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THE STRUCTURE OF ÉTALE BOOLEAN RIGHT RESTRICTION

MONOIDS

MARK V. LAWSON

Abstract. In this paper, we describe étale Boolean right restriction monoids
in terms of Boolean inverse monoids.

1. Introduction

The goal of this paper is to describe the structure of étale Boolean right re-
striction monoids in terms of Boolean inverse monoids motivated by [6, 8, 9].
Etale Boolean right restriction monoids are interesting because these are precisely
the Boolean right restriction monoids whose associated categories, under non-
commutative Stone duality, are in fact groupoids [9, Theorem 5.2].

Our starting point is the definition of the set of partial units1 of a Boolean right
restriction monoid S. They form a Boolean inverse monoid Inv(S) [27]; this was
proved in [6, 9], although we also give a full proof of this result in Lemma 3.3. A
Boolean right restriction monoid S is said to be étale if every element is a join of
a finite number of partial units. Etale Boolean right restriction monoid were first
defined in [9] though a special class of such monoids was actually used in [21]. A
more general notion of ‘étale’ was defined in [6].

From the definition, we can see that there is a close connection between étale
Boolean right restriction monoids and Boolean inverse monoids. This is made
precise in Section 5. In Theorem 5.2, we show that the Boolean inverse monoid of
partial units of an étale Boolean right restriction monoid determines the structure
of that monoid. Our main theorem, Theorem 5.9, shows how to manufacture an
étale Boolean right restriction monoid T from a Boolean inverse monoid S using
tools developed in Section 4. We call T constructed in this way, the ‘companion’
of S. Section 6 provides some concrete examples of the theory we have developed
including a discussion of the classical Thompson-Higman groups Gn,1.

The rest of this introduction is given over to outlining some of the background
needed to read this paper.

On every right restriction monoid is defined a partial order called the natural
partial order, which plays an important role in determining the structure of that
monoid. For this reason, we shall need some definitions and notation from the
theory of posets. Let (X,≤) be a poset. If Y ⊆ X define

Y ↑ = {x ∈ X : ∃y ∈ Y ; y ≤ x} and Y ↓ = {x ∈ X : ∃y ∈ Y ;x ≤ y}.

In the case where Y = {y}, we write y↑ and y↓ instead of {y}↑ and {y}↓, respec-
tively. If Y = Y ↓ we say that Y is an order-ideal. The subset Y is said to be
downwards directed if x, y ∈ Y implies that there is z ∈ Y such that z ≤ x, y. If
Y = Y ↑ we say that Y is closed upwards.

The usual order on the set of idempotents of any semigroup is defined by e ≤ f

if e = ef = fe.
We shall use some basic topology in this paper [28]. Let X be a set. A set

β = {Ui : i ∈ I} of subsets of X is called a base if it satisfies two conditions: the

1We prefer this term to that of ‘partial isomorphism’ used by Cockett and Garner [6].
1
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first is that X =
⋃

U∈β U and the second is that if x ∈ U1 ∩ U2, where U1, U2 ∈ β

then there exists U ∈ β such that x ∈ U ⊆ U1 ∩ U2. Bases are used to generate
topologies on X . A space X is said to be 0-dimensional if it has a base consisting of
clopen sets. A compact, Hausdorff, 0-dimensional space is said to be Boolean. It is
important to distinguish partial homeomorphisms and local homeomorphisms. By
a partial homeomorphism we mean a homeomorphism between two open subsets of
a topological space. A local homeomorphism is a union of partial homeomorphisms.

Acknowledgements I am grateful to Ganna Kudryavtseva for reading and com-
menting on an earlier version of this paper. My thanks also to Victoria Gould for
spotting some typos and providing a couple of references which are highlighted in
the text.

2. Right restriction semigroups

Semigroups generalizing inverse semigroups were studied by a number of authors
at various times, work nicely summarized in [12]. In addition, category theorists
also became interested in categorical analogues of such semigroups, motivated by a
desire to axiomatize categories of partial functions, notably in the work of Grandis
[11] and Cockett (and his collaborators) [5]. We shall focus on monoids in this
paper. The following well-known example is key and serves to motivate the class
of semigroups we shall study in this paper.

