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BILINEAR HARDY INEQUALITIES ON METRIC MEASURE

SPACES

MICHAEL RUZHANSKY, ANJALI SHRIWASTAWA, AND DAULTI VERMA

Abstract. In this paper, we discuss the Hardy inequality with bilinear operators
on general metric measure spaces. We give the characterization of weights for the
bilinear Hardy inequality to hold on general metric measure spaces having polar
decompositions. We also provide several examples of the results, finding conditions
on the weights for integral Hardy inequalities on homogeneous Lie groups, as well
as on hyperbolic spaces and more generally on Cartan-Hadamard manifolds.
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1. Introduction

The original Hardy inequality which was given by G. H. Hardy has been intensely
studied since 1920, says that: for any p > 1, if f is a positive measurable function,
then the inequality

∫ ∞

0

(
1

x

∫ x

0

f(y) dy

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

f p(x) dx, (1.1)

holds (see [14]). Again, G. H. Hardy obtained the weighted version of inequality (1.1)
(see [15]): if f is a positive measurable function and if p > 1 and ǫ < p− 1, then the
inequality

∫ ∞

0

(∫ x

0

f(y) dy

)p

xǫ−p dx ≤
(

p

p− 1− ǫ

)p ∫ ∞

0

f p(x) xǫ dx, (1.2)
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holds. There is a lot of literature available for different forms of Hardy inequalities
and it is not an easy task to mention all, but a few of the references are [6, 7, 8,
9, 14, 15, 18, 19, 21, 20, 23, 24, 27, 28, 29, 30, 31, 32]. In [33], Sinnamon obtained
Hardy inequalities for the case 0 < q < 1 < p < ∞. Again, in [34], Sinnamon and
Stepanov established Hardy inequalities for the case 0 < q < 1 and p = 1. For the case
p ≤ q, many authors Bradley [5], Talenti [35] and Muckenhoupt [23] obtained Hardy
inequalities in different perspectives. In [25, 26], the first author with third author
obtained the Hardy inequalities on metric measure spaces for the case 1 < p ≤ q < ∞,

and 0 < q < p, 1 < p < ∞. In [18], the first author with Kassymov and Suragan
obtained a reverse version of the integral Hardy inequality on metric measure spaces
with two negative exponents for the case q ≤ p < 0. Again, In [27], the first and
second author with Tiwari established Hardy inequalities on metric measure space
possessing polar decompositions for the case p = 1 and 1 ≤ q < ∞. For a discussion
concerning polar decompositions in general metric measure spaces see [2].
Now, we recall a concise summary of the bilinear Hardy inequality in various con-

texts. The bilinear Hardy inequality has important applications in the study of partial
differential equations and harmonic analysis. It allows for the analysis of bilinear op-
erators and their properties, and it provides crucial estimates for the behaviour of
solutions to certain PDEs involving bilinear terms. It is worth noting that there are
various generalisations and refinements of the bilinear Hardy inequality for different
function spaces, domains and dimensions. The specific form and conditions of the
inequality may vary depending on the particular setting in which it is applied.
Cañestro et al. [1] discussed the weighted bilinear Hardy operator for nonnegative

measurable functions on (0,∞) which says that: if Ũ , Ṽ1 and Ṽ2 are weight functions,
then the inequality

(∫ ∞

0

[H2(F1, F2)(y)]
q
Ũ(y)dy

)1/q

≤ C

(∫ ∞

0

F
p1
1 (y)Ṽ1(y)dy

)1/p1

×
(∫ ∞

0

F
p2
2 (y)Ṽ2(y)dy

)1/p2

, (1.3)

holds for F1, F2 ≥ 0 with different conditions on the indices p1, p2, q. Here

H2(F1, F2)(y) :=

(∫ y

0

F1(x)dx

)(∫ y

0

F2(x)dx

)
,

is the bilinear operator. This problem has been studied by many authors. Krepela [22]
proved the boundedness of the bilinear Hardy operator using the iterative technique.
The theory of bilinear Hardy inequalities with weights has been developed in many
directions. For a general perspective of the topic, one can refer to papers [13, 17, 35].
In this paper, we obtain the bilinear Hardy inequality on general metric measure

spaces with polar decompositions, with some examples and applications in the setting
of homogeneous Lie groups, hyperbolic spaces, and Cartan-Hadamard manifolds.
Also, we give some characterizations of weights for bilinear Hardy inequality. Indeed,
we are not assuming any doubling condition on the measure. The main result of our
paper is:
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Theorem 1.1. Let 1 < p1, p2 < ∞ and let 0 < q < ∞. Let X be a metric measure

space with a polar decomposition (2.1) at a. Let u, v1, v2 > 0 be measurable functions

positive a.e in X such that u ∈ L1
loc(X\{a}) and v

1−p′i
i ∈ L1

loc(X), where i = 1, 2. Let

HB
2 (f1, f2)(x) := HBf1(x) ·HBf2(x) =

∫

B(a,|x|)
f1(y)dy

∫

B(a,|x|)
f2(y) dy. (1.4)

Then the inequality

(∫

X

(
HB

2 (f1, f2)(x)

)q

u(x)dx

) 1
q

≤ C

{∫

X

f1(x)
p1v1(x)dx

} 1
p1

×
{∫

X

f2(x)
p2v2(x)dx

} 1
p2

, (1.5)

holds for all f1, f2 ≥ 0, if and only if the inequality

(∫ ∞

0

(H2(F1, F2)(τ))
q
Ũ(τ)dτ

)1/q

≤ C

(∫ ∞

0

F
p1
1 (τ)Ṽ1(τ)dτ

)1/p1

×
(∫ ∞

0

F
p2
2 (τ)Ṽ2(τ)dτ

)1/p2

, (1.6)

holds for all F1, F2 ≥ 0, where Ũ , Ṽ1, Ṽ2 are the weight functions given by

Ũ(τ) :=

∫
∑

τ

u(τ, ω) λ(τ, ω) dω, (1.7)

and

Ṽi(τ) :=

(∫
∑

τ

v
1−p′i
i (τ, ω) λ(τ, ω) dω

)1−pi

, (1.8)

where i = 1, 2. Moreover, the constants C in (1.5) and (1.6) are same. The function

λ(τ, w) comes from the polar decomposition and is defined in (2.1).

