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We present a benchmark study of generator coordinate method (GCM) combined with eigenvector contin-
uation (EC) in two different schemes for the low-lying states of Lipkin-Meshkov-Glick (LMG) model, where
the interaction strength is treated as a controlling parameter, simulating quantum many-body systems with the
phase transition from non-collective to collective states. We demonstrate that the ECkmax scheme accurately
reproduces the low-lying states of the LMG model. In this scheme, the EC basis consists of the wave functions
of low-lying states up to the kmax-th state of sampling Hamiltonians. Compared to EC1, which only includes the
wave functions of the k-th state of sampling Hamiltonians for the k-th state of a target Hamiltonian, the ECkmax

scheme exhibits significantly improved efficiency and accuracy. This study suggests the potential utilization of
the extended EC scheme as an efficient emulator for GCM calculations.

I. INTRODUCTION

Generator coordinate method (GCM) [1, 2] is an impor-
tant tool for modeling large-amplitude collective motions in
atomic nuclei, including collective excitations[3, 4], dynam-
ics of clusters [5, 6], and nuclear fissions [7–10]. Recently, it
has attracted increasing interest as it has been utilized to ex-
tend ab initio methods based on nuclear chiral interactions to
study the low-lying states [11, 12] and giant monopole reso-
nance [13, 14] of medium-mass deformed nuclei, as well as to
determine the nuclear matrix elements (NMEs) of candidates
for neutrinoless double-beta (0νββ) decay [15, 16]. The exact
wave functions of nuclear low-lying states can, in principle,
be well represented with the GCM ansatz if a sufficient num-
ber of generator coordinates are chosen. However, both com-
plexity and computational time grow rapidly with the number
of generator coordinates. Because of this complexity, quan-
tifying the statistical uncertainty of GCM-based approaches
for nuclear low-lying states has been a long-standing chal-
lenge. Therefore, there is considerable interest in finding an
efficient optimization method or an emulator for GCM-based
approaches.

Recently, statistical machine-learning techniques, com-
bined with the subspace-selection algorithm based on orthog-
onality conditions [17], were utilized to optimize GCM calcu-
lations for nuclear low-lying states and NMEs of 0νββ based
on various nuclear Hamiltonians or energy density functionals
(EDFs) [18]. However, extending this optimization method to
quantify uncertainties arising from the parameters of Hamil-
tonians or EDFs remains challenging, as it necessitates a sig-
nificant number of repetitive GCM calculations with different
parameter samplings. One potential solution to address this
challenge is to develop an efficient emulator for GCM calcu-
lations.

In recent years, the eigenvector continuation (EC)
method [19], a special variant of reduced basis methods [20,
21], has emerged as a widely implemented technique for emu-
lating few- and many-body calculations. The basic idea of the
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EC method is representing the eigenvector of a target Hamilto-
nian within a low-dimensional manifold formed by the eigen-
vectors (also known as training vectors) of a set of sampling
Hamiltonians. The smoother the manifold, the fewer train-
ing vectors are needed. The efficiency of the EC method in
conjunction with other many-body methods has been demon-
strated in various toy models [22–24] and in the application
to nuclear structure and scattering processes [25–30]. For fur-
ther insights into the EC method, readers are encouraged to
refer to recent reviews [31, 32]