Example 2.1. Functions will always be computed from right to left. Denote by
PT(X) the set of all partial functions defined on the (non-empty) set X . See [10].
An element of PT(X) has the form f : A → X where A ⊆ X . We call the subset
A the domain of definition of f ; this set will be denoted by dom(f). Denote by
f∗ (called f -star) the identity function defined on dom(f). Observe that ff∗ = f .
Whereas identity functions defined on subsets of X are idempotents, it is not true
that all idempotents have this form. The set of all those idempotents which are
identities defined on subsets is denoted by Proj(PT(X)) and is called the set of
projections. Partial functions f and g can be compared using subset inclusion.
In fact, f ⊆ g precisely when f = gf∗. With respect to this order, the set of
projections forms a Boolean algebra. If f, g ∈ PT(X) then f ∪ g ∈ PT(X) since
f∪g precisely when fg∗ = gf∗; in this case, we say that f and g are left-compatible.
Observe also that f∗g = g(fg)∗ which expresses the fact that we are dealing with
partial functions. We may regard PT(X) as an algebra of type (1, 2) equipped with
the star operation and the semigroup binary operation.

The above example is a special case of the following definition. We define a
semigroup S to be a right restriction semigroup if it is equipped with a unary
operation a 7→ a∗ satisfying the following axioms:

(RR1). (s∗)∗ = s∗.
(RR2). (s∗t∗)∗ = s∗t∗.
(RR3). s∗t∗ = t∗s∗.
(RR4). ss∗ = s.
(RR5). (st)∗ = (s∗t)∗.
(RR6). t∗s = s(ts)∗.

The unary operation s 7→ s∗ is called star. Denote by Proj(S) those elements a

such that a∗ = a, called projections. Let S and T be right restriction semigroups.
A homomorphism θ : S → T of right restriction semigroups is a semigroup ho-
momorphism such that θ(a∗) = θ(a)∗. Such homomorphisms map projections to
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projections. The lemma below is well-known but is included for context. The proofs
follow quickly from the axioms.

Lemma 2.2. Let S be a right restriction semigroup.

(1) Each projection is an idempotent.
(2) ae = a implies that a∗ ≤ e whenever e is a projection.
(3) If S is a monoid then 1∗ = 1.
(4) (ab)∗ ≤ b∗ for all elements a, b ∈ S.
(5) If S has a zero which is a projection, then a = 0 if and only if a∗ = 0.
(6) The product of projections is a projection.

Remark 2.3. There is a Cayley-type representation theorem which says that given
any right restriction semigroup S there is an embedding of right restriction semi-
groups into PT(S). Define φ : S → PT(S) where φ(a) is the partial function with
domain of definition a∗S such that φ(a)(x) = ax. This was first proved in [26].2

In a right restriction semigroup, define a binary relation a ≤ b on S by a = ba∗.
The following are useful. Again, these results are well-known and are included for
context. The proofs are easy.

Lemma 2.4. Let S be a right restriction semigroup.

(1) If a = be, where e is a projection, then a ≤ b.
(2) If a = eb, where e is a projection, then a ≤ b.
(3) If a ≤ b then a∗ ≤ b∗.
(4) The relation ≤ is a partial order.
(5) The semigroup S is partially ordered with respect to ≤.
(6) The set of projections forms an order-ideal.

We call ≤ the natural partial order. This will be the only partial order we
consider on a right restriction semigroup. Observe that the natural partial order,
when restricted to the projections, is the usual order on idempotents. The following
results are well-known and easy to prove.

Lemma 2.5. Let S be a right restriction semigroup.

(1) If a, b ≤ c and a∗ = b∗ then a = b.
(2) If a, b ≤ c then ab∗ = ba∗.

Part (2) of the above lemma motivates the following definition. Define a ∼l b,
and say that a and b are left-compatible, if ab∗ = ba∗.

Remark 2.6. Homomorphisms of right restriction semigroups preserve the natural
partial order and left-compatibility.

The following is included for the sake of completeness.

Lemma 2.7. In an inverse semigroup, we have that a ∼l b if and only if ab−1 is
an idempotent.

Proof. Suppose that a ∼l b. Then ab−1b = ba−1a. Thus ab−1 = (ba−1a)a−1 =
a(b−1b)a−1, which is an idempotent. Conversely, suppose that ab−1 is an idempo-
tent. Then ab−1b, ba−1a ≤ a, b. But (ab−1b)∗ = (ba−1a)∗. Thus ab−1b = ba−1a by
Lemma 2.5. �

In an inverse semigroup, we define right-compatibility by a ∼r b if and only
if bb−1a = aa−1b; this is equivalent to a−1b being an idempotent by the dual of
Lemma 2.7. In an inverse semigroup, we say that a and b are compatible if they are
both left-compatible and right-compatible. The proof of the following is immediate

2My thanks to Victoria Gould for supplying this reference.
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Lemma 2.8. In an inverse semigroup, we have that a ∼l b if and only if a−1 ∼r

b−1, and a ∼r b if and only if a−1 ∼l b
−1,

Lemma 2.9. Let S be a right restriction semigroup in which a ∼l b.