Apart from Section 1 , this paper is divided in four sections. In Section 2, we will
recall the basics of metric measure spaces, which is the main tool of this paper. Also,
we will recall some brief introduction of homogeneous Lie groups, hyperbolic spaces
and Cartan-Hadamard manifolds, which we will use in applications and examples of
the main result of this paper. Section 3 is devoted to presenting the proof of the main
result of this paper. In Section 4, we will introduce the characterization of weights
for the bilinear Hardy operators on metric measure spaces. In Section 5, we will give
some applications and examples of our main result of this paper.
In this paper, we use A1 ≍ A2 to indicate that ∃C1, C2 > 0 such that C1A1 ≤ A2 ≤
C2A1.
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2. Preliminaries

In this section, we give a brief overview on the basics of metric measure spaces.
For the applications and examples purposes, we also recall homogeneous Lie groups,
hyperbolic spaces and Cartan-Hadamard manifolds. For more details on metric mea-
sure spaces as well of several functional inequalities on metric measure spaces, we
refer to papers [18, 25, 26, 27] and references therein. Let us now recall some basics
of metric measure spaces.
A metric measure space with polar decomposition is a metric space (X, d) with a

Borel measure dx, having the polar decomposition at a fixed point a ∈ X:
∫

X

g(x)dx =

∫ ∞

0

∫

Σr

g(r, ω) λ(r, ω) dωr dr, (2.1)

where λ ∈ L1
loc, g ∈ L1(X), (r, ω) → a as r → 0. Here the set Σr = {x ∈ X :

d(x, a) = r} is equipped with measure, which we denote by dωr. The function λ may
be dependent on the complete variable x = (r, ω).
The motivation behind condition (2.1) in the context described above is to provide
a decomposition formula for the metric measure space (X, d) that does not rely on
a differential structure. In cases where a metric measure space has a differential
structure, such as a Riemannian manifold, the function λ(r, ω) can be obtained as
the Jacobian of the polar change of coordinates or through the polar decomposition
formula. However, the situation being dealt with in this particular context is more
general, and there is no assumption of a differential structure on the metric measure
space (X, d). Therefore, it becomes useful to introduce a decomposition formula
(2.1) that holds in this more general setting. Importantly, no doubling condition is
imposed on the metric measure space. Thus, we are considering a wider class of metric
measure spaces. Moreover, we provide examples of metric measure spaces that satisfy
condition (2.1) with different expressions for λ(r, ω). Some of these examples include
hyperbolic spaces, which are known for their non-doubling volume growth. This
demonstrates that the condition (2.1) can be satisfied in diverse settings, including
spaces with non-trivial geometric properties. For a detailed analysis and discussion
of condition (2.1) in the context of general metric measure spaces, we refer to [2].
We give some examples of metric spaces having polar decomposition.

(i) Homogeneous Lie groups G: For this case, we have λ(r, ω) = rQ−1, where
Q is the homogeneous dimension of the homogeneous Lie groups. Simply, one
can notice that for the Euclidean spaces Rn, we have λ(r, ω) = rn−1. For more
details on such groups, we refer to [10, 11, 30].

(ii) Hyperbolic spaces Hn: The n-dimensional hyperbolic space Hn is the
unique simply connected, n-dimensional complete Riemannian manifold with
a constant negative sectional curvature equal to −1. The unicity means that
any two Riemannian manifolds which satisfy these properties are isometric to
each other. For the case of hyperbolic spaces, we have λ(r, ω) = (sinh r)n−1.

For more details on hyperbolics spaces, we refer to [4, 12, 16].
(iii) Cartan-Hadamard manifolds: A simply connected complete Riemann-

ian manifold (M, g) of nonpositive curvature is called a Cartan-Hadamard
manifold. Let KM ≤ 0 be the sectional curvature of the Cartan-Hadamard
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manifold. Let expp : TpM → M be the exponential map at a fixed point p,
which is also a diffeomorphism. If J(r, w) is the density function on M, then
we have the following polar decomposition:

∫

M

f(y) dy =

∫ ∞

0

∫

Sn−1

f(expp(r, ω))J(r, ω)r
n−1dω dr, (2.2)

with

λ(r, ω) = J(r, ω) rn−1.

We refer to [4, 16] for more explanation about Cartan-Hadamard manifolds.

3. Proof of the main result

Before proving our main result of the paper, let us introduce some notations, which
we are using in our paper. We use B(a, r) for the ball in a metric measure space X,

where a is the centre and r is the radius of the ball. If d is the metric on X then

B(a, r) := {x ∈ X : d(x, a) < r}.
Also, we write |x|a := d(a, x), for a fixed point a ∈ X, to simplify the notation.

Now, we prove our first main result of this paper:

Proof. For the complete proof of the Theorem 1.1, we first prove that if the inequality
(1.6) holds then the inequality (1.5) also holds.
Let us suppose that the inequality (1.6) holds. Now, for the fixed f1 and f2, we define

F1(s) :=

∫
∑

s

f1(s, t) λ(s, t) dt, (3.1)

and

F2(s) :=

∫
∑

s

f2(s, t) λ(s, t) dt, (3.2)

where
∑

s = {x ∈ X; d(x, a) = s} denotes the level set of d on X and t ∈∑s . Again,
using 1

p1
+ 1

p′1
− 1 = 0 in (3.1), we get

F1(s) =

∫
∑

s

f1(s, t) λ(s, t) dt

=

∫
∑

s

f1(s, t) λ(s, t) v
1
p1

+ 1
p′
1
−1

1 (s, t)dt =

∫
∑

s

f1(s, t) λ(s, t) v
1
p1

+
1−p′1
p′
1

1 (s, t) dt.