It is worth noting that the majority of applications of the EC
method in nuclear structure are focused on the ground states
of nuclei, whose wave functions are typically constructed as a
linear combination of the ground-state wave functions of sam-
pling Hamiltonians. There are only a few applications to ex-
cited states. Recently, the excited states of a harmonic oscil-
lator were studied using EC combined with many-body per-
turbation theory (MBPT) [22], where the wave function of the
k-th excited state of a target Hamiltonian is expanded in terms
of the wave functions of the k-th states of the sampling Hamil-
tonians determined by the MBPT. This scheme is called EC1
hereafter. In contrast, in the EC plus interacting shell model
(ISM) [33], the wave functions of the lowest kmax states of
sampling Hamiltonians were included into the EC basis to ex-
pand those of target Hamiltonians. We call this extended EC
scheme as ECkmax. In the ECkmax scheme, the EC basis form
a complete basis as kmax → ∞, irrespective of the number of
sampling Hamiltonians. However, in practical application, the
number of the lowest states kmax is truncated to a finite num-
ber that gives a rather convergent solution. It has been shown
in the ECkmax+ISM that the choice of kmax = 5 improves the
relative error of the five lowest states of four sd-shell nuclei
by a factor of two [33]. In this work, we examine the per-
formance of these two EC schemes in the GCM calculations
for the low-lying states of the Lipkin-Meshkov-Glick (LMG)
model [34–36], and compare these results against the exact so-
lutions of the diagonalization method. The LMG model is an
exactly solvable model which has been widely used for test-
ing various many-body approaches, including random-phase-
approximation (RPA)[37] and GCM[38], as well as quantum
computing algorithms [39–42].
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FIG. 1. Illustration of the LMG model, where N(= Ω) identical
fermions are distributed across two levels, each with a degeneracy
of Ω.

The article is structured as follows. In Sec.II, we present
the main formulas of the LMG model, including the exact so-
lution of the diagonalization method, Hartree-Fock (HF) ap-
proximation, GCM, and EC+GCM solutions. The results of
calculations with different many-body methods are compared
in Sec.III. Finally, a brief summary and outlook are provided
in Sec.IV.

II. THE LIPKIN-MESHKOV-GLICK MODEL

A. The Hamiltonian

The LMG model describes a system of N(= Ω) identical
fermions distributed in two Ω-fold degenerate levels labeled
with σ = ±, respectively. The energy gap between these
two levels is ε. The LMG model is schematically depicted
in Fig.1. The Hamiltonian consists of a one-body term and a
monopole-monopole two-body interaction term[34]

Ĥ = εK̂0 −
1
2

V(K̂+K̂+ + K̂−K̂−) (1)

where V is the two-body interaction strength and

K̂0 =
1
2

Ω∑
m=1

(c†+mc+m − c†−mc−m), (2a)

K̂+ =
Ω∑

m=1

c†+mc−m, (2b)

K̂− = (K̂+)†. (2c)

The operators c†+m and c†−m create particles in the upper and
lower levels, respectively. It can be proven that the operators
K̂0, K̂± satisfy the following commutation relations of angular
momentum operators

[K̂0, K̂±] = ±K̂±, [K̂+, K̂−] = 2K̂0. (3)

B. Exact solution with the diagonalization method

The wave function for the N particles in the LMG model
can be expanded in the configurations basis

|Ψk⟩ =
∑
N+

f k
N+ |N,N+⟩ , (4)
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FIG. 2. Probability distribution | f kN+|2 of the exact ground state of
the Hamiltonian Ĥ(χ) with different interaction parameters χ, calcu-
lated in the basis |N+⟩ as defined in Eq. (5), where Ω = 8.

where the superscript k distinguishes different states, and N+
represents the number of particle-hole (ph) excitations, i.e.,
the number of particles excited from the lower energy level
(σ = −) to the upper energy level (σ = +), with its value N+ ∈
[0,N]. If one introduces quasispin J = N/2 and its projection
M = N+ − N/2, then the basis |N,N+⟩ can be rewritten as

|N,N+⟩ ≡ |N/2,N+ − N/2⟩ = |J,M⟩ , (5)

with M = −J, · · · , J − 1, J. The dimension of the basis is
2J + 1 = N + 1. The operators K̂0, K̂± are then interpreted as
quasispin operators with the following relations [43]

K̂0 |J,M⟩ = M |J,M⟩ , (6a)

K̂± |J,M⟩ =
√

(J ∓ M)(J ± M + 1) |J,M ± 1⟩ , (6b)

from which one finds the expression for the matrix elements
of the Hamiltonian in the configuration basis,

