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A dual concept of the angle in mathematics and practice
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We consider the angle in mathematics and arrive at a conclusion that there are two concepts on
the issue. One is a descriptive geometrical one, while the other is from functional analysis. They are
somewhat different, allow for different options, and both are legitimate and in use. Their difference
may cause certain confusions. While the ‘geometrical angle’ allows for different choice of units, the
‘functional angle’ is a purely dimensionless one, being related to the angle in radians. We consider
possible options to resolve the problem as it concerns the units.

Recently a problem of the unit for the angle and related
questions within the SI system [1] became a topic of a
discussion in the metrological community (see, e.g., [2]).
We believe that the problem is not purely terminological,
but is in part a conceptual one.

I. TWO CONCEPTS OF THE ANGLE

In mathematics, physics, and more practical activity
two somewhat different concepts of the angle are simul-
taneously in use. One is geometrical and the other is
from functional analysis. Both concepts cover the angle
and its functions, such as the sine and cosine. (Speaking
about the angle one should also have in minds various
related quantities (see Appendix A for detail)).

FIG. 1. The angle and its sine and cosine in a rectangular
triangle. The angle itself is defined by a description of the
triangle. The functions of the angle are defined as a ratio of
the length of the opposite or adjacent (to the angle) cathetus
and the length of the hypotenuse.
As we see to describe an angle (of a triangle) in descriptive
geometry we do not need any units. Neither they are required
to find the key functions of the angle.

Concept #1 considers the angle as a geometric ob-
ject. Once we have a triangle with the sides, the lengths
of which are known, the angle is well defined. Such a
definition does not require units [for the angle] immedi-
ately. The angle, defined so, directly allows for quanti-
tative evaluations. E.g., in a rectangular triangle with
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the known length of the sides one can find the sine and
cosine of each angle still without any direct quantitative
description of the angles themselves (see Fig. 1). That
is possible for any figures formed by segments of straight
lines. (Note, an angle drawn on the floor, ground, or pa-
per is a physical object that can be studied by means of
physics. The compass and the straightedge can be also
build as physical object. Using physical realization of
geometrical objects and instrument we may in practice
treat descriptive geometry as a part of physics.)
The angle as a property of a figure allows in descriptive

geometry for a number of operations and quantitative
statements. Firstly, it is possible to sum and subtract
angles, to build an angle which has the same value as a
given one, to halve an angle (see Fig. 2) etc.

FIG. 2. Building a bisector and splitting an angle into two
equal parts. That is a quantitative operation on an angle,
that does not require any quantitative parameterization of it
and may be performed with a compass and a straightedge,
two standard master tools of descriptive geometry.

There are special objects, such as the full angle, the
straight angle (a half of the full one), and the right angle
(which is a quarter of the full one). There is a zero angle
which is important for a description of mathematical re-
lations between the angles. A possibility to make simple
operations with the angles and the presence of the natu-
ral measures allow for a presentation of any angle exactly
or approximately in terms of the full angle, as one of the
possibilities of a quantitative description of angles.
Note, an angle drawn on the floor, ground, or paper is

a physical object that can be studied by means of physics.
The compass and the straightedge can be also build as
physical object. Using physical realization of geometrical
objects and instrument we may in practice treat descrip-
tive geometry as a part of physics.
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Rigorously speaking in metrological terms, probably
we have to distinguish an object, the angle as its [quan-
titative] property, and a quantitative description of the
property (or rather several of them). All three are re-
lated, and we use term ‘angle’ for all of them, but they
are not the same.
A construction, that consists of two lines, is an object

(see, e.g., Fig. 1). When we build an angle bisector we can
say that we split the angle (as an object) in two angles
with equal values (see Fig. 2), or alternatively we can
say that we divide the angle (as a quantitative property)
in two equal angles. We also deal with a quantitative
property when calculate the sine and cosine for the angle
of a triangle (see, e.g., Fig. 1). When we measure an
angle in some units we consider a parameterization of
the angle (see, e.g., Fig. 3). We use the same term and
in a sense equalize the concepts.

θ

FIG. 3. The length of an arc is l = θr, where θ is a dimen-
sionless parameterization of the [central] angle, such as the
full angle is 2π. Respectively, the length of the circumfer-
ence, i.e., the arc related to the full angle, is 2πr and number
π = 3.14... can be calculated or measured, which makes the
parameterization under question well defined.

It is a complicated question what is the quantity,
the quantitative property or its parameterization. (One
should not confuse the choice of the units and the pa-
rameterization. An angle can be characterized by the
related values of its sine and cosine. That is a parame-
terization, but it does not suggest any unit.—And that
is a very efficient parameterization, that in particular al-
lows for checking the equality of two angles and for their
summation etc.1) The practice is that we often do not
distinguish the property and its parameterization as two
separate entities. As far as direct operations (such as
splitting an angle in two by a bisector) on the quantita-
tive properties are possible, one can consider the proper-
ties quantitatively, but still without any parameterization
and separately from it.
That is not only the problem of the angle. In case of

exclusive additive quantities we can often perform similar
operations on quantitative properties in ‘natural terms’

1 As a byproduct, the very possibility to adequately characterize
the angle by its sine and cosine is a demonstration that there is
no intrinsic dimensional unit hidden in the angles.

without specifying any parameterization, i.e., without a
presentation of it as a product of a numerical value and
a unit. One can double or halve the mass, weight (as a
certain kind of force), length, volume etc. I should say
that the mathematically well defined operations on the
quantitative properties, without involving their numeri-
cal values, are preceding the introduction of the numeri-
cal operations. Rigorously speaking we often do not sum
[numerical] values of two angles, masses, or volumes, we
rather sum the angles, masses, or volumes themselves and
interpret the result of the summation through the sum
of the numerical values.
One should not confuse the parameterization of a

quantity with its value. When we have two specific ob-
jects, say massive ones, we can speak about the values
of their masses without any relation to the units and pa-
rameterizations. We can, e.g., state that the values of the
mass of two different electrons are equal. The distance
is a very general quantity, that is rather a geommetric
one. We can parameterize it with a certain time period
through the delay or return of echo of a certain signal.
The distance between two specific points is a quantity
value, that may be parameterized by different means or
not parameterized at all. Note, that the presentation
of a quantity value trough a numerical value and a unit
definitely requires a certain parameterization, but the ex-
istence of neither the quantity nor the quantity does not.
In the meantime, the sine and cosine of the angle are

defined as ‘pure’ dimensionless quantities, values of which
do not depend on how we parameterize (i.e., ‘measure’)
the angles. The sine and cosine can be considered as
quantitative properties of the angle as an object (see

Fig. 1; the very notation sin(ÂBC) is self explaining);
they can also be considered as a certain non-numerical
functions of the angle as a property of the object.
The ‘non-numerical’ means that we can characterize

the angle with no number, but considering it as an angle
of a triangle or so, which is still sufficient for a deter-
mination of its sine and cosine (see, e.g., Fig. 1). Still
the sine and cosine can also be considered as numerical
functions of a certain parameterization of the angle, i.e.,
functions such that if we know their argument we can
obtain their value through a certain calculation without
any geometric manipulations.
The geometric consideration is also partly valid for cir-

cles and their properties (cf. Fig 3). However a rigorous
description of curved lines and the related lengths and ar-
eas may at a certain stage involve limits, derivatives, and
integrals, which makes this kind of geometric problems
close to the functional approach (cf. Fig 4). Considering
the length of a segment of a circle we can introduce the
value of l/r for an arc (see Fig 3). It is referred to as the
angle in radians. We may consider the usage of radians
just as a comment that carries a kind of redundant piece
of information used in order to avoid a possible confusion.
We may also consider word ‘radian’ as the name of a

specific angle as a geometric object, such as l = r. In this
sense the radian similarly to the full angle is a natural
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measure of the angles that exists in descriptive geome-
try. Such a definition allows ones to introduce π as a half
length of a circumference with radius r = 1 (as many
mathematicians would say) or as the l/r ratio related to
the straight angle. It does not allow by itself to find the
value of π, but it opens the door for subsequent measure-
ments with elements of the descriptive geometry, realized
in the physical world, or for subsequent calculations of
various kinds.

FIG. 4. The length of an elementary segment of a curve
described by y = f(x) is dl =

√

dx2 + dy2. The identity has
sense only if x and y are quantities of the same kind.
To find the length of a finite segment one has to calculate
integral

∫ √

1 + (f ′(x))2 dx, which turns a geometric problem
in a problem of functional analysis.