Applying Hölder inequality and using 1
p′1(1−p1)

= − 1
p1

in the following, we get

F1(s) =

∫
∑

s

f1(s, t) λ(s, t) v
1
p1

+
1−p′1
p′
1

1 (s, t) dt

≤
(∫

∑
s

f
p1
1 (s, t) λ(s, t) v1(s, t) dt

) 1
p1

(∫
∑

s

v
1−p′1
1 (s, t) λ(s, t) dt

) 1
p′
1
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=

(∫
∑

s

f
p1
1 (s, t) λ(s, t) v1(s, t) dt

) 1
p1 (

Ṽ1(s)
) 1

p′
1
(1−p1)

=

(∫
∑

s

f
p1
1 (s, t) λ(s, t) v1(s, t) dx

) 1
p1 (

Ṽ1(s)
)− 1

p1
. (3.3)

Similarly, from (3.2), we obtain,

F2(s) ≤
(∫

∑
s

f
p2
2 (s, t) λ(s, t) v2(s, t) dt

) 1
p2 (

Ṽ2(s)
)− 1

p2
. (3.4)

Consider the left hand side of inequality (1.5), and using the polar decompositions
(2.1), we have

(∫

X

[
HB

2 (f1, f2)(x)
]q
u(x) dx

) 1
q

=

(∫

X

(∫

B(a,|x|)
f1(y) dy

)q (∫

B(a,|x|)
f2(z) dz

)q

u(x) dx

)1
q

=

{∫ ∞

0

∫
∑

r

(∫ r

0

∫
∑

r1

f1(r1, ω)λ(r1, ω) dω dr1

)q

×
(∫ r

0

∫
∑

r2

f2(r2, σ)λ(r2, σ) dσ dr2

)q

u(r, ξ) λ(r, ξ) dξ dr

} 1
q

.

Again, by using (3.1) and (3.2), the last expression is

=

{∫ ∞

0

(∫ r

0

F1(r1) dr1

)q (∫ r

0

F2(r2) dr2

)q

Ũ(r) dr

}1
q

.

=

(∫ ∞

0

[H2(F1, F2)(r)]
q
Ũ(r) dr

)
.

As (1.6) holds for any F1, F2 ≥ 0, by using (3.3) and (3.4), we get

(∫ ∞

0

[H2(F1, F2)(r)]
q
Ũ(r) dr

)1
q

≤ C

(∫ ∞

0

F
p1
1 (r) Ṽ1(r) dr

) 1
p1

(∫ ∞

0

F
p2
2 (r) Ṽ2(r) dr

) 1
p2

≤ C

(∫ ∞

0

∫
∑

r

f
p1
1 (r, ω)v1(r, ω)λ(r, ω)dr dω

) 1
p1

×
(∫ ∞

0

∫
∑

r

f
p2
2 (r, ω) v2(r, ω)λ(r, ω)dr dω

) 1
p2
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= C

(∫

X

f
p1
1 (x) v1(x) dx

) 1
p1

(∫

X

f
p2
2 (x) v2(x) dx

) 1
p2

,

which implies inequality (1.5). Also this implies that C in (1.5) is ≤ C in (1.6).
Conversely, suppose that inequality (1.5) holds. For any fixed F1 and F2, we set

f1(t, s1) = F1(t) v
1−p′1
1 (t, s1)

(
Ṽ1(t)

) 1
p1−1

(3.5)

and

f2(t, s2) := F2(t) v
1−p′2
2 (t, s2)

(
Ṽ2(t)

) 1
p2−1

, (3.6)

where t > 0, and s1, s2 ∈
∑

t . Substituting the value of Ṽ1(t) and Ṽ2(t) from (1.8) in
(3.5)and (3.6), respectively, we obtain

∫
∑

t

f1(t, s1)λ(t, s1) ds1 = F1(t) (3.7)

and ∫
∑

t

f2(t, s2)λ(t, s2) ds2 = F2(t). (3.8)

Let us consider the left hand side of the inequality (1.6), by using (3.7), (3.8) and
(1.7), to get

(∫ ∞

0

[H2(F1, F2)(τ)]
q
Ũ(τ)dτ

)1/q

=

(∫ ∞

0

(∫ τ

0

F1(t) dt

)q

·
(∫ τ

0

F2(t) dt

)q

Ũ(τ) dτ

)1/q

=

{∫ ∞

0

(∫ τ

0

∫
∑

t

f1(t, ω) λ(t, ω) dω dt

)q

×
(∫ τ

0

∫
∑

t

f2(t, σ) λ(t, σ) dσ dt

)q ∫
∑

τ

u(τ, ξ) λ(τ, ξ) dξ dτ

}1/q

=

{∫

X

(∫

B(a,|x|)
f1(y) dy

)q (∫

B(a,|x|)
f2(y) dy

)q

u(x)dx

}1/q

=

{∫

X

[
HB

2 (f1, f2)(x)
]q
u(x)dx

}1/q

. (3.9)

Now, by using the inequality (1.5) and after that using polar decomposition, from
the last expression (3.9), we get
{∫

X

[
HB

2 (f1, f2)(x)
]q
u(x)dx

}1/q

≤ C

{∫

X

f
p1
1 (x) v1(x)dx

} 1
p1

{∫

X

f
p2
2 (x) v2(x)dx

} 1
p2

= C

{∫ ∞

0

∫
∑

t

f
p1
1 (t, s1) λ(t, s1) v1(t, s1) ds1 dt

} 1
p1
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×
{∫ ∞

0

∫
∑

t

f
p2
2 (t, s2) λ(t, s2) v2(t, s2)ds2 dt

} 1
p2

= C

{∫ ∞

0

∫
∑

t

F
p1
1 (t) v

p1(1−p′1)
1 (t, s1)

(
Ṽ1(t)

) p1
p1−1 × λ(t, s1) v1(t, s1) dt ds1

} 1
p1

×
{∫ ∞

0

∫
∑

t

F
p2
2 (t) v

p2(1−p′2)
2 (t, s2)

(
Ṽ2(t)

) p2
p2−1

λ(t, s2) v2(t, s2) dt ds2

} 1
p2

= C

{∫ ∞

0

∫
∑

t

v1(t, s1) λ(t, s1)

[
F

p1
1 (t)v

p1(1−p′1)
1 (t, s1)

(
Ṽ1(t)

) p1
p1−1

]
ds1 dt

} 1
p1

×
{∫ ∞

0

∫
∑

t

v2(t, s2) λ(t, s2)

[
F

p2
2 (t)v

p2(1−p′2)
2 (t, s2)

(
Ṽ1(t)

