Indeed, if rt;s
X (β) /∈ Is

X , we would have r
t;s
X (β) ∈ F s

X , and hence by (2) β ∈ F t
X , a

contradiction.
It follows that

∧m
j=1 Ps(Rnj ;s(gj))(rn;s

Y (α)) ∈ Is
X . Since Is is a universal ideal for Ps, we get that

r
n;s
Y (α) ∈ Is

Y . Hence qn
Y (α) = qs

Y (rn;s
Y (α)) ∈ I ′

Y , as desired.
The proof that I ′ is componentwise downward closed is similar to the proof that F ′ is componentwise

upward closed seen above. To check the condition (3) in Definition 5.9, we take α1 ∈ In
X1

and α2 ∈ Im
X2

,
and we prove that P′(pr1)(qn

X1
(α1)) ∨ P′(pr2)(qm

X2
(α2)) ∈ I ′

X1×X2
. Let k ≥ n,m. Using again condition

(2) we have r
n;k
X1

(α1) ∈ Ik
X1

and r
m;k
X2

(α2) ∈ Ik
X2

. Since Ik is a universal ideal for Pk, it follows that
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Pk(pr1)(rn;k
X1

(α1)) ∨Pk(pr2)(rm;k
X2

(α2)) ∈ Ik
X1×X2

, and hence

qk
X1×X2

(Pk(pr1)(rn;k
X1

(α1)) ∨Pk(pr2)(rm;k
X2

(α2))) ∈ I ′
X1×X2

.

Moreover,

qk
X1×X2

(Pk(pr1)(rn;k
X1

(α1)) ∨Pk(pr2)(rm;k
X2

(α2)))

= qk
X1×X2

(Pk(pr1)(rn;k
X1

(α1))) ∨ qk
X1×X2

(Pk(pr2)(rm;k
X2

(α2)))

= P′(pr1)(qk
X1

(rn;k
X1

(α1))) ∨P′(pr2)(qk
X2

(rm;k
X2

(α2)))

= P′(pr1)(qn
X1

(α1)) ∨P′(pr2)(qm
X2

(α2)).

To conclude, the proof that condition (4) in Definition 5.9 is met is similar to the proof that F ′ contains
the top elements of each fiber. This shows that I ′ is indeed a universal ideal for P′.

We next show that, for every X ∈ C, F ′
X and I ′

X are complementary. Fix X ∈ C. To prove F ′
X ∪ I

′
X =

P′(X), let α ∈ P′(X). There are n ∈ N and β ∈ Pn(X) such that α = qn
X(β). Since Fn

X and In
X are

complementary in Pn(X), β ∈ Fn
X or β ∈ In

X , and hence α ∈ F ′
X or α ∈ I ′

X . This proves F ′
X ∪ I

′
X = P′(X).

We now show that F ′
X∩I

′
X = ∅. We take α ∈ F ′

X∩I
′
X and we seek a contradiction. Since α ∈ F ′

X , there are
n ∈ N and β ∈ Fn

X such that α = qn
X(β). Since α ∈ I ′

X , there are m ∈ N and γ ∈ Im
X such that α = qm

X(γ).

Since qn
X(β) = qm

X(γ), there is k ≥ n,m such that r
n;k
X (β) = r

m;k
X (γ), contradicting F k

X ∩ I
k
X = ∅.

This proves that F ′ is a universal ultrafilter (see Lemma 5.16).
We prove that P′ is rich with respect to F ′. Let X ∈ C and α ∈ P′(X) \ F ′

X . We seek a morphism
c : t → X in C′ such that P′(c)(α) /∈ F ′

t
. Since α /∈ F ′

X , we have α ∈ I ′
X . So there are n ∈ N and β ∈ In

X

such that α = qn
X(β). Since β ∈ Pn(X) \ Fn

X , we use property (3) to get a morphism d : t→ X in Cn such
that Pn(d)(β) /∈ Fn

t
, so Pn(d)(β) ∈ In

t
. Setting c := Qn(d), we have

P′(c)(α) = P′(Qn(d))(qn
X(β)) = qn

t
(Pn(d)(β)) ∈ I ′

t
.

Therefore, P′(c)(α) /∈ F ′
t
, as desired.

Finally, we prove FX = r−1
X [F ′

X ] for each X ∈ C. Let α ∈ P(X). If α ∈ FX , then rX(α) = q0
X(α) ∈ F ′

X

by definition. Conversely, if α /∈ FX , then α ∈ IX , so rX(α) = q0
X(α) ∈ I ′

X , and thus rX(α) /∈ F ′
X . �

5.4. Characterization of classes of universally valid formulas. We have all the ingredients to prove
the main theorem of this section, which shows that universal ultrafilters are precisely the classes of universally
valid formulas.

Theorem 5.28. Let P : Cop → BA be a Boolean doctrine, with C small. Let F = (FX)X∈C be a family with
FX ⊆ P(X) for each X ∈ C. The following conditions are equivalent.

(1) There is a Boolean model (M,m) of P such that, for every X ∈ C,

FX = {α ∈ P(X) | for all x ∈M(X), x ∈ mX(α)}.

(2) F is a universal ultrafilter for P.

Proof. (1) ⇒ (2). We check that the conditions in Definition 5.12 are satisfied.
First, we prove that F is closed under reindexings. Take a morphism f : X → Y and α ∈ FY , i.e.

mY (α) = M(Y ). Then P(f)(α) ∈ FX if and only if mX(P(f)(α)) = M(X). By naturality of m,

mX(P(f)(α)) = M(f)−1[mY (α)] = M(f)−1[M(Y )] = M(X).

Thus, F is closed under reindexing.
Second, we prove that F is fiberwise a filter. For every X ∈ C we have FX = m−1

X [{M(X)}] =

m−1
X [{⊤P(M(X))}], and this is a filter since it is the preimage under the Boolean homomorphism mX of

the filter {M(X)} of P(M(X)).
Next, let α1 ∈ P(X1) \ FX1 and α2 ∈ P(X2) \ FX2 . Then, there are x1 ∈ M(X1) \ mX1 (α1) and

x2 ∈M(X2) \mX2 (α2). We show that P(pr1)(α1) ∨P(pr2)(α2) /∈ FX1×X2 . We have

mX1×X2 (P(pr1)(α1) ∨P(pr2)(α2)) = mX1×X2 (P(pr1)(α1)) ∪mX1×X2 (P(pr2)(α2))

= pr−1
1 [mX1 (α1)] ∪ pr−1

2 [mX2 (α2)].
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Observe that (x1, x2) ∈ M(X1) × M(X2) = M(X1 × X2) does not belong to mX1×X2(P(pr1)(α1) ∨
P(pr2)(α2)).

Finally, we have ⊥P(t) /∈ Ft since mt(⊥P(t)) = ∅.

(2) ⇒ (1). By Theorem 5.27, there are a category C′, a Boolean doctrine P′ : C′op → BA, a Boolean
doctrine morphism (R, r) : P → P′ and a universal ultrafilter (F ′

Y )Y ∈C′ for P′ such that P′ is rich with

respect to (F ′
Y )Y ∈C′ , and moreover, for all X ∈ C, FX = r−1

X [F ′
R(X)]. By Proposition 5.25, there is a

Boolean model (M ′,m′) of P′ such that, for all X ∈ C,

F ′
Y = {α ∈ P(Y ) | for all x ∈M ′(Y ), x ∈ m′

Y (α)}.

Let (M,m) be the composite (M ′,m′) ◦ (R, r) of the morphisms (M ′,m′) and (R, r). Clearly, (M,m) is a
Boolean model of P. Moreover, for every X ∈ C and every α ∈ P(X), we have

α ∈ FX ⇐⇒ rX(α) ∈ F ′
R(X)

⇐⇒ for all x ∈M ′(R(X)), x ∈ m′
R(X)(rX(α))

⇐⇒ for all x ∈M(X), x ∈ mX(α). �

Note that the model obtained from the universal ultrafilter is not canonical: indeed, its existence was
established using the extension to richness, which uses the axiom of choice.

Remark 5.29. We translate Theorem 5.28 to the classic syntactic setting. Let {x1, x2, . . . } be a set of
variables, L a language and T a quantifier-free theory in L. Let (Fn)n∈N be a family with Fn a set of
quantifier-free L-formulas with x1, . . . , xn as free (possibly dummy) variables. The following conditions are
equivalent.

(1) There is a model M of T such that, for every n ∈ N,

Fn = {α(x1, . . . , xn) quantifier-free |M � ∀x1 . . . ∀xn α(x1, . . . , xn)}.

(2) (Fn)n∈N is a universal ultrafilter for T (in the sense of Remark 5.13).

Corollary 5.30. Let P : Cop → BA be a Boolean doctrine, and suppose C to be small. Let ī, j̄ ∈ N,
Y1, . . . , Yī, Z1, . . . , Zj̄ ∈ C, (αi ∈ P(Yi))i=1,...,̄i, and (βj ∈ P(Zj))j=1,...,j̄. The following conditions are
equivalent.

(1) For every Boolean model (M,m) of P, if for every i ∈ {1, . . . , ī} we have that for every y ∈ M(Yi)
y ∈ mYi

(αi), then there is j ∈ {1, . . . , j̄} such that for every z ∈M(Zj) z ∈ mZj
(βj).

(2) There are n ∈ N, l1, . . . , ln ∈ {1, . . . , ī}, and (gi :
∏j̄

j=1 Zj → Yli
)i=1,...,n such that (in P(

∏j̄
j=1 Zj))

n∧

i=1

P(gi)(αli
) ≤

j̄
∨

j=1

P(prj)(βj).

Proof. By Theorem 5.28, condition (1) is equivalent to

(1’) For every universal ultrafilter (FX)X∈C, if for every i ∈ {1, . . . , ī} we have αi ∈ FYi
, then there is

j ∈ {1, . . . , j̄} such that βj ∈ FZj
.

By Lemma 5.19, condition (2) is equivalent to

(2’) The universal filter generated by α1, . . . , αī intersects the universal ideal generated by β1, . . . , βj̄ .

We prove that (1’) is equivalent to (2’). To do so we prove that the negation of (1’) is equivalent to the
negation of (2’).

(¬1’) There is a universal ultrafilter (FX)X∈C such that for all i ∈ {1, . . . , ī} we have αi ∈ FYi
and for all

j ∈ {1, . . . , j̄} we have βj /∈ FZj
.

(¬2’) The universal filter generated by α1, . . . , αī and the universal ideal generated by β1, . . . , βj̄ are
fiberwise disjoint.

(¬1’) ⇒ (¬2’). This is immediate since a universal ultrafilter is a universal filter whose fiberwise com-
plement is a universal ideal.

(¬2’) ⇒ (¬1’). This follows from Theorem 5.21. �
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Remark 5.31. We translate Corollary 5.30 to the classic syntactic setting. Let {x1, x2, . . . } be a set of
variables, L a language and T a quantifier-free theory in L. Let ī, j̄ ∈ N, let p1, . . . , pī, q1, . . . , qj̄ ∈ N, let
(αi(x1, . . . , xpi

))i=1,...,̄i and (βj(x1, . . . , xqj
))j=1,...,j̄ be tuples of quantifier-free L-formulas. The following

conditions are equivalent.

(1) For every model M of T we have

M �





ī∧

i=1

∀x1 . . .∀xpi
α(x1, . . . , xpi

)



→





j̄
∨

j=1

∀x1 . . . ∀xqj
βj(x1, . . . , xqj

)



.

(2) There are n ∈ N, l1, . . . , ln ∈ {1, . . . , ī} and terms (gh
i (x1, . . . , xΣj qj

))i∈{1,...,n}, h∈{1,...,pli
} such that

n∧

i=1

αli
(g1

i (x1, . . . , xΣjqj
), . . . , g

pli

i (x1, . . . , xΣjqj
)) ⊢T

j̄
∨

j=1

βj(x1+Σj−1
t=1 qt

, . . . , xΣj
t=1qt

). (5.10)

The unpleasant game of subscripts in (2) is just a way to ensure that the disjuncts βj on the right-hand
side of (5.10) have no variables in common. Note that, by the soundness and completeness theorems for
first-order logic, (1) is equivalent to

ī∧

i=1

∀x1 . . .∀xpi
α(x1, . . . , xpi

) ⊢T

j̄
∨

j=1

∀x1 . . . ∀xqj
βj(x1, . . . , xqj

).

Remark 5.31 characterizes when a finite conjunction of universal closures of quantifier-free formulas
implies a finite disjunction of universal closures of quantifier-free formulas modulo a quantifier-free theory.

Example 5.32. For example, if α(x) is a quantifier-free formula and β is a quantifier-free closed formula,
when does ∀xα(x) imply β modulo a given quantifier-free theory T ? To be more precise, we are in the
setting of Remark 5.31 with ī = 1, p1 = 1, j̄ = 1, q1 = 0, α(x1) a quantifier-free formula, and β a closed
quantifier-free formula. Remark 5.31 tells us that ∀xα(x) ⊢T β occurs precisely when there are n ∈ N and
0-ary terms g1, . . . , gn (i.e. term-definable constants) such that

n∧

i=1

α(gi) ⊢T β.

In other words, if we know that α(x) holds for all x, the only way to prove β is to instantiate α(x) on a
finite number of constants g1, . . . , gn and then prove β from α(g1) . . . , α(gn).

Remark 5.33. Note that, in Example 5.32 above, it is important that n can also be given the value 0. For
example, if β = ⊤ and the language has no term-definable constants, it is true that ∀xα(x) implies ⊤, but
we cannot instantiate α(x) in any term-definable constants, and so we need permission to take n = 0.