Within the descriptive-geometry approach it is natu-
ral to compare various angles and to express their values
in terms of natural angles, such as the full angle or the
radian. In other words, it is natural to introduce certain
reference values or units for the angle. Many metrolog-
ical documents (see, e.g., [1]) consider a presentation of
a quantity as a product of a numerical value and a ref-
erence. But none specifically tells that the ‘reference’ is
to be a dimensional one. The commonly used references
are often used as a kind of units. We return to this prob-
lem later on in Sect. III, but here we need to stress, that
considering natural measures or references such as the
full angle or the radian, we do not mean that the angle
require a dimensional unit. Neither we mean by default
that the full angle or the radian are dimensional.
Concept #2 considers the angle as an object of the

functional analysis. That means the presence of various
relations between a numerical parameterization of the
angle and numerical values of the functions of it. There
are many relations of different kinds, that include deriva-
tives, integrals, differential equations, Taylor series, such
as

arccos(x) =
π

2
−
∫ x

0

dx√
1− x2

=
π

2
−

∞
∑

k=0

(2k)!x2k+1

4k(k!)2(2k + 1)
, (1)

which allow ones to directly or indirectly define trigono-
metric functions (including the inverse ones) in terms of

rational functions. In such a case with the absence of
any geometrical meaning, one can speak about cos(2)
or arccos(1/2) without any references to any geometric
structure. The sine, cosine, and angle naturally appear
as ‘pure’ dimensionless numbers. The mentioned rela-
tions and functions appear also in physics as relations
between the physical quantities or as a description of
their properties etc. Once we deal with [numerical] re-
lations between the quantities with objects, such as x
and arccos(x) in (1), we have to consider them as di-
mensionless quantities, not as numerical values of some
dimensional quantities. (Metrological documents usually
stress that there may be relations between the quantities
or, alternatively, relations between their numerical values
and separately between their units. But the relations on
quantities should not contain the numerical values of the
quantities by themselves, which is the very base of the
quantity calculus . The same concerns the angle in rela-
tion l = θr in the caption to Fig. 3. That in particular
means that the angle measured in the radians (i.e., the
numerical value of the angle when the unit is the radian)
can be a part of an equation on quantities only if the
radian is equal to unity and therefore the angle in the
radians is just the angle.
In the meantime, we can realize the geometrical ax-

ioms in terms of a certain coordinate space. We can
‘draw’ lines and circles by writing related equations. In
particular, we find that the angle understood in terms
of the functional analysis is the same as the one equal
to l/r (see Fig 3), as follows from a consideration of the
length of a curve as the integral as shown in Fig 4. We
can also find the numerical value of π which requires a
certain knowledge of the mathematical analysis. We see
that two concepts are in principle compatible, at least in
the case of a certain parameterization of the [‘geometri-
cal’] angle, namely, in the radians.
Two mentioned concepts are actually not two concepts

of the angle, but rather consequences of two concepts of
geometry, a descriptive one and an analytic one. The for-
mer is based on naturally existing objects (or their analog
models), while the latter speaks in terms of mathemati-
cal analysis and a numerical models. In the former case
we first physically observe the objects and next describe
and parameterize them, which gives us a certain liberty
in choice of the parameterizations. In the latter case we
first define the parameter space and next ‘build’ [virtual]
objects in it mathematically modeling the reality.

II. MATHEMATICS AND DIMENSIONAL

DESCRIPTION

Above we spoke about geometry and angles which
might make an impression that we meant our ‘actual’
[position-space] geometry, the one we observe around
through our everyday life. In the meantime, sometimes
it is said that in mathematics they consider only dimen-
sionless values. Both ideas play an important role in
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metrological discussions on the angle. And they are both
not entirely correct.

FIG. 5. The diagram that charts the phases of a substance.
The scales for the pressure p and the temperature T are un-
related and therefore the [apparent] angles in the plot have
no physical meaning.

Many of us made plots. We may consider, e.g., a plot
such as p(T ) (see, e.g., Fig. 5). The plot does not com-
pletely satisfy the Euclidean geometry. That is because p
and T are not compatible, since they are not ‘just’ num-
bers. The set of possible values of p is such as it is equiv-
alent to nonnegative real numbers R+. It is equivalent in
a sense that we can build an one-to-one correspondence
p → f(p), such as f(p) is just a number and the corre-
spondence maintains all the relations (equalities, inequal-
ities) and linear operations. The problem however is that
we can build an infinite number of functions f(p) which
satisfy those conditions. Actually, a choice of f(p) is a
kind of a choice of the parameterization for p. In the case
of the class of homogeneous linear functions the question
about the parameterizations is reduced to the question of
the units for p. (Considering T similarly and introducing
the linear functions that are not homogeneous addition-
ally to the question of units (say, the degrees of Celsius or
Fahrenheit) we also deal with choice of zero of g(T ) that
differs from a parameterization to a parameterization.)
When we consider the p− T space we note that set of

possible p is equivalent to R+ as well as set of possible
T . But these two R+ sets are not comparable. There
is no operation like p + T . That makes impossible to
meaningfully consider angles. To consider them we have
to build f(p) and g(T ) which have values in the same set
and therefore allows for an operation like f(p) + g(T ).
Eventually that would allow for a consideration of angles.
However, since we can make the correspondences f(p)
and g(T ) in many different ways the result is useless.
The same problem is with circles. We cannot draw a

curve the points of which are at the same distance from
a certain point, since the distances in p and T directions
are not compatible. The noncompatibility of p and T
does not preserve from linear operations in the p − T
parameter space, which makes the set of possible (p, T )
pairs to be a part of a vector space, but preserves it from
the introduction of the scalar product, which is required
for an Euclidian space.

It is often said that a vector is characterized by a mag-
nitude and direction. We can separate those two char-
acteristics when we describe a vector either in a kind of
polar or spherical coordinates or use the magnitude and
the so-called unity vector. In the p − T space, we can
introduce neither a meaningful magnitude nor a mean-
ingful angles or a unity vector.
Considering a possibility of an operation like p+T (or

f(p) + g(T ) as an unambiguous one) is a rigorous way
how in mathematics they recognize that two quantities
are of the same kind or not, which is the base property of
the quantities that eventually delivers us the dimensions
and units.
We may consider an 2d space with two ‘coordinates’

of the same kind. Often that allows not only for linear
operations but also for a scalar product which involves

a1b1 + a2b2 where ai are coordinates of ~a and bi of ~b.
E.g., we can consider the momentum space where the
coordinates are the components of the momentum. We
understand that all the geometric statements are equally
correct for the position space and the momentum space.
That actually means that it is unimportant what is the
dimension of the length of the line in Figs. 1, 4, and 3.
It may be the one of the length (and the unit may be the
meter), the one of the momentum (and the unit may be
kgm/s), or anything else. It is important to recognize
that the length of all the objects is of one dimension and
it is not just a number. We can write

‘just a number′ + 1

and cannot write

length + 1 .

It is also important to introduce the concept of the
area and to recognize that the values of the area are
of a dimension that is neither one of the length nor of
‘just’ numbers, but we may build a meaningful function
h(l1, l2) the values of which would have a dimension of
the area and proportional to l1 and l2. (Here we speak in
algebraic terms about the area of a rectangle with sides
l1, l2.)
In this sense the expressions of the functional approach

to the angle and trigonometric functions such as (1) deal
with ‘just’ numbers and θ = l/r from identity on the
length of the arc (see Fig. 3) is ‘just a number’ as well.
Expression2

angle + 1

2 In mathematics we can write expressions like

length + length ,

length

length
+ number ,

length · length + area , (2)
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would have sense (cf. (1)), which makes the [dimension-
less] angle different from the [dimensional] length and
area without any explicit acknowledgment of their di-
mensions.
Actually, the presence of quantities of unspecified di-

mensions does not belong exclusively to mathematics. In
Lagrangian and Hamiltonian mechanics the generalized
coordinates may be of any dimension. The same is with
coordinates in general relativity. That happens often
when we try to derive something in general. What is
important it that a formalism (be it physical or math-
ematical) often does not specify dimensions of involved
variables, but in any particular practical case of an ap-
plication of the formalism the dimensions are specified in
one or other way.
It actually is a great advantage that we can formulate

some general solutions of certain kinds of problems. It is
good that we can consider the harmonic oscillator with
an amplitude of an unspecified dimension, instead of sub-
sequently solving equations for a position oscillation, for
an angle one, and additionally for an electric charge in a
contour with a capacitor and an inductor.

but cannot write

length + number ,

length + area , (3)

which set relations between the set of the numbers, the set of
values of the length, and the set of values of the area. More
rigorously, we have to speak not about sets by themselves but
about sets with several operations introduced, satisfying certain
conditions.
The addition is introduced for all of these sets as well as the mul-
tiplication by a real number, which makes the one-dimensional
vector space. The possibility or impossibility for such an opera-
tion is equivalent to the notion of the dimension in physics and
metrology.

In metrology the quantity calculus is a construction which rec-
ognizes different dimensions. The identities also assume a rela-
tion between the sets for different quantities, say, between the
length and the area if the multiplication is involved.

While the consideration of the dimensions in mathematics is
ignored, the dimension calculus is nevertheless present in an indi-
rect way. A clear clarification whether the mathematical quantity
is in fact dimensional is the operation on the quantity of interest

quantity + (quantity)2 ,

which is allowed for a dimensionless quantity and not allowed
for a dimensional one, which in mathematics is often understood
but seldom spoken out. The Taylor expansion like the one in (1)
indicates that the angle in functional analysis is dimensionless.

One may compare that with a notion of atomic units, that are
dimensional and well-defined one, however, since each quantities
have their well-recognized units, the notation in use is just ‘a.u.’
for all atomic units, suggesting that the readers should them-
selves recognize the dimension of the quantity under question
and use the related atomic unit.