(1) If a ∼l b and c ∼l d then ac ∼l bd.
(2) If a ∼l b and x ≤ a and y ≤ b then x ∼l y.

Proof. (1) We are given that a ∼l b and c ∼l d. This means that ab∗ = ba∗ and
cd∗ = dc∗. Thus ab∗cd∗ = ba∗dc∗. Now apply the axioms for a right restriction
semigroup to get the result.

(2) We have that ab∗ = ba∗ and x = ax∗ and y = by∗. We have that xy∗ =
ax∗b∗y∗ = ba∗x∗y∗ and yx∗ = by∗a∗x∗. Since projections commute, we have shown
that x ∼l y. �

The following result tells us that being compatible is a property of the poset and
the star operation alone and not the semigroup structure.

Lemma 2.10. Let S be a right restriction semigroup. Then a ∼l b if and only if
a ∧ b exists and (a ∧ b)∗ = a∗b∗.

Proof. Suppose first a ∼l b. Put x = ab∗ = ba∗. Clearly, x ≤ a, b and x∗ = a∗b∗.
Suppose that z ≤ a, b. Then z∗ ≤ a∗, b∗. By the definition of the natural partial
order, we have that z = az∗ = bz∗ ≤ ab∗ = x. We now prove the converse. We
have that a ∧ b ≤ a and so a ∧ b = a(a ∧ b)∗ = ab∗. By symmetry, we have that
a ∧ b = ba∗. It follows that ab∗ = ba∗ and so a and b are left compatible. �

Remark 2.11. If a ∼l b then a ∧ b = ab∗ and so this meet is algebraically defined.
It is therefore preserved under any homomorphism of right restriction semigroups.

Let S be a right restriction semigroup. An element a ∈ S is said to be a partial
unit if there is an element b ∈ S such that ba = a∗ and ab = b∗. Clearly, every
projection is a partial unit. The set of all partial units of S is denoted by Inv(S).

Lemma 2.12. Let S be a right restriction semigroup and let a ∈ Inv(S). Suppose
that ax = x∗ and xa = a∗, and ay = y∗ and ya = a∗. Then x = y.

Proof. We have that xa = ya. Thus xay = yay. It follows that y = xy∗ and so
y ≤ x. By symmetry, x ≤ y and so x = y. �

Let S be a right restriction semigroup. If a ∈ Inv(S) then we shall often denote
by a−1 the unique element guaranteed by Lemma 2.12 such that aa−1 = (a−1)∗

and a−1a = a∗. We shall now say more about the set Inv(S). Most of the following
was first proved as [6, Lemma 2.14]. We give proofs anyway.

Lemma 2.13. Let S be a right restriction semigroup.

(1) If a, b ∈ Inv(S) then ab ∈ Inv(S).
(2) If a, b ∈ Inv(S) then (ab)−1 = b−1a−1.
(3) If a, b ∈ Inv(S) then a ≤ b if and only if a = aa−1b.
(4) Inv(S) is an inverse semigroup with set of idempotents Proj(S).
(5) Inv(S) is an order-ideal.

Proof. (1) We have that aa−1 = (a−1)∗ and a−1a = a∗ and bb−1 = (b−1)∗ and
b−1b = b∗. Observe that ab(b−1a−1) = (b−1a−1)∗ and (b−1a−1)ab = (ab)∗.

(2) Immediate from (1) above.
(3) Only one direction needs proving. Suppose that a ≤ b. Then a = ba∗. Now,

a has inverse a−1 but a∗b−1 is also an inverse. So, by the uniqueness of inverses
guaranteed by Lemma 2.12, we have that a−1 = a∗b−1. Thus a−1 ≤ b−1 and so
a−1 = b−1(a−1)∗ from the definition of the natural partial order. Taking inverses
of both sides again, we get that a = (a−1)∗b and so a = aa−1b, as required.
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(4) By (1) above, it follows that Inv(S) is closed under products. Suppose, now,
that a ∈ Inv(S) is an idempotent. Let b ∈ S be such that ab = b∗, ba = a∗. Since
a is an idempotent, we have that a = (aba)(aba) = a(ba)(ab)a. But projections
commute. Thus a = (a2b)(ba2) = (ab)(ba). It follows that a is the product of two
projections and so is itself a projection. Since the projections commute, we have
proved that Inv(S) is an inverse semigroup.

