
On the average spin Chern number
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In this letter we propose the average spin Chern number (ASCN) as an indicator of the topological
significance of the spin degree of freedom within insulating materials. Whenever this number is a
non-zero even integer, it distinguishes the material as a spin Chern insulator and the number is
a topological invariant. If this number is not zero, it indicates that the material has non-trivial
spin transport properties, and it lies close to the value of the spin Hall conductivity (SHC) within
the bandgap. For materials where spin-orbit coupling (SOC) is small, the ASCN matches the
SHC. When the SOC cannot be neglected, both values are non-zero simultaneously. The ASCN
is therefore a good complement for the intrinsic contribution of the SHC, and permits to detect
topological information of the material which is not possible alone from the value of the SHC.

The investigation of topological phases of matter holds
a central position in the landscape of condensed mat-
ter physics, tracing its origins to breakthroughs such as
the quantum Hall effect and quantum spin Hall effect.1–4

The discovery of a constant value within the band gap of
the spin Hall conductivity (SHC) in topological insula-
tors presents a compelling challenge, stimulating signifi-
cant interest and inquiry.5–7 While significant progress
has been made in elucidating this issue for 2D topo-
logical insulators, where the value becomes quantized
in accordance with the definition of the spin Chern
number (SCN), this quantization is applicable only in
the non-relativistic limit or weak spin-orbit coupling
(SOC) interactions.8,9 Nevertheless, a critical question
remains unresolved, particularly concerning 3D topolog-
ical insulators.10 The constant value of the SHC within
the band gap eludes a comprehensive explanation, even
in the non-relativistic limit.

The conventional approach to topological features of
matter typically focus on the exploration of electronic
band structures.11,12 However, when considering the in-
corporation of spin quantum degree of freedom, an ad-
ditional step is required: the projection of spin operator
onto the valence electronic states.13–15 This process pro-
duces the spin spectrum, with the intrinsic topology orig-
inating from the nontrivial spin Chern number, indepen-
dently of the SOC. This spin topology classification ap-
proach provides robust topological invariants for study-
ing the spin transport response of quantum systems.14,16

In this letter, we introduce the concept of average spin
Chern number (ASCN) as a strategic tool to unravel the
nature of SHC within the bandgap in 3D topological in-
sulators. We show that the ASCN may offer valuable
insights for the information underlying the SHC in in-
sulator materials, thus indicating the interplay between
spin properties and topological features in such systems.
By exploring the connection between SHC and ASNC,

our work aims to contribute to a deeper understanding
of spin transport phenomena in 3D topological insulators.

In an insulator, the valence states forms a complex
vector bundle that is known by the name of Block bun-
dle. The Bloch bundle is endowed with the action of the
group of crystal symmetries and moreover, it may posses
time reversal symmetry, or a composition of time rever-
sal symmetry with a rotation, inversion or a translation
in the magnetic case.17 Incorporating SOC implies that
the Bloch bundle is endowed with the action of the lift of
the crystal symmetries to the spin group, and that time
reversal operator squares to −1.

All these symmetries endow the Bloch bundle with a
rich variety of topological invariants, some of them re-
lated to magneto-electric properties of the crystal.18,19

Among those topological invariants we may mention
the Chern-Simons axion coupling term and the Chern
classes.20,21 The first one is equivalent to the Kane-Mele
invariant in the presence of time reversal symmetry,22,23

and this invariant gives the indication of a strong topo-
logical insulating phase.

When taking into consideration the spin operator Sn

in any direction n, we see that the Bloch bundle is more-
over endowed with the symmetry induced by this opera-
tor once it has been projected to the valence states. In
other words, if P is the projection operator into the va-
lence states, the operator PSnP defines a Hermitian op-
erator on the Bloch bundle.13 This projected spin opera-
tor PSnP is a Hermitian operator on the valence states
whose eigenvalues lie in between −1 and 1 (in ℏ/2 units).
In systems with time reversal symmetry we may sepa-
rate the positive eigenvectors from the negative ones in
all but finite points in momentum space.13 The points
where they cannot be separated are the ones on which
the projected spin spectrum includes zero as an eigen-
value. These points are called spin Weyl points (SWP)
and their presence or absence have direct topological con-
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sequences within the material, particularly evident in the
spin transport response.16

For any choice of oriented coordinate axes {a, b, c} we
may determine the first Chern numbers

cSn,+
1,ab (l) and cSn,−

1,ab (l) (1)

of the positive and negative eigenvectors of the projected
spin operator PSnP restricted to the reciprocal space
planes kc = l for l ∈ [0, 2π]. Since there are only a finite
number of SWPs, then these Chern numbers are defined
for all the planes kc = l except for a finite number of
them where the SWPs lie.