Similarly, in many cases instead of dimensional values codes
in practice contain only numerical values assuming that if every-
thing is done properly the related identity on the units is fulfilled
automatically. Technically however such an information is not
spelled out inside the codes.

We also enjoy such a possibility in metrology. In the
data evaluation the value of χ2 is dimensionless, while a
measured value of a datum (and its uncertainty) may be
of any dimension. The normal distribution is of the same
shape for any dimensional data as well as the rules of the
propagation of the uncertainty etc.
It is worth also to mention that in metrology a quantity

is defined (see, e.g., [3]) as an one that can be presented
as a product of a numerical value and a unit. That is
possible if we are capable to make comparisons of quan-
tities of the same kind and to present the results for their
ratios, i.e., to perform certain operations without intro-
ducing any units. Similarly, as we see in the case of a
bisector (see Fig. 2) we may perform certain operations
on quantities without introducing any parameterization.
(In the both cases we mean operation in our physical
world on the quantities presented in natural terms, i.e.,
as properties of certain real objects.) The very possibil-
ity to introduce the numerical values and units is a direct
consequence of the presence of such operations. Techni-
cally, if our intention is a quantitative description of ob-
jects and phenomena a ‘direct’ parameterization of each
property is not a necessity, but a possibility. E.g., for
an angle an indirect parameterization, which completely
describes the angle, is possible in many ways such as giv-
ing the values of the related sine and cosine (see, e.g.,
Fig. 1) or the length of the related arc at a certain (pos-
sibly prearranged) value of the radius (see, e.g., Fig. 3).
The question of the units and dimensions appears when
we discuss a kind of a direct parameterization and is in
part avoidable.
It would be incorrect to say that in mathematics they

used something else, less explicit, instead of the dimen-
sions. One has to clearly understand what is the cause
and what is the consequence. Roughly speaking, develop-
ing a quantitative description of natural phenomena one
deals with individual values of quantitative properties
which are members of certain sets with various relations,
operations, and functions introduced on them. There are
many different sets, different in a sense that they are not
compatible, but distinguishable. One can consider the
very introduction of the dimensions and units as tools.
The introduction of the dimensions is one of possibili-
ties to mark different sets and their compatibility, while
the units is a way to correspond various sets to a set of
numerical values, which are ‘just’ numbers etc., i.e., to
parameterize the sets.

III. REFERENCE VALUES AND

DIMENSIONLESS QUANTITIES

A result of a measurement of a quantity is often rep-
resented as a product of a certain numerical value and a
reference quantity of the same kind. We hesitate to use
here term ‘unit’, which is a core metrological term and
there are a number of formal definitions of it, while the
term ‘reference quantity’ or ‘reference value’ sufficiently
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describes something what actually is in use in practice
and is more general. When we say that one bought two
dozens of eggs, the dozen serves as a reference value for
counting the eggs. When we say about 12% of the popu-
lation of a town, the percent [of the population] serves as
a reference value. There are many other examples when
a certain problem has a natural or conventional reference
value.
Dimensionless reference values play the same role as

dimensional ones, except we often hesitate to call them
‘units’. However, if we do call them so, we start to specu-
late whether the related quantities are really dimension-
less and whether those units are just numbers or some-
thing more.
It may be a long discussion whether the angle is a

dimensional property, but in this section we would like
to only demonstrate that measuring a certain quantity
in terms of a certain reference value (does not matter
whether we call it a unit) does not mean by itself that the
quantity is dimensional. We also see that one can choose
diverse reference values for dimensionless quantities, such
as dozens or tens, percents or ppm.

IV. SPECIAL NAMES OF UNITY AND THE

QUANTITY CALCULUS

Quantity calculus is a special name of a procedure deal-
ing with dimensional quantities and keeping their dimen-
sions intact. The procedure is rigorously defined or at
least is intended to be.
Meanwhile, there are various ideas of using a special

name for the dimensionless quantities, i.e., a special name
for unity. Introducing such a name may have advantages,
e.g, for using prefixes for multiples and submultiples or
to avoid a confusions in certain applications.
Using such a unit for data by themselves is possibly

advantageous, but there is a problem in application of
the quantity calculus on such data. We may introduce
a certain unit which is equal to unity. That means that
any procedure, which arbitrary introduces or drops it,
is mathematically legitimate. Thinking about machine-
reading procedures we arrive at a point where a machine
should choose which of several legitimate operations to
perform.
Most of [human-related] ‘ambiguities’ come in practice

through confusing different quantities, say, the frequency
and the angular frequency, or the flux and the intensity.
Sometimes those quantities have similar name, or very
long names, short versions of which are very similar or
even the same in a scientific ‘spoken’ language. To dis-
tinguish different quantities by using the long names for
them should not be a problem for a machine.
Another problem would appear if we deny the radian

to be equal to unity, which relates to a consideration of
the angle as a dimensional quantity. In such a case in
some applications we should deal with the angle (as a
dimensional quantity) measuring it in the radians, but in

some others (see appendix B) we are to use the numer-

ical value of the angle in the radians in equations with
quantities. That undermines the rules of the quantity
calculus.

V. THE ANGLE: WHAT ARE THE OPTIONS ?

Prior of making any decision on the angle and the ra-
dian we have to realize what are the options. From the
point of view of terminology the choice we have is the
following.
Both concepts of the angle are present in practice and

the related values are in massive use. We use geometri-
cally understood angle when, e.g., we do a triangulation
but we use the functional angle when, e.g., we consider
a Taylor series of the cosine. (A list of examples of use
of the dimensional angle in various areas of mathemat-
ics and physics is given in Appendix B, where we con-
sider either equations related to the high-school level or
University basics or to the base equations in somewhat
advanced areas like quantum mechanics.)
Speaking about the functional approach, we can calcu-

late angles and sines with help of integrals, Taylor series,
or l/r. I.e., we can calculate the value of the angle from
the functional concept. We can neither deny existence of
the related values nor forbid their use. We can modify
all the functional expressions to make them valid for a
dimensional angle, e.g., for the angles in degrees. That
is not a problem. The problem is that the value l/r ex-
ists by itself, it is legitimate, it is in use, and it is called
‘angle’. The same is about the results of evaluations of
(1) and many similar expansions. We may forbid to use
term ‘angle’ for them, but we cannot avoid the use of the
related expressions. If the dimensionless angle from those
expressions will not be named ‘angle’ by the metrological
community it will exist as the ‘customers angle’. The in-
troduction of quantities is rather what the metrological
community prefer to avoid. Their focus is the units (see,
e.g., [1]) and names for the quantities in use, but not on
their contents and definitions.
We also remind that the angle, considered in geomet-

ric terms is usually applied in pure geometric problems.
There are many other applications, such as the phase an-
gle in time series, the phase angle in applications which
use complex numbers, the angle in other spaces than
our 3d one. There are mathematical engines and ta-
bles and some of them use only angle of the functional
concept. The dimensionless values introduced along the
functional definitions are unavoidable and, being dimen-
sionless, they are consistent with the SI3.
So, what can we do?

3 We have to distinguish the use of traditional approaches and
units which is hard to stop for ‘social’ reasons and the use of le-
gitimate well-defined mathematical objects such l/r, which pro-
vides us with simplicity of notation. We can regulate the use
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Option #1. We may introduce a clear terminological
differences between two kinds of the angles, with, e.g., the
‘geometric angle’ being a kind of a dimensional quantity
(and we may discuss its units etc.) and the ‘functional
angle’ being just a number, which is equal to the numer-
ical value of the geometric angle in the radians. Both
are to be allowed for use, but it may be recommended
to use rather one of them than the other for certain oc-
casions. Note, this solution suggests not only two angle
quantities, but also a duplication of trigonometric func-
tions as we discussed above (as non-numerical functions
of a geometric object and as purely numerical functions
technically (from a point of view of their definition and
key relations) unrelated to any geometric object). That
is the most clear once we consider the inverse trigono-
metric functions which would produce the [dimensional]
geometric angles from ‘pure’ numbers (cf. (1)).
Option #2. The other option is to make two concepts

explicitly consistent one to the other without any possi-
ble ambiguity. The latter may be reached only under the
following conditions (that mostly follow from the func-
tional approach that does not allow us too much room
for flexibility).

• The angle is a dimensionless quantity, i.e., just a
number.

• The angle may be presented in terms of unit ‘ra-
dian’, which satisfies the condition

1 rad = 1 ,

i.e., the radian is just a special name of unity, used
for some purposes (which is to be a subject of a
certain regulation).

• The other units for the angle should be considered
as non-SI units being defined as certain multiples
or submultiples of the radian, such as:

full angle = 2π rad ,

1◦ =
π rad

180
,

etc.

Definition as a non-decimal multiple or submultiple
is a common practice for non-SI units (such as the
foot, the calorie, mm Hg) (cf. [1]).

There is a certain specifics in case of the dimen-
sionless quantities. We do not call ‘%’ or ‘ppm’
units, but sometimes treat them like units, despite
they are in a sense just names of certain numbers.
They are definitely in use as commonly accepted
‘reference values’.

of units, such a degrees or radians, but we cannot regulate the
use of legitimately defined quantities except of constraining their
names.