Remark 5.34. Note that, in Example 5.32 above, it is also important that we are allowed to take n ≥ 2.
For example, let L be the language with two constant symbols {a, b} and a unary predicate symbol R, and
let T = {R(a) ∨ R(b)}. When does the theory T prove the formula ∃xR(x)? Or equivalently, when does
∀x¬R(x) imply ⊥ modulo T ? By Example 5.32 with α = ¬R(x) and β = ⊥, the ways to prove ⊥ would
be:

(1) ⊤ ⊢T ⊥;
(2) ¬R(a) ⊢T ⊥;
(3) ¬R(b) ⊢T ⊥;
(4) ¬R(a) ∧ ¬R(b) ⊢T ⊥.

However,

(1) does not hold (as witnessed by the model M = {ā}, I(a) = I(b) = ā, I(R) = {ā});
(2) is equivalent to ¬R(a) ∧ (R(a) ∨R(b)) ⊢ ⊥, which in turn is equivalent to R(b) ⊢ R(a), which does

not hold (take M = {ā, b̄}, I(a) = ā, I(b) = b̄, I(R) = {b̄});
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(3) is equivalent to ¬R(b) ∧ (R(a) ∨R(b)) ⊢ ⊥, which in turn is equivalent to R(a) ⊢ R(b), which does
not hold (take M = {ā, b̄}, I(a) = ā, I(b) = b̄, I(R) = {ā});

(4) is equivalent to ¬R(a) ∧ ¬R(b) ∧ (R(a) ∨ R(b)) ⊢ ⊥, which in turn is equivalent to R(a) ∨ R(b) ⊢
R(a) ∨R(b), which holds.

So, in this example, it was necessary to take n ≥ 2.

Example 5.35. For example, if α(x) and β(y) are quantifier-free formulas, when does ∀xα(x) imply ∀y β(y)
modulo a given quantifier-free theory T ? To be more precise, we are in the setting of Remark 5.31 with ī = 1,
p1 = 1, j̄ = 1, q1 = 1, α(x1), β(x1) quantifier-free formulas. Remark 5.31 tells us that ∀xα(x) ⊢T ∀y β(y)
occurs precisely when there are n ∈ N and unary terms g1(y), . . . , gn(y) such that

n∧

i=1

α(gi(y)) ⊢T β(y).

In other words, if we know that α(x) holds for all x, the only way to prove β(y) for an arbitrary y is to
instantiate α(x) on a finite number of terms g1(y), . . . , gn(y) depending solely on y and then prove β(y)
from α(g1(y)) . . . , α(gn(y)).

Example 5.36. For example, if α(x), β(y) and γ(z) are quantifier-free formulas, when does ∀xα(x) imply
∀y β(y) ∨ ∀z γ(z) modulo a given quantifier-free theory T ? To be more precise, we are in the setting
of Remark 5.31 with ī = 1, p1 = 1, j̄ = 2, q1 = q2 = 1, α(x1), β(x1), γ(x1) quantifier-free formulas.
Remark 5.31 tells us that ∀xα(x) ⊢T ∀y β(y) ∨ ∀z γ(z) occurs precisely when there are n ∈ N and binary
terms g1(y, z), . . . , gn(y, z) such that

n∧

i=1

α(gi(y, z)) ⊢T β(y) ∨ γ(z),

where here it is important that y and z are distinct variables. Note that ∀y β(y) ∨ ∀z γ(z) is equivalent to
∀y∀z β(y)∨γ(z) (using that y and z are distinct). Then, if we know that α(x) holds for all x, the only way to
prove β(y)∨γ(z) for arbitrary y and z is to instantiate α(x) on a finite number of terms g1(y, z), . . . , gn(y, z)
depending solely on y and z and then prove β(y) ∨ γ(z) from α(g1(y, z)) . . . , α(gn(y, z)).

Example 5.37. For example, if α1(x) and α2(y) are quantifier-free formulas and β is a quantifier-free closed
formula, when does ∀xα1(x)∧∀y α2(y) imply β modulo a given quantifier-free theory T ? To be more precise,
we are in the setting of Remark 5.31 with ī = 2, p1 = p2 = 1, j̄ = 1, q1 = 0, α1(x1), α2(x1) quantifier-
free formulas, and β a closed quantifier-free formula. Remark 5.31 tells us that ∀xα1(x) ∧ ∀y α2(y) ⊢T β
occurs precisely when there are n ∈ N, l1, . . . , ln ∈ {0, 1} and 0-ary terms (gi)i∈{1,...,n} (i.e. term-definable
constants) such that

n∧

i=1

αli
(gi) ⊢T β.

Equivalently, this happens when there are n1, n2 ∈ N, and 0-ary terms (fi)i∈{1,...,n1}, (f ′
j)j∈{1,...,n2} (i.e.

term-definable constants) such that

n1∧

i=1

α1(fi) ∧
n2∧

j=1

α2(f ′
j) ⊢T β.

In other words, if we know that α1(x) holds for all x and that α2(y) holds for all y, the only way to prove β
is to instantiate α1(x) on a finite number of constants f1, . . . , fn1 and α2(y) on a finite number of constants
f ′

1, . . . , f
′
n2

and then prove β from α1(f1) . . . , α1(fn1), α2(f ′
1) . . . , α2(f ′

n2
).

Theorem 5.38. Let P : Cop → BA be a Boolean doctrine, and suppose C to be small. Let ī, j̄ ∈ N,
S, Y1, . . . , Yī, Z1, . . . , Zj̄ ∈ C, (αi ∈ P(S×Yi))i=1,...,̄i, and (βj ∈ P(S×Zj))j=1,...,j̄. The following conditions
are equivalent.
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(1) For every Boolean model (M,m, s) of P at S, if for every i ∈ {1, . . . , ī} we have that for every
y ∈ M(Yi) (s, y) ∈ mS×Yi

(αi), then there is j ∈ {1, . . . , j̄} such that for every z ∈ M(Zj) (s, z) ∈
mS×Zj

(βj).

(2) There are n ∈ N, l1, . . . , ln ∈ {1, . . . , ī}, and (gi : S ×
∏j̄

j=1 Zj → Yli
)i=1,...,n such that (in P(S ×

∏j̄
j=1 Zj))

n∧

i=1

P(〈pr1, gi〉)(αli
) ≤

j̄
∨

j=1

P(〈pr1, prj+1〉)(βj).

Proof. This follows from Corollary 5.30 applied to the Boolean doctrine PS obtained from P by adding a
constant of type S and from Lemma 4.7. �

Remark 5.39. We translate Theorem 5.38 to the classic syntactic setting. For this, we fix k ∈ N. Let
{s1, . . . , sk, x1, x2, . . . } be a set of variables, L a language and T a quantifier-free theory in L. Let ī, j̄ ∈ N,
let p1, . . . , pī, q1, . . . , qj̄ ∈ N, for each i = 1, . . . , ī let αi(s1, . . . , sk, x1, . . . , xpi

) be a quantifier-free formula,

and for each j = 1, . . . , j̄ let βj(s1, . . . , sk, x1, . . . , xqj
) be a quantifier-free formula. The following conditions

are equivalent.

(1) For every model M of T and for every c1, . . . , ck ∈M the formula




ī∧

i=1

∀x1 . . . ∀xpi
αi(s1, . . . , sk, x1, . . . , xpi

)



→





j̄
∨

j=1

∀x1 . . . ∀xqj
βj(s1, . . . , sk, x1, . . . , xqj

)



.

is valid in M under the variable assignment [(si 7→ ci)i=1,...,k].

(2) There are n ∈ N, l1, . . . , ln ∈ {1, . . . , ī} and terms (gh
i (s1, . . . , sk, x1, . . . , xΣj qj

))i∈{1,...,n}, h∈{1,...,pli
}

such that
n∧

i=1

αli
(s1, . . . , sk, g

1
i (s1, . . . , sk, x1, . . . , xΣj qj

), . . . , g
pli

i (s1, . . . , sk, x1, . . . , xΣj qj
))

⊢T

j̄
∨

j=1

βj(s1, . . . , sk, x1+Σj−1
t=1 qt

, . . . , xΣj
t=1qt

).

6. Free one-step construction

In this section, we describe how to freely add one layer of quantification to a Boolean doctrine P0 : Cop →
BA over a small base category C. In this way, we accomplish the goal announced at the end of Section 4.
To be more precise, let (idC, i) : P0 → P∀

0 be the quantifier completion of P0, and let P1 be the subfunctor
of P∀

0 defined as in Definition 3.2(3): for every S ∈ C, the fiber P1(S) is the Boolean subalgebra of P∀
0(S)

generated by the union of the images of P0(S × Y ) under ∀Y
S : P∀

0(S × Y ) → P∀
0(S), for Y ranging in C.

Intuitively, P1 freely adds one layer of quantification to P0. In the first part of this section we explicitly
describe P1 (Corollary 6.10). In the second part of this section we use this result to construct P1 via
generators and relations (see Remark 6.19).

6.1. Fragment of depth 1 of the quantifier completion. The main results of this subsection are
Theorem 6.6 and Corollary 6.10, that characterize the order in the fibers P1(S) in terms of relations on P0.
To this aim, we use results from our “detour” in Section 5.

To get back to the question “When should a formula (∀xα(x)) ∧ (∀y β(y)) be below another formula
(∀z γ(z)) ∨ (∀w δ(w))?” proposed at the end of Section 4, we will obtain the following answer:

(∀xα(x)) ∧ (∀y β(y)) ≤ (∀z γ(z)) ∨ (∀w δ(w))

m

every model of P0 satisfying ∀xα(x) and ∀y β(y) also satisfies ∀z γ(z) or ∀w δ(w)

m
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there are terms t1(z, w), . . . , tn(z, w), s1(z, w), . . . , sm(z, w) such that

n∧

i=1

α(ti(z, w)) ∧
m∧

j=1

β(sj(z, w)) ≤ γ(z) ∨ δ(w).

(It is important here that z and w are distinct variables.)

Lemma 6.1. Let P : Cop → BA be a universal Boolean doctrine. Let X,Y ∈ C, α, γ ∈ P(X) and β ∈
P(X × Y ). Then

α ≤ γ ∨ ∀Y
Xβ in P(X)⇐⇒ P(pr1)(α) ≤ P(pr1)(γ) ∨ β in P(X × Y ).

Proof.

α ≤ γ ∨ ∀Y
Xβ in P(X)

⇐⇒ α ∧ ¬γ ≤ ∀Y
Xβ in P(X)

⇐⇒ P(pr1)(α ∧ ¬γ) ≤ β in P(X × Y )

⇐⇒ P(pr1)(α) ∧ ¬P(pr1)(γ) ≤ β in P(X × Y )

⇐⇒ P(pr1)(α) ≤ P(pr1)(γ) ∨ β in P(X × Y ). �

Lemma 6.2. Let P : Cop → BA be a universal Boolean doctrine, let X,Y ∈ C, let α ∈ P(Y ) and let
f : X → Y be a morphism in C. In P(X) we have

∀Y
XP(pr2)(α) ≤ P(f)(α).

Proof. By adjointness, for every γ ∈ P(X×Y ), we have P(pr1)∀Y
X(γ) ≤ γ (in P(X×Y )). For γ = P(pr2)(α)

we get, in P(X × Y ),

P(pr1)(∀Y
XP(pr2)(α)) ≤ P(pr2)(α).

Applying on both sides the reindexing P(〈idX , f〉) : P(X × Y ) → P(X) along 〈idX , f〉 : X → X × Y , we
obtain, in P(X),

∀Y
XP(pr2)(α) = P(〈idX , f〉)(P(pr1)(∀Y

XP(pr2)(α))) ≤ P(〈idX , f〉)(P(pr2)(α)) = P(f)(α). �

Lemma 6.3 (∀ distributes over
∨

with disjoint variables). Let P : Cop → BA be a universal Boolean
doctrine, let X1, . . . , Xn ∈ C, and let αi ∈ P(Xi) for i = 1, . . . , n. Then in P(t)

n∨

i=1

∀Xi

t
αi = ∀ΠiXi

t

(
n∨

i=1

P(pri)(αi)

)

.

Proof. For n = 0, we shall check that ⊥P(t) = ∀t
t⊥P(t), but this follows from Remark 3.3 (∀t

t is the right
adjoint of the identity of P(t), and hence it is the identity).

For n = 1 the statement is trivially true.
So let n = 2. We begin with the inequality (≤). For i = 1, 2, from P(!Xi

)(∀Xi

t
αi) ≤ αi we get in

P(X1 ×X2)

P(!X1×X2 )(∀Xi

t
αi) = P(pri)P(!Xi

)(∀Xi

t
αi) ≤ P(pri)(αi).

So in P(X1 ×X2) we get

P(!X1×X2 )(∀Xi

t
αi) ≤ P(pr1)(α1) ∨P(pr2)(α2),

which is equivalent to

∀Xi

t
αi ≤ ∀

X1×X2
t

(P(pr1)(α1) ∨P(pr2)(α2))

in P(t). Hence

∀X1
t
α1 ∨ ∀

X2
t
α2 ≤ ∀

X1×X2
t

(P(pr1)(α1) ∨P(pr2)(α2)),

as desired.
We now prove the inequality (≥), i.e. that in P(t)

∀X1×X2
t

(P(pr1)(α1) ∨P(pr2)(α2)) ≤ ∀X1
t
α1 ∨ ∀

X2
t
α2.



QUANTIFIER ALTERNATION DEPTH IN UNIVERSAL BOOLEAN DOCTRINES 41

By Lemma 6.1, this is equivalent to

P(!X1 )(∀X1×X2
t

(P(pr1)(α1) ∨P(pr2)(α2))) ≤ α1 ∨P(!X1 )(∀X2
t
α2) (6.1)

in P(X1). We now use the Beck-Chevalley condition:

t P(X2) P(t)

X1 P(X1 ×X2) P(X1).

!X1 P(!X1 )P(pr2)

∀
X2
t

∀
X2
X1

So we can rewrite (6.1) as

P(!X1 )(∀X1×X2
t

(P(pr1)(α1) ∨P(pr2)(α2))) ≤ α1 ∨ ∀
X2

X1
P(pr2)(α2).