The spin Chern number is thus:

cSn

1,ab(l) := cSn,+
1,ab (l)− cSn,−

1,ab (l), (2)

and it is a well defined integer for all but finite num-
ber of k-planes. For systems on which the first Chern
number is zero on all planes, the spin Chern number is
always twice the value of the Chern number of the posi-
tive eigenvectors. This is the case on systems with time
reversal symmetry.

In order to obtain a number for each spin direction
and each plane direction, we propose to consider the av-
erage spin Chern number (ASCN) across all planes in the
reciprocal space:

cSn

1,ab =
1
2π

∫ 2π

0

cSn

1,ab(l)dl. (3)

For a set of axes with the opposite orientation {b, a, c}
we define the ASCN as:

cSn

1,ba := −cSn

1,ab. (4)

The ASCN has the following properties (see the Sup-
plemental Material24 for an explanation):

1. When SOC is disregarded, the intrinsic contribu-
tion of the spin Hall conductance (SHC) is a mul-
tiple of the ASCN:

σc
ab = −eπ · cSc

1,ab (5)

whenever abc is a base in a cartesian coordinate
system.

2. The ASCN is not-linear on the spin direction n.

3. If the ASCN is zero in all spin directions then the
material is a spin insulator.

4. If the ASCN is a non-zero even integer, it means
that the projected spin operator PSnP has no
SWPs. Therefore the material is a spin Chern insu-
lator in all directions of the spin except in a curve
of codimension 1, where there is a change of phase,
or when te ASCN is zero.

5. If the ASCN is non-zero in some spin direction, then
the spin Chern number is non-zero on some plane.
This will imply that the SHC is also not zero.

6. If the Chern-Simon axion coupling term is non-zero,
and the positive spin projection eigenvectors are
mapped to the negative ones, then the ASCN is
non-zero in all spin directions but a codimension 1
curve.

7. In strong topological insulators (Z2 = 1) the value
of the ASCN cSn

1,ab determines the spin Chern num-
bers on the planes kc = 0 and kc = π with abc a
base. If 2s < cSc

1,ab < 2s+ 2 for s ∈ Z then the spin

Chern numbers cSn

1,ab(0) and cSn

1,ab(π) on the planes
kc = 0 and kc = π are 2s and 2s+2 (not necessarily
in this order).

The ASCN is therefore a good indicator for the ex-
istence of topological properties of the spin spectrum.
It is not in general a topological invariant, in the sense
that adiabatic deformations of the Hamiltonian will not
leave the ASCN fixed, but a non-zero value of the ASCN
indicates the existence of topological invariants of the
projected spin operator across some fixed planes in mo-
mentum space.

Whenever the ASCN is an even integer, then this num-
ber is indeed a topological invariant of the system. This
number indicates that the material has a constant spin
Chern number across all parallel planes in a fixed spin di-
rection, and these numbers does not change on adiabatic
deformations of the Hamiltonian. This particular phase
is also recognized as the 3D quantum spin Hall insulator
state, in analogy with the 2D.25,26

When the ASCN is non-zero, it implies a correspond-
ing non-zero value for the SHC, and the intensity of the
SHC is linked to the magnitude of the ASCN. In Table I
we have collected the values of the ASCN and the SHC
for different materials with topological properties. It is
important to note that their values are related, and more-
over, that we can deduce from the value of the ASCN the
fact that α-BiBr has projected spin gap and therefore it
is a quantum Hall spin insulator. Also we deduce that
and that the spin Chern numbers for MnBi6Te10 are −6
and −4 in on the planes kz = 0 and kz = π.

The ASCN can also be calculated in Weyl semimet-
als. The occupied states restricted to a plane kc = l are
gapped except where the energy meets the Fermi energy,
which happens only at a finite number of points. More-
over, the projected spin operator is always gapped for the
planes kc = l except for a finite number of planes. Hence
the SCN is well defined for all planes kc = l, except for a
finite number of planes where Weyl points are located. In
the case of Weyl semi-metals the value of the ASCN will
be very close to the one of the SHC since the eigenvalues
of the projected spin operator will be close to 1 and −1.