〈
N,N′+|Ĥ(χ)|N,N+

〉
= εM −

V
2

[
C+(M)C+(M + 1)δN′+,N++2

+C−(M)C−(M − 1)δN′+,N+−2

]
(7)

with C±(M) =
√

J(J + 1) − M(M ± 1). One can observe that
the matrix elements of the Hamiltonian are zero if N+ and
N′+ have opposite number parity. This implies that the space
formed by |N,N+⟩ can be divided into two subspaces with
even and odd-number parity, respectively. The energy Ek and
expansion coefficient f k

N+
of the wave function (4) for the k-th

state are obtained from the diagonalization of the Hamiltonian
matrix

〈
N,N′+|Ĥ(χ)|N,N+

〉
. For a small value of Ω, it is not

difficult to derive analytical solutions [34]. For instance, there
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are 9 solutions for Ω = 8,1

E
ε
= 0,±

[
5 +

113
72 χ

2 ± 4
(
1 +

38
72 χ

2 +
550
74 χ

4
) 1

2
] 1

2

,

±

[
10 +

118
72 χ

2 ± 6
(
1 −

2
72 χ

2 +
225
74 χ

4
) 1

2
] 1

2

, (8)

where the interaction parameter χ is defined as follows,

χ =
V
ε

(Ω − 1). (9)

Figure 2 illustrates the change in the probability of each
basis state |N,N+⟩ in the exact ground state of the Hamilto-
nian Ĥ(χ) as a function of the interaction parameter χ for the
Ω = 8 case. As pointed out in Ref.[38], in the limit of χ→ 0,
the k-th state will be the pure |N,N+ = k⟩ component, corre-
sponding to kp-kh excitations. As the interaction strength |χ|
increases, whether attractive or repulsive, each state becomes
a complicated mixing of many ph excitations. It is observed
in Fig.2 that the weights of components with more particles
excited from the lower level to the upper level gradually in-
crease. When χ increases beyond a critical value, the system
undergoes a phase transition from spherical (or shell-model
like) to deformed (collective) states. Notably, the probability
distribution is symmetric with respect to χ = 0.

C. HF solutions

In the HF approach, the ground-state wave function is ap-
proximated with a Slater determinant

|Φ(α, φ)⟩ =
Ω∏

m=1

a†0m(α, φ)|−⟩ (10)

where the particle creation operator a†0m(α, φ) in the HF basis
is related to the creation operator c†±m in the single-particle
basis by [38]a†0m(α, φ)

a†1m(α, φ)

 =  cosα sinαe−iφ

− sinαeiφ cosα

 c†−m

c†+m

 . (11)

The indices 0, 1 denote hole and particle states, respectively.
The two parameters (α, φ) are used to distinguish different HF
states. The expectation value of the Hamiltonian (1) with re-
spect to this HF state can be derived analytically [44],

EHF = −
ε

2
Ω
(

cos 2α +
1
2
χ sin2 2α · cos 2φ

)
, (12)

which for Ω = 8 and χ = ±1.5 is plotted in Fig. 3. It
is observed that the energy minimum is located at α =
1
2 cos−1(1/|χ|) = 0.134π, with φ = 0,±π/2 for χ = 1.5 and

1 In the original paper [34], a factor of 6 is missing in the last four solutions.
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FIG. 3. Contour plots of the normalized energies EHF/ε of HF states
in the (α, φ) plane, where the interaction strength is chosen as χ =
±1.5, respectively.

−1.5, respectively. Figure 4 illustrates the normalized ener-
gies EHF/ε of the HF states by the Hamiltonians with differ-
ent values of χ as a function of the parameter α, where φ = 0.
According to Eq.(12), the energy will be independent of the
value of χ for φ = π/4. In particular, the energy curves with
positive and negative values of χ are exchanged if the value
of φ is switched from 0, to ±π/2. It means that the value of
φ also controls the two-body correlation of the system. No-
tably, it is shown in Fig. 4 that the system undergoes phase
transitions as the interaction parameter χ varies from −1.5 to
1.5. For |χ| < 1, the energy minimum is located at the non-
collective spherical shape with α = nπ. When χ > 1, the en-
ergy minimum is found at the collective deformed shape with
α = ± 1

2 cos−1(1/χ) + nπ and φ = 0. Conversely, for χ < −1,
the energy minimum is located at α = ± 1

2 cos−1(−1/χ) + nπ
and φ = ±π/2+nπ, where n is an integer. Since both the ener-
gies and wave functions are periodic functions of the parame-
ters α and φ, we need only consider the HF states with these
two parameters in the interval [−π/2, π/2], subsequently.

