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A central concern of community ecology is the interdependence between interaction strengths and
the underlying structure of the network upon which species interact. In this work we present a
solvable example of such a feedback mechanism in a generalised Lotka-Volterra dynamical system.
Beginning with a community of species interacting on a network with arbitrary degree distribution,
we provide an analytical framework from which properties of the eventual ‘surviving community’
can be derived. We find that highly-connected species are less likely to survive than their poorly
connected counterparts, which skews the eventual degree distribution towards a preponderance of
species with low degree, a pattern commonly observed in real ecosystems. Further, the average
abundance of the neighbours of a species in the surviving community is lower than the community
average (reminiscent of the famed friendship paradox). Finally, we show that correlations emerge
between the connectivity of a species and its interactions with its neighbours. More precisely, we
find that highly-connected species tend to benefit from their neighbours more than their neighbours
benefit from them. These correlations are not present in the initial pool of species and are a result
of the dynamics.

I. INTRODUCTION

The modern discipline of macroecology takes up the
ambitious challenge of identifying and understanding
the unifying characteristics of ecological communities.
Such characteristics include the shapes of abundance
distributions, fluctuations in species abundances, and
abundance-diversity relationships [1–3]. Of particular
interest is the relationship between ecosystem network
structure and inter-species relationships [4–6]. Interac-
tion network structure in real ecological networks has
been linked to interspecies competition [7, 8], stability
[9–13], and to the functioning of an ecosystem in the
wider biosphere [14, 15].

To explain some of these observed relationships, simple
models have been suggested (such as the Cascade and
Niche models), which have had success in replicating ob-
served patterns in natural foodwebs [9, 16–22]. The tools
of statistical physics and disordered systems are particu-
larly well-suited to aiding in the study of these models,
due to their emphasis on deriving universal and emer-
gent phenomena from microscopic interactions. As such,
building on the seminal work of Robert May [23], some
works have focused on how network structure can in-
fluence ecological stability by using random matrix the-
ory [22, 24–27]. However, these models simply posit
the structure of the network and interaction coefficients.
Therefore, it could be that the hypothesised Jacobian
matrix does not correspond to any realistic ecosystem
dynamics.

More recently, dynamic mean-field theory (DMFT) tech-

niques [28, 29] have been used to examine the statistics
of interactions in the surviving communities that result
from plausible ecosystem dynamics [30–32]. It has been
shown that intricate correlations between species’ inter-
action coefficients arise in so-called ‘feasible’ model com-
munities, and that these statistics are important for sta-
bility [33].

In this work, we seek to understand what kinds of inter-
action networks are permitted in feasible communities.
We present an analytically tractable model in which an
initial pool of species interacts according to generalised
Lotka-Volterra dynamics. Our interest is in the long-time
behavior of the community as it follows these dynamics.
The degree distribution of the network on which species
initially interact is an input for the model. However, be-
cause species can die out during the dynamics, the final
network of surviving species is a result of the interactions.
In this way, our model captures some salient aspects of
the feedback loop between inter-species interactions and
the structure of the network on which these interactions
take place. The eventual patterns that emerge in the
community are a consequence of the fact that the com-
munity evolves dynamically; it is feasible by construction.
We are thus able to probe the interdependence of inter-
action network structure and species relationships that
characterise feasible communities.

Ultimately, we are able to demonstrate several general
trends (for competitive, and stable, communities). First,
more highly-connected species are less likely to survive,
which skews the degree distribution towards having many
species with low connectivity and few species with high
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connectivity (a pattern observed in nature [19, 34]). Sec-
ondly, species with higher connectivity typically have
lower abundance. This in turn means that the aver-
age abundance of the neighbour of a randomly selected
species is lower than the abundance of a randomly se-
lected species (akin to the so-called ‘friendship para-
dox’). Finally, we find that there are correlations be-
tween a species’ connectivity and its interactions with its
neighbours. On average, well-connected species will have
more favourable interactions with their neighbours than
their neighbours will have with them (and vice versa for
poorly-connected species).

The content of this work is organised as follows. In Sec-
tion II, we describe the generalised Lotka-Volterra model
and the structure of the interspecies interactions explic-
itly. We then outline our analytical methods for predict-
ing the behavior of the model in the long-time limit in
Section III, and we compare our results for the abun-
dance distributions of species in the community to the
results of numerical integration. We also analyse stabil-
ity, and find that network structure can be a stabilising
influence in communities with many predator-prey and
competitive interactions. In Section IV, we derive a sim-
ple expression for the eventual degree distribution of the
community, finding that species with low degree become
relatively more common, and species with high degree
become relatively rare. We also examine the dynami-
cally induced correlations that emerge between species’
interactions and the network, and offer biological inter-
pretations for these correlations. We finish by discussing
possible extensions to this model and the implications of
our results in Section V.

II. MODEL

Consider a community of N species interacting accord-
ing to generalised Lotka-Volterra (gLV) dynamics. These
dynamics produce feasible communities by construction
(i.e., all abundances remain positive if they are so at
t = 0). The abundance of species i at time t, xi(t),
is determined by the following set of equations

ẋi(t) = xi(t)

1− xi(t) +
∑
j

Aijαijxj(t)

. (1)

The adjacency matrix element Aij encodes the structure
of the network on which the species interact. The variable
Aij is equal to 1 if species i and j interact, and is 0
otherwise. We always impose Aij = Aji. The interaction
matrix αij dictates the influence of species j on species i,
provided that they interact. The values of αij for which
Aij = 0 do not play a role in the dynamics. Both the
adjacency matrixA and interaction matrix α are random
matrices. They are selected independently of each other,
and are fixed throughout the dynamics.

We construct the matrix A according to the random con-
figuration model [35, 36] (also known as the Chung-Lu
model [37]). This generalises the often-used Erdös Reyni
network to incorporate an arbitrary degree distribution,
which we write as pk. To generate an instance of the
network, we first draw the degree of each node indepen-
dently from pk. With this degree sequence {ki}, we set
each pair (Aij , Aji) to one with probability kikj/(dN),
and set the pair to zero otherwise. For sufficiently large
N , this construction will produce networks with the de-
sired degree distribution. To ensure that the probability
of connection is well defined, we require kikj < dN for
all (i, j).

For simplicity, we will assume that the degree distribu-
tion is a uniform distribution, with width w = kmax−kmin

and average degree d, although our approach applies to
any degree distribution. In our examples, both d and w
are proportional to N . In the case of the uniform de-
gree distribution, the condition kikj < dN for all (i, j) is
equivalent to (w/2 + d)2 < dN .

To construct an instance of the interaction matrix α,
pairs of elements (αij , αji) are drawn identically and in-
dependently from a probability distribution with the fol-
lowing statistics

⟨αij⟩α =
µ

d
,

Var (αij)α =
σ2

d
,

Cov (αij , αji)α =
γσ2

d
. (2)

The statistics of the interaction matrix are scaled with
the factor of 1/d to ensure that the ensemble-averaged
interaction strength between species in the community
is
∑
ij⟨Aijαij⟩A,α/N = µ, and similarly for the variance∑

ij⟨(Aijαij − µ/N)2⟩A,α/N = σ2, which is commonly

the case in fully connected versions of the model [28, 29].
Our definition of the model parameters requires σ2 > 0
and |γ| ≤ 1.

The correlation coefficient γ controls the symmetry of
interactions αij and αji in the original community, with
γ = 1 for symmetric interactions (αij = αji for all i ̸= j),
and γ = −1 for antisymmetric deviations from the mean
[αij − µ/d = −(αji − µ/d) for all i ̸= j]. If we were
to further assume that the pairs (αij , αji) were jointly
Gaussian distributed, then γ has a simple relationship to
the proportion p of interactions in the community that
are of predator-prey type: γ = cos(πp) [38]. Generically,
γ is a decreasing function of the proportion of predator-
prey-type links in the community.
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FIG. 1. Stability plot for different values of γ for the network
model as described in Section II (solid and dot-dashed lines),
and for the same model on an Erdős-Reyni graph (dashed
and dotted lines) with the same average degree per species.
Solid (dashed) lines indicate the transition between the stable
and diverging abundance phases, and dashed (dotted) lines
indicate the onset of linear instability. Areas to the left of
the solid curves, and below dashed curves are stable. For all
curves, the average degree is d = N/4. For solid and dashed
lines the width is w = 0.5N .

III. BEHAVIOR OF THE MODEL

A. Dynamical mean-field theory and phase
diagram

Depending on the model parameters (µ, σ, γ and the de-
gree distribution pk), the dynamics in Eq. (1) exhibit
three distinct phases

As in existing gLV models with random all-to-all inter-
actions [28, 29, 39], there is a phase in which, for a fixed
interaction matrix, the dynamics converge to a unique
equilibrium independently of the initial abundances. Sec-
ondly, there is a phase in which there are multiple sta-
ble fixed points for any given interaction matrix, or the
system can remain volatile indefinitely. Finally, species
abundances diverge in a third phase.

The three phases are separated from one another by the
onset of a linear instability and, secondly, by the onset of
diverging abundances. We give an overview of our results
for the phase diagram of the model in Fig. 1. As discussed
in Refs. [40, 41], there are other possible regimes when the
interactions do not scale with the system size as above.
However, we do not consider these regimes in this work.

The focus of our analytical work is on the properties of
the phase in which the dynamics always converge to a
unique equilibrium (independent of the initial species
abundances). To this end, we employ a generating-
functional method, which has its roots in the physics of
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FIG. 2. (a) and (b): Overall survival probability ϕ and mean
abundance M in the community for varying variance of inter-
action strength σ. (c): The abundance distribution of species
with degree k is a clipped Gaussian, and the average of all
such curves gives the abundance distribution of the commu-
nity as a whole (solid orange curve, see Appendix A2 for
details). The corresponding prediction from the Erdős-Reyni
model with the same mean, variance, correlation, and aver-
age degree d is shown as a yellow dotted curve. For all plots,
the degree distribution is uniform, and the parameters are
µ = −3, w = 0.45N and d = N/4 and γ is as indicated in the
legend. In (a) and (b), N = 1000 and markers are the average
over 10 runs of the dynamics. In (c), σ = 1 and N = 5000,
and the histogram is the result of single run of the dynamics.
The large spike at zero abundance is due to species which
have died.

disordered systems [42–45], to derive dynamical mean-
field equations for the time evolution of the community.
Dynamical mean-field theory has been successfully ap-
plied to ecological models since the work of Ref. [46] in
the context of replicator equations and since the work of
Ref. [28] in the context of the gLV equations (see also
[47]).

In most previous models, the DMFT formalism produces
a single effective process, which describes the dynamics of
a ‘typical’ species abundance. The statistics of the evo-
lution of this effective species mirror those of the entire
community. In this work, because species in the origi-
nal community are distinguishable by their degree, there
is an effective process representing the typical behavior
of species of each possible degree. Our treatment here
follows that used to analyse a previous model in which
species were distinguished not by their degree, but by
their position in a hierarchy [38].