(Technically, the degree is a 1/360th portion of the
full angle, which is in its turn equal to 2π [radians].
So, it is a special number.)

• Since we set 1 rad = 1 we can recommend on some
occasions to keep ‘radian’, but dropping it out
should be also a valid option. Roughly speaking,
we may limit the format of input and output data
for certain applications but doing any calculation
we should follow the quantity calculus which tech-
nically allows for dropping or re-introducing the ra-
dian at any stage. After all, if we intend to set
a machine-readable data base we cannot forbid to
perform a valid mathematical operation on its data.

Returning to the first option, we have to mention, that
the geometric angle is a kind of a dimensional quan-
tity. So, we need either to introduce it as a base or
derived quantity of our system of units and quantities.
If it is a derived one, say, as a ratio of two lengths, that
would eventually make the angle a dimensionless quan-
tity. Therefore, the choice is that the angle may be either
a new base quantity or a dimensionless quantity. Dimen-
sionless quantities are just the numbers. We indeed may
use various reference values to present the results of their
measurements. Those reference values, does not matter
whether we call them units or not, should be the names
of special numbers. E.g., we could consider π as a unit,
or a dozen as a such, or %, etc. If the units are the name
of numbers, which for the angle are actually well defined
and exactly known ones, then we can always redefine such
units to make the new dimensionless unit to be a name
of unity, and once a dimensionless unit is unity it may
be dropped out. The latter is a general statement on the
units of the dimensionless quantities. Once we follow the
quantity calculus there could be no independent mean-
ingful dimensionless unit. They all can be expressed in
the term of unity.
What is often considered as a dimensionless unit is

rather a kind of a comment. Ten apples are not the
same as ten oranges. But they have the same number

of fruits . If the equation contains the number of fruits,
one ten is equal to the other ten. (E.g., if we intend to
provide a fruit per a lunch box.) If the equation, say,
being a recipe for a certain fruit meal, specifically con-
tains the number of apples or the number of oranges they
are different. Many physical equations contain sums over
the objects. If some objects are identical the equations
contain a summation over the kinds of the objects. The
number of identical objects of the same kind remains just
a pure number. The difference is not in their numerical
values, but in the context which reminds us that we may
refer to different quantities. That is not related exclu-
sively to dimensionless quantities. A kilogram of apples
produces the same gravity as a kilogram of anything else.
But a dessert recipe may specifically require a kilogram
of apples. Speaking about pure scientific applications,
one can also compare a physical and chemical consider-
ation of the amount of substance. In chemistry a mole
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of one substance has different properties than a mole of
another substance, while in thermodynamics a mole of
any molecular substance produces the same pressure un-
der the same temperature. Moles of different substances
are exchangeable.

Usually mentioning the radian or other dimensionless
units is supposed to help with the context of the quantity
we are after, e.g., to remind that the frequency ν and
the angular frequency ω = 2πν are two related but not
identical quantities. (‘Cycles’ the explicit use of which
is recommended [2] is nothing else as a name of counted
entities, which might be mentioned if helpful especially
for a pure periodic motion.)

While considering the situation one has to remember
that is not about cyclic motions, as often said. The ques-
tion of a possibly new dimension and a new indepen-
dent unit concerns a much broader range of phenomena.
There are simple mathematical relations between expo-
nential (with a pure imaginary argument) and trigono-
metric functions as well as between certain logarithmic
and inverse trigonometric ones. A function known on a
finite interval can always be presented with the Fourier
series, while a function on an infinite interval can be
presented with a Fourier integral presentation. What-
ever we do with trigonometric functions, by e.g., con-
sidering them as a function of a dimensional argument,
immediately affects all the other functions through the
Fourier transformation. It looks like any real and even
certain cosmetic redefinitions should produce a great con-
fusions in mathematical analysis and its application to
basic physical and practical phenomena and may meet a
strong opposition in public educational community. (See
Appendix B for more details.)

Option #1 turns actually to be transformed into two.
Option #1a is to consider the angle as a new base quan-
tity and option #1b is a terminological cloaking spell to
cover option #2 in such a way that it would look like
option #1 in certain applications.

As shown above we start both educationally and his-
torically with a certain dual concept of the angle, which
has been caused by a certain shortage of our understand-
ing because both the educational and historical experi-
ence and knowledge come step by step. That is our choice
whether we recognize that and allow those two concepts
to merge as it is done in mathematics with the functional
analysis or we introduce a chain of definitions to distin-
guish the concepts of the geometric angle and the func-
tional one and to maintain their separation and parallel
existence.

We remind that in contrast to the modification of the
system of quantities as it was in the case of a transition
from the Gaussian one to the SI, when the dimensions of
various dimensional quantities have been changed, now
we deal with a quantity, which is dimensionless in the
functional concept and therefore will be still legitimate
for the use within the SI even in case if the [geometric]
angle will be treated as a dimensional one. On contrary,
the old Gaussian quantities and units are not legitimate

to be used within the SI.

A system, which allows for both concepts to be dis-
tinguished but be in a legitimate use, is a confusingly
redundant one, because absolutely the same information
can be delivered by using of the angle of either of the
concepts without any [mathematical] ambiguity.

Mathematics is not a science, but a language of the
science, and the geometry is a part of it. But it is a very
special part. We study geometry of ‘our space’ exper-
imentally, which makes it a part of the physical world.
However, ‘our’ geometry and the ‘abstract’ one cannot
be separated. Once we make a plot of whatever we study
we can measure details of the plot and in particular we
can measure the angles with a protractor. In other words
once we use a geometry as a language to discuss a prob-
lem, the angular quantities are involved. Any change in
the treatment of the angle will immediately affect every
area of physics and science where we make use of plots,
which roughly means all the science.

E.g., once we consider complex number a = 4 + 3i
we can make a plot (on a real piece of paper or directly
on a real floor or a blackboard) and according to our
knowledge from geometry |a| = 5 and ϕa = π/6 is the
phase of the complex number determined as an angle of
a rectangular triangle with the legs of 3 and 4 arbitrary
units. If we consider the impedance (at a certain fre-
quency ν = ω/2π) with numerical values equal to a in
the SI units (i.e. Z = aΩ = (4 + 3i)Ω) then |Z| = 5Ω
and in the time domain the phase of the periodic cur-
rent and voltage are different by π/6. We can consider a
problem with the impedance as a problem with a consec-
utive connection of a resistor R = 4Ω and an inductor
with Lω = 3Ω. in such a case we can consider a plot
in coordinates of R − Lω and make a conclusion on the
phase difference in the time domain and ratio of the am-
plitudes of the voltage and current as U0/I0 = 5Ω. We
see that for certain problems the [geometric] angle in a
‘real’ plane presenting the complex one, the phase of a
complex number in the polar form, and the phase differ-
ence of two time series (for the current and voltage) are
exchangeable. The features related to the geometry may
easily appear in a non-geometric problem. Since the ‘ge-
ometry’ appears in non-geometric problems it does not
look naturally to introduce an additional unit that can-
not be expressed in terms of unity.

Personally, I do not think that we can afford to rec-
ognize the plane angle (and next the solid angle) as a
new base quantity of the SI. We are also unlikely ready
to introduce two parallel lines of the definitions of simi-
lar quantities and functions, the geometric ones and the
functional ones, which eventually leaves us with option
#2, but probably in a combination with a certain ver-
sion of option #1b with a permissible non-SI unit for the
angle.

Actually, the use of various grads and degrees is very
similar to percents. The former are usually defined
as submultiples (sometimes decimal (as for the Celsius
temperature scale), sometimes nondecimals (as for the
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angles)) of a certain naturally existing reference value.
When we speak about percents we remember to a cer-
tain extend that they are percents of something, how-
ever, when we speak about degrees and grads we rather
do not mention that they are submultiple of some refer-
ence value. That gives to them a certain degree of in-
dependence and makes them dimensional by themselves,
not as submultiples.

Perception of the angle as a dimensional quantity
partly comes from our use of different units for it, such
as the radian and the degree. The latter is defined as
1/360th part of the full angle. Its dimension if any is
determined by the dimension of the full angle that serves
as the reference value. Roughly speaking, the full angle
is the [natural] unit, while the degree is a submultiple of
it. The reference to the full angle is a kind of omitted in
any expressions and one may consider the degrees as a
unit by itself. (In many applications ppm, promille, per-
cents etc. are not considered as parts of a certain total
(say, volume or population) but as the unit by them-
selves. The certain level of presence of alcohol in blood
has legal consequences and the measurement device in-
dicates it. What is the physical and chemical meaning
of the units is unimportant for the involved sides.) The
‘true’ dimension of the geometrical angle is unimportant
for the customers, because to measure an angle in the
degrees means to perform a measurement of its ratio to
the full angle, but not of the absolute value of the angle.
Making a decision that the full angle is a certain number
(2π) does not affect any use of the degrees.