) p2
p2−1

]
ds2 dt

} 1
p2

= C

(∫ ∞

0

F
p1
1 (t)

(∫
∑

t

v
1−p′1
1 (t, s1) λ(t, s1)ds1

)(
Ṽ1(t)

) p1
p1−1

dt

) 1
p1

×
(∫ ∞

0

F
p2
2 (t)

(∫
∑

t

v
1−p′2
2 (t, s2) λ(t, s2)ds2

)(
Ṽ2(t)

) p2
p2−1

dt

) 1
p2

= C

{∫ ∞

0

F
p1
1 (t)

(
Ṽ1(t)

) p1
p1−1

(
Ṽ1(t)

) 1
1−p1

dt

} 1
p1

×
{∫ ∞

0

F
p2
2 (t)

(
Ṽ2(t)

) p2
p2−1

(
Ṽ2(t)

) 1
1−p2

dt

} 1
p2

= C

{∫ ∞

0

F
p1
1 (t) Ṽ1(t) dt

} 1
p1

{∫ ∞

0

F
p2
2 (t) Ṽ2(t) dt

} 1
p2

,

which says that (1.6) holds, and this also shows that C in (1.6) is ≤ C in (1.5). This
completes the proof of Theorem 1.1. �

4. Weights characterization for different parameters

In this part, the weight characterizations of the inequality (1.5) is given for different
values of q, p1, p2. Let us denote:

U(x) =

∫

X\B(a,|x|a)
u(y) dy, (4.1)

Vi(x) =

∫

B(a,|x|a)
v
1−p′i
i (y) dy, i = 1, 2 (4.2)

U1(t) =

∫ ∞

t

Ũ(s) ds, (4.3)

and

V1i(t) =

∫ t

0

Ṽ
1−p′i
i (s) ds, i = 1, 2 , (4.4)
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where u, vi, Ũ , Ṽi are the weight functions, given in (1.7) and (1.8). Now, we state
the following result proved in [1]:

Theorem 4.1. Let 1 < q, p1, p2 < ∞. The inequality (1.6) holds for all F1, F2 ≥ 0

and Ũ , Ṽ1, Ṽ2 as weight functions if and only if

(i) For the case 1 < max(p1, p2) ≤ q < ∞,

B1 := sup
0<t<∞

U1

1
q (t)V

1
p1

′

11 (t)V
1
p′
2

12 (t) < ∞.

Also, the best constant C in (1.6) satisfies

B1 ≤ C ≤ 8(1 + 4q)
1
qB1. (4.5)

(ii) For the case 1 < p1 ≤ q < p2 < ∞, 1
r2

= 1
q
− 1

p2
,

B1 < ∞,

B2 := sup
0<t<∞

V
1

p1
′

11 (t)

(∫ ∞

t

U1

r2
q (s) V12

r2
q′ (s) Ṽ

1−p′2
2 (s) ds

) 1
r2

< ∞.

Also, the best constant C in (1.6) satisfies

max

{
B1, q

1
q

(
qp′2
r2

) 1
q′

B2

}
≤ 8

(
B1 + q

1
q (p′2)

1
q′ B2

)
. (4.6)

(iii) For the case 1 < q < min(p1, p2) < ∞, 1
q
≤ 1

p1
+ 1

p2
, 1

r i
= 1

q
− 1

p i
, i = 1, 2,

B1 < ∞, B2 < ∞,

B3 := sup
0<t<∞

V

1
p′
2

12 (t)

(∫ ∞

t

U
r1
q

1 (s)V
r1
q′

11 (s)Ṽ
1−p′1
1 (s)ds

) 1
r1

< ∞.

Also, the best constant C in (1.6) satisfies

max

{
B1, q

1
q

(
qp′2
r2

) 1
q′

B2, q
1
q

(
qp′1
r1

) 1
q′

B3

}
≤ C

≤ 8

(
8B3 + 4

(
p′1
r1

) 1
r1

B1 + q
1
q (p′2)

1
q′ B2

)
. (4.7)

(iv) For the case 1 < q < min(p1, p2) < ∞, 1
q
> 1

p1
+ 1

p2
, 1

k
= 1

q
− 1

p1
− 1

p2
,

1
r i

= 1
q
− 1

p i
, i = 1, 2,

B4 :=

{∫ ∞

0

U
k
p1

+ k
p2

1 (t)V
k

p′1
11 (t)V

k

p′2
12 (t)Ũ(t)dt

} 1
k

< ∞.

B5 :=

{∫ ∞

0

(∫ ∞

t

U
r2
q

1 (s)V
r2
q′

12 (s)Ṽ
1−p′2
2 (s)ds

)k/r2

V

k

r′
2

11 (t)Ṽ
1−p′1
1 (t)dt

}1/k

< ∞.
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and

B6 :=

{∫ ∞

0

(∫ ∞

t

U
r1
q

1 (s)V
r1
q′

11 (s) Ṽ
1−p′1
1 (s)ds

)k/r2

V

k

r′
1

12 (t) Ṽ
1−p′2
2 (t)dt

}1/k

< ∞.

Our result in this section is that the conditions on the weight functions are found
for the inequality (1.5) to hold true which reads out as follows:

Theorem 4.2. Let 0 < q < ∞, 1 < p1, p2 < ∞, and u, v1, v2 are weight functions

positive a.e. in X such that u ∈ L1
loc(X\{a}) and v

1−p′i
i ∈ L1

loc(X), where i = 1, 2. The
inequality (1.5) holds for all f1, f2 ≥ 0 if and only if

(i) For 1 < max(p1, p2) ≤ q < ∞,

D1 := sup
x 6=a

{
U

1
q (x)V

1
p′
1

1 (x)V
1
p′
2

2 (x)

}
< ∞.

(ii) For q ≥ p1 and q < p2 with p1, p2, q > 1 and 1
r2

= 1
q
− 1

p2
,

D1 < ∞,

D2 := sup
x 6=a

V

1
p′1
1 (x)

{∫

X\B(a,|x|a)
U

r2
q (y)V

r2
q′

2 (y)v2
1−p′2(y)dy

} 1
r2

< ∞.