3

Note that the average Chern number (ACN) can also
be define on the occupied states:

c1,ab =
1
2π

∫ 2π

0

c1,ab(l)dl. (6)

Here c1,ab(l) is the first Chern number of the occupied
states restricted to the plane kc = l. In this case it follows
that the AHC is a multiple to the ACN, no matter what
the Fermi energy level is. In formulas we have

σab =
e2

h 2π · c1,ab, (7)

and therefore the AHC is quantized on Chern insulators.
So we can interpret the AHC as the average contribu-

tion of the Chern numbers across parallel planes in recip-
rocal space. When the ACN is an integer, it means that
the material has an energy gap and that the Chern num-
ber is constant across parallel planes. If the ACN is non-
zero, it means that there are planes in momentum space
where the Chern numbers is non-zero, and a contribution
to the anomalous Hall conductance is present. This topo-
logical contribution is linked with the distance in momen-
tum space of the Weyl points in Weyl semimetals..27,28

We have carried extensive calculations for the ASCN
and its relation to the SHC in the 3D BHZ model of four
bands.29 The BHZ Hamiltonian can be written as (see
Supplementd Material24):

H(k) = Mτ3σ0 +Aτ1σ3 + Cτ2σ0 +Dτ1σ1, (8)

with

M =M0 −B0 (cos(kx) + cos(ky) + cos(kz)) , (9)

A =A0 sin(kx), (10)

C =C0 sin(ky), (11)

D =D0 sin(kz), (12)

spin matrices Sx = τ0σ1, Sy = τ3σ2 and Sz = τ0σ3 and
time reversal T = iτ0σ2K where K is complex conjuga-
tion.

The energy gap closes whenever M0

B0
∈ {−3,−1, 1, 3},

and it is a non-trivial insulator only for −3 < M0

B0
< 3.16

The SOC could be interpreted as the matrix Dτ1σ1

and its intensity as the value of D0. In Fig. 1 a) the
ASCN cSz

1,xy has been plotted with respect to the value

of M0

B0
, together with the SHC σz

xy for different values of
D0.

It is important to note that the ASCN remains unaf-
fected by the value of D0, serving as a direct measure of
the SWP’s distance. Notably, in the case of D0 = 0, the
ASCN aligns with the SHC and the intensity of the SHC
decreases for bigger D0; however, both the ASCN and
the SHC retain non-zero values simultaneously.

Choosing a generic direction n = (α, β, γ) of the spin
Sn, we see that the SWPs are located at the points in

FIG. 1. Comparison of SHC with the ASCN in the 3D
BHZ model using various computational and theoretical ap-
proaches. a) Results obtained from the Kubo formula Eqn.
(12)24 of the SHC σz

xy for different values of D0 (in colors),

and the ASCN cSz
1,xy of (3) in reciprocal space (black line),

are plotted against the M0
B0

parameters. The shaded areas
represent different phases: the blue region denotes the triv-
ial phase, while the white and gray areas indicate the strong
and fragile phases, respectively. b) Comparison of the SHC
n · (σx

xy, σ
y
xy, σ

z
xy) (lines without dots) with the ASCN cSn

1,xy

(lines with dots) for the spin Sn where n = (sin(θ), 0, cos(θ))
and 0 ≤ θ ≤ π. Here we go from Sz to Sx and finish in
S−z. The graph a) is at angle θ = 0 and the graph b) is at
M0
B0

= 1.5. The red vertical line in the graphs represent the

same information. The strength of spin-orbit coupling (D0)
is measured in electron volts (eV).

momentum space that solve the following system of equa-
tions (see Supplemental Material24):

cos(kx) + cos(ky) + cos(kz) =
M0

B0
, (13)

γA0 sin(kx) + αD0 sin(kz) = 0, (14)

γC0 sin(ky)− βD0 sin(kz) = 0. (15)

Whenever −3 < M0

B0
< −1 and 1 < M0

B0
< 3 there is

only one pair of opposite SWPs, and for −1 < M0

B0
< 1

there are two pairs of opposite SWPs.
In Fig. 1 b) we have plotted the ASCN cSn

1,xy and the
SHC for values of n = (sin(θ), 0, cos(θ)) where 0 ≤ θ ≤ π.
The ASCN only depends on the location and chiralities
of the SWPs for each choice of n, while the SHC can be
calculated by the expression