D. GCM solutions

In the GCM, the wave function |ΨκGCM(χ)⟩ is constructed
as a linear combination of HF states |Φ(α, φ)⟩ with different
values of parameters (α, φ). For the sake of simplicity, we
introduce a symbol q to stand for (α, φ). In practical applica-
tions, the generator coordinates q are discretized. The wave
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FIG. 4. The energies EHF/ε of the HF states for the system with Ω =
8 as a function of the parameter α, where φ = 0 and the interaction
strength χ varies from −1.5 to +1.5.

function |Ψκ⟩ becomes

|ΨκGCM(χ)⟩ =
Nq∑

q=1

f κ(χ; q) |Φ(q)⟩ , (13)

where Nq represents the number of HF states which are in-
dependent of the interaction parameter χ. Since the operator
a†0m defined in (11) mixes the operators of c†+m and c†−m, the
HF state |Φ(α, φ)⟩ does not have a definite number of parti-
cles in the upper or lower levels, even though the total particle
number is still conserved. Therefore, the non-orthogonal ba-
sis formed by {|Φ(q)⟩} cannot be divided into two subspaces
anymore. The weight function f κ(χ; q) is determined by the
Hill-Wheeler-Griffin (HWG) equation,

Nq∑
q′=1

⟨Φ(q)|Ĥ(χ)|Φ(q′)⟩ − Eκ⟨Φ(q)|Φ(q′)⟩
)

f κ(χ; q′) = 0. (14)

The norm kernel and Hamiltonian kernel of the GCM can be
derived analytically [38],

⟨Φ(q)|Φ(q′)⟩ =
(
Nqq′

)Ω
, (15)

⟨Φ(q)|Ĥ(χ)|Φ(q′)⟩ = −
εΩ

2

×

{
cos2(α) cos2(α′) − sin2(α) sin2(α′)e2i(φ−φ′)

+χ
[

sin2(α) cos2(α′)e2iφ + sin2(α′) cos2(α)e−2iφ′
]}(
Nqq′

)Ω−2
,

(16)

with Nqq′ ≡ cos(α) cos(α′) + sin(α) sin(α′)ei(φ−φ′).

E. Emulating GCM solutions with the EC method

In the EC+GCM, the wave function |Ψk(χ⊙)⟩ of the k-th
state for a target Hamiltonian Ĥ(χ⊙) is represented in a mani-
foldMEC of the many-body Hilbert space, formed by the NEC

EC basis functions.

|Ψk
EC(χ⊙)⟩ =

kmax≥k∑
κ=1

Nt∑
t=1

gk(κ, χt) |ΨκGCM(χt)⟩ , (17)

where Nt represents the number of sampling (training) Hamil-
tonians Ĥ(χt) used to produce the set of EC basis functions
|ΨκGCM(χt)⟩ with κ = 1, 2, · · · , kmax. Thus, the dimension
of the EC basis is NEC = Ntkmax. This scheme is called
ECkmax+GCM(Nt), for convenience. The weight gk(κ, χt) for
the k-th state of the target Hamiltonian Ĥ(χ⊙) is determined
by the following generalized eigenvalue equation,

kmax∑
κ′=1

Nt∑
t′=1

[
Hκκ

′

tt′ (χ⊙) − Ek
χ⊙
Nκκ

′

tt′

]
gk(κ′, χt′ ) = 0, (18)

where the norm and Hamiltonian kernels of the EC method
are defined as

Nκκ
′

tt′ = ⟨Ψ
κ
GCM(χt)|Ψκ

′

GCM(χt′ )⟩, (19a)

Hκκ
′

tt′ (χ⊙) = ⟨ΨκGCM(χt)| Ĥ(χ⊙) |Ψκ
′

GCM(χt′ )⟩ . (19b)