By Lemma 6.1 again, this is equivalent to the following inequality in P(X1 ×X2):

P(pr1)(P(!X1 )(∀X1×X2

t
(P(pr1)(α1) ∨P(pr2)(α2)))) ≤ P(pr1)(α1) ∨P(pr2)(α2),

which we rewrite as

P(!X1×X2 )∀X1×X2
t

(P(pr1)(α1) ∨P(pr2)(α2)) ≤ P(pr1)(α1) ∨P(pr2)(α2).

We use again the Beck-Chevalley condition:

t P(X1 ×X2) P(t)

X1 ×X2 P(X1 ×X2 ×X1 ×X2) P(X1 ×X2),

!X1×X2 P(!X1×X2 )P(〈pr3,pr4〉)

∀
X1×X2
t

∀
X1×X2
X1×X2

and so we are left to prove

∀X1×X2

X1×X2
P(〈pr3, pr4〉)(P(pr1)(α1) ∨P(pr2)(α2))) ≤ P(pr1)(α1) ∨P(pr2)(α2).

This follows from Lemma 6.2 with f = idX1×X2 : X1 ×X2 → X1 ×X2.
The statement (for an arbitrary n) follows by induction. �

Lemma 6.4 (∀ distributes over
∨

with disjoint variables, over fixed free variables). Let P : Cop → BA be
a universal Boolean doctrine, let S,X1, . . . , Xn ∈ C, and let αi ∈ P(S ×Xi) for i = 1, . . . , n. Then in P(S)

n∨

i=1

∀Xi

S αi = ∀ΠiXi

S

(
n∨

i=1

P(〈pr1 pri+1〉)(αi)

)

.

Proof. This follows from Lemma 6.3 applied to the universal Boolean doctrine PS obtained from P by
adding a constant of type S. �

Lemma 6.5. Let P : Cop → BA be a Boolean doctrine, let R : Dop → BA be a universal Boolean doctrine
and let (M,m) : P → R be a Boolean doctrine morphism. Let ī, j̄ ∈ N, let S, Y1, . . . , Yī, Z1, . . . , Zj̄ ∈ C,

(αi ∈ P(S × Yi))i=1,...,̄i and (βj ∈ P(S × Zj))j=1,...,j̄. Suppose there are n ∈ N, l1, . . . , ln ∈ {1, . . . , ī} and

(gi : S ×
∏j̄

j=1 Zj → Yli
)i=1,...,n such that (in P(S ×

∏j̄
j=1 Zj))

n∧

i=1

P(〈pr1, gi〉)(αli
) ≤

j̄
∨

j=1

P(〈pr1, prj+1〉)(βj).

Then in R(M(S)) we have

ī∧

i=1

∀M(Yi)
M(S) mS×Yi

(αi) ≤
j̄
∨

j=1

∀
M(Zj )

M(S) mS×Zj
(βj).
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Proof. First, observe that in R(M(S)) we have

ī∧

i=1

∀M(Yi)
M(S) mS×Yi

(αi) ≤
n∧

i=1

∀
M(Yli

)

M(S) mS×Yli
(αli

). (6.2)

For every i = 1, . . . , n, by the adjunction R(pr1) ⊣ ∀
M(Yli

)

M(S) we have in R(M(S)×M(Yli
))

R(pr1)(∀
M(Yli

)

M(S) (mS×Yli
(αli

))) ≤ mS×Yli
(αli

).

Then, apply R(〈pr1,M(gi)〉) to both sides to get in R(M(S)×
∏j̄

j=1 M(Zj))

R(pr1)(∀
M(Yli

)

M(S) (mS×Yli
(αli

))) = R(〈pr1,M(gi)〉)(R(pr1)(∀
M(Yli

)

M(S) (mS×Yli
(αli

))))

≤ R(〈pr1,M(gi)〉)(mS×Yli
(αli

))

= mS×ΠjZj
(P(〈pr1, gi〉)(αli

)). (6.3)

It follows that in R(M(S)×
∏j̄

j=1 M(Zj))

R(pr1)





ī∧

i=1

∀M(Yi)
M(S) mS×Yi

(αi)



 ≤ R(pr1)

(
n∧

i=1

∀
M(Yli

)

M(S) mS×Yli
(αli

)

)

by (6.2)

≤
n∧

i=1

mS×ΠjZj
(P(〈pr1, gi〉)(αli

)) by (6.3)

≤ mS×ΠjZj





j̄
∨

j=1

P(〈pr1, prj+1〉)(βj)



 by assumption

=

j̄
∨

j=1

R(〈pr1, prj+1〉)(mS×Zj
(βj)) by naturality of m.

By the adjunction R(pr1) ⊣ ∀
ΠjM(Zj )

M(S) , we get in R(M(S))

ī∧

i=1

∀M(Yi)
M(S) mS×Yi

(αi) ≤ ∀
ΠjM(Zj )

M(S)





j̄
∨

j=1

R(〈pr1, prj+1〉)(mS×Zj
(βj))



. (6.4)

Then apply Lemma 6.4 to the left-hand side of (6.4) to conclude the proof. �

Theorem 6.6. Let P : C
op → BA be a Boolean doctrine with C small, and let (idC, i) : P→ P∀ be a quantifier

completion of P. For all S, Y1, . . . , Yī, Z1, . . . , Zj̄ ∈ C, (αi ∈ P(S×Yi))i=1,...,̄i and (βj ∈ P(S×Zj))j=1,...,j̄,
the following conditions are equivalent.

(1) In P∀(S) we have

ī∧

i=1

∀Yi

S iS×Yi
(αi) ≤

j̄
∨

j=1

∀
Zj

S iS×Zj
(βj).

(2) There are n ∈ N, l1, . . . , ln ∈ {1, . . . , ī} and (gi : S ×
∏j̄

j=1 Zj → Yli
)i=1,...,n such that (in P(S ×

∏j̄
j=1 Zj))

n∧

i=1

P(〈pr1, gi〉)(αli
) ≤

j̄
∨

j=1

P(〈pr1, prj+1〉)(βj).
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Proof. (1) ⇒ (2). We prove the contrapositive. Suppose (2) does not hold.
By Theorem 5.38, there is a Boolean model (M,m, s) of P at S such that for all i = 1, . . . ī and for

all y ∈ M(Yi) we have (s, y) ∈ mS×Yi
(αi) and there is no j ∈ {1, . . . , j̄} such that for all z ∈ M(Zj)

(s, z) ∈ mS×Zj
(βj). Thus

ī⋂

i=1

{s′ ∈M(S) | for all y ∈M(Yi), (s′, y) ∈ mS×Yi
(αi)}

*
j̄
⋃

j=1

{s′ ∈M(S) | for all z ∈M(Zj), (s′, z) ∈ mS×Zj
(βj)}, (6.5)

because s belongs to the intersection on the left of (6.5) but not to the union on the right.
By the universal property of the quantifier completion, there is a unique universal Boolean doctrine

morphism (M, n) such that the following triangle commutes:

P P∀

P.

(idC,i)

(M,m)
(M,n)

The condition in (6.5) is equivalent to

ī⋂

i=1

∀M(Yi)
M(S) mS×Yi

(αi) *
j̄
⋃

j=1

∀
M(Zj )

M(S) mS×Zj
(βj),

which we rewrite as
ī⋂

i=1

∀M(Yi)
M(S) nS×Yi

(iS×Yi
(αi)) *

j̄
⋃

j=1

∀
M(Zj )

M(S) nS×Zj
(iS×Zj

(βj)),

which, by the commutativity of (2.1) in the definition of a universal Boolean doctrine morphism (Defini-
tion 2.7) is equivalent to

ī⋂

i=1

nS(∀Yi

S iS×Yi
(αi)) *

j̄
⋃

j=1

nS(∀
Zj

S iS×Zj
(βj)),

which, since nS is a Boolean homomorphism, is equivalent to

nS





ī∧

i=1

∀Yi

S iS×Yi
(αi)



 * nS





j̄
∨

j=1

∀
Zj

S iS×Zj
(βj)



.

Thus, by monotonicity of nS , in P∀(S) we have

ī∧

i=1

∀Yi

S iS×Yi
(αi) �

j̄
∨

j=1

∀
Zj

S iS×Zj
(βj).

(2) ⇒ (1). This implication follows from Lemma 6.5. �

Remark 6.7. We translate Theorem 6.6 to the classic syntactic setting. For this, we fix k ∈ N. Let
{s1, . . . , sk, x1, x2, x3, . . . } be a set of variables, L a language, and T a quantifier-free theory in L. Let
ī, j̄ ∈ N, let p1, . . . , pī, q1, . . . , qj̄ ∈ N, for each i = 1, . . . , ī let αi(s1, . . . , sk, x1, . . . , xpi

) be a quantifier-free

formula, and for each j = 1, . . . , j̄ let βj(s1, . . . , sk, x1, . . . , xqj
) be a quantifier-free formula. The following

conditions are equivalent.

(1)

ī∧

i=1

∀x1 . . .∀xpi
αi(s1, . . . , sk, x1, . . . , xpi

) ⊢T

j̄
∨

j=1

∀x1 . . .∀xqj
βj(s1, . . . , sk, x1, . . . , xqj

).
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(2) There are n ∈ N, l1, . . . , ln ∈ {1, . . . , ī} and terms (gh
i (s1, . . . , sk, x1, . . . , xΣj qj

))i∈{1,...,n}, h∈{1,...,pli
}

such that
n∧

i=1

αli
(s1, . . . , sk, g

1
i (s1, . . . , sk, x1, . . . , xΣj qj

), . . . , g
pli

i (s1, . . . , sk, x1, . . . , xΣj qj
))

⊢T

j̄
∨

j=1

βj(s1, . . . , sk, x1+Σj−1
t=1 qt

, . . . , xΣj
t=1qt

).

Theorem 6.8. Let P : Cop → BA be a Boolean doctrine with C small, and let (idC, i) : P→ P∀ be a quantifier
completion of P. For all S, Y1, . . . , Yī,W1, . . . ,Wh̄, Z1, . . . , Zj̄ , V1, . . . , Vk̄ ∈ C, (αi ∈ P(S × Yi))i=1,...,̄i,
(γh ∈ P(S ×Wh))h=1,...,h̄, (βj ∈ P(S × Zj))j=1,...,j̄ and (δk ∈ P(S × Vk))k=1,...,k̄, the following conditions
are equivalent.

(1) In P∀(S) we have




ī∧

i=1

∀Yi

S iS×Yi
(αi)



 ∧





h̄∧

h=1

∃Wh

S iS×Wh
(γh)



 ≤





j̄
∨

j=1

∀
Zj

S iS×Zj
(βj)



 ∨





k̄∨

k=1

∃Vk

S iS×Vk
(δk)



.

(2) There are n, n′ ∈ N, l1, . . . , ln ∈ {1, . . . , ī}, l′1, . . . , l
′
n ∈ {1, . . . , k̄}, (gi : S ×

∏j̄
j=1 Zj ×

∏h̄
h=1 Wh →

Yli
)i=1,...,n and (g′

k : S ×
∏j̄

j=1 Zj ×
∏h̄

h=1 Wh → Vl′
k
)k=1,...,n′ such that (in P(S ×

∏j̄
j=1 Zj))

n∧

i=1

P(〈pr1, gi〉)(αli
) ∧

h̄∧

h=1

P(〈pr1, prh+j̄+1〉)(γh) ≤
j̄
∨

j=1

P(〈pr1, prj+1〉)(βj) ∨
n′
∨

k=1

P(〈pr1, g
′
k〉)(δl′

k
).

Proof. Item (1) holds if and only if




ī∧

i=1

∀Yi

S iS×Yi
(αi)



 ∧





k̄∧

k=1

∀Vk

S iS×Vk
(¬δk)



 ≤





j̄
∨

j=1

∀
Zj

S iS×Zj
(βj)



 ∨





h̄∨

h=1

∀Wh

S iS×Wh
(¬γh)



.

Applying Theorem 6.6, this is equivalent to the existence of n, n′ ∈ N, l1, . . . , ln ∈ {1, . . . , ī}, l′1, . . . , l
′
n ∈

{1, . . . , k̄}, (gi : S ×
∏j̄

j=1 Zj ×
∏h̄

h=1 Wh → Yli
)i=1,...,n and (g′

k : S ×
∏j̄

j=1 Zj ×
∏h̄

h=1 Wh → Vl′
k
)k=1,...,n′

such that (in P(S ×
∏j̄

j=1 Zj))

n∧

i=1

P(〈pr1, gi〉)(αli
) ∧

n′
∧

k=1

P(〈pr1, g
′
k〉)(¬δl′

k
) ≤

j̄
∨

j=1

P(〈pr1, prj+1〉)(βj) ∨
h̄∨

h=1

P(〈pr1, prh+j̄+1〉)(¬γh),

which is equivalent to (2). �

Roughly speaking, this means that, given a quantifier-free theory T ,




ī∧

i=1

∀yi αi(yi)



 ∧





h̄∧

h=1

∃wh γh(wh)



 ⊢T





j̄
∨

j=1

∀zj βj(zj)



 ∨





k̄∨

k=1

∃vk δk(vk)





holds (where all the αi’s, γh’s, βj ’s and δk’s are quantifier-free) if and only if, fixing arbitrary wh and zj

(and supposing all these variables to be distinct), there are finitely many instantiations (gi)i=1,...,n of the
αi’s and finitely many instantiations (g′

k)k=1,...,n′ of the δk’s such that

n∧

i=1

αli
(gi) ∧

h̄∧

h=1

γh(wh) ⊢T

j̄
∨

j=1

βj(zj) ∨
n′
∨

k=1

δl′
k
(g′

k).