σn
xy = sin(θ)σx

xy + cos(θ)σz
xy. (16)
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FIG. 2. Graph of the projection of the positive projected spin
Sz eigenvector into the valence and conduction bands on the
3D BHZ model at the kz axis on the point (kx, ky) = (0, π) for
M0
B0

= 0.5, A0 = C0 = 1, D0 = 0.11. The SWPs are located on
this axis and the graph of the projected spin eigenvalues lies at
the bottom. The top graphs are the degenerate energies of the
four bands, and the color represents the square of the norm of
the projection of the positive spin eigenvector of PSzP into
the valence and the conduction states respectively. If ϕ is
the positive eigenvector of PSzP , then the color on the upper
bands represent the value |⟨ψ3|ϕ⟩|2 + |⟨ψ4|ϕ⟩|2 and on the
bottom bands the value |⟨ψ1|ϕ⟩|2 + |⟨ψ2|ϕ⟩|2. In the location
of the SWPs, the spin Sz of both the valence states ψ1 and
ψ2, is all conduction. Even though the 3D BHZ model has
an energy gap, at some points in momentum space the spin
of the valence states lies on the conduction band. The BHZ
models an energy insulator which does not insulate the spin.

In Figure 1 b), it is observed that the SHC exhibits
alignment with the ASCN when the spin direction ro-
tates along the ky axis. In this graph, it is noted that
both ASCN and SHC undergo a change in sign from Sz

(angle=0) to S−z (angle=π).

In Fig. 2 we have plotted the energy bands on the kz-
axis for (kx, ky) = (0, π) for specific choice of constants.
The SWPs are located on this axis. We have colored
the energy bands with the square of the norm of the
projection of Sz|ϕ⟩ on the valence and the conduction
bands where ϕ is the eigenvector of the projected spin
operator PSzP with smallest positive eigenvalue. Note
that at the SWPs, the spin of the valence energy states
is all conduction. Namely, even though the BHZ models
an insulator in terms of its energy spectrum, its is not an
insulator on the spin spectrum.

In order to demonstrate the applicability of the cur-
rent methodology to real-world materials, we have cal-
culated the ASCN and SHC for different topological
insulator materials. Here we contrast the results for
the case of Bi2Te3, MnBi2Te4, MnBi6Te10 and α-BiBr.
The calculations were performed using a combination
of first-principles methods based on the VASP,30 the
Wannier90,31 and the Pythtb code,32 with detailed com-
putational setups outlined in the manuscript.16

We evaluated the electronic and spin spectra of these
materials, including the projection of spin projected
eigenvalues (PSzP ) onto the electronic bands, as de-
picted in Fig. 3. For the case of Bi2Te3, we observed
a pronounced concentration of valence spin information
around a singular point in the conduction band along the
ΓT k-path. This localization of spin information suggests
the existence of a spin Weyl point along the ΓT path, as
depicted in Fig. 3 a). Remarkably, the projected spin
spectrum calculation unveils the presence of spin Weyl
points both in the TΓ and -TΓ paths, which represent the
diagonal direction in the rhombohedral phase or z axis
in cartesian coordinates. Consequently, the ASCN is ex-
pected to be proportional to the distance between these
SWPs, as in the 3D BHZ model. Indeed, we have found
that the both ASCN and SHC exhibit a proportional
relationship with the SWPs distance. Table I presents
the value of ASCN and SHC for Bi2Te3, demonstrating a
topological response across all kz-planes in the hexagonal
BZ. Notably, the SHC signal is particularly pronounced
along the z-axis, coinciding with the location of SWP
in reciprocal space. This result aligns with the layered
structure of Bi2Te3, where the z planes correspond to the
layers in real space.

TABLE I. Average Spin Chern Number (cz1,ij) and Spin Hall
Conductance (σz

ij ) values for topological materials Bi2Te3,
MnBi2Te4 and MnBi6Te10 and α-BiBr, where MnBi2Te4 and
MnBi6Te10 are taken in their antiferromagnetic phase. The
table includes ASCN and SHC values are given in units of
−eπ. The last row classifies the materials as strong topologi-
cal insulator (STI), axion insulator (AI) or quantum Hall spin
insulator (QSHI).