F. Time complexities of GCM and EC+GCM

Let’s compare the time complexity of the GCM and
EC+GCM methods for the low-lying states of Nχ⊙ target
Hamiltonians, where Nχ⊙ could be on the order of 106 for chi-
ral Hamiltonians [25]. The time complexity of the Nχ⊙ repeti-
tive GCM calculations is

TGCM = O
(
N2

q Nχ⊙
)
∆T1, (20)

where ∆T1 represents the time cost for computing each
overlap (15) between two different HF states. For the
EC+GCM(Nt) with Nt sampling Hamiltonians, one needs to
explicitly evaluate all the EC kernels (19). Thus, the time
complexity is composed of two parts,

TEC+GCM = O
(
N2

q N2
t

)
∆T1 + O

(
N2

ECNχ⊙
)
∆T2, (21)

where ∆T2 is the time cost for computing each EC kernel.
In the LMG model, since the HF states are independent of
the interaction parameter χ, the first term in (21) simplifies
to O

(
N2

q Nt

)
∆T1, representing Nt times of computations of N2

q
overlaps. Moreover, the computation time ∆T1 is negligible as
one has an analytical expression for the overlaps. Therefore,
the advantage of using EC+GCM for the LMG model is not
obvious, if ∆T2 ≃ ∆T1. However, in many GCM studies based
on EDFs or Hamiltonians defined in the full single-particle
space [3, 15], the most time-consuming part is the calculation
of the overlaps, i.e., ∆T1 >> ∆T2. In this case, it is expected
that TEC+GCM << TGCM for Nχ⊙ ≃ 106. In particular, the
computation time can be significantly reduced if one can re-
duce the number of sampling Hamiltonians Nt. As it will be
demonstrated, this could be achieved in the ECkmax scheme.
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FIG. 5. The convergence of state energies with the number of nat-
ural states for Ω = 30 particles in the LMG model with the inter-
action strength parameter χ = −3. The first generator coordinate α
ranges from −π/2 to π/2, with 40 equally distributed mesh points.
The second generator coordinate φ is fixed at (a) 0, (b) ±π/2, and (c)
(0,±π/2), respectively. The exact energies are indicated with hori-
zontal lines.

TABLE I. The logarithm of the overlap log10

(
⟨Ψk

EC |Ψ
k′
EC⟩

)
between

the first four states of the LMG model for Ω = 30 particles from the
EC1+GCM calculations for the target Hamiltonian with χ⊙ = −3.
See Fig. 7 for more details.

|Ψ1
EC⟩ |Ψ2

EC⟩ |Ψ3
EC⟩ |Ψ4

EC⟩

⟨Ψ1
EC| 0 −11.3 −0.2 −12.0

⟨Ψ2
EC| - 0 −12.0 −1.4

⟨Ψ3
EC| - - 0 −13.9

⟨Ψ4
EC| - - - 0

III. RESULTS AND DISCUSSION

A. Results of GCM calculations

We first examine GCM calculations for the low-lying states
in the LMG model. Fig. 5 displays the convergence behav-
iors of the energies of the low-lying states for Ω = 30 par-
ticles in three types of GCM calculations against the number
of natural states, where the interaction strength parameter is
chosen as χ = −3. In Fig. 5(c), it is demonstrated that select-
ing generator coordinates q(α, φ) with three different values
of φ(0,±π/2) may generate spurious states. Additionally, the
choice of φ = 0 can also result in incorrect solutions for cer-
tain low-lying states of other Hamiltonians, see Fig. 6. The
results of HF calculation and two types of GCM calculations
with the choices of φ = 0 and φ = ±π/2 are compared with
exact energies for different Ĥ(χ). It is seen that the choice of
φ = ±π/2 not only yields exact energies for states but also re-
sults in the fastest convergence rate, see Fig. 5(b). Therefore,
in the subsequent calculations, we choose φ = ±π/2. More-
over, it is interesting to note from Fig. 6 that the HF energy is
getting closer to the ground-state energy with the increase of
the number of particles from Ω = 3 to Ω = 30.
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FIG. 6. (Color online) Comparison between the energies of low-lying
states obtained from exact solutions, two types of GCM calculations,
and HF solutions for (a) Ω = 3, (b) Ω = 8, and (c) Ω = 30 particles,
respectively.