Example 6.9 (Herbrand’s theorem). Let T be a quantifier-free theory and let δ(x1, . . . , xv) be a quantifier-
free formula, where v ∈ N. By Theorem 6.8, the condition

⊤ ⊢T ∃x1 . . . ∃xv δ(x1, . . . , xv).
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holds if and only if there are n ∈ N and lists of 0-ary terms (g1
k, . . . , g

v
k)k=1,...,n such that

⊤ ⊢T

n∨

k=1

δ(g1
k, . . . , g

v
k).

This is the classic Herbrand’s theorem [11].

The results obtained so far allow us to characterize when a Boolean combination of universal quan-
tifications of quantifier-free formulas implies another Boolean combination of universal quantifications of
quantifier-free formulas. Modulo rewriting a Boolean combination in disjunctive/conjunctive normal form,
this is illustrated in the following result.

Corollary 6.10. Let P : Cop → BA be a Boolean doctrine with C small, and let (idC, i) : P→ P∀ be its quan-
tifier completion. For all S, Y p

1 , . . . , Y
p

īp
,W p

1 , . . . ,W
p

h̄p
∈ C (for p = 1, . . . p̄), for all Zq

1 , . . . , Z
q

j̄q
, V q

1 , . . . V
q

k̄q
∈

C (for q = 1, . . . q̄), for all (αp
i ∈ P(S × Y p

i ))p∈{1,...,p̄},i∈{1,...,̄ip}, (γp
h ∈ P(S × W p

h ))p∈{1,...,p̄},h∈{1,...,h̄p},

(βq
j ∈ P(S × Zq

j ))q∈{1,...,q̄},j∈{1,...,j̄q}, (δq
k ∈ P(S × V q

k ))q∈{1,...,q̄},k∈{1,...,k̄q} the following conditions are

equivalent.

(1) In P∀(S) we have

p̄
∨

p=1









īp∧

i=1

∀
Y

p

i

S iS×Y
p

i
(αp

i )



 ∧





h̄p∧

h=1

¬∀
W

p

h

S iS×W
p

h
(γp

h)









≤
q̄
∧

q=1









j̄q∨

j=1

∀
Z

q

j

S iS×Z
q

j
(βq

j )



 ∨





k̄q∨

k=1

¬∀
V

q

k

S iS×V
q

k
(δq

k)







.

(2) For all p = 1, . . . , p̄ and q = 1, . . . , q̄ there are n, n′ ∈ N, l1, . . . , ln ∈ {1, . . . , īp}, l′1, . . . , l
′
n′ ∈

{1, . . . , k̄q}, (gi : S ×
∏j̄q

j=1 Z
q
j ×

∏h̄p

h=1 W
p
h → Y p

li
)i=1,...,n and (g′

k : S ×
∏j̄q

j=1 Z
q
j ×

∏h̄p

h=1 W
p
h →

V q
l′
i
)k=1,...,n′ such that (in P(S ×

∏j̄q

j=1 Z
q
j ×

∏h̄p

h=1 W
p
h ))

(
n∧

i=1

P(〈pr1, gi〉)(α
p
li

)

)

∧





n′
∧

k=1

P(〈pr1, g
′
k〉)(δ

q

l′
k

)





≤





j̄
∨

j=1

P(〈pr1, prj+1〉)(β
q
j )



 ∨





h̄∨

h=1

P(〈pr1, prh+j̄+1〉)(γ
p
h)



.

Proof. Item (1) holds if and only if for all p = 1, . . . , p̄ and q = 1, . . . , q̄ we have




īp∧

i=1

∀
Y

p

i

S iS×Y
p

i
(αp

i )



 ∧





h̄p∧

h=1

¬∀
W

p

h

S iS×W
p

h
(γp

h)



 ≤





j̄q∨

j=1

∀
Z

q

j

S iS×Z
q

j
(βq

j )



 ∨





k̄q∨

k=1

¬∀
V

q

k

S iS×V
q

k
(δq

k)



. (6.6)

In turn, (6.6) holds if and only if




īp∧

i=1

∀
Y

p

i

S iS×Y
p

i
(αp

i )



 ∧





k̄q∧

k=1

∀
V

q

k

S iS×V
q

k
(δq

k)



 ≤





j̄q∨

j=1

∀
Z

q

j

S iS×Z
q

j
(βq

j )



 ∨





h̄p∨

h=1

∀
W

p

h

S iS×W
p

h
(γp

h)



.

Apply Theorem 6.6. �

Example 6.11. Let T be a quantifier-free theory. Let α(x) be a quantifier-free formula with free variable
x and β be a closed quantifier-free formula. We write β(x) when we consider x to be a dummy variable of
β.

(∃xα(x)) ∨ β ⊢T ∃x(α(x) ∨ β(x)) ⇐⇒ ∃xα(x) ⊢T ∃x(α(x) ∨ β(x)) and β ⊢T ∃x(α(x) ∨ β(x))

⇐⇒ β ⊢T ∃x(α(x) ∨ β(x)).
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By Theorem 6.8, seeing β as ∃()β, this is equivalent to the existence of n ∈ N and 0-ary terms (fi)i∈{1,...,n}

such that

β ⊢T

n∨

i=1

(α(fi) ∨ β).

This trivially holds if β ⊢T ⊥ (take n = 0). If instead β 6⊢T ⊥ (so that we cannot take n = 0), this holds
if and only if there is at least a 0-ary term in the language. Semantically, the fact that (∃xα(x)) ∨ β ⊢T

∃x(α(x) ∨ β(x)) might fail is explained by the fact that we allow the empty model.
Finally, we mention that the converse direction

∃x(α(x) ∨ β(x)) ⊢T (∃xα(x)) ∨ β

always holds.

6.2. The construction. We now exhibit how to freely add one layer of quantification to a Boolean doctrine
over a small base category via generators and relations. Let P0 : Cop → BA be a Boolean doctrine, with
C small, and let S ∈ C. Let BS be the free Boolean algebra over AS :=

⊔

Y ∈C
P0(S × Y ), and, for each

Y ∈ C and α ∈ P0(S × Y ), let ∀Y
S α denote the image of α under the free map AS → BS . Let ∼S be the

Boolean congruence on BS generated by the following relations: for each n ∈ N, l1, . . . , ln ∈ {1, . . . , ī} and

(gi : S ×
∏j̄

j=1 Zj → Yli
)i=1,...,n such that (in P0(S ×

∏j̄
j=1 Zj))

n∧

i=1

P0(〈pr1, gi〉)(αli
) ≤

j̄
∨

j=1

P0(〈pr1, prj+1〉)(βj). (6.7)

we impose the relation




ī∧

i=1

∀Yi

S αi



 ≤





j̄
∨

j=1

∀
Zj

S βj





in BS/∼S.

Notation 6.12 (Free one-step construction on objects). We let

FreeP0
1 (S)

denote the quotient BS/∼S . (For an intrinsic description of ∼, we refer to Corollary 6.10.)

For each S ∈ C, FreeP0
1 (S) is a Boolean algebra generated by the image of AS under the function

AS → FreeP0
1 (S) that maps α ∈ P0(S × Y ) ⊆ AS to [∀Y

S α] ∈ FreeP0
1 (S). We know another Boolean

algebra generated by AS . Since C is small, there is a quantifier completion (idC , i) : P0 → P∀
0 of P0.

By Proposition 4.15, P0 is a quantifier-free fragment of P∀
0 , and thus we can define P1(S) the Boolean

subalgebra of P∀
0(S) generated by the union of the images of P0(S × Y ) under ∀Y

S : P∀
0(S × Y ) → P∀

0(S),
for Y ranging in C, as in Definition 3.2(3). So P1(S) is generated by the image of the function AS → P1(S)

that maps α ∈ P0(S × Y ) ⊆ AS to ∀Y
S iS×Y (α) ∈ P1(S). In particular, both FreeP0

1 (S) and P1(S) are
quotients of the free algebra BS over AS . In the following, we prove that these two quotients are “the
same”, meaning that FreeP0

1 (S) and P1(S) are isomorphic and the two quotient maps have the same kernel
congruences.

P∀
0(S × Y ) P∀

0(S)

α P0(S × Y ) AS BS P1(S) ∀Y
S iS×Y (α)

FreeP0
1 (S) [∀Y

S α]

⊆

iS×Y

∀Y
S

∀Y
S

⊆∀Y
S

∈ ∋

∋
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Lemma 6.13. Let B and P be boolean algebras, let A be a set, let ι : A → B be a function such that ι[A]
generates B, and let π : B → P be a boolean homomorphism. The kernel congruence of π coincides with
the congruence ∼ generated by the following set of relations: for every x1, . . . , xn, y1, . . . , ym ∈ A such that
πι(x1)∧ · · · ∧πι(xn) ≤ πι(y1)∨ · · · ∨πι(ym) in P , take the relation ι(x1)∧ · · · ∧ ι(xn) ≤∼ ι(y1)∨ · · · ∨ ι(yn).

Proof. Let ≈ be the kernel congruence of π, and let ∼ be the congruence generated by the relations in
the statement. The inclusion ∼ ⊆ ≈ holds because every generator of ∼ belongs to ≈. For the converse
inclusion, let ω1, ω2 ∈ B be such that [ω1] ≤≈ [ω2], and let us prove [ω1] ≤∼ [ω2]. Since B is generated by
ι[A], we can write

ω1 =

p̄
∨

p=1









īp∧

i=1

ι(xp
i )



 ∧





h̄p∧

h=1

¬ι(zp
h)









and

ω2 =

q̄
∧

q=1









j̄q∨

j=1

ι(yq
j )



 ∨





k̄q∨

k=1

¬ι(wq
k)









for appropriate elements xp
i , z

p
h, y

q
j , w

q
k ∈ A. The condition [ω1] ≤≈ [ω2] means that, in P ,

p̄
∨

p=1









īp∧

i=1

πι(xp
i )



 ∧





h̄p∧

h=1

¬πι(zp
h)







 ≤
q̄
∧

q=1









j̄q∨

j=1

πι(yq
j )



 ∨





k̄q∨

k=1

¬πι(wq
k)







,

i.e. that, for every p = 1, . . . , p̄ and every q = 1, . . . q̄, in P ,




īp∧

i=1

πι(xp
i )



 ∧





h̄p∧

h=1

¬πι(zp
h)



 ≤





j̄q∨

j=1

πι(yq
j )



 ∨





k̄q∨

k=1

¬πι(wq
k)



,

or, equivalently,




īp∧

i=1

πι(xp
i )



 ∧





k̄q∧

k=1

πι(wq
k)



 ≤





j̄q∨

j=1

πι(yq
j )



 ∨





h̄p∨

h=1

πι(zp
h)



.

By definition of ∼, for every p = 1, . . . , p̄ and every q = 1, . . . q̄








īp∧

i=1

ι(xp
i )



 ∧





k̄q∧

k=1

ι(wq
k)







 ≤∼









j̄q∨

j=1

ι(yq
j )



 ∨





h̄p∨

h=1

ι(zp
h)







,

and hence




p̄
∨

p=1









īp∧

i=1

ι(xp
i )



 ∧





h̄p∧

h=1

¬ι(zp
h)











 ≤∼





q̄
∧

q=1









j̄q∨

j=1

ι(yq
j )



 ∨





k̄q∨

k=1

¬ι(wq
k)











,

i.e., [ω1] ≤∼ [ω2]. �

Lemma 6.14. Let P be a Boolean algebra, A a set, and g : A → P a function. Let ι : A → B be the free
Boolean algebra map over X, and let π : B → P be the Boolean morphism induced by the universal property
of free algebras. The kernel congruence of π coincides with the congruence ∼ generated by the following
relations: for every x1, . . . , xn, y1, . . . , ym ∈ A such that g(x1)∧ · · · ∧ g(xn) ≤ g(y1) ∨ · · · ∨ g(ym) in P , take
the relation ι(x1) ∧ · · · ∧ ι(xn) ≤∼ ι(y1) ∨ · · · ∨ ι(yn). As a consequence, if g[A] generates P , π induces an
isomorphism between B/∼ and P .

Proof. By Lemma 6.13. �

Proposition 6.15. Let P0 : Cop → BA be a Boolean doctrine, with C small, let (idC, i) : P0 → P∀
0 be a

quantifier completion of P0. Let P1 be defined from P0 and P∀ as in Definition 3.2(3). Then for every

S ∈ C the Boolean algebras FreeP0
1 (S) and P1(S) are isomorphic.
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Proof. First of all, recall from Proposition 4.15 that P0 is a quantifier-free fragment of P∀
0 , so we can indeed

define P1 as in the statement.
Apply Lemma 6.14 with A = AS , P = P1(S), g : AS → P1(S) is the function that maps α ∈ P0(S ×

Y ) ⊆ AS to ∀Y
S iS×Y (α) ∈ P1(S), so that B = BS , the free Boolean algebra over AS . Then P1(S) is

isomorphic to the quotient of BS by the congruence ∼ defined by the following set of relations: for all
Y1, . . . , Yī, Z1, . . . , Zj̄ ∈ C, (αi ∈ P(S × Yi))i=1,...,̄i and (βj ∈ P(S ×Zj))j=1,...,j̄ such that in P1(S) we have

ī∧

i=1

∀Yi

S iS×Yi
(αi) ≤

j̄
∨

j=1

∀
Zj

S iS×Zj
(βj). (6.8)

take the relation

ī∧

i=1

∀Yi

S αi ≤∼

j̄
∨

j=1

∀
Zj

S βj .

By Theorem 6.6, (6.8) is equivalent to (6.7), and so ∼ coincides with ∼S . Therefore, P1(S) is isomorphic

to BS/∼ = BS/∼S = FreeP0
1 (S). �

Remark 6.16. Similarly to [22] (see Remark 4.26), we could have constructed FreeP0
1 (S) as the poset

reflection of a certain preordered set. For example, as a preordered set we may take Pω(Pω(AS ⊔ AS)),
where Pω(Y ) denotes the set of finite subsets of Y , and with a preorder suggested by Corollary 6.10
according to the intuition that an element A ∈Pω(Pω(AS ⊔AS)) represents

∨

A∈A

((
∧

a∈AS : inl a∈A

∀Ya

S a

)

∧

(
∧

a∈AS : inr a∈A

¬∀Ya

S a

))

,

where inl, inr : AS → AS ⊔AS denote the two inclusions. We are afraid we are not able to describe this in
a digestible way.