(iii) For q < p1 and q < p2 with p1, p2, q > 1 and 1
q
≤ 1

p1
+ 1

p2
, and 1

ri
= 1

q
− 1

pi
where i = 1, 2,

D1 < ∞, D2 < ∞,

D3 := sup
x 6=a

V

1
p′2
2 (x)

{∫

X\B(a,|x|a)
U

r1
q (y)V

r1
q′

1 (y)v1
1−p′1(y)dy

} 1
r1

< ∞.

(iv) For q < p1 and q < p2 with p1, p2, q > 1 and 1
q
> 1

p1
+ 1

p2
, 1

ri
= 1

q
− 1

pi
, i = 1, 2,

and 1
k
= 1

q
− 1

p1
− 1

p2
,

D4 :=

{∫

X

U
k
p1

+ k
p2 (y)V

k

p′1
1 (y)V

k

p′2
2 (y)u(y)dy

}1
k

< ∞,

D5 :=

{∫

X

{∫

X\B(a,|x|a)
U

r2
q (y)V

r2
q′

2 (y)v2
1−p′2(y)dy

} k
r2

× V

k

r′
2

1 (x)v1
1−p′1(x)dx

) 1
k

< ∞,

and

D6 :=

{∫

X

{∫

X\B(a,|x|a)
U

r1
q (y)V

r1
q′

1 (y)v1
1−p′1(y)dy

} k
r1

× V

k

r′
1

2 (x)v2
1−p′2(x)dx

} 1
k

< ∞.
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Proof. First we will show that the conditions Di are equivalent to the conditions Bi

in Theorem 4.1 for i = 1 to 6. Then the result follows from Theorem 4.1.
Let us first show that D1 = B1.

D1 := sup
x 6=a

{
U

1
q (x)V

1
p′
1

1 (x)V
1
p′
2

2 (x)

}

= sup
x 6=a

(∫

X\B(a,|x|a)
u(y)dy

)1/q(∫

B(a,|x|a)
v
1−p′1
1 (y)dy

)1/p′1
(∫

B(a,|x|a)
v
1−p′2
2 (y)dy

)1/p′2

= sup
x 6=a

(∫ ∞

|x|a

∫

Σr

u(r, ω)λ(r, ω)dωrdr

)1/q(∫ |x|a

0

∫

Σr

v
1−p′1
1 (r, ω)λ(r, ω)dωrdr

)1/p′1

×
(∫ |x|a

0

∫

Σr

v
1−p′2
2 (r, ω)λ(r, σ)dωrdr

)1/p′2

= sup
x 6=a

(∫ ∞

|x|a
Ũ(r)dr

)1/q(∫ |x|a

0

Ṽ1

1/(1−p1)
(r)dr

)1/p′1
(∫ |x|a

0

Ṽ2

1/(1−p2)
(r)dr

)1/p′2

= sup
0<|x|a<∞

(∫ ∞

|x|a
Ũ(r)dr

)1/q(∫ |x|a

0

Ṽ1

(1−p′1)
(r)dr

)1/p′1
(∫ |x|a

0

Ṽ2

(1−p′2)
(r)dr

)1/p′2

= B1.

Now, we prove that D2 = B2. We have

D2 := sup
x 6=a

V

1
p′
1

1 (x)

{∫

X\B(a,|x|a)
U

r2
q (y)V

r2
q′

2 (y)v2
1−p′2(y)dy

} 1
r2

= sup
x 6=a

(∫

B(a,|x|a)
v
1−p′1
1 (y)dy

)1/p′1
{∫

X\B(a,|x|a)

(∫

X\B(a,|y|a)
u(z)dz

)r2/q

×
(∫

B(a,|y|a)
v
1−p′2
2 (z)dz

)r2/q′

v2
1−p′2(y)dy

}1/r2

= sup
x 6=a

(∫ |x|a

0

∫

Σr

v
1−p′1
1 (r, ω)λ(r, σ)dωrdr

)1/p′1
(∫ ∞

|x|a

∫

Σt

(∫ ∞

t

∫

Σr

u(r, ω)λ(r, ω)dωrdr

)r2/q

×
(∫ t

0

∫

Σr

v
1−p′2
2 (r, ω)λ(r, σ)dωrdr

)r2/q′

v2
1−p′2(t, ρ)λ(t, ρ)dρtdt

)1/r2

= sup
x 6=a

(∫ |x|a

0

Ṽ1

1/(1−p1)
(r)dr

)1/p′1
(∫ ∞

|x|a

(∫ ∞

t

Ũ(r)dr

)r2/q

×
(∫ t

0

Ṽ2

1/(1−p2)
(r)dr

)r2/q′

Ṽ
1−p′2
2 (t)dt

)1/r2

= sup
0<|x|a<∞

(∫ |x|a

0

Ṽ1

(1−p′1)
(r)dr

)1/p′1
(∫ ∞

|x|a

(∫ ∞

t

Ũ(r)dr

)r2/q

×
(∫ t

0

Ṽ2

(1−p′2)
(r)dr

)r2/q′

Ṽ
1−p′2
2 (t)dt

)1/r2
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= B2.

Next we prove D3 = B3, and the result for D4 = B4 is similar.

D3 := sup
x 6=a

V

1
p′
2

2 (x)

{∫

X\B(a,|x|a)
U

r1
q (y)V

r1
q′

1 (y)v1
1−p′1(y)dy

} 1
r1

= sup
x 6=a

(∫

B(a,|x|a)
v
1−p′2
2 (y)dy

)1/p′2
{∫

X\B(a,|x|a)

(∫

X\B(a,|y|a)
u(z)dz

)r1/q

×
(∫

B(a,|y|a)
v
1−p′1
1 (z)dz

)r1/q′

v1
1−p′1(y)dy

}1/r1

= sup
x 6=a

(∫ |x|a

0

∫

Σr

v
1−p′2
2 (r, ω)λ(r, σ)dωrdr

)1/p′2
(∫ ∞

|x|a

∫

Σt

(∫ ∞

t

∫

Σr

u(r, ω)λ(r, ω)dωrdr

)r1/q

×
(∫ t

0

∫

Σr

v
1−p′1
1 (r, ω)λ(r, σ)dωrdr

)r1/q′

v1
1−p′1(t, ρ)λ(t, ρ)dρtdt

)1/r1

= sup
x 6=a

(∫ |x|a

0

Ṽ2

1/(1−p2)
(r)dr

)1/p′2
(∫ ∞

|x|a

(∫ ∞

t

Ũ(r)dr

)r1/q

×
(∫ t

0

Ṽ1

1/(1−p1)
(r)dr

)r1/q′

Ṽ1

1/(1−p1)
(t)dt

)1/r1

= sup
0<|x|a<∞

(∫ |x|a

0

Ṽ2

(1−p′2)
(r)dr

)1/p′2
(∫ ∞

|x|a

(∫ ∞

t

Ũ(r)dr

)r1/q

×
(∫ t

0

Ṽ1

(1−p′1)
(r)dr

)r1/q′

Ṽ1

(1−p′1)
(t)dt

)1/r1

= B3.