B. Characterisation of the unique-equilibrium
phase

In the unique-equilibrium phase, we can use the DMFT
equations to find the abundance distribution of species
that have a particular degree k in the original community.
The derivation of the DMFT equations, as well as the
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analysis of the fixed point, can be found in Appendix A.

The abundance x⋆k of a typical species with degree k
at the fixed point is a random variable with a clipped
Gaussian distribution. The fixed-point abundances sat-
isfy x⋆k(z) = max[0, x⋆+k (z)], where the non-zero abun-
dances satisfy

x⋆+k (z) =
1 + µkd

∑
k′ pk′

k′

dMk′ + zσ
√

k
d

∑
k′ pk′

k′

d qk′ + h

1− γσ2 k
d

∑
k′ pk′

k′

d χk′
.

(3)

The quantity z is a zero-mean, unit-variance Gaussian
random variable, and h is an external field used to de-
fine the response function χk below. At the end of the
calculation, and in all simulations, we set h = 0. The
quantities Mk and qk are the first and second moments
of the distribution of x⋆k respectively. These objects are
determined self-consistently from their definitions

Mk =

∫
x⋆
k>0

dz f(z) x⋆k(z),

qk =

∫
x⋆
k>0

dz f(z) x⋆k(z)
2,

χk =

∫
x⋆
k>0

dz f(z)
∂x⋆k(z)

∂h
, (4)

where f(z) = exp
(
−z2/2

)
/
√
2π is the probability density

function of the standard normal distribution. For given
model parameters, we can solve Eq. (3) and Eqs. (4) nu-
merically to yield the values of the Mk, qk and χk, for
k = kmin, . . . , kmax (where we write kmin, kmax for the
lowest and highest degree in the network respectively).
These quantities in turn yield the abundance distribu-
tions, i.e., the distributions for the different x⋆k. We also
define the probability of survival for species that have
degree k in the original community

ϕk =

∫
x⋆
k>0

dz f(z), (5)

as well as the community wide abundance and survival
probability

M =
∑
k

pkMk, ϕ =
∑
k

pkϕk. (6)

Figure 2 confirms the validity of the fixed point solution
from Eqs. (3) and (4). The prediction for the average
abundance, survival rate and total abundance distribu-
tion across the community match the results of simula-
tions. We also show the prediction for the abundance
distribution from a theory which does not take the full
network structure into account, but instead assumes an
Erdős-Réyni (ER) network with the same average de-
gree d. The Erdős-Réyni network is obtained by setting
pk = δk,d, where δk,d is the Kronecker delta. Although

there is degree heterogeneity in this network, it is of the
order 1/d [27]. As we can see from Fig. 4, the ER graph
does not share the same abundance distribution as when
pk is uniform distribution, confirming the importance of
degree heterogeneity in the theory.

C. Onset of instability

The analytical results presented in Section III B are only
valid in the phase with a unique equilibrium. In Ap-
pendix C, we find the boundary of this stable regime in
terms of the parameters of the model.

The onset of the diverging phase for given model param-
eters (µ, σ, γ and pk) is found by solving the fixed point
equations (4), together with the additional condition that
the community average abundance M diverges.

To identify the point at which the dynamics become lin-
early unstable, we consider a small random perturbation
to the fixed point abundances x⋆k(t) = x⋆k + ϵyk(t). In
the stable regime, this perturbation will decay to zero.
In the unstable phase, the abundances will not in gen-
eral return to x⋆k after being perturbed. In Appendix C,
we find that such a perturbation will eventually decay to
zero provided the following condition holds

σ2

d2

∑
k

pk
k2χ2

k

ϕk
< 1. (7)

That is to say, the system is stable against linear pertur-
bations if this inequality is satisfied, and is not otherwise.

Solving the fixed point equations [Eqs. (4)] simultane-
ously with the condition obtained from setting the left-
hand side of the inequality in Eq. (7) equal to one gives us
the boundary of the stable and linearly unstable phase.
In the fully connected system, the condition for the onset
of the linear instability reduces to σ2ϕ(1+γ)2 < 1, which
has been derived previously using both DMFT [28], and
the static cavity method [29].

IV. PROPERTIES OF THE SURVIVING
COMMUNITY

We have established the analytical theory for describ-
ing the overall properties of the surviving community, as
well as the conditions under which this theory is valid.
We now turn our attention to underlying statistics of
the network and the interactions of surviving commu-
nity. Specifically, in this section we will quantify how
the survival rates, abundances and interaction strengths
between species depend on their connectivity.

Throughout this section, we write A⋆, k⋆i , p
⋆,α⋆ for the

adjacency matrix, the degree (connectivity) of a species
i, the degree distribution, and the matrix of interaction
strengths in the surviving community respectively. We



5

Aijαij k

A?
ijα

?
ij k?

→

FIG. 3. Structure of the interaction matrix and correspond-
ing degree sequence in the original pool of species vs their
counterparts in the surviving community. Pink strips indi-
cate which species go extinct in the course of the dynamics,
and are hence removed from the community. In this example
(counting from the top row of Aijαij), S

⋆ = {1, 2, 4, 5, 7, 10}.
The degree sequence among the survivors is not simply the
sequence of original degrees restricted to surviving species,
because some of the survivors’ interaction partners also die
out. Generally, the degree of any extant species in the sur-
viving community will be lower than its original degree.

also write N⋆ for the number of species in the surviving
community, and S⋆ for the set of all persisting species.
We emphasise that A⋆, k⋆i , p

⋆,α⋆ are not the same as
the corresponding quantities in the original community
A, ki, p,α. The differences between the two are the re-
sult of the interaction-dependent species extinctions that
occur during the course of the dynamics. The relation-
ship between Aijαij , ki and A⋆ijα

⋆
ij , k

⋆
i is illustrated in

Fig. 3.

A. Structure of the network

In this section we will use the statistics of A⋆ij to find
expressions for the degree of a species in the surviving
community, given its degree in the original community,
as well as the degree distribution in the surviving com-
munity. One crucial observation that will aid us in doing
this is the following. The probability of any two species
interacting in the surviving community (i.e. conditioned
on the survival of both species) is kk′/(dN), where k, k′

are the species degrees in the original community. This
is because, to leading order in 1/d, the survival of dif-
ferent species can be treated as independent events. We
discuss this in more detail in Appendix E.

One notes that although the conditional probability that
species interact given their survival is trivially related to
their interaction probability in the original pool (they are
equal), the probability that both species actually survive
is dependent on their respective degrees. This leads to
non-trivial changes in the network structure.

The expected degree of a surviving species, given its de-
gree in the original community, can be computed from
our expression for the probability of any two species in-

teracting in the surviving community (see Appendix E 3
for details). We find, for the expected degree,

E[k⋆i | ki, i ∈ S⋆] = rki, (8)

where E[. . . ] denotes the combined average overA and α,
and where r =

∑
k pkϕkk/

∑
k pkk is the survival proba-

bility of the neighbours of an arbitrarily chosen species in
the original community. In Appendix E, we further show
that the variance E[(k⋆i )

2 | ki, i ∈ S⋆]−E[k⋆i | ki, i ∈ S⋆]2

is sub-leading in 1/d. Hence, the probability distribution
of species’ degrees in the surviving community, given that
they had degree k in the original community, is highly
concentrated around the mean value given in Eq. (8).
This can be seen in Fig. 4 inset, which shows a scatter
plot of the points (k⋆i , ki) for i ∈ S⋆ for one particular
instance of A and α (i.e. there is no average performed).
We see an almost perfect linear relationship between k⋆

and k with very little fluctuation. From Eq. (8), the gra-
dient of this line is r.

Using Eq. (8), we can thus find a compact expression for
the degree distribution in the surviving community p⋆k⋆ .
We also use the fact that, for many possible degrees and
large N , the integer spacing between different possible
degrees effectively becomes a continuum. For this reason,
we write P ⋆(k⋆/M) =Mp⋆k⋆ and P (k/M) =Mpk, where
M is the number of different degrees in the community
(the number of distinct values of ki). We can express
P ⋆(κ⋆) (where κ⋆ = k⋆/N is a variable between 0 and
1) in terms of the original degree distribution P (κ) and
survival rate ϕ(κ) as

P ⋆(κ⋆) =
1

ϕr
ϕ

(
κ⋆

r

)
P

(
κ⋆

r

)
, (9)

where ϕ(k/M) = ϕk. This can be understood as fol-
lows: the probability P ⋆(κ⋆) that a randomly selected
species in the surviving community has degree k⋆ is
proportional to the product of the probabilities that a
randomly selected species in the initial pool has degree
k = k∗/r and that this species survives [P (κ)ϕ(κ)]. The
factor of 1/(ϕr) is a normalisation constant, ensuring that∫
P ⋆(κ⋆) dκ⋆ = 1 (see Appendix E 3 for details).

In Fig. 4, we show the effect of the dynamical selection on
a community interacting on a network that initially has
a uniform degree distribution. It is clear that, relative
to the initial degree distribution, there are more species
with low degree than with high degree in the surviving
community. This is driven by the fact that highly con-
nected species in the original community are less likely
to survive than species with low degree in competitive
communities (i.e. for µ < 0, see Appendix B and the
next section for details).



6

0 500 1000 1500 2000 2500
degree

0.0

0.5

1.0

nu
m

b
er

de
ns

it
y

×10−3

1000 2000
k

0

500

1000

k
∗

FIG. 4. Degree distribution in the surviving community (tall
pink distribution) and the original species pool (flat orange
distribution). The degree distribution in the original commu-
nity is uniform, while the degree distribution in the surviving
community is given by Eq. (9). Parameters are the same as
Fig. 2(c). The inset shows the degree sequence in the sur-
viving community as a function of the degree sequence in the
original community. Bars and markers are computed from
a single run of the dynamics with N = 5000. To avoid too
many points in the inset, we only display markers for one in
every 250 species in the surviving community. No average is
taken.

B. Survival rates and abundances as functions of
degree

As we see in Fig. 5(a), species with higher initial degree
are less likely to survive. This can be understood in broad
terms from Eq. (3). The abundance x⋆k is a random vari-
able drawn from a clipped Gaussian distribution. That
is, if the Gaussian variable z is such that the RHS of
Eq. (3) is negative, the species does not survive. Given

that the factor multiplying z is proportional to
√
k and

that the factor multiplying µ < 0 is proportional to k,
we see that as k increases, it is more likely that the RHS
of Eq. (3) is negative. Hence, a higher fraction of species
go extinct for higher k. This is always the case for µ < 0
(see Appendix B).