B. Results of EC1+GCM calculations

In this subsection, we examine the validity of the
EC1+GCM calculation for the low-lying states of the LMG
model with Ω = 30 using different Hamiltonians. Fig. 4 il-
lustrates that changing the value of χ can simulate the system
undergoing a phase transition from non-collective to collec-
tive states. Let’s first consider the Hamiltonians with χ < −1.
The EC basis consists of the wave functions of five sampling
Hamiltonians with χ = −1.1,−1.3,−1.5,−1.7, and −1.9, re-
spectively. The results of EC1+GCM calculations for the first
three states are shown in Fig. 7. For comparison, we increase
the number of sampling Hamiltonians from one to five. It
is observed that increasing the number of sampling Hamil-
tonians does not always improve the agreement with the ex-
act energies, especially for the excited states. A similar phe-
nomenon is found for other values of χ. Particularly, we find
it challenging to reproduce the energies of the target Hamilto-
nians with χ > 0 using the wave functions of sampling Hamil-
tonians with χ < 0. We further examine the wave functions
of different low-lying states from the EC1+GCM calculations,
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FIG. 7. (Color online) Comparison between the energies of the
first three states of the LMG model for Ω = 30 particles ob-
tained from the exact solution and EC1+GCM calculations. The
results of EC1+GCM calculations using different numbers (the ar-
row indicates the direction of increasing the training vectors from
1 to 5) of training Hamiltonians with the interaction parameter χ =
−1.1,−1.3,−1.5,−1.7, and −1.9 are provided for comparison. See
the main text for details.

which are found to be nonzero in some cases. Table I presents
the logarithm of the overlaps log10

(
⟨Ψk

EC |Ψ
k′
EC⟩

)
between the

first four states from the EC1+GCM calculations for the tar-
get Hamiltonian with χ⊙ = −3. It is shown that the overlap
between the k-th and k′-th states is sizable if both k and k′

are even or odd. Thus, one needs to ensure the orthogonality
of the wave functions of different low-lying states for a given
Hamiltonian in the EC method.
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FIG. 8. (Color online) Same as Fig. 7, except that the EC1+GCM is
replaced by the ECkmax+GCM, where kmax = 20.

C. Results of ECkmax+GCM calculations

The orthogonality condition between the wave functions
of different low-lying states is automatically fulfilled in the
ECkmax scheme as all the states share the same set of EC ba-
sis. Figure 8 presents the results of ECkmax+GCM calcula-
tions for the same systems as those in Fig. 7. With the choice
of kmax = 20, the exact energies of the first three states by the
Hamiltonians with different values of χ are excellently repro-
duced in the ECkmax+GCM calculations, even in the case with
only one sampling Hamiltonian (Nt = 1). It is demonstrated
in Fig. 9 that with a sufficient number of kmax, the low-lying
states of the Hamiltonian with χ > 0 can be well represented
even using the wave functions of the Hamiltonians Ĥ(χ) with
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FIG. 9. (Color online) Same as Fig. 8, except that different values of
kmax are used in the ECkmax+GCM calculations.

χ < 0.
Figure 10 illustrates the performance of the extreme case in

the ECkmax scheme, i.e., with kmax = 20 and only one sampling
Hamiltonian Ĥ(χt = 0). For comparison, the results of calcu-
lations with the EC1 scheme are also plotted. It is shown that
the EC1+GCM(1) totally fails to reproduce the energies of
states. In contrast, the EC20+GCM(1) is able to reproduce the
low-energy spectra of different Hamiltonians with χ ∈ [−4, 4].
According to Eq.(21, the time complexity of EC+GCM with
only Nt = 1 is simplified into O