As concerning the radian that is again a question what
it is and how we use it. The radian is the name of a spe-
cial value of the central angle, such as the length of the
related arc is equal to the radius. It is unimportant for
the customers what is the meaning (if any) of such a spe-
cial angle. Apart from the question of naming such an
angle, the answer to the question what it is does not af-
fect any measurements. If we decide that the value of
the angle (the quantity value, not the numerical one) is
just equal to unity, that would not affect the measure-
ments and practice of using the radian for the angular
measurements.

Any practical confusion comes from the practice of us-
ing the names of the angular units and have nothing to
do with their geometrical, mathematical (in general), and
physical meaning. Resolving possible confusions does not
require a change of the SI system of quantities and units.

One may think that considering problems with the cir-
cular geometry or the periodic phenomena we may avoid
confusions by introducing a dimensional angle. That is
not that easy. There is a certain conflict in the perception
of the angular and phase quantities that arises from two
different views on them. One is focused on their ‘direct’
measurement. When we measure an angle or a phase
or the related quantities, such as their time derivatives,
we prefer to recognize the related unit as a kind of in-
dependent ones, since our concern is mostly to compare
one angle to another one. (Actually, there are many ar-

eas where diverse submultiples of the full angle are used.
The name of the submultiple is crucial to describe the
‘unit’ of the measurements. Measuring a length in the
millimeters, centimeters, and kilometers does not mean
any departure from the SI. Even considering the foot, ex-
actly equal to 0.3048m, allows for its use still remaining
within the SI.)
The situation changes drastically when we study re-

lations of the angular or phase-related quantities to the
others, e.g., to mechanical linear quantities, be it for a
rotation or a harmonic oscillation. Relating the acceler-
ation and the radius (or displacement) is the equation of
the second Newton’s law, both sides of which (with the
force and the kinematic acceleration) are free of the ra-
dians. However they determine the angular velocity (for
the rotation) and angular frequency (for the periodic os-
cillation). I.e., the values of the angular quantities are
naturally determined without any use of any indepen-
dent angular units (see the Appendix B for details).
Metrological regulation serves to aim a number of ob-

jectives. One of them is to build an efficient coherent
system of units and quantities, another is to facilitate for
an efficient presentation of the results of measurements
of various quantities. Customers interested in measure-
ments of several individual quantities without their con-
nections to the others and customers who are interested
in quantities related to many others create two quite sep-
arate kinds of groups and they in general have different
interest and different issues to address.
Possibly, the introduction of the dimensional angle

would serve interests of the customers, involved in the
angular and phase measurements, helping them to avoid
possible confusions. Obviously, that would create nu-
merous complications in the system of quantities and
should require the redefinition of various mathematical
and physical quantities, and changing a large number
of fundamental relations. It would also end up with a
system where a dimensional angle and its dimensionless
twin coexist. The latter, being dimensionless, is a quan-
tity that by definition is consistent with the SI system.
There is no reason to expect that customers, that are not
involved in angular and phase measurements, would ac-
cept the newcomer, such as the dimensional angle, that
would make many equations more complicated.

Appendix A: Quantities related to the angle

Discussing the angle one has to remember about a
number of related quantities, such as the phase and the
angular frequency.
1. In physics and practice we use two close terms, such

as ‘the angle’ and ‘the phase’, which are exchangeable in
many situations. When we consider a ‘real’ rotation it is
about a varying angle. However, when we describe the ro-
tation the azimuthal angle in the polar coordinates plays
a role of the phase in mathematical expressions, such as
x = cos(φ(t)). As an example of an opposite situation,
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one can consider a complex number, say, 2 + 3i and plot
it in the complex plane, allowing for its ‘Cartesian’ and
‘polar’ presentation. The phase of the complex number is
an angle in the plane and can be directly measured by a
protractor. Term ‘the angle’ is the one that more closely
relates to the geometric case in a ‘real’ space, while ‘the
phase’ is often used in respect to the argument of pe-
riodic functions of the mathematical analysis, however,
as we mention they are exchangeable in a sense. In this
paper we prefer to use only term ‘the angle’.

2. When the phase changes with the time we introduce
the angular frequency as its time derivative. When the
angle does we introduce the angular velocity. The later
may be understood as a scalar quantity equal to the time
derivative of the angle in a plane, or as a vector (or rig-
orously speaking a pseudovector) the absolute value of
which is the mentioned time derivative and the direction
is along the rotation axis (for the counter clockwise ro-
tation).

When we describe the rotation in the cartesian coor-
dinates with expressions, such as x(t) = cos(ωt), ω is the
angular velocity (in its scalar sense), but serves as the
angular frequency for periodic change of x(t). While the
angular velocity and angular frequency are two different
quantities they are exchangeable to a certain extend.

3. Fourier conjugated quantities appear through the
Fourier transformation in numerous occasions in various
areas of physics and practice. The transformation relates
a pair of Fourier conjugated quantities through the phase
of the involved integrands. Since they are related through
the phase, once the phase is dimensional the dimensions
of Fourier conjugated quantities are related through the
unit of the phase or, since the angle and the phase are
often exchangeable, through the unit of the angle.

(In simple words, frequency ν and time t or angular fre-
quency ω and t, depending of the definition of the Fourier
transform, are Fourier conjugated quantities. Their di-
mensions are related through the condition of the dimen-
sionless phase of the factors e−i(2πνt) or e−iωt, depending
on the definitions. The phase is dimensionless because
once we do integrations or differentiations we have no
other option as consider the exponential function as a
dimensionless fucntion of a dimensionless argument.)

4. We often consider the geometry as exclusively ge-
ometry of our space. However, we love to make plots
and to take advantage of geometric interpretations, such
as considering the derivative as the tangential or the in-
tegral as the area below a curve. That automatically
introduces angles to the problems that have nothing to
do with geometry by themselves. However, such angles
are real enough to be measurable with a protractor.

On the other hand, considering a function we can al-
ways have in mind that its argument is a kind of a time
variable, which would allow for kinematic interpretation
e.g. as the derivative as a velocity. The phase by itself
is not related to the time evolution, but the frequency
and the angular frequency are. Using kinematic inter-
pretations in terms of possible cyclic motion (through

the Fourier transformation) we rely on the phase.
If the functions and/or the defining equations are the

same (the ones of interest, the ones for a geometric inter-
pretation, and the ones for a kinematic interpretation)
we can consider the interpretations as an analog models
and make evaluations on those models that would in-
volve angle- and phase-related quantities to diverse phe-
nomena. In ‘old good time’ one could make a plot in a
millimeter paper and cut out the area below the curve.
Weighing it would give a result for the integral. In the
meanwhile, weighing a piece of real paper means to use
the descriptive geometry in our real physical world.
5. Speaking about geometry and calculation of various

properties, we have to remember that diverse geometric
factors appear in various identities. A geometric exam-
ple are the ratio of the length of the arc and the radius,
the ratio of the volume of the sector of the sphere and
its radius etc. In physics we often have to sum or aver-
age certain values over all the directions. Such factors
are dimensionless and they often are algebraic functions
of the plane or solid angle. I.e., they present a natural
set of dimensionless angle-related quantities, that have
a clear geometrical or physical meaning, being directly
measurable. Following the standard definition of the ra-
dian (as a name for unity) some of them are equal to the
angles under the question. They are discussed in part in
Sect. C. On the other hand, the angle in degrees deals in
fact the value of the portion of the full angle, which is
also a dimensionless geometric factor.

Appendix B: Basic identities with the phase and

angle

Below we give a brief list of various identities mostly
from the high school and basic University stage of the
public education. They are related to diverse areas. The
list is brief in a sense that we consider only several rela-
tions from each area, however our intention is to show the
diversity of the fields involved. The relations are written
using the angle measured in the radians assuming that
the radian is just a name of unity and nothing else and
therefore may be omitted.
The relations play a key role in a great number of var-

ious educational texts and reference books on physics
and mathematics and their application to more practi-
cal issues. Because of various functional relations be-
tween trigonometric functions and others (through re-
lations between trigonometric functions and exponen-
tial ones, transformations between Cartesian and po-
lar/spherical/cylindrical coordinates, Fourier series and
transformations, etc.) the identities cover a broad range
of areas far from descriptive geometry and cyclic phe-
nomena.
Each of those relations below can in principle be ad-

justed to a dimensional definition of the angle and to the
angle measured in units other than the radian equal to
unity. However, it would be very hard to adjust all of
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them in a coherent non-confusing way. We will need to
edit the cornerstone relations that create the coherent
system of quantities.

In contrast to a transition from the Gaussian system
to the SI, the introduction of a dimensional angle would
affect mathematical research community and, which may
be even more important, mathematical educational com-
munity. The mentioned transition has changed units for
a number of quantities, but as concerning the system of
quantities the change was only for electrical phenomena.
In the case of a consideration of quantity ‘angle’ (and sub-
sequently the ‘phase’) that would affect all topical areas
of physics in one or other way.

As we mentioned, most of these relations if not all can
be in principle adjusted to the dimensional angle. How-
ever, there is another option that always exist. All the re-
lations listed below are correct in a coherent sense. That
means that apart of referring to the quantity under ques-
tion as to ‘the angle’, we can give it a different name and
the relations will remain intact as a system of relations
on quantity that ‘formerly’ were referred to as the angle.
The related quantity is dimensionless and therefore does
not need any special approval to be used within the SI.