Bi2Te3 MnBi2Te4 MnBi6Te10 α-BiBr

σz
yx 3.27 −2.70 −4.48 −3.96

cSz
1,xy 3.16 −2.60 −5.04 −4

σz
xy −3.25 2.70 4.48 3.66

Type STI AI AI QSHI

We have performed an analysis of the electronic and
projected spin spectrum of α-BiBr, uncovering a nonzero
energy and projected spin gap throughout the entire Bril-
louin zone. This characteristic serves to classify the α-
BiBr as both an energy and spin insulator, as it shown
in Fig. 3 b), in agreement with Lin et al .14 Furthermore,
no significant exchange of spin information between the
conduction and valence bands is evident. However, we
have observed a constant cz1,xy value of −4 along all the
kz planes and zero of the kx and ky planes in the Brillouin
zone for α-BiBr, which is consistent with the σz

yx ∼ −4
as presented in Table I. The alignment between SHC and
ASCN reflects the full topological response of α-BiBr per-
pendicular to the z-axis. This result is hidden for the
Z2=0 index for this material, highlighting the efficacy of
ASCN as a tool for extracting valuable insights into the



5

FIG. 3. Energy bands and projected spin Sz eigenvalues for the strong topological insulator Bi2Te3 and the weak topological
insulator α-BiBr. The color on the energy bands represent the square of the norm of the projection of the smallest positive
projected spin eigenvector into each pair of degenerate bands, both valence and conduction. If ϕ is the eigenvector of the
smallest positive eigenvalue of PSzP , the color on each pair of consecutive degenerate bands ψ2n−1, ψ2n is given by the value
|⟨ψ2n−1|Szϕ|⟩|2 + |⟨ψ2n|Sz|ϕ⟩|2. a) Bi2Te3 is a strong topological insulator, and as such, it has SWPs on the T-Γ-T path. The
chiralities of these SWPs is ±1 and the ASCN is cSz

1,xy = 3.16, which means that the SWPs are located almost in the middle of
the T-Γ path. Note that the value of the intrinsic SHC is σz

yx = 3.27 which is very close to the ASCN. The eigenvector of the
projected spin operator with smallest positive eigenvalue is entirely conduction on the SWPs. This can be seen in the Γ-T path.
b) α-BiBr is a spin Chern insulator since the value of the ASCN cSz

1,xy = −4 is a non-zero even integer. The spin insulation can
be read from the fact that the ASCN is an even integer, and the topological feature is given by the constant value of −4 for
the SCN on the kxky planes. Since this SCN is a multiple of 4, the Chern number of the positive and negative projected spin
eigenvectors is equal to 2 and −2 respectively. Hence the number of pairs of negative eigenvalues of the inversion operator is
even and therefore the strong topological insulator marker Z2 of Fu-Kane-Mele is equal to zero. This shows how the ASCN
adds information for the classification of topological features on materials.

spin response of topological insulators.

It is found that α-BiBr displays a vanishing ASCN for
the Sx and Sy spin components, suggesting a lack of topo-
logical response in SHC for these spin directions. Our
calculations confirm α-BiBr as a 3D quantum spin Hall
insulator (Sz). The observed anisotropy between σz

xy and
σz
yx responses is further supported by symmetry analysis

of the SHC tensor, indicating distinct components within
this space group (#12). This convergence of ASCN and
SHC values highlights the unique topological nature of
α-BiBr.

Regarding the axion insulators (AI) MnBi2Te4 and
MnBi6Te10, we also see that the values of the ASCN
and SHC are very similar. In these two materials time
reversal coupled with a translation is a preserved symme-
try, and therefore the Chern numbers of the positive and
negative projected spin eigenvectors are inverse to one
another. Therefore we can conclude that the spin Chern
number on all kz planes for MnBi2Te4 are less than −2
and for MnBi4Te10 are less than −4.

With the SHC alone we may not distinguish the mate-
rials in Table I, but with the incorporation of the ASCN
we differentiate α-BiBr from the others. The incorpo-

ration of the ASCN into the set of material classifiers
will help distinguish QSHIs from strong topological and
axion insulators, and moreover, it will permit to distin-
guish the topological features underlying the projected
spin operator.
It is also important to remark that the ASCN calcu-

lations are significantly less intensive compared to SHC
calculations. The former needs 3D dense k-grids while
the latter only needs a dense k-grid in one dimension.
The ASCN can also be calculated in collinear ferromag-
netic or antiferromagnetic when the spin z component
can be consider a good quantum number in the weak
SOC limit. These results indicate the practical advan-
tage of employing ASCN as a computational tool and
topological indicator, in scenarios where the efficient cal-
culation of SHC is limited.
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