Finally, we prove that D5 = B5, and the result for D6 = B6 follows similar lines.

D5 :=

{∫

X

{∫

X\B(a,|x|a)
U

r2
q (y)V

r2
q′

2 (y)v2
1−p′2(y)dy

} k
r2

V

k

r′2
1 (x)v1

1−p′1(x)dx

} 1
k

=

(∫ ∞

0

∫

Σt

(∫ ∞

s

∫

Σr

(∫ ∞

t

∫

Σr

u(r, ω)λ(r, ω)dωrdr

)r2/q

×
(∫ t

0

∫

Σr

v
1−p′2
2 (r, ω)λ(r, σ)dωrdr

)r2/q′

v2
1−p′2(t, ρ)λ(t, ρ)dρtdt

)k/r2

×
(∫ s

0

∫

Σr

v
1−p′1
1 (r, ω)λ(r, ω)dωrdr

)k/r′2

v1
1−p′1(s, ρ)λ(s, ρ)dρsds

)1/k

=

(∫ ∞

0

(∫ ∞

s

(∫ ∞

t

Ũ(r)dr

)r2/q(∫ t

0

Ṽ2

1/(1−p2)
(r)dr

)r2/q′

Ṽ2

1/(1−p2)
(r)dt

)k/r2
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×
(∫ s

0

Ṽ1

1/(1−p1)
(r)dr

)k/r′2

Ṽ1

1/(1−p1)
(s)ds

)1/k

= B5.

Now, Thoerem 4.2 follows from Theorem 4.1. �

5. Applications and examples

In this section, we give several examples of applications of our results to characterize
the weights u, v1 and v2 for bilinear Hardy inequalities to hold.

5.1. Homogeneous Lie groups. Let X = G be a homogeneous Lie group. For
more information on these groups, we refer to the references [10, 11] and [30]. In
this case, we have that λ(r, ω) = rQ−1, with Q being the homogeneous dimension of
the group, satisfies (2.1). We also fix a = 0 to be the identity element of the group
G which does not cause any loss of generality. The notation is being made simpler
by denoting |x|a by |x|. We observe that this goes well with the notation for the
quasi-norm | · | on a homogeneous Lie group G. Let us select the power weights as

u(x) = |x|α, v1(x) = |x|β1 , and v2(x) = |x|β2 .

Then the inequality (1.5) holds for 1 < max(p1, p2) ≤ q < ∞ if and only if

D1 = sup
r>0

(
σ

∫ ∞

r

ραρQ−1dρ

) 1
q
(
σ

∫ r

0

ρβ1(1−p′1)ρQ−1dρ

) 1
p′1

×
(
σ

∫ r

0

ρβ2(1−p′2)ρQ−1dρ

) 1
p′
2
< ∞, (5.1)

where σ is the area of the unit sphere in G with respect to the quasi-norm | · |. For
this supremum to be well-defined we need to have α+Q < 0, β1(1− p′1)+Q > 0 and
β2(1− p′2) +Q > 0. Then we have

D1 = σ
( 1
q
+ 1

p′1
+ 1

p′2
)
sup
r>0

(∫ ∞

r

ρα+Q−1dρ

) 1
q
(∫ r

0

ρβ1(1−p′1)+Q−1dρ

) 1
p′
1

×
(∫ r

0

ρβ2(1−p′2)+Q−1dρ

) 1
p′
2

= σ
( 1
q
+ 1

p′
+ 1

p′
2
)
sup
r>0

r
α+Q

q

|α +Q|
1
q

r
β1(1−p′1)+Q

p′1

(β1(1− p′1) +Q)
1
p′
1

r
β2(1−p′2)+Q

p′2

(β2(1− p′2) +Q)
1
p′
2

, (5.2)

which is finite if and only if the power of r is zero. Therefore, we obtain the following
result:

Corollary 5.1. Let G be a homogeneous Lie group with a quasi-norm | · | and homo-

geneous dimension Q. Let 1 < max(p1, p2) ≤ q < ∞ and let α, β1, β2 ∈ R. Then the

inequality

(∫

G

(
HB

2 (f1, f2)

)q

|x|αdx
) 1

q

≤ C

{∫

G

|f1(x)|p1 |x|β1dx

} 1
p1
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×
{∫

G

|f2(x)|p2 |x|β2dx

} 1
p2

(5.3)

holds for all measurable functions f : G → C if and only if

α +Q < 0, β1(1− p′1) +Q > 0, β2(1− p′2) +Q > 0

and
α +Q

q
+

β1(1− p′1) +Q

p′1
+

β2(1− p′2) +Q

p′2
= 0.

Consider now the condition (ii) of Theorem 4.2 with the power weights

u(x) = |x|α, v1(x) = |x|β1 , and v2(x) = |x|β2 .