For references on the mathematical issues see [4, 5],
while on the physical ones see [5] for more details.

a. Geometry of a circle

The length of an arc

l = θr ,

and the related area of a sector in a circle

s =
θr2

2

are expressed through the same central angle θ. So the
angle can be determined from one of the identities (e.g.,
as l/r) and utilized to find the other. That makes the
dimensionless ratio l/r of practical importance, does not
matter how we define the angle.

The angle in a triangle allows for a determination of
trigonometric functions sin θ and cos θ etc. The introduc-
tion of the values of the functions does not require any
specific parameterization of the angle, but some of their
properties are.

Returning to the relations above we have to remember
that they are important not only to compare the results
of measurements of θ, r, l, s, but also for many other re-
lations. E.g., for the circular rotation we could intend
to compare dθ/dt and dl/dt (see below). Many relations
in this appendix, being important by themselves, are of
even more importance through consequences.

b. Limits and derivatives

One of the most famous limits studied at the high
school is

lim
x→0

sinx

x
= 1 .

The limit plays a key role in derivation of the expressions
for the derivatives of the trigonometric functions over
their argument, the angle,

d sinx

dx
= cosx ,

d cosx

dx
= − sinx . (B1)

With the sine and cosine as [geometric] functions of
a dimension angle (of any dimension with the unit not
equal to unity) the identities in (B1) are incorrect, and
even the dimensions in the LH and RH sides of the iden-
tities do not match. If we consider the frequency ν as
measured in cycles per a unit of time, considering ‘cycles’
as a kind of unit not equal to unity, then the argument
of the sine and cosine should have the same dimension as
νt, with the ‘unit’ cycle. Such a function can be in princi-
ple introduces. However, the dimensions of the identities
would not match as well. When the numeric functions go
beyond simple algebraic ones, one has to be careful with
the dimensions, otherwise many standard functional re-
lations may be broken.

c. Rotation and angular velocity

The ‘most important circle’ in the educational physics
appears in the case of a circular periodic rotation around
the center of the coordinates. It is described by vector
equations

~v = ~ω × ~r ,

~a = ~ω × ~v , (B2)

(B3)

or by scalar ones

ω =
dϕ

dt
,

v = ωr ,

a = ωv , (B4)

assuming that the acceleration in a point of trajectory
is along the radius (in the opposite direction), while the
velocity is perpendicular to the radius. Here ~ω is the
angular velocity and ω is its absolute value. The relation
v = ωr immediately follows from one of the definitions
of the angle as l = ϕr by its differentiation.
There is a difference in the perception of the descrip-

tion of the circular rotation depending on whether the
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focus is on a measurement of an angular quantity or on
its relations to the linear ones. While measuring the an-
gle or its time derivative, the angular velocity ω, it seems
convenient to introduce the units of the angle and angu-
lar velocity explicitly, and to treat them as independent
to a certain extend. These units are not necessary to be
related to the radian. However, while describing the cir-
cular rotation and considering various linear quantities
(r, v, a), expressing one of them in the term of another
and the angular velocity (as in (B4)), we are rather in-
terested in the angular velocity in the radians per second
with the radian equal to unity, because the relations be-
tween the mentioned linear kinematic quantities cannot
include any units, but the meter and the second.

Successfully describing a circular trajectory, one may
apply a similar notion to a description of a free motion
of a point in a rotating frame

~̈r = −2
[

~ω × ~̇r
]

− [~ω × [~ω × ~r]] . (B5)

The equation gives us the Coriolis and centrifugal forces
in the frame rotating with the angular velocity ~ω in re-
spect to the inertial frame.

The relations above are for the circular cyclic motion.
However, the values related to the rotation, such as ω
should not be understood as the ones related only to a
circular cyclic motion. Once we have a plane motion, i.e.,
study a motion of Earth around Sun we may speak about
the angular velocity. The standard Kepler’s motion is a
famous example of a non-circular rotation with a variable
ω. The planetary motion is in vivo not a circular one
and because of a precession of the perihelion it is neither
periodic. The influence of other planets on the ‘probe’
one may produce an observable non-periodic component
as well.

d. Integration in polar, spherical, and cylindrical
coordinates

Use of polar, spherical, and cylindrical coordinates al-
lows for a simplification in consideration of a rotation,
however, it is also beneficial in case of certain symme-
tries in a problem of interest.

Here, we are interested not in a description of a mo-
tion in those coordinates, but in an integration over the

volume
∫

f(~r) d2~r =

∫ ∞

0

∫ 2π

0

f(~r) rdrdϕ ,

∫

f(~r) d3~r =

∫ ∞

0

∫ 2π

0

∫ π

0

f(~r) r2 sin θ drdϕdθ ,

∫

f(~r) d3~r =

∫ ∞

0

∫ 2π

0

∫ 1

−1

f(~r) r2drdϕdt ,

∫

f(~r) d3~r =

∫ ∞

0

∫

Ω

f(~r) r2drdΩ ,

∫

f(~r) d3~r =

∫ ∞

0

∫ 2π

0

∫ ∞

−∞

f(~r) rdrdϕdz , (B6)

where we use a standard notation and set t ≡ cos θ.
A specific case, closely related to the integration over

the volume is an integration over the solid angle. The
elementary solid angle is

dΩ = sin θ dϕdθ = dϕdt =
d3~r

r2dr
.

Note, as a part of the integration over the volume in (B6),
dΩ is dimensionless.

e. Definite integrals

There is a number of indefinite integrals which lead
to arccos, arcsin, arctan (see, e.g, the one in (1)). Their
definite versions, such as

∫ 1

0

dx√
1− x2

=
π

2
,

lead to numerous π’s with rational coefficient. Many in-
tegrals, both definite and indefinite, can be evaluated
numerically. They are just numbers. Calculating an inte-
gral numerically one cannot know whether it is related to
inverse trigonometric functions and therefore is supposed
to produce an angle (which may require the radians) or
not. Note, the derivation of the integral above can be
achieved easily by a substitution

x = sinϕ

with further integration over ϕ. While ϕ is introduced
as a pure mathematical trick one can explain the substi-
tution geometrically as we would integrate in a plane.
Another integral which leads to π is the one for the

normalization of the Gaussian normal distribution
∫ ∞

−∞

exp

(

− x2

2σ2

)

dx =
1√
2πσ

.

The appearance of π is a geometric one in a sense. The
famous derivation of the integral deals with

∫ ∞

−∞

exp

(

− x2

2σ2

)

dx ×
∫ ∞

−∞

exp

(

− y2

2σ2

)

dy
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being considered as an integral over the x−y plane deliv-
ers 2π as the full angle while integrating in polar coordi-
nates. Often a 2d distribution is plotted and considered
‘geometrically’. One may say that ‘building’ a square of
the integral and interpreting it as an integral over the
plane is an ‘artificial trick’ still unrelated to the geom-
etry. We remind that the Maxwellian distribution on ~v
has the form of the Gaussian one. The distribution on
vx and vy is of the same form and one may consider an
2d distribution in the vx − vy plane. That is an example
where the same mathematical trick is related to a pretty
real geometry.
Obtaining geometrical π’s we rather deal with the

strait angle. Having π as just a number in discussed
above relations we consider the radian to be equal to
unity.
For more integrals that involve π see [6].
It is worth to mention that π is also a part of the Euler

formula

e−iπ = −1 , (B7)

which can be considered as an algebraic relation between
three outstanding numbers (π, e, i) or pure geometrically
in the complex plane.

f. Harmonic oscillator

The harmonic oscillator is an important notion of clas-
sical physics that plays a great role in quantummechanics
and many other areas. The one with a spring is described
by differential equation

mẍ(t) = −k x(t) , (B8)

That is a direct application of the 2nd Newton’s law,
where x is a Cartesian coordinate, m is the mass, and
−kx is the Hooke’s-law force, which completely deter-
mines the dimension of k. Combining mentioned ele-
ments we can build a differential equation of a periodic
motion (B8) and find

ω2 =
k

m
, (B9)

that expresses the angular frequency of the periodic mo-
tion through the non-cyclic non-angular quantities.
A similar situation is with many other oscillators when

we derive their equations from somewhat general physical
laws. In particular, equations for the electric oscillators
are build of R, L, and C which do not require any radians
and U, I,Q which involve them neither. Those quanti-
ties and relations between them are introduced for non-
periodic effects and therefore they cannot involve any
radians.
From the point of view of mathematical equations on

well-defined physical quantities, equation

mẍ(t) = −γẋ(t)− k x(t) (B10)

is the one for the damping oscillations. If one of the
terms on the RH side is equal to zero it describes either
the harmonic oscillations or the deceleration with a full
stop due to friction in media. Some of the described
motions are purely periodic, some are a kind of cyclic,
but not periodic, some are not cyclic at all. The radian
if presented should be presented in all three terms.

g. Exponents and logarithms and the complex analysis

The harmonic equation (B8) can be resolved in terms
of imaginary exponents such as exp(±iωt) which is one
of numerous examples of relations between exponents
and trigonometric functions in mathematical analysis [of
complex functions]. That is indeed not a high school
level, but neither that is just University basics because
some of the discussed here relations are among the most
attractive in popular literature and spread in the under-
university community.
We remind that the set of complex numbers C is not

the real plane R2. The plane allows for fewer operations.
Such an operation as a multiplication of two complex
numbers z1z2 is not a standard one for R2. Nevertheless,
it is very fruitful to rely on the plane. In particular, there
is a complex analog of the polar coordinates

z = re−iϕ .