Fig. 5(b) shows the expected abundance Mk⋆ of species
as a function of their degree in the surviving community,
which in the case shown is also seen to be a decreasing
function of k⋆. This is not always guaranteed to be the
case however, even for µ < 0. With that being said, in
Appendix B, we show that the region in parameter space
for which the system is stable, where µ < 0, and for which
Mk⋆ and k⋆ are positively correlated is small. Hence, for
µ < 0, only a small range of parameters could give rise
to a community in which Mk⋆ is an increasing function
of k⋆. This general trend can once again be understood
from Eq. (3), where we see that the term proportional
to µ, which determines the typical value of x⋆k, is also
proportional to k.

0 200 400
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FIG. 5. (a) Survival rate as a function of degree in the original
community. (b) Abundance as a function of degree in the sur-
viving community. The survival rate is written as a function
of degree in the original community, rather than as a function
of degree in the surviving community. In contrast, the abun-
dance of a species with given degree is an observable that re-
quires only information about the surviving community, hence
we plot it as a function of k⋆ rather than k. The parameters
are µ = −3, σ = 1.2, d = N/4, w = 0.45N,N = 2000, and the
values of γ are the same as in Fig. 2. In Panel (b), the curves
terminate at different values of k⋆ because of the differences
in the limit of the degree sequence k⋆ in the surviving commu-
nity. Markers are the average over 200 runs of the dynamics,
and the solid lines are analytical predictions.

The fact that ϕk and Mk⋆ are decreasing functions of
degree has consequences for the relationship between
species and their neighbours in the community. In Sec-
tion IVA, we introduced the probability of survival of
the neighbours of a species in the original community
r =

∑
k pkϕkk/

∑
k pkk. We now show that if ϕk de-

creases with k, then r < ϕ. That is, the probability of
survival of the neighbours of a species is lower than the
overall probability of species survival.

To see this, we first observe that if ϕk decreases with k,
then the covariance of ϕk and k (computed with respect
to the degree distribution pk) must be negative. That
is,
∑
k pkϕkk − (

∑
k pkk)(

∑
k′ pk′ϕk′) < 0. We arrive at

our claim after dividing both sides of the inequality by∑
k pkk and recalling that ϕ =

∑
k pkϕk.

By an identical argument, we can conclude that ifMk⋆ is
a decreasing function of k⋆, then the average abundance
of the neighbours of a species in the community is lower
than the average abundance in the surviving community
as a whole. Following the colloquial statement of the fa-
mous friendship paradox, ‘your friends are more popular
than you are’, we could say that “species’ neighbours are
less populous than they are”.

C. Interaction strengths in the surviving
community

It is known that intricate correlations between interac-
tion coefficients, which are not present in the original
community, emerge in the surviving communities of fully-
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to γ = (−1, 0, 1) respectively. In (a) and (b), the curves with positive gradient show the‘in’ interaction strengths and the curves
with negative gradient show the ‘out’ interaction strengths. In (c), the ‘in’ and ‘out’ interactions are exactly equal. A horizontal
black line has been added to all panels to indicate the mean interaction strength in the original community. Parameters are
µ = −3, σ = 0.6, d = N/4, w = 0.45N , N = 2000. Markers are the average of 200 runs of the simulation. Solid lines are
analytical predictions (see Appendix D for the explicit expressions).

connected gLV systems [29, 32, 33]. In this section, we
show that in network gLV systems, the dynamics also
induce correlations between the degree of a species and
its interaction coefficients in the surviving community,
even though there are no such correlations in the initial
community.

To quantify this effect, we characterise the strength of
interactions ‘coming into’ and ‘going out of’ a species
with degree k in a general network as

µin
k =

d

Nk

∑
i∈Sk

1

k

∑
j

Aijαij ,

µout
k =

d

Nk

∑
i∈Sk

1

k

∑
j

Ajiαji, (10)

where we write Sk for the set of species that have degree k
and Nk for the number of species in this set. Because the
network and interaction strengths are independent in the
original community, the ensemble average in and out in-

teraction strengths are both equal to ⟨µin/out
k ⟩A,α = µ for

any value of k. However, as Fig. 6 demonstrates, when we
measure these same quantities in the surviving commu-
nity [i.e. µ⋆ink⋆ = (d⋆/N⋆

k⋆)
∑
i∈S⋆

k⋆

∑
j∈S⋆ A⋆ijα

⋆
ij/k

⋆ and

similar for µ⋆outk⋆ ], we find that they are functions of the
degree k⋆.

We can understand the relationship between the in/out
interaction strengths and connectivity by examining
Fig. 6(b). In this case, γ = 0, and therefore there is
no imposed correlation between the ‘in’ (αij) and ‘out’
(αji) interaction coefficients, so we are better able to dis-
entangle the effects at play.

Let us begin with the incoming interactions. We see that
the average incoming interaction strength increases with
degree k⋆. We attribute this primarily to the differing

survival rate of species, depending on degree. We can
see this as follows. Almost all species with small k sur-
vive (i.e. ϕk ≈ 1), and so we expect the average incoming
interactions to be same in the surviving and initial com-
munities for species with small k⋆ (i.e. µ⋆ink⋆ ≈ µ). As we
increase the value of k⋆, the survival rate of the species
decreases (see Fig. 5). Because species with the most
favourable interactions survive, a ‘selection bias’ is intro-
duced for species with higher degree, hence the upwards
trend of µ⋆ink⋆ with k⋆.

The average outgoing interaction strength exhibits the
opposite trend to the incoming interaction strength in
Fig. 6(b). Low-degree species have more positive out-
going interactions than high-degree species. This is be-
cause low-degree species have higher abundance (see Sec-
tion IVB), and therefore have a greater impact on the
probability of their neighbours’ survival. Hence, the
neighbours of low-degree species are under relatively high
selection pressure compared to neighbours of species with
high degree (which have comparatively low abundance).
As was the case with the incoming interactions, it is those
species who interact more favourably that survive. Be-
cause there is less selection bias for the neighbours of
species with higher k⋆, we see a corresponding decrease
in µ⋆outk⋆ with k⋆.

The trends in the other panels of Fig. 6 can be under-
stood as a kind of superposition of the trends in panel
b, since a non-zero γ connotes a correlation between the
in- and out-interactions of a species. For example, when
γ = 1, the outgoing and incoming interactions must be
identical. Hence, µ⋆outk⋆ = µ⋆ink⋆ and the corresponding
curve in Fig. 6(c) is seen to be an ‘average’ of the up-
wards and the downwards trends in panel (b). On the
other hand, for γ = −1, the fluctuations in the in- and
out-interactions are exactly the negative of each other
[i.e. αij − µ/d = −(αji − µ/d)], hence the mirror-image
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effect in Fig. 6(a).

Although we have provided a qualitative rational of the
trends in Fig. 6, we are also able to provide direct quanti-
tative evidence of their causation using the cavity method
(in a similar way to Refs. [32, 33]). That is, we see di-
rectly how the survival bias of species affects the incom-
ing interactions, and how the species abundance affects
the outgoing interactions. The cavity method also yields
the analytical results in Fig. 6. The details are technical,
and so we direct the interested reader to Appendix D for
more information.

V. DISCUSSION

In this work, we have studied an extension of the pop-
ular generalised Lotka-Volterra equations by incorporat-
ing random network structure with an arbitrary degree
distribution. We have found that the network and inter-
action statistics of the surviving community differ greatly
from those of the original community. This demonstrates
that the condition of feasibility, which linear models can-
not guarantee, is a strong constraint on the structure of
ecological networks. To derive our central results, we ex-
tended the usual dynamical mean-field theory for gener-
alised Lotka-Volterra dynamics to describe heterogeneous
interaction statistics, in a similar way to our previous
work in Ref. [38].

Most importantly, we demonstrated that, in the sur-
viving community, there are correlations between the
connectivity of a species and its interaction coefficients.
These correlations are a fingerprint of the dynamics,
which results from constraining a subset of the original
species to coexist, and they are not present in the initial
pool of species from which the surviving community is
formed.

We anticipate that such ‘patterns’ between the network
and interaction statistics could be tested in real ecological
communities using modern inference techniques [48, 49].
Perhaps the most generally applicable of our findings is
the following ‘pattern’, which we derived using the cavity
approach, and which we anticipate ought not to depend
much on the specificities of the model in question. In
a coexisting community, species with greater abundance
will typically have interactions that have a more positive
(than the community average) effect on their neighbours’
abundances.

By finding an expression for the degree distribution in the
surviving community, we were able to go beyond com-
munity wide properties to probe how degree dependent
statistics vary across the community. We found that, for

a wide range of model parameters, the survival rates and
abundance of species are negatively correlated with their
degree. This in turn implied that a given species’ neigh-
bours were more likely to survive, and were more abun-
dant on average, than said species. We also found that
the degree distribution in the surviving community con-
tained relatively few species with high degree, and more
species with low degree, than in the original commu-
nity. This offers a partial mechanism for this same trend
found in real ecological networks [19, 50, 51], namely that
a skewed degree distribution may partially be a conse-
quence of a community’s feasibility.

There are many opportunities for extensions to this work.
Our model incorporates only the most simple random
network model, but real ecological networks are known
to be much more complex. It would be interesting to see
how additional structure, such as assortativity, interval-
ity, or particular motifs in the initial network of interac-
tions evolve when we constrain the network to be that of a
feasible equilibrium [52–56]. We also know that ecological
networks are directed networks [57, 58], which would pose
a simple mathematical extension to the present work. Fi-
nally, ecological networks are known to straddle the line
between being dense and sparse, with connectivity widely
reported to be in the range 0.05− 0.3 [19, 34]. Our work
could be extended to include sparse corrections for the
case where the connectivity is very low (using techniques
similar to e.g. Ref. [59]). In particular, we expect a
sparse surviving network to have more significant degree
correlations than the dense model, which would perhaps
offer a mechanism for the disassortativity found in real
ecological networks [57].
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NOTE

While this work was being completed we became aware of
the preprint [60], in which a very similar model is studied
with dynamic mean-field techniques.
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Appendix A: Derivation of the DMFT effective dynamical equations

To derive an effective set of mean field equations describing the evolution of species abundances in the community,
we start with the MSRJD [43–45, 61] generating functional of the gLVE dynamics in Eq. (1)

Z[ψ] =

∫
DxDx̂ exp

i∑
i

∫
dt x̂i(t)

 ẋi(t)
xi(t)

− 1 + xi(t)−
∑
j

Aijαijxj(t)− hi(t)

+ i
∑
i

∫
dt xi(t)ψi(t)

, (A1)

where the adjacency matrix A and interaction matrix α are described in the main text. The functions hi(t) and ψi(t)
do not appear in the dynamics in Eq. (1). These are source fields that are set to zero at the end of the calculation.
We will average Z[ψ] over the distribution of both the network (A) and the interactions (α). Like in Ref. [28], the
resulting disorder-averaged functional can then be manipulated into a form that is recognisable as the generating
functional of a different, decoupled set of dynamical equations. This set of equations describes the evolution of the
abundance of a typical species with degree k in the original community.