We can extend the assignment FreeP0
1 to morphisms of C using the isomorphisms described in Proposi-

tion 6.15: let S, S′ be objects in C and let f : S → S′ be a morphism. We let

FreeP0
1 (f) : FreeP0

1 (S′)→ FreeP0
1 (S)

denote the Boolean homomorphism that closes the square below:

S′ FreeP0
1 (S′) P1(S′)

S FreeP0
1 (S) P1(S).

Free
P0
1 (f) P1(f)

∼

f

∼

The Boolean homomorphism P1(f) is defined because P1 is a functor (see Lemma 3.13). It follows that

FreeP0
1 is a functor, naturally isomorphic to P1.

Lemma 6.17. For every Y ∈ C and α ∈ P0(S′ × S), the Boolean homomorphism FreeP0
1 (f) maps the

generator [∀Y
S′α] to [∀Y

S (P0(f × idY )(α))].
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Proof. For the reader’s convenience, we insert the following commutative diagram, which includes some
relevant morphisms.

BS′

S′ FreeP0
1 (S′) P1(S′) P∀

0(S′)

S FreeP0
1 (S) P1(S) P∀

0(S)

BS

Free
P0
1 (f) P1(f)

∼

⊆

⊆

P
∀
0 (f)f

∼

(6.9)

Let [∀Y
S′α] be a generator in FreeP0

1 (S′) for Y ∈ C and α ∈ P0(S′ × Y ), which corresponds to the element

∀Y
S′ iS×Y ′(α) in P1(S′) under the isomorphism P1(S′) ∼= FreeP0

1 (S′). In P1(S) we have

P1(f)(∀Y
S′ iS′×Y (α)) = P∀

0(f)(∀Y
S′ iS′×Y (α)) by (6.9) on the right

= ∀Y
S P∀

0(f × idY )(iS′×Y (α)) by the Beck-Chevalley condition

= ∀Y
S iS×Y (P0(f × idY )(α)) by naturality of i,

which, under the isomorphism P1(S) ∼= FreeP0
1 (S), corresponds to the element [∀Y

S P0(f × idY )(α)] in

FreeP0
1 (S), as desired. �

Then, the following is a direct definition of FreeP0
1 (f) without going through the isomorphism with P1.

Notation 6.18 (Free one-step construction on morphisms). Let S, S′ be objects in C and let f : S → S′ be
a morphism. We let

FreeP0
1 (f) : FreeP0

1 (S′)→ FreeP0
1 (S)

denote the unique Boolean homomorphism that, for all Y ∈ C and α ∈ P0(S′ × Y ), maps the generator
[∀Y

S′α] to [∀Y
S (P0(f × idY )(α))].

We skip a direct proof of well-definedness of the map in Notation 6.18; at any rate, using the isomorphism
between FreeP0

1 (S) ∼= P1(S), this follows from Lemma 6.17.

Remark 6.19. As a recap, let P0 : Cop → BA be a Boolean doctrine, with C small. To add freely a layer
of quantifiers via generators and relations, define the functor FreeP0

1 on objects as in Notation 6.12, on

morphisms as in Notation 6.18, and define the connecting natural transformation P0 → FreeP0
1 by defining

the component at S ∈ C as

P0(S) −→ FreeP0
1 (S)

α 7−→ [∀t

Sα].

In light of the isomorphism between FreeP0
1 and the fragment P1 of P∀

0 (Proposition 6.15), Corollary 6.10

provides an explicit description of the order on FreeP0
1 .

7. Future work

One long-term goal is to provide a stepwise construction of the quantifier completion P∀ of a Boolean
doctrine P : Cop → BA with C small. In this paper we have addressed the first step.

Let (Pn)n∈N be a quantifier-stratified universal Boolean doctrine. For each n ∈ N, what are the properties
satisfied by the tuple (P0, . . . ,Pn)? In this paper, we only addressed the case P0. This corresponds precisely
to the following, for the case of a small base category: P0 is a Boolean doctrine. This follows from the
existence of the quantifier completion and the completeness theorem for Boolean doctrines (Theorem 4.9).
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7.1. Completeness for the first layer.

Definition 7.1 (One-step quantifier Boolean doctrine). A one-step quantifier Boolean doctrine is an ordered
pair of functors (Pi : Cop → BA)i=0,1 where C is a category with finite products, such that, for every
X ∈ C, P0(X) is a Boolean subalgebra of P1(X), for every morphism f : X → X ′ in C the function
P1(f) : P1(X ′)→ P1(X) extends the function P0(f) : P0(X ′)→ P0(X), and the following conditions hold.

(1) (One-step universal) For every projection pr1 : X × Y → X in C and β ∈ P0(X × Y ) there is an
element ∀Y

Xβ ∈ P1(X) such that, for all α ∈ P1(X), we have (denoting with iX×Y the inclusion
P0(X × Y ) →֒ P1(X × Y ))

α ≤ ∀Y
Xβ in P1(X)⇐⇒ P1(pr1)(α) ≤ iX×Y (β) in P1(X × Y ).

(Note that one such element ∀Y
Xβ is unique.)

(2) (One-step Beck-Chevalley) For every morphism f : X → X ′ in C the following diagram in Pos

commutes.

P0(X ′ × Y ) P1(X ′)

P0(X × Y ) P1(X)

P0(f×idY ) P1(f)

∀Y
X

∀Y

X′

(3) (One-step generation) For all X ∈ C, the Boolean algebra P1(X) is generated by the union of the
images of the functions ∀Y

X : P0(X × Y )→ P1(X) for Y ranging in C.

The idea that led us to this definition was to take the axioms from Definition 3.12 that only involve
n = 0, 1. It seems a reasonable conjecture that Definition 7.1 captures all the properties satisfied by
(P0,P1) in a quantifier-stratified universal Boolean doctrine (Pn)n∈N. One way to check this would be
by using models. There is a natural way to define a one-step quantifier Boolean model of (P0,P1) as the
Boolean models of P1 preserving all the relevant structure. The fact that Definition 7.1 is the correct one
then would be guaranteed by the following:

Conjecture 7.2 (Completeness for one-step quantifier Boolean doctrines). Let (Pi : Cop → BA)i=0,1 be a
one-step quantifier Boolean doctrine, with C small, let S ∈ C and let ϕ, ψ ∈ P1(S) be such that ϕ � ψ.
There is a one-step quantifier Boolean model (M,m) of (P0,P1) such that mS(ϕ) * mS(ψ).

We refrained from introducing one-step quantifier Boolean doctrines in the body of the paper, as we are
waiting until we prove Conjecture 7.2 (or until we find possible additional conditions to be added to the
definition of one-step quantifier Boolean doctrine that make the conjecture true). At any rate, whatever
the correct conditions on a pair (P0,P1) are, the construction in Section 6.2 provides the free construction
over a Boolean doctrine over a small base category.

7.2. Step from 0 and 1 to 2, and beyond. Similarly to what we did in Section 6, the next goal is to
provide a free construction of P2 given a one-step quantifier Boolean doctrine (P0,P1). Then we conjecture
that the following definition (obtained from Definition 3.12 that only involve n = 0, 1, 2) captures all the
properties satisfied by (P0,P1,P2) in a quantifier-stratified universal Boolean doctrine (Pn)n∈N.

Definition 7.3 (Two-step quantifier Boolean doctrine). A two-step quantifier Boolean doctrine is an ordered
triple of functors (Pi : C

op → BA)i=0,1,2 where C is a category with finite products, such that, for everyX ∈ C

and n ∈ {0, 1}, Pn(X) is a Boolean subalgebra of Pn+1(X), for every morphism f : X ′ → X in C and every
n ∈ {0, 1}, the function Pn+1(f) : Pn+1(X) → Pn+1(X ′) extends the function Pn(f) : Pn(X) → Pn(X ′),
and the following conditions hold.

(1) (Two-step universal) For every projection pr1 : X × Y → X in C, n ∈ {0, 1}, and β ∈ Pn(X × Y )
there is an element ∀Y

X,nβ ∈ Pn+1(X) such that, for every α ∈ Pn+1(X), we have (denoting with

iX×Y,n the inclusion of Pn(X × Y ) into Pn+1(X × Y ))

α ≤ ∀Y
X,nβ in Pn+1(X)⇐⇒ Pn+1(pr1)(α) ≤ iX×Y,n(β) in Pn+1(X × Y ).

(Note that one such element ∀Y
X,nβ is unique)
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(2) (One-step Beck-Chevalley) For every morphism f : X ′ → X in C and n ∈ {0, 1} the following
diagram in Pos commutes.

Pn(X ′ × Y ) Pn+1(X ′)

Pn(X × Y ) Pn+1(X)

Pn(f×idY ) Pn+1(f)

∀Y
X,n

∀Y
X′,n

(3) (Restriction of universal) For all X,Y ∈ C, the map ∀Y
X,1 restricts to ∀Y

X,0, i.e. the following diagram
in Pos commutes.

P0(X × Y ) P1(X)

P1(X × Y ) P2(X)

∀Y
X,n

iX×Y,0 iX,1

∀Y
X,1

(4) (Generation) For all X ∈ C and n ∈ {0, 1}, the Boolean algebra Pn+1(X) is generated by the union
of the images of the functions ∀Y

X,n : Pn(X × Y )→ Pn+1(X) for Y ranging in C.

Again, there is a natural way to define a two-step quantifier Boolean model of (P0,P1,P2) as the Boolean
models of P2 preserving all the relevant structure. The fact that Definition 7.3 is the correct one then would
be guaranteed by the following analogue of Conjecture 7.2:

Conjecture 7.4 (Completeness for two-step quantifier Boolean doctrines). Let (Pi : Cop → BA)i=0,1,2 be
a two-step quantifier Boolean doctrine, with C small, let S ∈ C and let ϕ, ψ ∈ P2(S) be such that ϕ � ψ.
There is a two-step quantifier Boolean model (M,m) of (P0,P1,P2) such that mS(ϕ) * mS(ψ).

The work above might be enough to obtain the free construction of Pn from (P0,P1, . . . ,Pn−1) for any
n ≥ 3, by applying the free construction of the second layer to the one-step quantifier Boolean doctrine
(Pn−1,Pn). This is because we conjecture the following to be the correct axiomatization of the tuples
(P0, . . . ,Pn) arising from a quantifier-stratified universal Boolean doctrine.

Definition 7.5 (n-step quantifier Boolean doctrine). An n-step quantifier Boolean doctrine is an ordered
list of functors (Pi : Cop → BA)i=0,1,...,n, where C is a category with finite products, such that, for all
i = 0, . . . , n− 2, (Pi,Pi+1,Pi+2) is a two-step quantifier Boolean doctrine.

Once more, there is a natural way to define an n-step quantifier Boolean model of (Pi : C
op → BA)i=0,1,...,n

as the Boolean models of Pn preserving all the relevant structure. The fact that Definition 7.5 is the correct
one then would be guaranteed by the following analogues of Conjectures 7.2 and 7.4:

Conjecture 7.6 (Completeness for n-step quantifier Boolean doctrines). Let (Pi : Cop → BA)i=0,1,...,n be
an n-step quantifier Boolean doctrine, with C small, let S ∈ C and let ϕ, ψ ∈ Pn(S) be such that ϕ � ψ.
There is an n-step quantifier Boolean model (M,m) of (Pi : Cop → BA)i=0,1,...,n such that mS(ϕ) * mS(ψ).

7.3. Bounded distributive lattices. A direction of further research is to generalize from Boolean algebras
to bounded distributive lattices. In this case, existential and universal quantifiers are not interdefinable,
making the resulting theory somewhat more complicated.

7.4. Polyadic spaces. We recall that a Stone space (also known as a Boolean space or a profinite space)
is a compact Hausdorff space in which distinct points are separated by closed open sets. We let Stone

denote the category of Stone spaces and continuous functions between them. Stone duality [20] establishes
a dual equivalence of categories between Stone and BA. There are two main advantages to utilizing duality.
Firstly, duality theory often connects syntax and semantics. For instance, in classical propositional logic,
the Lindenbaum-Tarski algebra is the free Boolean algebra on the set V of propositional variables, and its
dual space is the Cantor space 2V of all valuations over V . The second advantage is that it is often easier,
technically, to solve a problem on the dual side.
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Given a Boolean doctrine P : Cop → BA, we obtain a functor E : C→ Stone by composing P with Stone
duality. When the Boolean doctrine P : Cop → BA is also universal, its pointwise dual E : C → Stone is a
polyadic space. This notion was introduced (in a more restrictive form) by Joyal in the preliminary report
[12]. Joyal’s terminology polyadic space is inspired by Halmos’ polyadic algebras, and is not to be confused
with the entirely different use of this term as a generalization of a “dyadic space”.

The functor E associated to P has a very natural interpretation. For a context S ∈ C, we recall that a
model of P at S consists, roughly speaking, of a model M of P together with a value assignment s of S
in M (Definition 4.6). Then, for each context S ∈ C, the elements of the Stone space E(S) are—roughly
speaking—the equivalence classes of models (M, s) of P at S with respect to the equivalence relation that
identifies two models (M, s) and (M ′, s′) if they satisfy the same first-order formulas in the context S (with
the interpretation of the free variables as prescribed by the value assignments s and s′).

Given a quantifier stratification (Pn)n∈N of a universal Boolean doctrine P, there is a corresponding
sequence (En : C → Stone)n∈N of functors (linked by componentwise surjective natural transformations
E ։ En+1 ։ En), which also has a very natural interpretation. For all n ∈ N and S ∈ C, the elements of
the space En(S) are the equivalence classes of models P at S with respect to the equivalence relation that
identifies two models if they satisfy the same formulas of quantifier depth less than or equal to n.