Let q ≥ p1, q < p2, with p1, p2, q > 1 and 1
r2

= 1
q
− 1

p2
, then the inequality (1.5) holds

for D1 < ∞ and

D2 = σ
1
p′
1
+ 1

q
+ 1

q′
+ 1

r2 sup
r>0

(∫ r

0

ρβ1(1−p′1)+Q−1dρ

) 1
p′
1

(∫ ∞

r

(∫ ∞

ρ

sα+Q−1ds

) r2
q
(∫ ρ

0

sβ2(1−p′2)+Q−1ds

) r2
q′

ρβ2(1−p′2)+Q−1dρ

) 1
r2

< ∞, (5.4)

where σ is the area of the unit sphere in G with respect to the quasi-norm | · |. For
this supremum to be well-defined we need to have β1(1 − p′1) + Q > 0, α + Q < 0,

β2(1− p′2) +Q > 0 and (α+Q)r2
q

+
(β2(1−p′2)+Q)r2

q′
+ β2(1− p′2) +Q < 0. Then we have

D2 = σ
1
p′
1
+ 1

q
+ 1

q′
+ 1

r2 sup
r>0

r
β1(1−p′1)+Q

p′1

(β1(1− p′1) +Q)
1
p′
1



∫ ∞

r

ρ
(α+Q)r2

q

|α+Q|
r2
q

ρ
(β2(1−p′2)+Q)r2

q′

(β2(1− p′2) +Q)
r2
q′

ρβ2(1−p′2)+Q−1 dρ




1
r2

,

which gives

D2 = σ
1
p′
1
+ 1

q
+ 1

q′
+ 1

r2 sup
r>0

r
β1(1−p′1)+Q

p′
1

(β1(1− p′1) +Q)
1
p′1

×

1

|α+Q| 1q (β2(1− p′2) +Q)
1
q′

r
(α+Q)

q
+

β2(1−p′2)+Q

q′
+

β2(1−p′2)+Q

r2

[
(α+Q)r2

q
+

(β2(1−p′2)+Q)r2
q′

+ (β2(1− p′2) +Q)
] 1

r2

= σ
1
p′
1
+ 1

q
+ 1

q′
+ 1

r2
1

|α+Q| 1q (β2(1− p′2) +Q)
1
q′

sup
r>0

r
(α+Q)

q
+

β2(1−p′2)+Q

q′
+

β2(1−p′2)+Q

r2
+

β1(1−p′1)+Q

p′
1

[
(α+Q)r2

q
+

(β2(1−p′2)+Q)r2
q′

+ (β2(1− p′2) +Q)
] 1

r2
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which is finite if and only if the power of r is zero. Therefore,

(α +Q)

q
+

β2(1− p′2) +Q

q′
+

β2(1− p′2) +Q

r2
+

β1(1− p′1) +Q

p′1
= 0, (5.5)

with the condition D1 from Corollary 5.1,

α +Q

q
+

β1(1− p′1) +Q

p′1
+

β2(1− p′2) +Q

p′2
= 0. (5.6)

Solving (5.5) and (5.6), we have

1

q′
+

1

r2
=

1

p′2
=⇒ 1

r2
=

1

q
− 1

p2
, (5.7)

which is our given condition of (ii). Therefore, we obtain the following result:

Corollary 5.2. Let G be a homogeneous Lie group with a quasi-norm | · | and homo-

geneous dimension Q. Let q ≥ p1 and q < p2 with p1, p2, q > 1 and 1
r2

= 1
q
− 1

p2,
and

let α, β1, β2 ∈ R. Then the inequality

(∫

G

(
HB

2 (f1, f2)

)q

|x|αdx
) 1

q

≤ C

{∫

G

|f1(x)|p1 |x|β1dx

} 1
p1

×
{∫

G

|f2(x)|p2 |x|β2dx

} 1
p2

(5.8)

holds for all measurable functions f : G → C if and only if β1(1 − p′1) + Q > 0,

α + Q < 0, β2(1 − p′2) + Q > 0, (α+Q)r2
q

+
(β2(1−p′2)+Q)r2

q′
+ β2(1 − p′2) + Q < 0 and

α+Q
q

+
β1(1−p′1)+Q

p′1
+

β2(1−p′2)+Q

p′2
= 0.

Remark 5.3. Similarly, the conditions for the remaining cases of Theorem 4.2 can
be determined.

5.2. Hyperbolic spaces. Let Hn be the hyperbolic space of dimension n. Let a ∈
Hn. Let us consider the weights

u(x) = (sinh |x|a)α, v1(x) = (sinh |x|a)β1 and v2(x) = (sinh |x|a)β2.

Then, D1 in terms of polar coordinates is equivalent to

D1 ≃ sup
|x|a>0

(∫ ∞

|x|a
(sinh ρ)α+n−1dρ

) 1
q
(∫ |x|a

0

(sinh ρ)β1(1−p′1)+n−1dρ

) 1
p′
1

×
(∫ |x|a

0

(sinh ρ)β2(1−p′2)+n−1dρ

) 1
p′
2
. (5.9)

To evaluate the first, second and the third integral, we need α + n − 1 < 0, β1(1 −
p′1) + n > 0, and β2(1− p′2) + n > 0, respectively.
Let us further examine the conditions for this supremum to be finite. For |x|a ≫ 1,
we have sinh ρ ≈ exp ρ. Then (5.9) can be stated as

sup
|x|a≫1

(∫ ∞

|x|a
(exp ρ)α+n−1dρ

) 1
q
(∫ |x|a

0

(exp ρ)β1(1−p′1)+n−1dρ

) 1
p′
1
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×
(∫ |x|a

0

(exp ρ)β2(1−p′2)+n−1dρ

) 1
p′2

≃ sup
|x|a≫1

(exp |x|a)

(
α+n−1

q
+

β1(1−p′1)+n−1

p′
1

+
β2(1−p′2)+n−1

p′
2

)

,

which is finite if and only if

α+ n− 1

q
+

β1(1− p′1) + n− 1

p′1
+

β2(1− p′2) + n− 1

p′2
≤ 0.

For |x|a ≪ 1, we have sinh ρ ≈ ρ. Now, it can be represented as

sup
|x|a≪1

(∫ ∞

|x|a
(sinh ρ)α+n−1dρ

) 1
q
(∫ |x|a

0

ρβ1(1−p′1)+n−1dρ

) 1
p′1

×
(∫ |x|a

0

ρβ2(1−p′2)+n−1dρ

) 1
p′
2

≃ sup
|x|a≪1

(∫ R

|x|a
(sinh ρ)α+n−1dρ+

∫ ∞

R

(sinh ρ)α+n−1dρ

) 1
q

×
(∫ |x|a

0

ρβ1(1−p′1)+n−1dρ

) 1
p′1

(∫ |x|a

0

ρβ2(1−p′2)+n−1dρ

) 1
p′2
.