All the disorder in Eq. (A1) is in the term containing the interaction coefficients Aijαij . The average of this term
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over the distributions of α and A is carried out as follows

〈
exp

i∑
ij

∫
dt Aijαij x̂i(t)xj(t)

〉
A,α

=
∏
i<j

〈
exp

[
i

∫
dt Aij

(
αij x̂i(t)xj(t) + αjix̂j(t)xi(t)

)]〉
Aij ,(αij ,αji)

=
∏
i<j

(
1 +

kikj
dN

(〈
exp

[
i

∫
dt
(
αx̂i(t)xj(t) + βx̂j(t)xi(t)

)]〉
(α,β)

− 1

))
,

= exp

1
2

∑
ij

ln

(
1 +

kikj
dN

(〈
exp

[
i

∫
dt
(
αx̂i(t)xj(t) + βx̂j(t)xi(t)

)]〉
(α,β)

− 1

)), (A2)

where we have written ⟨. . .⟩A,α for a joint average over all elements of the matrices A α, and ⟨. . .⟩(αij ,αji) for the
average over the joint distribution of the specific elements αij and αji. The joint distribution of (αij , αji) does not
depend on i or j, as the pairs (αij , αji) are drawn independently for each i and j. To make this lack of dependence
explicit, we have replaced αij → α and αji → β between the second and the third lines.

To decouple the i and j indices from the final expression in Eq. (A2), for each degree k in the original community
network, we introduce the following functional

Pk[x, x̂] =
1

Nk

∑
i∈Sk

∏
t

δ
(
x(t)− xi(t)

)
δ
(
x̂(t)− x̂i(t)

)
, (A3)

where i ∈ Sk indicates that species i has degree k in the original community and Nk = pkN is the number of
species with degree k in the original community [pk is the degree distribution in the original community]. For each
k, the functional Pk[x, x̂] is the probability that the functions x(t) and x̂(t) are equal to the functions xi(t) and x̂i(t)
respectively, which are constrained to follow the dynamics of species with degree k. With this definition, we can write
the disordered part of the generating functional as

〈
exp

i∑
ij

∫
dt Aijαij x̂i(t)xj(t)

〉
A,α

= exp

[
N2

2

∑
kk′

pkpk′

∫
DxDx̂DyDŷPk[x, x̂]Pk′ [y, ŷ]

× ln

(
1 +

kk′

dN

(〈
exp

[
i

∫
dt
(
αx̂(t)y(t) + βŷ(t)x(t)

)]〉
(α,β)

− 1

))]
. (A4)

We enforce the definition of Pk[x, x̂] by inserting delta functions in their complex exponential form into the generating
functional

1 ∝
∫

DPk DP̂k exp
[
i
∑
k

Nk

∫
DxDx̂ P̂k[x, x̂]

(
Pk[x, x̂]−

1

Nk

∑
i∈Sk

∏
t

δ
(
x(t)− xi(t)

)
δ
(
x̂(t)− f̂i(t)

))]
,

∝
∫

DPk DP̂k exp
[
i
∑
k

Nk

∫
DxDx̂ P̂k[x, x̂]Pk[x, x̂]− i

∑
i∈Sk

P̂k[xi, x̂i]

]
, (A5)
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With these definitions enforced, the disorder averaged generating functional of Eq. (1) takes the following form

⟨Z[ψ]⟩A,α ∝
∫

DxDx̂DP DP̂ exp

[
i
∑
i

∫
dt x̂i(t)

(
ẋi(t)

xi(t)
− 1 + xi(t)− hi(t)

)
+ i
∑
i

∫
dt xi(t)ψi(t)

]

× exp

[
N2

2

∑
kk′

pkpk′

∫
DxDx̂DyDŷPk[x, x̂]Pk′ [y, ŷ]

× ln

(
1 +

kk′

dN

(〈
exp

[
i

∫
dt
(
αx̂(t)y(t) + βŷ(t)x(t)

)]〉
(α,β)

− 1

))]

× exp

[
iN
∑
k

npk

∫
DxDx̂ P̂k[x, x̂]Pk[x, x̂]− i

∑
i∈Sk

P̂k[xi, x̂i]

]
(A6)

To proceed, we could explicitly perform the average over the joint distribution of the interaction strengths (α, β) and
simplify the resulting expression. If we do this for the interaction statistics in Eqs. (2), to leading order in powers of
1/d, the integrand is of the form exp[NS]. The integral can then be evaluated with a saddle point approximation for
large N . Even though our interest in the main text is in dense networks, where retaining only leading terms in powers
of 1/d is valid, we can proceed without having to make this assumption. That is, we can evaluate the integral with
a saddle point equation without assuming the network is dense. To do this, we simply assume that the term with a
prefactor of N2 in the integrand is O(N). With this assumption, the following functional is O

(
N0
)
for each k and k′

fkk′ [x, x̂,y, ŷ] = N ln

(
1 +

kk′

dN

(〈
exp

[
i

∫
dt
(
αx̂(t)y(t) + βŷ(t)x(t)

)]〉
(α,β)

− 1

))
assumption

= O
(
N0
)
, (A7)

we note that if this functional is not O
(
N0
)
, then the following steps in our derivation are not valid. Our expression

for the disorder averaged generating functional now reads (the definition of fkk′ is just notation, we do not enforce
its definition with delta functions)

⟨Z[ψ]⟩A,α ∝
∫

DP DP̂

× exp

[
N

2

∑
kk′

pkpk′

∫
DxDx̂DyDŷPk[x, x̂]Pk′ [y, ŷ]fkk′ [x, x̂,y, ŷ]

]

× exp

[
iN
∑
k

pk

∫
DxDx̂ P̂k[x, x̂]Pk[x, x̂]

]

× exp

[
N
∑
k

pk ln

∫
DxDx̂ exp

[
i

∫
dt x̂(t)

(
ẋ(t)

x(t)
− 1 + x(t)− hk(t)

)
− iP̂k[x, x̂] + i

∫
dt x(t)ψk(t)

]]
,

(A8)

where we have supposed that hi(t) and ψi(t) only depend on the degree of species i in order to be able to factorise
the final term. That is, hi(t) = hk(t) and ψi(t) = ψk(t) for all species i with degree k. We can evaluate this integral
with a saddle-point approximation for large N . First, taking the derivative of the exponent with respect to the hatted

functionals P̂k gives

Pk[x, x̂] =
exp
[
i
∫
dt x̂k(t)

(
ẋk(t)
xk(t)

− 1 + xk(t)− hk(t)
)
− iP̂k[xk, x̂k] + i

∫
dt xk(t)ψk(t)

]
∫
DxDx̂ exp

[
i
∫
dt x̂(t)

(
ẋ(t)
x(t) − 1 + x(t)− hk(t)

)
− iP̂k[x, x̂] + i

∫
dt x(t)ψk(t)

] , (A9)

where the subscript in xk(t) indicates that the abundance xk(t) is constrained to be the trajectory of a typical species
with degree k, we justify this interpretation further on in the derivation. The unhatted saddle equation (taking
derivatives of the exponent with respect to Pk) is

P̂k[x, x̂] = i
∑
k′

pk′

∫
DyDŷPk′ [y, ŷ]fkk′ [x, x̂,y, ŷ]. (A10)
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Substituting Eq. (A9) into Eq. (A10), we arrive at the following self-consistent functional equation for P̂k

P̂k[x, x̂] = i
∑
k′

pk′

∫
DyDŷ fkk′ [x, x̂,y, ŷ] exp

[
i
∫
dt ŷ(t)

(
ẏ(t)
y(t) − 1 + y(t)− hk′(t)

)
− iP̂k′ [y, ŷ] + i

∫
dt y(t)ψk′(t)

]
∫
DyDŷ exp

[
i
∫
dt x̂(t)

(
ẏ(t)
y(t) − 1 + y(t)− hk′(t)

)
− iP̂k′ [y, ŷ] + i

∫
dt y(t)ψk′(t)

] .

(A11)

We now re-write this as

P̂k[x, x̂] = i
∑
k′

pk′⟨fkk′ [x, x̂,y, ŷ]⟩(y)k′ . (A12)

where ⟨. . .⟩(y)k′ stands in for the ratio of functional integrals in Eq. (A11), with (. . . ) in place of fkk′ [x, x̂,y, ŷ]. In
particular, we point out that this means the quantity ⟨fkk′ [x, x̂,y, ŷ]⟩y does not depend on arguments y, ŷ or y, but

it does depend on the degree k. To interpret ⟨. . .⟩(y)k , we compare functional derivatives of the expression for Z in
Eqs. (A1) and (A8) with respect to ψi(t) and hi(t) to find (in the limit of large N)

⟨x(t)⟩k = −i 1

Nk

∑
i∈Sk

∂⟨Z[ψ]⟩A,α
∂ψi(t)

∣∣∣∣
h=ψ=0

=
1

Nk

∑
i∈Sk

⟨xi(t)⟩A,α, (A13)

⟨x̂(t)⟩k = i
1

Nk

∑
i∈Sk

∂⟨Z[ψ]⟩A,α
∂hi(t)

∣∣∣∣
h=ψ=0

=
1

Nk

∑
i∈Sk

⟨x̂i(t)⟩A,α, (A14)

⟨x̂(t)x(t′)⟩k = − 1

Nk

∑
i∈Sk

∂2⟨Z[ψ]⟩A,α
∂hi(t)∂ψi(t′)

∣∣∣∣
h=ψ=0

=
1

Nk

∑
i∈Sk

⟨x̂i(t)xi(t′)⟩A,α, (A15)

where we have dropped the superscripts (x) in e.g. ⟨x(t)⟩(x)k on the LHS of the above equations as there is only one
dynamical variable which could be averaged over. We can do the same calculation for any other powers of x(t) and
x̂(t). Hence, ⟨x(t)⟩k is, in the large N limit, equal to the average abundance of species with degree k in the community.
Further, because Z[ψ = 0] = 1 (Eq. (A1) is the integral of a delta function when ψi(t) = 0), derivatives of Z with
respect to factors of h only are all zero. Therefore, any averages containing only hatted variables vanish.