The study of polyadic spaces is, in a certain sense, the study of spaces of models.
We plan to dualize the notions in Section 3, and we plan to exhibit how to freely add one layer of

quantifiers, dually. Our study of universal ultrafilters should make this easy. Recall that filters of a Boolean
algebra correspond to closed subsets of the dual space. In light of this correspondence, we expect universal
ultrafilters to dually correspond to quantifier points as defined in Definition 7.7 below. We use the notation
V(X) for the Stone space of closed subsets of a Stone space X equipped with the Vietoris topology [23].

Definition 7.7. Let E : C→ Stone be a functor, where C is a category with finite products, and let S ∈ C.
A quantifier point for E at S is a family (ρX)X∈C ∈

∏

X∈C
V(E(S ×X)) with the following properties.

(1) For all X,Y ∈ C and every morphism g : S ×X → Y , E(〈pr1, g〉)[ρX ] ⊆ ρY .
(2) For all X1, X2 ∈ C and all x1 ∈ ρX1 and x2 ∈ ρX2 , there is y ∈ ρX1×X2 such that E(〈pr1, pr2〉)(y) =

x1 and E(〈pr1, pr3〉)(y) = x2.
(3) ρt 6= ∅.

Let E0 : C → Stone be a functor, where C is a small category with finite products. Let E1 : C → Stone

be the functor dual to the functor FreeP0
1 obtained by adding one layer of quantification to the Boolean

doctrine P0 : Cop → BA dual to E0 (see Notations 6.12 and 6.18).

Conjecture 7.8. For each S ∈ C, the Stone space E1(S) is isomorphic to the subspace of
∏

X∈C
V(E0(S×

X)) consisting of all quantifier points for E0 at S.

The reason why we believe this conjecture is that quantifier points at S should correspond to universal
ultrafilters at S, which correspond to equivalence classes of models at S with respect to a certain equivalence
relation (Theorem B.6), which in turn should correspond to points of E1(S).

This would provide an answer, in the setting of Boolean doctrines, to the “notable obstacle to a full duality
theoretic understanding of step-by-step quantification in predicate logics” mentioned in [8, Section 4.4, First
paragraph]:

“We saw in Sect. 4.3.1 that adding a layer of existential quantifier ∃ to a Boolean algebra
B of first-order formulas (with free variables in v1,. . . ,vn) dually corresponds to taking the
image of a continuous map β(Modn) → V(X) × X , where X is the dual Stone space of
B. [...] This continuous map is defined in a canonical way, and ensures the soundness of
the construction. But we do not know, so far, how to characterise the continuous maps
β(Modn) → V(X) × X arising in this manner, which would establish the completeness of
the construction. This is a notable obstacle to a full duality theoretic understanding of
step-by-step quantification in predicate logic.”
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Appendix A. Semantic characterizations of universal filters and ideals

Theorem 5.28 shows that the notion of universal ultrafilter is meaningful. To prove the theorem, we
used universal filters and universal ideals. In this section we will show that these two notions are not
just auxiliary technical notions, but are also meaningful since they have a semantic characterization. In
Theorem A.5 we prove that universal filters are precisely the families of all formulas that are universally
valid in all models of some class of models. Similarly, in Theorem A.9, we prove that universal ideals are
precisely the families of all formulas that are universally invalid in all models of some family of models. For
the sake of completeness, we also characterize the pairs consisting of a filter and an ideal that arise from a
common family of models. This is obtained in Theorem A.16. Such pairs are called filter-ideal pairs.

In Appendix B we will generalize the results in Section 5 and in this appendix to the case where there
are some fixed free variables exempt from universal closure.

Finally, let us clarify the dependency between the appendices and the previous sections: in the appendices
we use notions and results from the rest of the manuscript, while results from the appendices are not needed
in the main body of the paper, and are only mentioned there for motivational purposes.

A.1. Semantic characterization of universal filters.

Lemma A.1. Let P : C
op → BA be a Boolean doctrine, let F = (FX)X∈C be a universal filter, let Y ∈ C

and α ∈ P(Y ) \ FY . There is a universal ultrafilter that extends F and does not contain α.

Proof. Let (IX)X be the universal ideal generated by α ∈ P(Y ). By Lemma 5.11, for each X ∈ C we have

IX = {ϕ ∈ P(X) | there is f : Y → X such that P(f)(ϕ) ≤ α}.

Observe that F and I are componentwise disjoint: indeed suppose ϕ ∈ IX ∩FX , so that there is f : Y → X
such that P(f)(ϕ) ≤ α in P(Y ). Since F is closed under reindexing and upward closed, we get α ∈ FY ,
a contradiction. By Theorem 5.21, there is a universal ultrafilter G extending F and disjoint from I. In
particular α does not belong to G, as desired. �

Remark A.2. Lemma A.1 is similar to the version of the classical ultrafilter lemma stating that every
filter not containing an element a can be extended to an ultrafilter not containing a.

Definition A.3. Let P : Cop → BA a Boolean doctrine. A universal filter (FX)X∈C for P is consistent if
⊥P(t) /∈ Ft.

Lemma A.4. Let P : Cop → BA a Boolean doctrine. Every consistent universal filter (FX)X∈C for P can
be extended to a universal ultrafilter.

Proof. Apply Lemma A.1 with Y = t and α = ⊥P(t). �

Theorem A.5. Let P : C
op → BA be a Boolean doctrine, with C small. Let F = (FX)X∈C be a family with

FX ⊆ P(X) for each X ∈ C. The following conditions are equivalent.

(1) There is a class M of Boolean models of P such that, for every X ∈ C,

FX = {α ∈ P(X) | for all (M,m) ∈M, for all x ∈M(X), x ∈ mX(α)}.

(2) F is a universal filter for P.
(3) F is the intersection of the universal ultrafilters for P containing F .

Equivalent are also the statements obtained by requiring, additionally: nonemptiness of M in (1), con-
sistency of F in (2), and the existence of a universal ultrafilter for P containing F in (3).

Proof. (1) ⇒ (3). Let G be the family of universal ultrafilters containing F . Fix X ∈ C. The inclusion
FX ⊆

⋂

G∈G GX is immediate by definition of G. For the converse inclusion, let α ∈
⋂

G∈G GX . To prove
α ∈ FX , we check that for all (M,m) ∈ M and x ∈ M(X) we have x ∈ mX(α). Let (M,m) ∈ M. For all
Y ∈ C, set

HY = {β ∈ P(Y ) | for all x ∈M(Y ), x ∈ mY (β)}.

By Theorem 5.28, (HY )Y ∈C is a universal ultrafilter, and it is easy to see that it belongs to G. Then,
α ∈

⋂

G∈G GX ⊆ HX , as desired.
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(3) ⇒ (1) Let M be the class of Boolean models (M,m) of P such that

FX ⊆ {α ∈ P(X) | for all x ∈M(X), x ∈ mX(α)}.

Let
β ∈

⋂

(M,m)∈M

{α ∈ P(X) | for all x ∈M(X), x ∈ mX(α)}.

We show that β ∈ FX , i.e. that β belongs to all universal ultrafilters G containing F . Let G be any such
universal ultrafilter. By Theorem 5.28 there is a Boolean model (M,m) of P such that, for all Y ∈ C,
GY = {γ ∈ P(Y ) | for all y ∈ M(Y ), y ∈ mY (γ)}. It is then easy to see that the Boolean model (M,m)
belongs to M. By hypothesis on β, we have β ∈ GX , as desired.

(2) ⇒ (3). Clearly, F is contained in the intersection of the universal ultrafilters containing F . For the
converse inclusion, let Y ∈ C and α ∈ P(Y ) \ FY . By Lemma A.1, there is a universal ultrafilter extending
F and not containing α.

(3) ⇒ (2). The componentwise intersection of universal (ultra)filters is a universal filter.
This proves that the statements (1), (2) and (3) are equivalent.
Let us now prove that the statements (1’), (2’) and (3’) obtained from (1), (2) and (3) as in the final

paragraph of the theorem are equivalent.
(1’) ⇒ (3’). Since M is nonempty, there is (M,m) ∈M. The family (HY )Y ∈C defined by

HY := {β ∈ P(Y ) | for all x ∈M(Y ), x ∈ mY (β)}

is a universal ultrafilter for P (by Theorem 5.28) containing F .
(3’)⇒ (1’). The classM is nonempty because, ifM were empty, we would have Ft = P(t), contradicting

the existence of a universal ultrafilter for P containing F .
(2’) ⇒ (3’). This follows from Lemma A.4.
(3’) ⇒ (2’). This is immediate. �

A.2. Semantic characterization of universal ideals.

Lemma A.6. Let P : Cop → BA be a Boolean doctrine, I = (IX)X∈C a universal ideal, Y ∈ C and
α ∈ P(Y ) \ IY . There is a universal ultraideal that extends I and does not contain α.

Proof. Let (FX)X be the universal filter generated by α ∈ P(Y ). By the description in Lemma 5.8, for
every X ∈ C

FX =

{

β ∈ P(X) | there are (fi : X → Y )i=1,...,n such that

n∧

i=1

P(fi)(α) ≤ β

}

.

Observe that F and I are componentwise disjoint: indeed suppose β ∈ IX ∩FX , so that there are (fi : X →
Y )i=1,...,n such that

∧n
i=1 P(fi)(α) ≤ β in P(X). Since I is dowward closed, we get

∧n
i=1 P(fi)(α) ∈ IX .

Therefore, by Definition 5.9(1), we obtain α ∈ IY , a contradiction. �

Definition A.7. Let P : Cop → BA be a Boolean doctrine. A universal ideal (IX)X∈C for P is consistent
if ⊤P(t) /∈ It.

Lemma A.8. Let P : Cop → BA be a Boolean doctrine. Every consistent universal ideal (IX)X∈C for P

can be extended to a universal ultraideal.

Proof. Applying Lemma A.6 (with Y = t and α = ⊤P(t) /∈ It), we obtain that there is a universal ultraideal
that extends I (and does not contain ⊤P(t)). �

Theorem A.9. Let P : Cop → BA be a Boolean doctrine, with C small. Let I = (IX)X∈C be a family with
IX ⊆ P(X) for each X ∈ C. The following conditions are equivalent.

(1) There is a class M of Boolean models of P such that, for every X ∈ C,

IX = {α ∈ P(X) | for all (M,m) ∈ M, not all x ∈M(X) satisfy x ∈ mX(α)}.

(2) I is a universal ideal for P.
(3) I is the intersection of the universal ultraideals for P containing I.
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Equivalent are also the three statements obtained by requiring, additionally: in (1) nonemptiness of M,
in (2) consistency of I, and in (3) the existence of a universal ultraideal for P containing I.

Proof. (1) ⇒ (3). Let J be the family of universal ultraideals containing I. Fix X ∈ C. The inclusion
IX ⊆

⋂

J∈J JX is immediate by definition of J . For the converse inclusion, let α ∈
⋂

J∈J JX . To prove
that α ∈ IX , we check that, for all (M,m) ∈ M, not all x ∈ M(X) satisfy x ∈ mX(α). Let (M,m) ∈ M.
For all Y ∈ C, set

LY = {β ∈ P(Y ) | not all x ∈M(Y ) satisfy x ∈ mY (β)}.

By Theorem 5.28 and Lemma 5.16, (LY )Y ∈C is a universal ultraideal, and it is easy to see that it belongs
to J . Then, α ∈

⋂

J∈J JX ⊆ LX , as desired.
(3) ⇒ (1). Let M be the class of Boolean models (M,m) of P such that

IX ⊆ {α ∈ P(X) | not all x ∈M(X) satisfy x ∈ mX(α)}.

Let
β ∈

⋂

(M,m)∈M

{α ∈ P(X) | not all x ∈M(X) satisfy x ∈ mX(α)}.

We show β ∈ IX , i.e. that β belongs to all universal ultraideal J containing I. Let J be any such universal
ultraideal and G the componentwise complement of J . In particular G is a universal ultrafilter. By
Theorem 5.28 there is a Boolean model (M,m) of P such that, for all Y ∈ C, GY = {γ ∈ P(Y ) | for all y ∈
M(Y ), y ∈ mY (γ)}. It is then easy to see that the Boolean model (M,m) belongs toM. By hypothesis on
β, we have β /∈ GX and hence β ∈ JX , as desired.

(2)⇒ (3). It is easy to see that I is contained in the intersection of the universal ultraideals that contain
I. For the converse inclusion, let Y ∈ C and let α ∈ P(Y ) \ IY . Apply Lemma A.6 to get a universal
ultraideal J that extends I and does not contain α, as desired.

(3) ⇒ (2). The componentwise intersection of universal (ultra)ideals is a universal ideal.
This proves that the statements (1), (2) and (3) are equivalent.
Let us now prove that the statements (1’), (2’) and (3’) obtained from (1), (2) and (3) as in the final

paragraph of the theorem are equivalent.
(1’) ⇒ (3’). Since M is nonempty, there is (M,m) ∈M. The family (LY )Y ∈C defined by

LY = {β ∈ P(Y ) | not all x ∈M(Y ) satisfy x ∈ mY (β)}.

is a universal ultraideal (by Theorem 5.28 and Lemma 5.16) containing I.
(3’)⇒ (1’). The classM is nonempty because, ifM were empty, we would have It = P(t), contradicting

the existence of a universal ultraideal containing I.
(2’) ⇒ (3’). This follows from Lemma A.8.
(3’) ⇒ (2’). This is immediate. �

A.3. Semantic characterization of universal filter-ideal pairs.

Definition A.10 (Universal filter-ideal pair). Let P : Cop → BA be a Boolean doctrine. A universal filter-
ideal pair for P is a pair (F, I) where F = (FX)X∈C is a universal filter for P, I = (IX)X∈C is a universal
ideal for P, and the following conditions hold for all Y ∈ C and α ∈ P(Y ).