The phase ϕ can be presented as an angle and measured
by a protractor. To come to ‘Cartesian’ presentation of
a complex number

z = x+ i y

we may use various semigeometric relations such as

eiϕ = cosϕ+ i sinϕ ,

cosϕ =
eiϕ + e−iϕ

2
,

sinϕ =
eiϕ − e−iϕ

2i
. (B11)

Geometry of a conus and trajectories of bodies in a
central gravitation potential involve conic sections. For
some of them it is beneficial to use hyperbolic trigono-
metric functions closely related to the trigonometric ones

ch(ix) = cosx ,

sh(ix) = i sinx ,

cos(ix) = chx ,

sin(ix) = i shx . (B12)

The related identities for the inverse functions are

arcsinx = −i ln
(

√

1− x2 + ix
)

,

arccosx = −i ln
(

x+ i
√

1− x2
)

,

arctanx =
1

2i
ln

(

i− x

i+ x

)

, (B13)
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where we remind that all the functions arc..., ln,
√
...

above have multiple values and the branches on both
sides of the identity should be specified. The logarithm-
related functions on the RH side are those that are used
as inverse hyperbolic trigonometric functions.
We see here a close relation between functions for cyclic

phenomena with angles and phases and functions, that
are not cyclic with real arguments but are cyclic with
the pure imaginary ones and vice versa. In the func-
tional analysis once a function is defined for pure real (or
pure imaginary) argument the definition is extended to
all the complex plane. Indeed, the involvement of the
units cannot depend on whether the numerical value is
real or imaginary.

h. Natural line width, lifetime, resonances

In a periodic motion we deal with e−iωt. If there is a
line width or the emission involves the lifetime we have
something like

e−i(ω−iγ/2)t = e−iωt e−(γ/2)t ,

and therefore all the conventions on periodic motion and
periodic functions, such as an exponent with the imagi-
nary argument, are to be extended to a standard expo-
nent of a real argument. That is related to any oscillating
and wave phenomena (in mechanics, electricity, optics,
acoustics, etc.) and quantum mechanics.
The requirement of classical physics for the appear-

ance of such an exponent is the dissipation of energy (cf.
(B10)), while in the case of quantum mechanics we speak
about the decay and the lifetime. The exponential fac-
tor above combines together a cyclic parameter ω and a
non-cyclic dissipation one γ.

i. Fourier series and Fourier transformation

In general, periodic functions are a powerful tool to
study any dependence. E.g., if we have function f(x) on
the interval [a, b] and f(a) 6= f(b), we still can consider it
as a periodic function with a period 2(b− a) and expand
it into a Fourier series.
For a function defined on (−∞,+∞) one can use the

Fourier transformation. Two the most popular ones for
the time series are

f̂(ν) =

∫

f(t) e−2πiνtdt , (B14)

f̃(ω) =

∫

f(t) e−iωtdt . (B15)

where the ‘frequency’ ν and the ‘angular frequency’ ω
have dimension of [t]−1. That follows not only from the
exponentials but also from the inverse Fourier transfor-
mation which is an integration over the Fourier conju-
gated variable (ν or ω) and has to deliver the initial
function f(t).

There is also the Laplace transformation

F (s) =

∫ ∞

0

e−stf(t)dt , (B16)

where Re(s) ≥ 0 and in case Re(s) = 0 the Laplace trans-
formation becomes a kind of the Fourier one. While the
Fourier transform ‘speaks’ in term of periodic functions
the Laplace one does not.

j. Taylor series

Another very important series is the Taylor one. For
the cosine it takes the form.

cosx =

∞
∑

k=0

(−1)k
x2k

(2k)!
, (B17)

while for the exponent the result is

ex =

∞
∑

k=0

xk

k!
, (B18)

which are closely related because of (B11). Taylor series
for arccosx is given in (1).
Taylor series is one of the tool to expand the definition

of the function. E.g., using the Taylor series of cosx and
arccosx derived for the real numbers we can find those
functions for pure imaginary ones.
The series can also be used to introduce functions of

more complicated objects, such as operators. E.g., using
the standard rules of the expansion of the exponent one
can easily verify

f(x+ a) = exp

(

a
d

dx

)

f(x) ,

which is helpful for the introduction of the translation
operator.
One of the key elements of quantum mechanics is the

evolution operator (for a system)

e−iHt/~ ,

where H is the Hamiltonian operator of the system.
Such operations play an important role at an advanced

stage of the education. They are not studied at school or
University basics, but it is important to understand, that
the functions introduced at school are applied through
all the education process and their properties should be
consistent.
The Taylor series and/or functional relations can be

applied also for a definition of the exponential of an Her-
mitian operators (A) to introduce operator eiA which is
a unitary operator. Such a relation between Hermitian
and unitary operators plays an important role in many
physical problems.
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Different terms of the Taylor series of standard func-
tions are dimensionless and therefore require dimen-
sional arguments. Alternatively we may introduce di-
mensional derivatives and claim that the dimension of,
say, d sin(x)/dx is not unity, which would be in contra-
diction with standard relations in (B1).

k. AC current and impedance

We have already discussed the AC electricity in part
(due to the harmonic oscillator—see Sect. B f.).
The electric relations often involve time derivatives

such as I = Q̇. E.g., we can consider a capacitor
with charge Q = Q0 sin(ωt + φ), Since I = Q̇ we find
I = I0 cos(ωt+ φ) with I0 = ωQ0, which does not leave
a room for the radian as an independent unit.
From the dimensional point of view the complex

impedance plays a role similar to the real resistance. Spe-
cial cases are

ZR = R , ZL = iωL , ZC =
1

iωC
,

where C and L are defined with non-cyclic phenomena
in terms of the standard mechanical and electrical units,
while the dimensions of all ZX is to be the same.

To conclude let’s consider several advanced applica-
tions.

l. Cauchy’s residue theorem

In functional analysis of the complex variables the con-
tour of the integration can be deformed. In particular,
the Fourier transformation starting as an integration over
the real t can go to complex values and the argument of
the exponential factor instead of a pure imaginary one
(which is associated with the phase) would receive a real
part, which is not for a periodic function. In the complex
functional analysis one often uses the theorem of residues.
E.g., the key relation between the Lorentzian profile in
the frequency domain and the damping oscillations in the
time domain is a result of such an integration. The profile
and the damping oscillations are a part of consideration
of mechanical, electrical and any other oscillators as well
as of wave phenomena and quantum mechanics.
To relate the profile and the oscillations one has even-

tually to integrate around a pole in the complex plane.
Similar is the integration over the fractionally rational
functions. The integration around a pole delivers 2π’s
that appears as the full angle in the complex plane. That
is a pure geometric source of many π’s while calculating
definite integrals. The calculation of the integrals relies
on their geometric sense clearly seen in a plot of the com-
plex plane in our ‘real’ world.

m. Theoretical mechanics

Rotations are also considered in a somewhat more so-
phisticated way than above in the theoretical [analytic]
mechanics. An important quantity is the angular mo-
mentum of a system of interest

~M =
∑

i

[~ri × ~pi] ,

which is the standard definition of the angular momen-
tum of the system in terms of the coordinates and mo-
menta of its constituents.
Meanwhile, in the theoretical mechanics, considering

it in terms of generalized coordinates and Lagrangian L
we find

Mz =
∂L
∂ϕ̇

,

where ϕ is the polar angle in the xy plane for the position-
ing of the center of mass of the system. In the meantime,
we also write ωz = ϕ̇.
The analytic mechanics in the Lagrangian form works

mostly with coordinates, like ϕ, and their velocities like
ϕ̇, while the Hamiltonian mechanics expressed their eval-
uations in terms of coordinates and their momenta like
Mz. All three types of quantities are closely related as
well as their dimensions and units are.

n. Generalized Euclidean space

Linear algebra of an Euclidean space (= a vector [lin-
ear] space + a scalar product) is often considered as a
non-true geometry, in contrast to the ‘real’ one.
The vector space Rn with a scalar product satisfies

conditions that each scalar product (A ·B) is a real num-
ber, the value of (A · A) is a positive one (except of a
special case of zero vector, when it is equal to zero) and

∣

∣

∣

∣

∣

(A ·B)
√

(A ·A)
√

(B ·B)

∣

∣

∣

∣

∣

≤ 1 ,

which allows for an introduction of a certain angle θ such
as

(A · B)
√

(A ·A)
√

(B · B)
= cos θ .