At the saddle point, we can finally write the disorder averaged generating functional as

⟨Z[ψ]⟩A,α ∝
∫

DxDx̂ exp

[
i
∑
k

pk

∫
dt x̂k(t)

(
ẋk(t)

xk(t)
− 1 + xk(t)− hk(t)

)]

× exp

[∑
kk′

pkpk′⟨fkk′ [xk, x̂k,y, ŷ]⟩(y)k′ + i
∑
k

pk

∫
dt xk(t)ψk(t)

]
. (A16)

We now evaluate the functional fkk′ [x, x̂,y, ŷ], with the random matrix α as described in Section II of the main text.
To leading order in 1/N , we find

fkk′ [xk, x̂k,y, ŷ] =i
kk′µ

d2

∫
dt
(
x̂k(t)y(t) + ŷ(t)xk(t)

)
− kk′σ2

2d2

[(∫
dt x̂k(t)y(t)

)2

+

(∫
dt ŷ(t)xk(t)

)2
]
− kk′γσ2

d2

∫
dtdt′ x̂k(t)y(t)ŷ(t

′)xk(t
′). (A17)

Averaging over the dynamics of y, we are left with

⟨fkk′ [xk, x̂k,y, ŷ]⟩(y)k′ =i
kk′µ

d2

∫
dt x̂k(t)⟨y(t)⟩k′ −

kk′σ2

2d2

∫
dtdt′

(
x̂k(t)x̂k(t

′)⟨y(t)y(t′)⟩k′ + 2γx̂k(t)xk(t
′)⟨y(t)ŷ(t′)⟩k′

)
.

(A18)

Substituting this into Eq. (A16), we recognise ⟨Z[ψ]⟩A,α as the generating functional of the following set of effective
dynamical equations

ẋk(t) = xk(t)

(
1− xk(t) +

µk

d2

∑
k′

pk′k
′Mk′(t) +

γσ2k

d2

∑
k′

pk′k
′
∫

dtGk′(t, t
′)xk(t

′) + ηk(t)

)
, (A19)
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where we have set hk(t) = 0 and written ⟨y(t)⟩k =Mk(t) and−i⟨ŷ(t′)y(t)⟩k = Gk(t, t
′). The quantitiesMk(t), Gk(t, t

′),
and the colored gaussian noise term ηk(t) are determined self-consistently via the following equations

⟨ηk(t)⟩η = 0,

⟨ηk(t)ηl(t′)⟩η = δkl
σ2k

d2

∑
k′

pk′k
′⟨xk(t)xk′(t′)⟩η,

Mk(t) = ⟨xk(t)⟩η,

Gk(t, t
′) =

δ⟨xk(t)⟩η
δηk(t′)

. (A20)

The last of these relationships follows from writing down the generating funcitonal of the effective dynamics Eq. (A19)
without performing the average over the noise term ηk(t) (which would simply return Eq. (A16)). From this functional,
it is then clear that differentiation with respect to the noise term ‘pulls down’ a factor of −ix̂k(t), hence we can replace
factors of −ix̂(t) in Eq. (A16) with derivatives with respect to the noise.

1. Fixed point equations

As discussed in the main text, we can derive a closed set of self-consistent equations for the abundance distribution
in the surviving community at a fixed point of the dynamics. Suppose that the dynamics in Eq. (A19) reaches
a fixed point x⋆k. In this case, the noise term will be a static, mean zero guassian random variable with variance
σ2k/d2

∑
k′ pk′k

′qk, with qk = ⟨(x⋆k)2⟩z. We also assume that the system’s response function is a function of time
differences only in this regime, so that Gk(t, t

′) = Gk(t − t′), which means we can write
∫
dt′Gk(t, t

′)xk(t
′) = χkx

⋆
k

for χk =
∫
dτ gk(τ). The fixed point abundance distribution of x⋆k is then given by (we have added back in the factor

of h from the original generating functional so that we can cleanly write down the definition of χk)

x⋆k(z) = max

(
0,

1 + µk
∑
k′ pk′k

′Mk′/d
2 + zσ

√
k
∑
k′ pk′k

′qk′/d+ h

1− γσ2k
∑
k′ pk′k

′χk′/d2

)
. (A21)

By carefully evaluating the definitions of the parameters Mk, qk, and χk, we arrive at the fixed point equations in the
main text, which we repeat here

Mk =

∫
x⋆
k>0

dz P (z)x⋆k(z),

qk =

∫
x⋆
k>0

dz P (z)x⋆k(z)
2,

χk =

∫
x⋆
k>0

dz P (z)
∂x⋆k(z)

∂h
, (A22)

where P (z) = e−z
2/2/

√
2π is the probability density function of the standard normal distribution. The survival

probability for species with degree k in the original community is also determined from the fixed point abundances

ϕk =

∫
x⋆
k>0

dz P (z). (A23)

We now expand out the definitions in Eq. (A22) to find the explicit set of equations which we can numerically solve.
Expanding the definitions gives (note that the integration region x⋆k > 0 needs to be converted into an integration
region over z using Eq. (A21))

χk =
w0(∆k)

1− γσ2k
d2

∑
k′ pk′k

′χk′
,

Mk = Σkw1(∆k),

qk = Σ2
kw2(∆k), (A24)
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where we have defined the shorthands

Σk =
σ
√
k
∑
k′ pk′k

′qk′/d

1− γσ2k
∑
k′ pk′k

′χk′/d2
,

∆k =
1 + µk

∑
k′ pk′k

′Mk′/d
2

σ
√
k
∑
k′ pk′k

′qk′/d
,

wl(∆k) =

∫ ∆k

−∞
dz P (z)(∆k − z)

l
. (A25)

We also define the probability of survival for species that have degree k in the original community

ϕk =

∫
x⋆
k>0

dz P (z), (A26)

as well as the community wide abundance and survival probability

M =
∑
k

pkMk, ϕ =
∑
k

pkϕk. (A27)

Eq. (A24) can be numerically solved to find the fixed point parameters for specific degree k. The integrals defining
wl(∆k) can be explicitly evaluated. For l = 0, 1, 2 we have

w0(x) =
1

2

(
1 + erf

(
x√
2

))
,

w1(x) = P (x) +
1

2
x

(
1 + erf

(
x√
2

))
,

w2(x) = xP (x) +
1

2

(
1 + x2

)(
1 + erf

(
x√
2

))
(A28)

Practically, we solve the fixed point equations using the function ‘scipy.optimize.root’ in python, with an initial guess
{χk}, {Mk}, {qk} either determined by a previously found solution with similar values of the parameters µ, σ, γ, pk, or
by running the GLV dynamics themselves for small N about 50 times to obtain empirical estimates for ϕk,Mk, and
qk. We then use the relation (derived from the fixed point equations) χk =Mkϕkw1(w

−1
0 (ϕk))/

√
σ2k

∑
k′ pk′k

′qk′/d2

to determine a sensible initial guess for χk. Here w−1
0 is the inverse function of w0.

2. The abundance distribution

The abundance distribution ADk(x) for species with degree k in the original community is derived from Eq. (A21).
It has the general form ADk(x) = (1 − ϕk)δ(x) + Θ(x)Pmk,Σk

(x), where Θ(x) = 1 if x > 0 and is zero otherwise.
Pmk,Σk

(x) is a gaussian PDF with mean mk and variance Σ2
k, Σk is defined in Eqs. (A25), and mk is given by the

following expression

mk =
1 + µk

∑
k′ pk′k

′Mk′/d
2

1− γσ2k
∑
k′ pk′k

′χk′/d2
. (A29)

The community-wide abundance distribution AD(x), such as the one plotted in Fig. 2 in the main text, is equal to
the weighted average of the individual degree distributions AD(x) =

∑
k pk ADk(x).

Appendix B: Trend of ϕk and Mk⋆ with degree

In the main text, we claim that, for µ < 0, the survival rate ϕk is always a decreasing function of the degree k, and
that the same is true for a wide range of parameters for Mk. In this section we justify these claims.
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FIG. 7. Curves for which Mk⋆ and k⋆ are uncorrelated (dashed lines). To the left of the dashed lines, Mk⋆ and k⋆ are negatively
correlated, and to the right of the dashed lines Mk⋆ and k⋆ are positively correlated. The area underneath the solid curves is
stable, and the area above is unstable (see Fig. 1 in the main text for more detail).

1. Trend of ϕk with k

By definition, we can express the survival probability for species with degree k in the original community as [see
Eq. (A24)]

ϕk = w0(∆k), (B1)

where ∆k is defined in Eqs. (A25). The function w0 is an increasing function of its argument. Hence, ϕk is an
increasing(decreasing) function of k precisely when ∆k is an increasing(decreasing) function of k. For fixed model
parameters, ∆k has the following functional dependence on the degree k

∆k =
1

S

(
1√
k
+ U

√
k

)
, (B2)

where S and U do not depend on k explicitly and are given by

S =
σ

d

√∑
k′

pk′k′qk′ ,

U =
µ

d2

∑
k′

pk′k
′Mk′ . (B3)

Differentiating Eq. (B2) with respect to k, we find that ∆k is stationary in k when

k =
1

U
. (B4)

If µ < 0, then U < 0 also, and the LHS and RHS have opposite signs (all other components in the equation are
positive by definition), so there is no stationary point. Hence, ϕk is a decreasing function of k. If, on the other hand,
µ is positive, then ϕk is decreasing provided the LHS is smaller then the RHS, if the LHS is larger, then the trend
reverses. This becomes increasingly likely for more positive µ and larger abundances Mk.

2. Trend of Mk⋆ with k⋆

We can follow the same procedure as for ϕk to find the degree at which the abundance Mk has a stationary point. It
is stationary when

k =
ϕk −Mk

Uϕk + TMk
, (B5)
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where

T =
γσ2

d2

∑
k′

pk′k
′χk′ . (B6)

This condition is not as straightforward to analyse as the equivalent condition for the stationary point of ϕk in
Eq. (B4). However, we can still find the general trend of Mk⋆ with k⋆ by noting (as we do in the main text) that the
covariance Cov(Mk⋆ , k

⋆) = (
∑
k⋆ pk⋆Mk⋆k

⋆) − (
∑
k⋆ pk⋆Mk⋆)(

∑
k⋆ pk⋆k

⋆) is negative whenever Mk⋆ is a decreasing
function of k⋆. In Fig. 7, we plot the curve satisfying Cov(Mk⋆ , k

⋆) = 0 in the (µ, σ2) plane for different values of γ
and fixed network structure. Demonstrating that when µ < 0, only a small range of parameters in the stable phase
give rise to positive correlations (right of the curve), hence our focus on this trend in particular in the main text.

Appendix C: Stability

1. Diverging abundances

To numerically find the boundary between the fixed point and the point at which the average abundance M diverges,
we first express the fixed point equations in Eq. (A24) in terms of the new variables χk, M̃k = Mk/

√∑
k′ pk′qk′ ,

and q̃k = qk/
∑
k′ pk′qk′ . Unlike Mk and qk, M̃k and q̃k remain finite when the average abundance diverges. In the

limit of infinite average abundance, the new fixed point equations are equivalent to Eq. (A24) with the replacements

Mk → M̃k, qk → q̃, and ∆k → ∆̃k, where

∆̃k =
µk
∑
k′ pk′k

′M̃k′/d
2

σ
√
k
∑
k′ pk′k

′q̃k′/d
. (C1)

Solving these new fixed point equations, together with the condition
∑
k q̃k = 1, gives the diverging abundance curves

in Fig. 1 in the main text.