(1) For all X ∈ C, n ∈ N, (fi : X → Y )i=1,...,n and β ∈ FX , if β ∧
∧n

i=1 P(fi)(α) ∈ IX , then α ∈ IY .
(2) For all Z ∈ C and γ ∈ IZ , if P(pr1)(α) ∨P(pr2)(γ) ∈ FY ×Z , then α ∈ FY .

Definition A.11. We say that a universal filter-ideal pair (F, I) is consistent when for every X ∈ C we
have FX ∩ IX = ∅. Otherwise, we say it is inconsistent.

Lemma A.12. Let (F, I) be an inconsistent universal filter-ideal pair. For every Y ∈ C, FY = IY = P(Y ).

Proof. By inconsistency, there are Z ∈ C and γ ∈ FZ ∩ IZ . Since γ ∈ IZ and

P(pr1)(⊥P(t)) ∨P(pr2)(γ) = γ ∈ FY = Ft×Z ,

we have ⊥P(t) ∈ Ft by Definition A.10(2). Let Y ∈ C and α ∈ P(Y ). The fact that α ∈ FY follows from
⊥P(t) ∈ Ft and the properties of universal filters. Since ⊥P(t) ∈ Ft∩It, by Definition A.10(1) (applied with
n = 0 and β = ⊥P(t)), α ∈ IY . �
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The following lemma explains the purpose of (1) and (2) in Definition A.10.

Lemma A.13. Let (F, I) be a universal filter-ideal pair, let Y ∈ C and α ∈ P(Y ).

(1) If α /∈ IY , then I is componentwise disjoint from the universal filter generated by F and α.
(2) If α /∈ FY , then F is componentwise disjoint from the universal ideal generated by I and α.

Proof. (1). We prove the contrapositive. Suppose that I intersects the universal filter generated by F and
α at some fiber. By Lemma 5.18(1), there are X ∈ C, n ∈ N, (fi : X → Y )i=1,...,n and β ∈ FX such that
β ∧

∧n
i=1 P(fi)(α) ∈ IX . By Definition A.10(1), α ∈ IY .

(2). We prove the contrapositive. Suppose that F intersects the universal ideal generated by I and α.
By Lemma 5.18(2), there is X ∈ C such that IX ∩ FX 6= ∅ or there are Z ∈ C and γ ∈ IZ such that
P(pr1)(α) ∨ P(pr2)(γ) ∈ FY ×Z . In the first case, (F, I) is inconsistent, and thus α ∈ FY by Lemma A.12.
In the second case, by Definition A.10(2), α ∈ FY . �

Lemma A.14. Let (F, I) be a universal filter-ideal pair, let Y ∈ C and α ∈ P(Y ).

(1) If α /∈ IY , then there is a universal ultrafilter that extends F , contains α and is disjoint from I.
(2) If α /∈ FY , then there is a universal ultrafilter that extends F , does not contain α, and is disjoint

from I.

Proof. (1). By Lemma A.13, I is componentwise disjoint from the universal filter F ′ generated by F and
α. By Theorem 5.21, there is a universal filter F ′′ that, componentwise, extends F ′ and is disjoint from I.

(2) is proved analogously. �

Lemma A.15. Let P : Cop → BA be a Boolean doctrine. Let (FX)X∈C be a universal ultrafilter, and for
each X ∈ C set IX := P(X) \ FX . The pair ((FX)X∈C, (IX)X∈C) is a universal filter-ideal pair.

Proof. The family (IX)X∈C is a universal ideal (as already mentioned in Lemma 5.16).
We prove the conditions (1) and (2) in Definition A.10.
(1). Let X,Y ∈ C, α ∈ P(Y ), let n ∈ N, let (fi : X → Y )i=1,...,n, let β ∈ FX , and suppose β ∧

∧n
i=1 P(fi)(α) ∈ IX . We shall prove α ∈ IY , i.e., α /∈ FY . We suppose α ∈ FY and we seek a contradiction.

From α ∈ FY we deduce that for all i = 1, . . . , n, P(fi)(α) ∈ FX , and hence β ∧
∧n

i=1 P(fi)(α) ∈ FX . Thus
β ∧

∧n
i=1 P(fi)(α) ∈ FX ∩ IX , a contradiction.

(2). Let Y, Z ∈ C, α ∈ P(Y ), γ ∈ IZ and suppose P(pr1)(α) ∨ P(pr2)(γ) ∈ FY ×Z . We check α ∈ FY .
We suppose α /∈ FY and we seek a contradiction. From γ ∈ IZ we deduce γ /∈ FZ . Use condition (3) in
Definition 5.12 we obtain P(pr1)(α) ∨P(pr2)(γ) /∈ FY ×Z , a contradiction. �

Theorem A.16. Let P : Cop → BA be a Boolean doctrine, with C small. Let F = (FX)X∈C and I =
(IX)X∈C be families with FX ⊆ P(X) and IX ⊆ P(X) for each X ∈ C. The following conditions are
equivalent.

(1) There is a class M of Boolean models of P such that, for every X ∈ C,

FX = {α ∈ P(X) | for all (M,m) ∈M, for all x ∈M(X), x ∈ mX(α)},

IX = {α ∈ P(X) | for all (M,m) ∈M, not all x ∈M(X) satisfy x ∈ mX(α)}.

(2) (F, I) is a universal filter-ideal pair for P.
(3) F is the intersection of the universal ultrafilters for P containing F and disjoint from I, and I is

the intersection of the universal ultraideals for P containing I and disjoint from F .

Equivalent are also the three statements obtained by requiring, additionally: in (1) nonemptiness of M,
in (2) consistency of (F, I), and in (3) the existence of a universal ultrafilter for P containing F and disjoint
from I.

Proof. (1) ⇒ (3). We prove that F is the componentwise intersection of the family G of all universal
ultrafilters containing F and disjoint from I. Fix X ∈ C. The inclusion FX ⊆

⋂

G∈G GX is immediate by
definition of G. For the converse inclusion, let α ∈

⋂

G∈G GX . To prove that α ∈ FX , we check that for all
(M,m) ∈ M and x ∈M(X) we have x ∈ mX(α). Let (M,m) ∈M. For all Y ∈ C, set

HY = {β ∈ P(Y ) | for all x ∈M(Y ), x ∈ mY (β)}
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By Theorem 5.28, (HY )Y ∈C is a universal ultrafilter, and it is easy to see that it belongs to G. We have
α ∈

⋂

G∈G GX ⊆ HX , as desired.
A similar argument shows that I is the intersection of the universal ultraideals for P containing I.
(3) ⇒ (1). Let M be the class of Boolean models (M,m) of P such that

FX ⊆ {α ∈ P(X) | for all x ∈M(X), x ∈ mX(α)}, and

IX ⊆ {α ∈ P(X) | not all x ∈M(X) satisfy x ∈ mX(α)}.

Let

β ∈
⋂

(M,m)∈M

{α ∈ P(X) | for all x ∈M(X), x ∈ mX(α)}.

We show that β ∈ FX , i.e. that β belongs to all universal ultrafilters G containing F and disjoint from I.
Let G be any such universal ultrafilter. By Theorem 5.28 there is a Boolean model (M,m) of P such that,
for all Y ∈ C, GY = {γ ∈ P(Y ) | for all y ∈ M(Y ), y ∈ mY (γ)}. It is then easy to see that the Boolean
model (M,m) belongs to M. By hypothesis on β, we have β ∈ GX , as desired.

A similar argument shows the desired condition on I.
(2) ⇒ (3). It is easy to see that F is contained in the intersection of the universal ultrafilters for P that

contain F and are disjoint from I. The converse inclusion is precisely Lemma A.14(2). Analogously, I is
the intersection of the universal ultraideals for P containing I and disjoint from F .

(3) ⇒ (2). By Lemma A.15, if (GX)X∈C is a universal ultrafilter and for each X ∈ C we set JX :=
P(X)\GX , then the pair ((GX)X∈C, (JX)X∈C) is a universal filter-ideal pair. Thus, (F, I) is an intersection
of universal filter-ideal pairs (G, J) (with the property thatG is a universal ultrafilter and J is componentwise
complementary), and so it is a universal filter-ideal pair.

This proves that the statements (1), (2) and (3) are equivalent.
Let us now prove that the statements (1’), (2’) and (3’) obtained from (1), (2) and (3) as in the final

paragraph of the theorem are equivalent.
(1’) ⇒ (3’). Since M is nonempty, there is (M,m) ∈M. The family (HY )Y ∈C defined by

HY := {β ∈ P(Y ) | for all x ∈M(Y ), x ∈ mY (β)}

is a universal ultrafilter (by Theorem 5.28) containing F and disjoint from I.
(3’) ⇒ (1’). The class M is nonempty because, if M were empty, we would have FX = P(X) for all

X ∈ C, contradicting the existence of a universal ultrafilter for P containing F .
(2’) ⇒ (3’). This follows from the universal ultrafilter lemma (Theorem 5.21).
(3’) ⇒ (2’). This is immediate. �

Appendix B. Semantic characterizations over fixed free variables

In Section 5, we characterized the classes of formulas whose universal closure (with respect to all free
variables) is valid in some fixed model. In this appendix, we do something similar, but we fix some free
variables that are exempt from universal closure. To illustrate this, we introduce the following notation.

B.1. Semantic characterization of universal ultrafilters over fixed free variables.

Notation B.1. Let (M,m, s) be a Boolean model of a Boolean doctrine P : Cop → BA at an object S ∈ C

(see Definition 4.6). For each X ∈ C, define

F
S,(M,m,s)
X

:= {α ∈ P(S ×X) | for all x ∈M(X), (s, x) ∈ mS×X(α)},

where we made implicit use of the isomorphism between M(S ×X) and M(S)×M(X) in writing (s, x) ∈
mS×X(α).

Remark B.2. We translate Notation B.1 to the classic syntactic setting. For this, we fix k ∈ N. Let
{s1, . . . , sk, x1, x2, x3, . . . } be a set of variables, L a language, T a quantifier-free theory in L, M a model
of T , and c1, . . . , ck ∈M . For each n ∈ N we define

F k,M,c1,...,ck
n := {α(s1, . . . , sk, x1, . . . , xn) q.-free |M, [(si 7→ ci)i] � ∀x1 . . . ∀xn α(s1, . . . , sk, x1, . . . , xn)},
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where by M, [(si 7→ ci)i] � ∀x1 . . . ∀xn α(s1, . . . , sk, x1, . . . , xn) we mean that, under the variable assignment
[(si 7→ ci)i=1,...,k], the formula ∀x1 . . .∀xn α(s1, . . . , sk, x1, . . . , xn) is valid in M .

In Theorem B.6 below we characterize the families of the form (F
S,(M,m,s)
X )X∈C for some model (M,m, s)

at S, at least in the case where the base category C is small; these families are captured axiomatically by
the notion of a universal ultrafilter at S, introduced in Definition B.3 below.

Definition B.3 (Universal ultrafilter at an object). Let P : C
op → BA be a Boolean doctrine, and let

S ∈ C. A universal ultrafilter for P at S is a family (FX)X∈C, with FX ⊆ P(S ×X) for each X ∈ C, with
the following properties.

(1) For all f : S ×X → Y and α ∈ FY , we have P(〈pr1, f〉)(α) ∈ FX .
(2) For all X ∈ C, FX is a filter of P(S ×X).
(3) For all α1 ∈ P(S×X1)\FX1 and α2 ∈ P(S×Z2)\FZ2 , in P(S×X1×X2) we have P(〈pr1, pr2〉)(α1)∨

P(〈pr1, pr3〉)(α2) /∈ FX1×X2 .
(4) ⊥P(S) /∈ Ft.

Remark B.4. We translate Definition B.3 to the classic syntactic setting. For this, we fix k ∈ N. Let
{s1, . . . , sk, x1, x2, x3, . . . } be a set of variables, L a language and T a quantifier-free theory in L. A universal
ultrafilter for T at k is a family (Fn)n∈N, with Fn a set of quantifier-freeL-formulas with s1, . . . , sk, x1, . . . , xn

as (possibly dummy) free variables, with the following properties.

(1) For every n,m ∈ N, for every formula α(s1, . . . , sk, x1, . . . , xm) ∈ Fm and for every m-tuple
(fi(s1, . . . , sk, x1, . . . , xn))i=1,...,n of (k + n)-ary terms,

α(f1(s1, . . . , sk, x1, . . . , xn), . . . , fm(s1, . . . , sk, x1, . . . , xn)) ∈ Fn.

(2) For all n ∈ N,
(a) for all quantifier-free formulas α(s1, . . . , sk, x1, . . . , xn) and β(s1, . . . , sk, x1, . . . , xn), if we have

α(s1, . . . , sk, x1, . . . , xn) ∈ Fn and α(s1, . . . , sk, x1, . . . , xn) ⊢T β(x1, . . . , xn), then we have
β(x1, . . . , xn) ∈ Fn;

(b) for all α1(s1, . . . , sk, x1, . . . , xn), α2(s1, . . . , sk, x1, . . . , xn) ∈ Fn, we have

α1(s1, . . . , sk, x1, . . . , xn) ∧ α2(s1, . . . , sk, x1, . . . , xn) ∈ Fn;

(c) ⊤(s1, . . . , sk, x1, . . . , xn) ∈ Fn.
(3) For every n1, n2 ∈ N and for every pair of quantifier-free formulas α1(s1, . . . , sk, x1, . . . , xn1 ) and

α2(s1, . . . , sk, x1, . . . , xn2 ), if

α1(s1, . . . , sk, x1, . . . , xn1 ) ∨ α2(s1, . . . , sk, xn1+1, . . . , xs1,...,sk,n1+n2 ) ∈ Fn1+n2 ,

then α1(s1, . . . , sk, x1, . . . , xn1 ) ∈ Fn1 or α2(s1, . . . , sk, x1, . . . , xn2) ∈ Fn2 .
(4) For all n ∈ N, ⊥(s1, . . . , sk, x1, . . . , xn) /∈ Fn.