(
N2

q

)
∆T1. In this case, the gen-

eralized eigenvalue problem in the EC becomes the standard
eigenvalue problem, where the norm kernel in the EC is an
identity matrix. It demonstrates the super advantages of the
ECkmax scheme in emulating GCM calculations, compared to
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FIG. 10. (Color online) Comparison between the energies of the first
four states of the LMG model for Ω = 30 particles obtained from
the exact solution (red crossings), EC1+GCM (blue dashed curves),
and ECkmax=20+GCM (black solid) calculations for different target
Hamiltonians Ĥ(χ⊙). In both types of EC+GCM calculations, only
one sampling Hamiltonian (indicated with an open diamond) with
χt = 0 is used.
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FIG. 11. (Color online) Probability distribution of the first four states
of the target Hamiltonian Ĥ(χ⊙) with χ⊙ = 1, 2, 3, respectively, over
the EC basis, which correspond to the first 20 states of the sampling
Hamiltonian Ĥ(χt = 0). See main text for details.

the EC1 that has been frequently employed in the literature. In
particular, we note that the ECkmax scheme is able to reproduce
the low-lying states with level crossings.

Figure 11 displays the probability distribution of each EC
basis in the first four states for three different target Hamilto-
nians with χ⊙ = 1, 2, and 3, respectively. The EC basis com-
prises the first 20 GCM states of the Hamiltonian Ĥ(χt = 0). It
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FIG. 12. (color online) (a) Overlaps of the wave functions of the first
two states of the target Hamiltonian Ĥ(χ2) with the first state of the
Hamiltonian Ĥ(χ1 = 1.9), (b) and the overlaps of the wave functions
of the 3rd and 4th states of the target Hamiltonian Ĥ(χ2) with the 3rd
state of the Hamiltonian Ĥ(χ1 = 2.2), as a function of the parameter
χ2. All eigenvectors are expanded based on the states of the sampling
Hamiltonian Ĥ(χt = 0). See text for details.

is evident that as the interaction strength increases, all the first
four states exhibit a broader distribution over the EC basis,
highlighting the importance of including the wave functions
of excited states of the sampling Hamiltonian.

Figure 12(a) displays the overlaps of the wave functions
of the first two states of the Hamiltonian Ĥ(χ2) with the first
state of the Hamiltonian Ĥ(χ1 = 1.9) as a function of χ2. The
overlaps of the wave functions of the third and fourth states of
the Hamiltonian Ĥ(χ2) with the third state of the Hamiltonian
Ĥ(χ1 = 2.2) are shown in Fig.12(b). It is evident that there
are level crossings around χ = 1.99 and 2.30, respectively,
which explain the exchange of the predominant components

of the first two states of the target Hamiltonian with χ⊙ = 2
in Fig.11(b) from odd (even) to even (odd)-number indexed
basis, as well as the exchange of the components of the 3rd
and 4th states in Fig. 11(c). In summary, the ECkmax scheme,
even with only one sampling Hamiltonian, can reproduce the
level crossings in the low-lying states of the LMG model.

IV. SUMMARY

In this study, we integrated the eigenvector continuation
(EC) method into the generator coordinate method (GCM)
to investigate the low-lying states of the Lipkin-Meshkov-
Glick (LMG) model. We compared the results obtained us-
ing two different EC schemes. In contrast to the commonly
used EC1 scheme, which utilizes the wave functions of the
k-th states from sampling Hamiltonians to expand the k-th
states of the target Hamiltonian, the ECkmax scheme, incorpo-
rating the wave functions of low-lying states up to the kmax-th
(kmax > k) state of sampling Hamiltonians into the EC basis,
demonstrates superior performance in terms of both efficiency
and accuracy in the GCM calculations, even for states of dif-
ferent phases. Our findings showcase the remarkable capabil-
ity of ECkmax+GCM in accurately reproducing the low-lying
states of the LMG model with only a few sampling Hamiltoni-
ans. This investigation underscores the promising application
of the EC method as an efficient emulator of GCM-based ap-
proaches for nuclear low-lying states, which could be utilized
to quantify the statistical uncertainties of calculations for the
observables of interest in future studies.
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