2. Linear instability

To derive the stability condition Eq. (7) from the main text, we consider a linear perturbation to the effective dynamics
Eq. (A19) near a fixed point. We follow along the lines of the stability analyses in [28, 46] (see also [38] for a derivation
involving block structured interactions, which generalises the present argument).

The local stability of possible fixed points can be probed by addition of an infinitesimal independent and identically
distributed Gaussian perturbation ϵξk(t) to each equation in the effective dynamics Eq. (A19). In the stable regime,
we expect the system to return to the fixed point when perturbed, that is, we expect the response of the system to
the perturbation to decay to zero as t→ ∞.

Adding the perturbation ϵξk(t) to the effective dynamics [Eq. (A19)], we have

ẋk(t) = xk(t)

(
1− xk(t) +

µk

d2

∑
k′

pk′k
′Mk′(t) +

γσ2k

d2

∑
k′

pk′k
′
∫

dtGk′(t, t
′)xk(t

′) + ηk(t) + ϵξk(t)

)
, (C2)

where Mk(t), Gk(t), and the noise term ηk(t) are defined in Eq. (A20).

We quantify the linear response of xk(t) and ηk(t) to the perturbation ϵξ(t) about the fixed point by yk(t) and ζk(t)
respectively, so that

xk(t) = x⋆k + ϵyk(t)

ηk(t) = η⋆k + ϵζk(t). (C3)

From this, we can self-consistently relate the responses to each other using Eq. (A20)

⟨ζa(t)ζa(t′)⟩ = σ2k

d2

∑
k′

pk′k
′⟨yk(t)yk(t′)⟩. (C4)
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Assuming time translation invariance of the fixed point in the long-time limit, we obtain the following equation for
the evolution of the perturbed abundances

ẏk(t) = x⋆k

(
−yk(t) +

γσ2k

d2

∑
k′

pk′k
′
∫ t

0

dt′ Gk(t− t′)yk(t
′) + ζk(t) + ξk(t)

)
. (C5)

We now follow [28, 46] by taking the Fourier transform (denoted with a hat, which we note is not related to the hatted
variables in the generating functional calculations in Appendix A)

iωŷk(ω) = x⋆k

(
−ŷk(ω) +

γσ2k

d2

∑
k′

pk′k
′Ĝk(ω)ŷk(ω) + ζ̂k(ω) + ξ̂k(ω)

)
. (C6)

Squaring and averaging over the distribution of the perturbing noise ξk{
|ω|2
(x⋆k)

2
+
∣∣∣1− γσ2k

d2

∑
k′

pk′k
′Ĝk(ω)

∣∣∣2}⟨|ŷk(ω)|2⟩ξ = ϕk

{
σ2k

d2

∑
k′

pk′k
′⟨|ŷk′(ω)|2⟩ξ + 1

}
, (C7)

where the factor of the survival rate ϕk is due to the fact that Eq. (C5) only applies to non-zero fixed points.

Fluctuations around the zero point decay and hence do not contribute to ⟨|ŷk(ω)|2⟩. Noticing that Ĝk(0) = χa, we
now set ω = 0 (see [46]) and find{

1− γσ2k

d2

∑
k′

pk′k
′χk′

}2

Yk = ϕk

{
σ2k

d2

∑
k′

pk′k
′Yk′ + 1

}
, (C8)

where Yk ≡ ⟨|ŷk(0)|2⟩. Assuming a stationary state in which ⟨yk(t)yk(t + τ)⟩ depends on τ only, then Yk =∫
dτ ⟨yk(t)yk(t + τ)⟩. In the stable regime, yk(t) → 0 as t → 0, and therefore Yk is finite. Hence, if Yk is not

finite, then this signals the onset of linear instability. Hence, the onset of linear instability corresponds to the point
at which the only solution to Eq. (C8) for which Yk diverges for some degree k.

Eq. (C8) is equivalent to the condition for linear (in)stability given in the main text [Eq. (7)]. To make the connection,
we first use the fixed point equations (A24) (the one for χk) to re-arrange Eq. (C8) into the following form

Ỹk =
σ2kχ2

k

d2ϕk

∑
k′

pk′

[
k′ +

1∑
k′′ pk′′Yk′′

]
Ỹk′ , (C9)

where we have defined Ỹk = Yk/(
∑
k′ pk′Yk′), which remains finite, even if Yk diverges for some k. At the point of

linear instability, the quantity 1//(
∑
k′ pk′Yk′) = 0, and Eq. (C9) is an eigenvalue equation

Yk =
∑
k′

Skk′Yk′ , (C10)

where S is a matrix with kk′ element equal to Skk′ = σ2kχ2
kpk′k

′/(d2ϕk). All elements of the matrix S are positive,
as are all elements of the vector Y (by definition of Yk). Hence, Y is the Perron-Frobenius (PF) eigenvector of S,
with PF eigenvalue equal to one. Further, as S can be written as the outer product of two vectors (S = abT , for ak =
σ2kχ2

k/(d
2ϕk) and bk = pkk), its PF eigenvalue is given by the inner product of these two vectors (aTb =

∑
k akbk).

That is, the linear instability occurs at the point when

σ2

d2

∑
k

pk
k2χ2

k

ϕk
= 1. (C11)

To see that the LHS is smaller than one in the stable regime, we repeat the same argument, but we write Y =∑
k pkYk in Eq. (C9) and do not assume that Y diverges. This time, the eigenvalue condition is different, we have

λPF[S + p/Y ] = 1, where we have defined the matrix p with elements pkk′ = σ2χ2
kpk′/(d

2ϕk). All elements of the
matrix p are positive. It is known that the PF eigenvalue of a matrix is an increasing function of its elements [62, 63].
Hence, we have λPF[S] ≤ λPF[S+p/Y ] = 1 in the stable regime. That is, in the stable regime, the LHS of Eq. (C11)
is less than one.

In Fig. 1 in the main text, we solve for the boundary of the linearly stable region in parameter space by adding the
condition in Eq. (C11) to the fixed point equations.
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Appendix D: Interaction statistics in the surviving community

To find the quantities defined in Eq. (10), we employ a similar philosophy to that was used in Ref. [33], except here
we use a cavity approach. In this case, the cavity approach helps to elucidate the mechanism behind the trends seen
in Fig. 6 by revealing the origins of all the contributing factors to the quantities in Eq. (10).

1. The cavity approach

At the fixed point, we must have that

xi = max

0, 1 +
∑
j

Aijαijxj + hi

, (D1)

where hi is again an external field that we include for analytical purposes, and which we later set to zero.

Let us suppose that we introduce a new ‘cavity’ species, which we endow with index 0, to the network. We suppose
that the cavity species has degree k (in the original community). Let us now inspect the following quantity

µ
(k)
0 =

∑
j

A0jα0jθj , (D2)

where θj(xj) = 0 if a species is extinct and θj(xj) = 1 if the species survives. Following the usual procedure for cavity
calculations, we attempt to find θj in terms of system parameters before the addition of the cavity species. We write

θj = θ
(0)
j + δθj , (D3)

so that δθj (which takes values 0 or ±1) accounts for the changes in the numbers of surviving species due to the
introduction of the cavity species. We expect the number of species that go extinct due to the introduction of the
new species to be small.

Inserting this into Eq. (D2) and defining αij = µ/d+ aij , we find

µ
(k)
0 =

µ

d

∑
j

A0jθj +
∑
j

A0ja0jθ
(0)
j +

∑
j

A0jα0jδθj . (D4)

Let us now use the fact that we have many species to write each of these terms in terms of the statistics of the
community.

2. Averaging Eq. (D4) over the wider pool of species

Let us now discuss the statistics of each of the terms in Eq. (D4), keeping the cavity interactions A0j , α0j and αj0
fixed. Specifically, we first take the mean with respect to the interactions αij and the network Aij , where both i and
j are not equal to 0, and then discuss the variance with respect to these same quantities. We denote the average
with respect to these variables as ⟨·⟩0 (as opposed to ⟨·⟩, which indicates an average over all interaction coefficients,
including those of the cavity species).

We treat the average over the random variables A0j , α0j , Aj0, and αj0 separately so that we can better see how µ
(k)
0

relates to other random quantities of interest, for example the abundance x0. This will help us to understand the

origin of the behaviour of µ
(0)
k as k is varied (shown in Fig. 6).

Taking for example the first term in Eq. (D4), we first examine its mean, and then its fluctuations. We find that

µ

d

〈∑
j

A0jθj

〉
0

=
µ

d

∑
j

A0j

[〈
θ
(0)
j

〉
0
+ ⟨δθj⟩0

]
, (D5)



21

where we have used that the survival of species before the introduction of the cavity is independent of A0j . We can
rewrite the second of these terms using the fact that

⟨δθj⟩0 =
dϕkj
dh

Aj0αj0x0, (D6)

where we write kj for the degree of species j, and we obtain

µ

d

〈∑
j

A0jθj

〉
0

=
µ

d

∑
j

A0j

[
ϕkj +

dϕkj
dh

αj0x0

]
. (D7)

We see that the second of these terms is a small O(1/N) correction compared to the first, and hence we can ignore
it. We now average over both the interaction statistics of the original community and the cavity species to obtain

µ

d

〈∑
j

A0jθj

〉
≈ µ

d

∑
k′

kk′

dN

∑
j∈Sk′

〈
θ
(0)
j

〉
0
=

k

d2

∑
k′

k′pk′ϕk′ , (D8)

where we write Sk′ for the set of species with degree k′, and we have used that the degree distribution of the network
can be written pk = Nk/N when N → ∞, where Nk is the number of species with degree k. We hence see that the
mean of the first term in Eq. (D4) is non-vanishing in the thermodynamic limit.

Let us now examine the fluctuations of this same term [the first in Eq. (D4)]. One can see immediately from the
approach in Appendix A that the generating functional for the ensemble of all species factorises in the limit N → ∞.
This means that the variance of (or correlations between) any order parameters such as ϕk or Mk are subleading
in 1/N in the thermodynamic limit. So, keeping A0j and α0j fixed, we see that fluctuations due to randomness in
the wider community without the cavity species can always be neglected. Let us now examine the fluctuations of
µd−1

∑
j A0jθj due to fluctuations in the interactions of the cavity species. Since the probability that each link in the

network is independent of the rest of the links in the network, we have

Var

µ
d

∑
j

A0jθj

 ≈ µ2

d2

∑
j

[
⟨A0j⟩ − ⟨A0j⟩2

]
ϕ2kj , (D9)

which is subleading in 1/d ∼ 1/N . So, we see that the first term in Eq. (D4) can be approximated by its mean in
Eq. (D8).