For every model M of T and for every c1, . . . , ck ∈M , it is easy to check that the family (Fn)n∈N defined
by

Fn := {α(s1, . . . , sk, x1, . . . , xn) quantifier-free |M, [(si 7→ ci)i] � ∀x1 . . . ∀xn α(s1, . . . , sk, x1, . . . , xn)},

is a universal filter in the sense above.

Remark B.5. Let P : Cop → BA be a Boolean doctrine, and S ∈ C. A universal ultrafilter for P at S is a
universal ultrafilter for the Boolean doctrine PS : C

op
S → BA obtained by adding a constant of type S for P

(see Remark 4.5).

Theorem B.6. Let P : Cop → BA be a Boolean doctrine, with C small, and let S ∈ C. Let F = (FX)X∈C

be a family with FX ⊆ P(S ×X) for each X ∈ C. The following conditions are equivalent.

(1) There is a Boolean model (M,m, s) of P at S such that, for every X ∈ C,

FX = {α ∈ P(S ×X) | for all x ∈M(X), (s, x) ∈ mS×X(α)}.

(2) F is a universal ultrafilter for P at S.
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Proof. This follows from Theorem 5.28 applied to the Boolean doctrine PS obtained from P by adding a
constant of type S and from Lemma 4.7. �

Remark B.7. We translate Theorem B.6 to the classic syntactic setting. For this, we fix k ∈ N. Let
{s1, . . . , sk, x1, x2, . . . } be a set of variables, L a language and T a quantifier-free theory in L. Let (Fn)n∈N

be a family with Fn a set of quantifier-free L-formulas with s1, . . . , sk, x1, . . . , xn as free (possibly dummy)
variables. The following conditions are equivalent.

(1) There are a model M of T and c1, . . . , ck ∈M such that, for every n ∈ N,

Fn = {α(s1, . . . , sk, x1, . . . , xn) quantifier-free |M, [(si 7→ ci)i] � ∀x1 . . . ∀xn α(s1, . . . , sk, x1, . . . , xn)}.

(2) (Fn)n∈N is a universal ultrafilter for T at k (in the sense of Remark B.4).

B.2. Semantic characterization of universal filters over fixed free variables. Analogously to Sec-
tion 5, we introduce the notions of universal filters and universal ideals at a given object. To motivate these
notions, we extend Notation B.1 as follows.

Notation B.8. Let M be a class of models of a Boolean doctrine P : Cop → BA at an object S ∈ C. For
each X ∈ C, define

FS,M
X

:= {α ∈ P(S ×X) | for all (M,m, s) ∈M, for all x ∈M(X), (s, x) ∈ mS×X(α)},

IS,M
X

:= {α ∈ P(S ×X) | for all (M,m, s) ∈M, not all x ∈M(X) satisfy (s, x) ∈ mS×X(α)}.

Roughly speaking,

• FS,M consists of all the formulas α(S,X) such that M, [S 7→ s] � ∀X α(S,X) is valid in all elements
(M, s) of M,
• IS,M consists of all the formulas α(S,X) such that M, [S 7→ s] � ¬(∀X α(S,X)) is valid in all

elements (M, s) of M.

Remark B.9. We translate Notation B.8 to the classic syntactic setting. For this, we fix k ∈ N. Let
{s1, . . . , sk, x1, x2, x3, . . . } be a set of variables, L a language and T a quantifier-free theory in L. Let M
be a class of tuples (M, c1, . . . , ck) where M is a model of T and c1, . . . , ck ∈M . For each n ∈ N we define

F k,M
n := {α(s1, . . . , sk, x1, . . . , xn) quantifier-free | for all (M, c1, . . . , ck) ∈M,

M, [(si 7→ ci)i] � ∀x1 . . .∀xn α(s1, . . . , sk, x1, . . . , xn)},

Ik,M
n := {α(s1, . . . , sk, x1, . . . , xn) quantifier-free | for all (M, c1, . . . , ck) ∈M,

M, [(si 7→ ci)i] 2 ∀x1 . . .∀xn α(s1, . . . , sk, x1, . . . , xn)}.

We introduce universal filters at an object S, meant to characterize the families of the form FS,M forM
an arbitrary class of models at S (see Notation B.8).

Definition B.10 (Universal filter at an object). Let P : Cop → BA be a Boolean doctrine, and S ∈ C. A
universal filter for P at S is a family (FX)X∈C, with FX ⊆ P(S ×X) for each X ∈ C, with the following
properties.

(1) For all f : S ×X → Y and α ∈ FY , P(〈pr1, f〉)(α) ∈ FX .
(2) For all X ∈ C, FX is a filter of P(S ×X).

Remark B.11. We translate Definition B.10 to the classic syntactic setting. For this, we fix k ∈ N.
Let {s1, . . . , sk, x1, x2, x3, . . . } be a set of variables, let L a language and let T a quantifier-free theory
in L. A universal filter for T at k is a family (Fn)n∈N, with Fn a set of quantifier-free L-formulas with
s1, . . . , sk, x1, . . . , xn as (possibly dummy) free variables, with the following properties.

(1) For every n,m ∈ N, for every formula α(s1, . . . , sk, x1, . . . , xm) ∈ Fm and for every m-tuple
(fi(s1, . . . , sk, x1, . . . , xn))i=1,...,n of (k + n)-ary terms,

α(f1(s1, . . . , sk, x1, . . . , xn), . . . , fm(s1, . . . , sk, x1, . . . , xn)) ∈ Fn.

(2) For all n ∈ N,
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(a) for all quantifier-free formulas α(s1, . . . , sk, x1, . . . , xn) and β(s1, . . . , sk, x1, . . . , xn), if we have
α(s1, . . . , sk, x1, . . . , xn) ∈ Fn and α(s1, . . . , sk, x1, . . . , xn) ⊢T β(s1, . . . , sk, x1, . . . , xn), then
we have β(s1, . . . , sk, x1, . . . , xn) ∈ Fn;

(b) for all α1(s1, . . . , sk, x1, . . . , xn), α2(s1, . . . , sk, x1, . . . , xn) ∈ Fn, we have

α1(s1, . . . , sk, x1, . . . , xn) ∧ α2(s1, . . . , sk, x1, . . . , xn) ∈ Fn;

(c) ⊤(s1, . . . , sk, x1, . . . , xn) ∈ Fn.

These conditions are satisfied by any family (F k,M
n )n∈N defined by a class M as in Remark B.9.

Remark B.12. Let P : C
op → BA be a Boolean doctrine, and S ∈ C. A universal filter for P at S is a

universal filter for the Boolean doctrine PS : C
op
S → BA obtained by adding a constant of type S for P (see

Remark 4.5).

Definition B.13. Let P : Cop → BA be a Boolean doctrine, and let S ∈ C. A universal filter (FX)X∈C for
P at S is consistent if ⊥P(S) /∈ Ft.

Theorem B.14. Let P : C
op → BA be a Boolean doctrine, with C small, and let S ∈ C. Let F = (FX)X∈C

be a family with FX ⊆ P(S ×X) for each X ∈ C. The following conditions are equivalent.

(1) There is a class (resp. nonempty class) M of Boolean models of P at S such that, for every X ∈ C,

FX = {α ∈ P(S ×X) | for all (M,m, s) ∈M, for all x ∈M(X), (s, x) ∈ mS×X(α)},

(2) F is a universal filter (resp. consistent universal filter) for P at S.

Proof. This follows from Theorem A.5 applied to the Boolean doctrine PS obtained from P by adding a
constant of type S and from Lemma 4.7. �

B.3. Semantic characterization of universal ideal over fixed free variables. We introduce universal
ideals at an object S, meant to characterize the families of the form IS,M forM an arbitrary class of models
at S (see Notation B.8).

Definition B.15 (Universal ideal at an object). Let P : Cop → BA be a Boolean doctrine, and S ∈ C. A
universal ideal for P at S is a family (IX)X∈C, with IX ⊆ P(S × X) for each X ∈ C, with the following
properties.

(1) For all m ∈ N, (fj : S × X → Y )j=1,...,m and α ∈ P(S × Y ), if
∧m

j=1 P(〈pr1, fi〉)(α) ∈ IX then
α ∈ IY .

(2) For all X ∈ C, IX is downward closed.
(3) For all α1 ∈ IX1 and α2 ∈ IX2 , in P(S ×X1 ×X2) we have P(〈pr1, pr2〉)(α1) ∨P(〈pr1, pr3〉)(α2) ∈

IX1×X2 .
(4) ⊥P(S) ∈ It.

Remark B.16. We translate Definition B.15 to the classic syntactic setting. For this, we fix k ∈ N. Let
{s1, . . . , sk, x1, x2, x3, . . . } be a set of variables, L a language and T a quantifier-free theory in L. A universal
ideal for T at k is a family (In)n∈N, with In a set of quantifier-free L-formulas with s1, . . . , sk, x1, . . . , xn as
(possibly dummy) free variables, with the following properties.

(1) For all p, q,m ∈ N, every (m · q)-tuple (fj,k(s1, . . . , sk, x1, . . . , xp))j∈{1,...,m}, k∈{1,...,q} of (k + p)-ary
terms and every quantifier-free formula α(s1, . . . , sk, x1, . . . , xq), if

m∧

j=1

α(fj,1(s1, . . . , sk, x1, . . . , xp), . . . , fj,p(s1, . . . , sk, x1, . . . , xp)) ∈ Ip,

then

α(s1, . . . , sk, x1, . . . , xq) ∈ Iq.

(2) For all n ∈ N, all quantifier-free formulas α(s1, . . . , sk, x1, . . . , xn) and β(s1, . . . , sk, x1, . . . , xn), if
β(s1, . . . , sk, x1, . . . , xn) ∈ In and α(s1, . . . , sk, x1, . . . , xn) ⊢T β(s1, . . . , sk, x1, . . . , xn), then

α(s1, . . . , sk, x1, . . . , xn) ∈ In.
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(3) For all n1, n2 ∈ N, α1(s1, . . . , sk, x1, . . . , xn1 ) ∈ In1 and α2(s1, . . . , sk, x1, . . . , xn2 ) ∈ In2 , we have

α1(s1, . . . , sk, x1, . . . , xn1 ) ∨ α2(s1, . . . , sk, xn1+1, . . . , xn1+n2) ∈ In1+n2 ;

(4) For all n ∈ N, ⊥(s1, . . . , sk, x1, . . . , xn) ∈ In.

These conditions are satisfied by any family (Ik,M
n )n∈N defined by a class M as in Remark B.9.

Remark B.17. Let P : Cop → BA be a Boolean doctrine, and S ∈ C. A universal ideal for P at S is a
universal ideal for the Boolean doctrine PS : C

op
S → BA obtained by adding a constant of type S for P (see

Remark 4.5).

Definition B.18. Let P : Cop → BA be a Boolean doctrine, and let S ∈ C. A universal ideal (IX)X∈C for
P at S is consistent if ⊤P(S) /∈ It.

Theorem B.19. Let P : Cop → BA be a Boolean doctrine, with C small, and let S ∈ C. Let I = (IX)X∈C

be a family with IX ⊆ P(S ×X) for each X ∈ C. The following conditions are equivalent.

(1) There is a class (resp. nonempty class) M of Boolean models of P at S such that, for every X ∈ C,

IX = {α ∈ P(S ×X) | for all (M,m, s) ∈M, not all x ∈M(X) satisfy (s, x) ∈ mS×X(α)}.

(2) I is a universal ideal (resp. consistent universal ideal) for P at S.

Proof. This follows from Theorem A.9 applied to the Boolean doctrine PS obtained from P by adding a
constant of type S and from Lemma 4.7. �

B.4. Semantic characterization of universal filter-ideal pairs over fixed free variables.

Definition B.20 (Universal filter-ideal pair at an object). Let P : Cop → BA be a Boolean doctrine, and
S ∈ C. A universal filter-ideal pair for P at S is a pair (F, I) where F is a universal filter for P at S, I is a
universal ideal for P at S, and the following conditions hold for all Y ∈ C and α ∈ P(S × Y ).

(1) For all X ∈ C, n ∈ N, (fi : S ×X → Y )i=1,...,n and β ∈ FX , if β ∧
∧n

i=1 P(〈pr1, fi〉)(α) ∈ IX , then
α ∈ IY .

(2) For all Z ∈ C and γ ∈ IZ , if P(〈pr1, pr2〉)(α) ∨P(〈pr1, pr3〉)(γ) ∈ FY ×Z , then α ∈ FY .

Remark B.21. Let P : Cop → BA be a Boolean doctrine, and S ∈ C. A universal filter-ideal for P at S is
a universal filter-ideal pair for the Boolean doctrine PS : C

op
S → BA obtained by adding a constant of type

S for P (see Remark 4.5).

Theorem B.22. Let P : Cop → BA be a Boolean doctrine, with C small, and let S ∈ C. Let F = (FX)X∈C

and I = (IX)X∈C be families with FX ⊆ P(S × X) and IX ⊆ P(S × X) for each X ∈ C. The following
conditions are equivalent.

(1) There is a class (resp. nonempty class) M of Boolean models of P at S such that, for every X ∈ C,

FX = {α ∈ P(S ×X) | for all (M,m, s) ∈M, for all x ∈M(X), (s, x) ∈ mS×X(α)},

IX = {α ∈ P(S ×X) | for all (M,m, s) ∈M, not all x ∈M(X) satisfy (s, x) ∈ mS×X(α)}.

(2) (F, I) is a universal filter-ideal pair (resp. consistent universal filter-ideal pair) for P at S.

Proof. This follows from Theorem A.16 applied to the Boolean doctrine PS obtained from P by adding a
constant of type S and from Lemma 4.7. �
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