If n = 2, 3 we can ‘realize’ such an abstract space in
‘our’ space and do direct geometric measurements. If
n ≥ 4 we can still make projections into our space or
in a plane in our space or study related cross sections.
As we discussed for the complex numbers, the angles are
‘real’ angles because we can draw them (with projections
if necessary) and measure. We may also build an analog
model with, e.g., several entangled oscillators, which have
total dof ≥ 4 and measure the phase. In general, any
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abstract construction which is used in physics is supposed
to allow for measurements.
The Euclidean space is an advanced notion while work-

ing algebraically, that is why we like to use our geometric
perception both for education and for practical evalua-
tions. Speaking about ‘real’ and ‘imagination’ space, let’s
remember, that we live in an 3d space but love to use var-
ious 2d projections, because our geometric intuition often
better works when we see a plot on a piece of paper or a
screen. We widely use 2d projections of various 3d prob-
lems. Now with computers we may easily plot a line in
a 3d case. In the earlier time we would plots the lines in
the 2d projections instead. The ‘reality’ of the geometric
space is a tricky issue. As we mentioned above we can
measure the phase of a complex number by a ‘real’ pro-
tractor once we use a plot of a complex plane in a piece
of paper in our ‘real’ world or just on a floor.

o. Base quantum mechanics

Base quantum mechanics is not only basics of contem-
porary physics but also a topic of many popular projects.
The quasiclassical approximation deals with eiS/~.

This factor plays a crucial role in proving that the clas-
sical mechanics is a certain limit of the quantum one.
The Feynman integral over the trajectories also relies

on this factor [7]. That is one of several equivalent for-
mulations of quantum mechanics (along with the matrix
mechanics by W. Heisenberg and the wave one by E.
Schödinger).
Quantum mechanics often deals with

exp

(

−i
E · t
~

)

and

exp

(

+i

(

~p · ~r
)

~

)

.

Those factor are used for the introduction of the opera-
tors

H = i~
∂

∂t
,

~̂p = −i~
∂

∂~r
. (B19)

The dimensions of the operators have been already de-
fined through the classical limit.
It is worth to mention that in quantum mechanics

~ =
h

2π

was introduced because of numerous appearances of this
combination in important identities such as

∆p∆x ≤ ~/2

or

Lz = mz~ ,

where Lz is the projection of the orbital momentum and
mz is the azimuthal quantum number. In some of those
expressions a discussion on the radian as a part of the
unit for ~ cannot even appear. The simplifications with
~ takes place because of the existence of two Fourier
transformations (B14) and (B15). As long as we con-
cern about the frequency of a periodic motion, ν, and
related to it h = E/ν seem the most natural, however
if we have to deal with Fourier transforms the natural
quantity is rather ω and related to it ~ = E/ω. As dis-
cussed above the issue on the angle and phase because
of the Fourier transformation starting with the pure cir-
cular and/or periodic phenomena propagates through all
the physics.

p. Special functions and differential equations

Special functions play a key role in mathematical de-
scription of various physical problem. They are often
introduced as solutions of certain differential equations.
One can consider the trigonometric functions as solutions
of the problem of the harmonic oscillator (cf. (B8)).
A big variety of special functions can be presented in
terms of hypergeometric function 2F1(a, b, c; z) and con-
fluent hypergeometric one 1F1(a, b, z) (see, e.g., [8, 9]).
That sets one more group of relations between exponents,
trigonometric functions, polynomials etc. since the same
‘generic’ function describes periodic and diverse aperiodic
phenomena.

q. Quantity equations and equations with quantity values

In order to avoid the problem with the use of a di-
mensional angle θd and a dimensionless one, the later is
sometimes considered as its numerical value {θd} in the
radians, but not as an independent quantity. That looks
like a solution to avoid a redundance with a simultaneous
appearance of θd and its dimensionless twin.
However, it creates a problem in formal metrology.

That is crucial for structure of metrological relations,
that we consider two kinds of the relations (see, e.g., [3]).

• One is on quantities. Such relations do not depend
on units. They contain quantities themselves, but
neither their unit-dependent numerical values nor
the units.

• The other group is on numerical values of quanti-
ties. They do depend on the choice of units.

The only way for a numerical value to appear in a quan-
tity equation is the case of a dimensionless quantity when
the quantity is identical to its numerical value while the
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unit is a special name for unity and nothing else. Say-
ing ‘nothing else’ we mean the mathematical meaning of
the unit as an entry of an equation. Use of traditional
special names for unity plays in this sense rather a so-
cial role as a tool to avoid confusions, but is not required
mathematically.
Technically that means that we cannot include {θd}

into a quantity equation4, such as many equations de-
scribed above in the appendix. However, we may include
the dimensionless angle as a separate well-defined quan-
tity into it.
That would create a problem. The mechanical equa-

tions of motion in Cartesian coordinates neither include
specific angular units nor cycles. However, they are suffi-
cient to completely describe harmonic oscillator (see, e.g.,
(B8)) and therefore its angular frequency and frequency.
In part that is the same situation as in descriptive geom-
etry. We are capable to completely describe the angle by
values of the dimensionless sine and cosine.
There is another important issue which is often missed.

The question about the angle is not a question about
advantages and disadvantages of its treatment as a di-
mensional quantity. The dimensionless angle, presented
in the expressions above does already exist. It is a le-
gitimate quantity in mathematical sense and as a dimen-
sionless one it cannot contradict to the SI. E.g., one can
determine the value l/r measuring the length of an arc
and the radius (in the SI units) and express through it
the area of the related sector (also in the SI units) as

S =
1

2

l

r
r2 .

A similar situation, as we just reminded is in mechanics.
The mechanical equation of the harmonic oscillator (B8),
that completely determined the angular frequency allows
one to express it, but it can do that only in terms of
units of the length, time, and mass (cf. (B9)), because
no independent specific angular units are not present in
the equation.
So the dimensionless angle, determined in the geomet-

ric example as l/r, is not only a legitimate SI quantity
but also a useful one that appears naturally. The very
use of the dimensionless angle, consistent with the SI,
cannot be forbidden by a metrological regulation. Tech-
nically that means that we are to introduce an additional
dimensional quantity with a related unit, assign the name
‘angle’ to it, and recommend to use it in certain situa-
tions, while the dimensionless angle remains to exist. We
may assign a different name to the latter, but we cannot
really recommend to stop its use, which would rather lead
to more confusions than to less.

4 One of the examples of a possible mess is the time derivative
d{θd}/dt, which may be required to make the argument of sin(ωt)
dimensionless. We have to introduce a hybrid, which combines
a numerical value and a [dimensional] quantity.

It is often said that the use of the degrees and the radi-
ans is traditional. Yes. It is. But the use of a dimension-
less angle and the angle measured in terms of the radian,
which is equal to unity, is traditional as well. It is studied
at high school and presented in pretty old mathematical
books. While the tradition of the use of various units for
the angle is older than the use of a dimensionless angle,
the later has already successfully embedded in a much
more broad area of scientific applications.
The common practice is the use of ‘radian’ when nec-

essary to avoid confusions. We usually say that an angle
is equal to 2 radians, not to 2. But we also say that an
angle is π/4, knowing that π is just a number, but it is
usually used for the angle in the radians and not with
degrees. We also often use that in equations. Such a
mixed use of the radian indicates that in general we do
understand that it is a name for unity starting from the
high-school education level.

Appendix C: Would-be dimensional angle and

dimensionless geometric parameters

As shown in the previous section of the appendix,
many expressions for both the base law of Nature and
the equations of measurements contain various geomet-
ric factors. For a large number of quantities they are
dimensionless and measurable. If we make the angle di-
mensional that would technically mean that in identi-
ties, that do not contain explicitly any angular variables,
such as many of considered above, we have to introduce
a dimensionless geometric parameter. That may be done
with help of the full angle. For the plane angle θ with
the full [plane] angle denoted as θfull such a dimensionless
geometric parameter would be

θ′ =
2π

θfull
θ .

This parameter would enter series for the trigonomet-
ric functions, various integrals and derivatives, Fourier
transformations, phase factors of the complex numbers,
relations between the angular and linear velocities etc. It
is completely compatible with the angle measured in the
radians with the radian being a name of unity.
The origin of such a parameter is obvious for those

who knows of the dimensionless angle and that the di-
mensionless angle naturally appear in many equations of
physics and mathematics. While many who understand
the origin of such a quantity may wonder why we need
it, those who does not understand may wonder why we
often have factor of 2π/θfull.
The values of the full angle θfull should be treated as

new dimensional fundamental constant and can be mea-
sured in any units of our choice. That would create a
self-consistent and mathematically valid system of units
and quantities.
Apparently, if we choose the angle to be dimensional

such a dimensionless combination and some of its deriva-
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tives, that are measurable and have a direct physical
and/or geometric meaning, would deserve special names.
They would be in a massive use since they allows for
a simplification of many equations in many areas. Si-
multaneous use of θ and θ′ would likely produce many
confusions.
The standard approach considers a vector (including

the position vector) as an object that is determined by its
magnitude and its direction. We often need to deal rather
with the directions than with the angles, e.g., to integrate
over them. The most straightforward way to introduce
the integration over the directions [of the position vector]

in the 3d space is to deal with the angular integration as

dΩdirection =
d3r

r2dr
.

The integration over the directions is dimensionless. In-
troducing the dimensional angle we open in a sense the
question whether the integration over the directions is
the integration over the angles or not, which relates to
both plane and solid angles. That would also create a
room of confusions.
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