Let us now turn our attention to the third term in Eq. (D4). We will see that in contrast to the first term, this term
has non-vanishing fluctuations. We once again examine the ensemble average of this term (keeping the interaction
coefficients with the cavity species fixed), noting again that the fluctuations of the order parameters of the wider
community can be ignored. Using Eq. (D6), we find〈∑

j

A0jα0jdθj

〉
0

=
∑
j

A0jα0j⟨dθj⟩0 = x0
∑
j

A0jα0j

dϕkj
dh

αj0, (D10)

where we have used the fact that A0j = Aj0.

The expression obtained in Eq. (D10) differs depending on the precise values of the interaction coefficients of the
cavity species (noting that x0 also depends on these quantities through Eq. (D1)). However, we can demonstrate
that the sum over j in Eq. (D10) is a self-averaging quantity that can be replaced by its mean, meaning that all the
relevant variation in the third term in Eq. (D4) can be captured by x0, multiplied by a constant factor.

That is, we have 〈∑
j

A0jα0j

dϕkj
dh

αj0

〉
=
kγσ2

d2

∑
k′

k′pk′
dϕk′

dh
,

Var

∑
j

A0jα0j

dϕkj
dh

αj0

 =
∑
j

[
⟨A0j⟩

〈
(α0jαj0)

2
〉
− ⟨A0j⟩2 ⟨α0jαj0⟩2

] [dϕkj
dh

]2
. (D11)
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We see once again that the fluctuations of this quantity vanish in the thermodynamic limit. We can thus approximate

the sum
∑
j A0jα0j

dϕkj

dh αj0 by its average. The third term in Eq. (D4) is thus well-approximated by

∑
j

A0jα0jδθj ≈ x0
kγσ2

d2

∑
k′

k′pk′
dϕk′

dh
, (D12)

where we see that the randomness is all accounted for by the variable x0. In a certain sense, we were ‘lucky’ that
we could encapsulate the relevant fluctuations of the third term in Eq. (D4) entirely in the random variable x0. The
second term in Eq. (D4) is more complicated. To understand why, we compare with the cavity calculation that could
have been performed to obtain the results in Eq. (3) and Eqs. (4) (instead of the generating functional approach of
Appendix A).

3. Lemma: relating the random variable z in Eq. (3) to the interaction coefficients

The fixed point satisfies of the dynamics in Eq. (1) is given by

xi(1− xi +
∑
j

Aijαijxj + hi) = 0. (D13)

Introducing a new species 0 as a ‘cavity’, one finds

xj ≈ x
(0)
j +

dxj
dhj

Aj0αj0x0. (D14)

One thus arrives at

x0

1− x0 +
µ

d

∑
j

A0jx
(0)
j +

∑
j

A0ja0jx
(0)
j + x0

∑
j

A0jα0jαj0
dxj
dhj

 = 0, (D15)

and consequently

x0 = max

0,
1 + µ

d

∑
j A0jx

(0)
j +

∑
j A0ja0jx

(0)
j + hj

1−∑j A0jα0jαj0
dxj

dhj

. (D16)

Supposing that species 0 has original degree k, we can compare to Eq. (3), and we see that the term
∑
j A0ja0jx

(0)
j

in the expression above corresponds to a Gaussian random variable, i.e.

∑
j

A0ja0jx
(0)
j = zσ

√
k

d

∑
k′

k′pk′

d
qk′ . (D17)

where z is a zero-mean, unit-variance Gaussian random variable, as in Eq. (3). One notes that we can can also deduce

this from the cavity approach simply by computing the mean and the variance of
∑
j A0ja0jx

(0)
j . The variance is

given as follows

Vx ≡
〈∑

j

A0ja0jx
(0)
j

∑
j′

A0j′a0j′x
(0)
j′

〉
=

〈∑
jj′

δjj′
σ2

d
A0j [x

(0)
j ]2

〉
≈ σ2k

d2

∑
k′

k′pk′qk′ . (D18)

The second term in Eq. (D4) (i.e.
∑
j A0ja0jθ

(0)
j ) has a similar structure to the term

∑
j A0ja0jx

(0)
j . We see that it

too must be a Gaussian random variable, with some correlation with the random variable z that appears in Eq. (3)

(given that it is also dependent on the same random variables a0j). If we can find the variance of
∑
j A0ja0jθ

(0)
j and

its correlation with z, then we will understand fully how to relate µ
(k)
0 to the fixed point quantities in Eqs. (4), given

that we already have the approximations for the first and third terms in Eq. (D4) in Eqs. (D8) and (D12) respectively.
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4. Relating the fluctuating part of Eq. (D4) to the fluctuating part of Eq. (3)

Let us now compute the variance of the quantity
∑
j A0ja0jθ

0
j in Eq. (D4). We find

Vθ ≡
〈∑

j

A0ja0jθ
(0)
j

∑
j′

A0j′a0j′θ
(0)
j′

〉
=

〈∑
jj′

δjj′
σ2

d
A0j [θ

(0)
j ]2

〉
=
σ2k

d2

∑
k′

k′pk′ϕk′ . (D19)

We can thus think of the second term in Eq. (D4) as also being a zero-mean Gaussian random variable, so we write∑
j

A0ja0jθ
0
j ≡ y

√
Vθ, (D20)

where y is a Gaussian random variable with unit variance. Let us now understand how y is related to z in Eq. (D17)
by finding the covariance

Cxθ ≡
〈∑

j

A0ja0jθ
(0)
j

∑
j′

A0j′a0j′x
(0)
j′

〉
=

〈∑
jj′

δjj′
σ2

d
A0jθ

(0)
j x0j

〉
=
σ2k

d2

∑
k′

k′pk′Mk′ . (D21)

We can thus write

y =
Cxθ√
VxVθ

z + z′

√
1− Cxθ√

VxVθ
, (D22)

where z′ is a zero-mean unit-variance Gaussian random variable that is independent of z. We are now in a position
to write Eq. (D4) entirely in terms of the statistics of the surviving community.

5. Incoming and outgoing statistics of nodes with given degree

Now, inserting Eqs. (D8), (D12), (D20) and (D22) into Eq. (D4), we obtain

µ
(k)
0 =

µk

d2

∑
k′

k′pk′ϕk′ + zk
σ
√
k

d

∑
k′ k

′pk′Mk′√∑
k′ k

′pk′qk′
+ Cz′z

′ + xk(zk)
γσ2k

d2

∑
k′

k′pk′
dϕk′

dh
. (D23)

where we have now evaluated some terms explicitly to highlight their dependence on k, and we simply write Cz′ for
the coefficient multiplying z′, since this will not affect the quantities in which we are interested.

Let us now consider the following quantity

ν
(k)
0 =

∑
j

Aj0αj0θj , (D24)

which instead tells us about the outgoing links of a node with degree k. We can perform exactly the same manipulations

as we did for µ
(k)
0 to arrive at

ν
(k)
0 =

µk

d2

∑
k′

k′pk′ϕk′ + zk
γσ

√
k

d

∑
k′ k

′pk′Mk′√∑
k′ k

′pk′qk′
+ C ′

z′z
′ + xk(zk)

σ2k

d2

∑
k′

k′pk′
dϕk′

dh
. (D25)

We notice the symmetry between the expressions in Eqs. (D23) and (D25). What was an effect of the neighbours of
a node on the node itself in Eq. (D23) becomes the effect of the node on its neighbours in Eq. (D25). This is why we
see factors of γ multiplying complementary terms in the two expressions.

Now, to obtain the ensemble average of the above expressions, we simply average over realisations of the variable zk,
conditioning on the survival of the cavity species 0. This means that require xk(zk) > 0, which in turn requires that

zk > −∆k(h) ≡ −1 + µk
∑
k′ pk′k

′Mk′/d
2 + h

σ
√
k
∑
k′ pk′k

′qk′/d
. (D26)
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The probability of survival is given by

ϕk =

∫ ∞

−∆k

dz
1√
2π
e−z

2/2. (D27)

Hence, averaging over the variable zk in Eqs. (D23) and (D25), we obtain

µ⋆ink
d⋆

≡ ⟨µ(k)
0 θ0⟩
kr

=
µ

d
+
σ2

d

dϕk
dh

∑
k′ k

′pk′Mk′∑
k′ k

′pk′ϕk′
+
γσ2

d
Mk

∑
k′ k

′pk′
dϕk′
dh∑

k′ k
′pk′ϕk′

,

µ⋆outk

d⋆
≡ ⟨ν(k)0 θ0⟩

kr
=
µ

d
+
γσ2

d

dϕk
dh

∑
k′ k

′pk′Mk′∑
k′ k

′pk′ϕk′
+
σ2

d
Mk

∑
k′ k

′pk′
dϕk′
dh∑

k′ k
′pk′ϕk′

, (D28)

where here we have used the fact that∫ ∞

−∆

dz e−z
2/2z =

1√
2π
e−∆2/2 =

dϕk
dh

√
σ2

k

d2

∑
k′

pk′k′qk′ , (D29)

and we recall the definitions of r from the main text

r =

∑
k pkϕkk∑
k pk

. (D30)

To express the incoming and outgoing interaction strengths in Eqs. (D28) in terms of the degree in the surviving
community k∗ (rather than the degree in the initial community k), we use the correspondence E[k∗ | k] = rk [see
Section IVA for a discussion and Appendix E for mathematical details], as well as the fact that the expected degrees
in the surviving community are concentrated around their mean value. Hence, if we treat k as a continuous variable,
we can approximate k∗ = rk to leading order in 1/d.

Practically, the curves in Fig. 6 are produced by plotting µ⋆ink /d⋆ in Eqs. (D28) against k/r. This is equivalent to
plotting µ⋆ink⋆ /d

⋆ against k⋆.

6. Interpretation of the trends in Fig. 6

Let us now consider how the cavity approach that we have taken can help us to understand the trends in Fig. 6. This
is accomplished by interpreting physically each of the terms in Eqs. (D23) and (D25), with the help of Eq. (D4).

Eq. (D23) describes the sum of incoming interactions to a node of original degree k as a random variable. The first
term in this expression is deterministic, and is simply the mean interaction, weighted by the number of surviving
neighbours (which will depend on k). The second and third terms encode the fluctuations in the weights of the
neighbours’ interactions. However, we note that once we average over the disorder (conditioning on survival of species
0), the term proportional to z′ vanishes, and the Gaussian distribution of zk is truncated. That is, only species with
sufficiently favourable interactions survive, and this biases the mean interaction of surviving species towards higher
values. Finally, the last term encapsulates the fact the survival of the neighbours of a species is dependent on the
abundance of that species. In turn, the survival of the neighbouring species affects the statistics of the incoming
interactions (i.e. the abundance of a species affects its own incoming interactions via its effect on its neighbours). We
note that this last effect depends on the correlation between the incoming and outgoing links.