We have sinh ρ|x|a≤ρ<R ≈ ρ for some small R, and in that case the above supremum
is

≈ sup
|x|a≪1

(
|x|α+n

a + CR

) 1
q

|x|a
β1(1−p′)+n

p′1 |x|a
β2(1−p′2)+n

p′2 .

Now, for α + n ≥ 0, this is

≈ sup
|x|a≪1

|x|a
β1(1−p′1)+n

p′
1

+
β2(1−p′2)+n

p′
2 ,

which is finite if and only if

β1(1− p′1) + n

p′1
+

β2(1− p′2) + n

p′2
≥ 0.

At the same time, for α + n < 0 it is

≈ sup
|x|a≪1

|x|a
α+n
q

+
β1(1−p′1)+n

p′1
+

β2(1−p′2)+n

p′2 ,

which is finite if and only if

α + n

q
+

β1(1− p′1) + n

p′1
+

β2(1− p′2) + n

p′2
≥ 0.

Summarising, we obtain the following result:
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Corollary 5.4. Let a ∈ Hn, where Hn be the hyperbolic space of dimension n. The

hyperbolic distance from x to a is denoted by |x|a. Let 1 < max(p1, p2) ≤ q < ∞ and

let α, β1, β2 ∈ R. Then the inequality

(∫

Hn

(
HB

2 (f1, f2)

)q

(sinh |x|a)αdx
) 1

q

≤ C

{∫

Hn

|f1(x)|p1(sinh |x|a)β1dx

} 1
p1

×
{∫

Hn

|f2(x)|p2(sinh |x|a)β2dx

} 1
p2

(5.10)

holds for all measurable functions f : Hn → C if the parameters satisfy either of the

following conditions:

(A) for α + n ≥ 0, if α + n < 1, β1(1 − p′1) + n > 0 and β2(1 − p′2) + n > 0 and
α+n
q

+
β1(1−p′1)+n

p′1
+

β2(1−p′2)+n

p′2
≤ 1

q
+ 1

p′1
+ 1

p′2
;

(B) for α + n < 0, if β1(1 − p′1) + n > 0 and β2(1 − p′2) + n > 0 and 0 ≤
α+n
q

+
β1(1−p′1)+n

p′1
+

β2(1−p′2)+n

p′2
≤ 1

q
+ 1

p′1
+ 1

p′2
.

Remark 5.5. The other cases of Theorem 4.2 can be treated in a similar way.

5.3. Cartan-Hadamard manifolds. Let (M, g) be a Cartan-Hadamard manifold
and let KM be constant sectional curvature. Under this assumption, it is well known
that J(t, ω) is a function of t only. To elaborate, if KM = −b for b ≥ 0, then from

(2.2), we have J(t, ω) = 1 for b = 0, and J(t, ω) =
(

sinh
√
bt√

bt

)n−1

for b > 0, see e.g.

[4, 12].
When b = 0, let us take u(x) = |x|αa , v1(x) = |x|βa and v2(x) = |x|γa , then the

inequality (1.5) holds for 1 < max(p1, p2) ≤ q < ∞ if and only if

sup
|x|a>0

(∫

M\B(a,|x|a)
|y|αady

)1
q
(∫

B(a,|x|a)
|y|β(1−p′1)

a dy

) 1
p′1

(∫

B(a,|x|a)
|y|γ(1−p′2)

a dy

) 1
p′2

< ∞. (5.11)

After changing to the polar coordinates (see (2.2)), this is equivalent to

sup
|x|a>0

(∫ ∞

|x|a
ρα+n−1dρ

) 1
q
(∫ |x|a

0

ρβ(1−p′1)+n−1dρ

) 1
p′1

(∫ |x|a

0

ργ(1−p′2)+n−1dρ

) 1
p′2
,

which is finite if and only if conditions of Corollary 5.1 hold with Q = n (which is
natural since the curvature is zero).

When b > 0, let us take u(x) = (sinh
√
b|x|a)α, v1(x) = (sinh

√
b|x|a)β and v2(x) =

(sinh
√
b|x|a)γ . Then the inequality (1.5) holds for 1 < max(p1, p2) ≤ q < ∞ if and

only if

sup
|x|a>0

(∫

M\B(a,|x|a)
(sinh

√
b|y|a)αdy

)1
q
(∫

B(a,|x|a)
(sinh

√
b|y|a)β(1−p′1)dy

) 1
p′
1



18 MICHAEL RUZHANSKY, ANJALI SHRIWASTAWA, AND DAULTI VERMA

×
(∫

B(a,|x|a)
(sinh

√
b|y|a)γ(1−p′2)dy

) 1
p′2

< ∞.

After changing to the polar coordinates, this supremum is equivalent to

sup
|x|a>0

(∫ ∞

|x|a
(sinh

√
bt)α(

sinh
√
bt√

bt
)n−1tn−1dt

) 1
q

×
(∫ |x|a

0

(sinh
√
bt)β(1−p′1)(

sinh
√
bt√

bt
)n−1tn−1dt

) 1
p′
1

×
(∫ |x|a

0

(sinh
√
bt)γ(1−p′2)(

sinh
√
bt√

bt
)n−1tn−1dt

) 1
p′
2

≃ sup
|x|a>0

(∫ ∞

|x|a
(sinh

√
bt)α+n−1dt

) 1
q
(∫ |x|a

0

(sinh
√
bt)β(1−p′1)+n−1dt

) 1
p′
1

×
(∫ |x|a

0

(sinh
√
bt)γ(1−p′2)+n−1dt

) 1
p′
2
,

which has the same conditions for finiteness as the case of the hyperbolic space in
Corollary 5.4 (which is also natural since it is the negative constant curvature case).
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[11] G. B. Folland and E. M. Stein. Hardy spaces on homogeneous groups. Princeton University
Press. Mathematical Notes, vol. 28. Princeton, (1982).

[12] S. Gallot, D. Hulin and J. Lafontaine. Riemannian geometry, 3rd edn. Universitext. Berlin,
Germany: Springer-Verlag. xvi+322, (2004).
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