In the case where γ = 0 (i.e. there is no correlation between the incoming interactions to a species and outgoing effect
of a species on its neighbours, as is the case in Fig. 6b), the final term mentioned above does not contribute. Instead,
only the direct influence of a species’ neighbours is relevant. Since we condition on the survival of the species with
degree k, the incoming interactions cannot be too negative. This is encapsulated by the lower limit imposed on the
truncated Gaussian random variable zk in Eq. (D23). For small k, this lower limit is effectively −∞, which is reflected
in the survival of nearly all species with small degree (i.e. ϕk ≈ 1 for small k see Fig. 5). This means that the term
involving zk averages to nil when we integrate over all its possible values, and we find that species with low degree
have interactions that are the same as the original community. However, as we increase k, ϕk decreases, and the lower
limit on the integration of zk increases also. This means that a bias is introduced, whereby only species with more
favourable incoming interactions survive. This explains the upwards trend in Fig. 6b for the incoming interactions.
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Likewise, we can interpret each of the terms in Eq. (D25) as follows: The first is again simply the mean interaction,
weighted by the number of surviving neighbours. The second and third terms now reflect that each outgoing interaction
from a node can fluctuate, but these outgoing interactions correlate with the incoming interactions. For this reason,
the outgoing interactions can once again be related to the variable zk, and thus the survival probability of the species
with original degree k. Since we condition on this survival, this biases the outgoing interactions so that the incoming
interactions are favourable (note that resulting effect on the outgoing interactions then depends on the sign of γ).
Finally, the last term again encapsulates the fact that whether or not the neighbours of a species survive is dependent
on the abundance of that species. Since we only look at the outgoing interactions from a species (with degree k)
to species that survive, if the abundance of the species with degree k is higher, its influence on the survival of the
surrounding species is greater. For greater abundances, a greater number of species can be killed, and the correction
to the average outgoing interaction is greater. Since, Mk reduces with increasing k, we see that the effect of this
term is greatest for small k, and it reduces to nil for large k. This explains the downwards trend in the outgoing
interactions in Fig. 6b.

The case of γ = 0 in Fig. 6b is useful, because it separates the dependence of the outgoing and incoming interactions.
We see that by varying γ, we simply obtain a superposition of the aforementioned effects. For example, when γ = 1,
the outgoing and incoming interactions must be the same. Hence, µout

k = µin
k and the corresponding curve in Fig. 6a

is seen to be a kind of ‘average’ of the upwards and the downwards trends. On the other hand, for γ = −1, we see that
the fluctuations in the in- and out-interactions are exactly the negative of each other, hence the kind of mirror-image
effect in Fig. 6c.

Appendix E: Structure of the surviving network

1. Probability that species with degree k and k′ interact in the surviving community

To find the statistics of the adjacency matrix in the surviving community, we follow a strategy employed in [33]
that was used to find the statistics of the surviving interaction matrix α in the fully connected model. Consider the
following modification of the generating functional in Appendix A, which includes an additional term proportional to
the interaction matrix in the surviving community

Z[λ] =

∫
DxDx̂Z0[x, x̂,ψ = 0] exp

−i∑
ij

∫
dt Aijαij x̂i(t)xj(t) + i

∑
ij

Aij

∫
dt λij(t)θi(t)θj(t)

. (E1)

The functional Z0[x, x̂,ψ = 0] is the remaining part of the generating functional which appears in Eq. (A1), it is not
relevant to our arguments in this section. As in Appendix D, θi(t) = 1 if the corresponding abundance xi(t) > 0,
and is zero otherwise. In other words, θi(t) is equal to 1 only if species i is alive at time t. The functions λij(t) are
auxiliary fields which we will set to zero at the end of this derivation.

Taking a functional derivative of Z with respect to λij(t), then setting λij(t) = 0, yields

δZ[λ]

δλij(t)
= iAijθi(t)θj(t), (E2)

We are interested in the average interactions between species with degree k and k′. Using Eq. (E2), we can relate this
quantity to the generating functional via

1

N∗
kN

∗
k′

∑
i∈S∗

k

∑
j∈S∗

k′

⟨Aijθ∗i θ∗j ⟩α,A = −i lim
t→∞

1

N∗
kN

∗
k′

∑
i∈S∗

k

∑
j∈S∗

k′

〈
δZ[λ]

δλij(t)

〉
α,A

∣∣∣∣∣
λ=0

. (E3)

Averaging Z[λ] over A and α proceeds similarly to the average calculated in Appendix A, we find

⟨Z[λ]⟩A,α =

∫
DxDx̂Z0[x, x̂,ψ = 0]

× exp

1
2

∑
ij

ln

1 +
kikj
dN

〈e−i ∫ dt

(
αx̂i(t)xj(t)+βx̂j(t)xi(t)

)〉
(α,β)

ei
∫
dt
(
λij(t)+λji(t)

)
θi(t)θj(t) − 1


, (E4)
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where, similarly to in Appendix A, we have written αij → α and αji → β because the joint distribution of (αij , αji)
does not depend on the indices i, j. Differentiating Eq. (E4) with respect to λij(t) and setting λij(t) = 0 gives

⟨Aijθi(t)θj(t)⟩A,α =

〈 kikjθi(t)θj(t)
dN

〈
e
−i

∫
dt

(
αx̂i(t)xj(t)+βx̂j(t)xi(t)

)〉
(α,β)

1 +
kikj
dN

〈e−i ∫ dt

(
αx̂i(t)xj(t)+βx̂j(t)xi(t)

)〉
(α,β)

− 1


〉

A,α

. (E5)

This expression simplifies greatly if the network is dense (where the average degree d is large), as it is in our model.
From the statistics of the interactions αij in Eqs. (2), we know that αij = O

(
d−1/2

)
and ⟨αij⟩α = O

(
d−1

)
. Hence, to

leading order in 1/d, the statistics of the interactions do not directly contribute to Eq. (E5) and we have

⟨Aijθi(t)θj(t)⟩A,α =

〈
kikj
dN

θi(t)θj(t)

〉
A,α

+O
(
d−1

)
. (E6)

Averaging over species with common degree in the original community now gives

1

N⋆
kN

⋆
k′

∑
i∈S⋆

k

∑
j∈S⋆

k′

⟨Aijθ⋆i θ⋆j ⟩A,α =
1

N⋆
kN

⋆
k′

∑
i∈S⋆

k

∑
j∈S⋆

k′

〈
kikj
dN

θi(t)θj(t)

〉
A,α

,

=
kk′

dN
(E7)

as claimed in the main text.

The same method can be used to compute any statistics of the adjacency matrix in the surviving community. As we
need it in the following section, we also have

1

N⋆
kN

⋆
k′N

⋆
k′′

∑
i∈S∗

k

∑
j∈S∗

k′

∑
l∈S∗

k′′

⟨AijAilθ⋆i θ⋆j θ⋆l ⟩A,α =
k2k′k′′

d2N2
. (E8)

All higher moments of the adjacency matrix have similarly simple forms.

2. Degree sequence in the surviving community

Here we detail the derivation of the degree sequence in the surviving community. First, we will show that the expected
degree of a species in the surviving community, given its degree in the original community, is given by Eq. (8) in the
main text. We will then show that the degrees concentrate around their mean value.

To compute E[k∗i | ki, i ∈ S∗], we write it in terms of the adjacency matrix in the surviving community. This gives
[using Eq. (E7)]

E[k∗i | ki, i ∈ S∗] = E

∑
j∈S∗

A∗
ij | ki, i ∈ S∗

,
=
∑
k′

N∗
k′

(
kik

′

dN
+O

(
d0
))
,

= kir +O
(
d0
)
, (E9)

where we recall that r =
∑
k pkkϕk/

∑
k pkk is the average neighbour survival rate in the community. The calculation

of the variance proceeds in the same way, it relies on the additional calculation in Eq. (E8). We have

E[(k∗i )
2 | ki, i ∈ S∗]− E[k∗i | ki, i ∈ S∗]2 = E

 ∑
jl∈S∗

A∗
ijA

∗
il | ki, i ∈ S∗

− E

∑
j∈S∗

A∗
ij | ki, i ∈ S∗

2

,

=
∑
kk′

N∗
kN

∗
k′
(ki)

2kk′

d2N2
− (kir)

2 +O
(
d0
)
,

= O
(
d0
)
, (E10)
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as claimed in the main text.

3. Degree distribution in the surviving community

To leading order in 1/d, the degrees of species in the surviving community concentrate around the mean value in
Eq. (E9). Using this, we can find an expression for the degree distribution which is accurate to leading order in 1/d
by simply approximating the degree sequence of a species in the surviving community with k⋆ = kr, where k is the
degree of the species in the original community. As kr is not in general an integer, we will find an expression for the
function P ⋆(k⋆/M) = Mp⋆k⋆ , where M is the number of different degrees in the community (the number of distinct
values of ki). We also note that when N is large, the degree distribution in the original community can be written
similarly as P (k/M) =Mpk. These expressions are normalised and satisfy

1

N

∑
i

f(ki) =
∑
k

pkf(k) ≈
∫ κmax

κmin

P (κ)F (κ) dκ ,

1

N⋆

∑
i∈S⋆

f(k⋆i ) =
∑
k⋆

p⋆k⋆f(k
⋆) ≈

∫ κ⋆
max

κ⋆
min

P ⋆(κ)F (κ) dκ , (E11)

where f is an arbitrary function and F satisfies

1

M
F

(
k

M

)
= f(k),

(E12)

and where κ = K/M and κ⋆ = k⋆/M = rκ. The approximations in Eq. (E11) hold for large M , which allows us to
approximate the sums as integrals.

To find an expression for the degree distribution in the surviving community, we observe that the second of the
expressions in Eqs. (E11) can also be computed as follows (using the approximation k⋆ = kr)

1

N⋆

∑
i∈S⋆

f(k⋆i ) =
1

N⋆

∑
k

N⋆
kf(kr)

=
1

ϕ

∑
k

pkϕkf(kr)

=
1

ϕ

∫ κmax

κmin

dκ p(κ)ϕ(κ)F (κr)

=
1

ϕr

∫ κ⋆
max

κ⋆
min

dκ p
(κ
r

)
ϕ
(κ
r

)
F (κ) (E13)

where, similarly to the functions f and F , we have written ϕ(k/M) = Mϕk. The two expressions 1
N⋆

∑
i∈S⋆ f(k⋆i )

must be must be equal. and as the function f is arbitrary, we conclude that the following functions are be equal

p⋆(κ) =
1

ϕr
p
(κ
r

)
ϕ
(κ
r

)
, (E14)

which is Eq. (9) in the main text.
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