(5) Suppose that a ∈ Inv(S) and that b ≤ a. We prove that b ∈ Inv(S). By
definition, b = ab∗. Observe that b∗a−1b = a∗b∗ = (ab∗)∗ and bb∗a−1 = ab∗a−1 =
(a−1)(b∗a−1)∗ = (b∗a−1)∗. This proves that b ∈ Inv(S). �

3. Order completeness properties of right restriction semigroups

We shall study right restriction semigroups which satisfy some order complete-
ness properties with respect to the natural partial order. A set of elements in
a right restriction monoid is said to be left-compatible if each pair of elements is
left-compatible. We say that a right restriction semigroup is complete if every left-
compatible set of elements has a join and multiplication distributes over such joins
from the right. We say that a right restriction semigroup is distributive if each pair
of left-compatible elements has a join, multiplication distributes over binary joins
from the right, and the projections form a distributive lattice. A distributive right
restriction semigroup is Boolean if the set of projections actually forms a generalized
Boolean algebra.

We can make similar definitions for inverse semigroups, but require compatibility
rather than left-compatibility.

In the following result, part (1) is proved in [4, Proposition 2.14(i)], part (2) is a
slightly expanded version of [16, Lemma 2.15], part (3) is proved in [4, Proposition
2.14(iii)], and parts (4) and (5) are the analogues of parts (3) and (4) of [20, Lemma
2.5] with almost identical proofs.

Lemma 3.1. Let S be a right restriction semigroup.

(1) If
∨

j∈I aj exists then ai =
(

∨

j∈I aj

)

a∗i for each i ∈ I.

(2) If both
∨

i∈I ai and
∨

i∈I a
∗
i exist then

∨

i∈I a
∗
i is a projection and

(
∨

i∈I ai
)∗

=
∨

i∈I a
∗
i .

(3) Let S be a complete right restriction semigroup and if I is finite then we may
assume that S is only a distributive right restriction semigroup. Suppose
that

∨

i∈I ai is defined. Then c
(
∨

i∈I ai
)

=
∨

i∈I cai.

(4) Let S be a distributive right restriction semigroup. Suppose that
∨m

i=1
ai

and c∧ (
∨m

i=1
ai) both exist. Then all meets c∧ai exist, the join

∨m

i=1
c∧ai

exists, and c ∧ (
∨m

i=1
ai) =

∨m

i=1
c ∧ ai.

(5) Let S be a distributive right restriction semigroup. Suppose that b =
∨m

i=1
bi

exists, and all meets a ∧ bi exist. Then the meet a ∧ b exists, and is equal
to
∨m

i=1
a ∧ bi.

Remark 3.2. The above lemma tells us that although complete or distributive
right restriction monoids were defined in terms of multiplication distributing over
any joins on the right, in fact, multiplication in such monoids distributes over any
joins also from the left.

The following result is expected. It was first proved in [6].

Lemma 3.3. In a Boolean right restriction monoid, the set of partial units forms
a Boolean inverse monoid.

Proof. It is enough to prove that if a and b are partial units which are compatible
then a ∨ b is a partial unit. Since a and b are compatible, so too are a−1 and b−1.
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It follows that the element a−1 ∨ b−1 is defined. We calculate (a ∨ b)(a−1 ∨ b−1).
This equals aa−1 ∨ ab−1 ∨ ba−1 ∨ bb−1. By assumption, both ab−1 and ba−1 are
idempotents. Observe that ab−1 ≤ aa−1 and ba−1 ≤ bb−1 Thus (a∨b)(a−1∨b−1) =
aa−1 ∨ bb−1. This is a join of projections and so is a projection by Lemma 3.1.
Dually, we have that (a−1 ∨ b−1)(a ∨ b) is a projection itself. �

We say that a Boolean right restriction monoid is étale if every element is a join
of a finite number of partial units.

The goal of this paper is to describe étale Boolean right restriction monoids in
terms of their Boolean inverse monoids of partial units.

4. Complete right restriction monoids

The material in this section generalizes the notion of nucleus to be found in [13,
Chapter II, Section 2] by way of what we did in [22, Section 4].

Let S be a right restriction monoid. If A ⊆ S, define A∗ = {a∗ : a ∈ A}. The
proof of the following is straightforward; for the proof of part (3) use Lemma 2.9.

Lemma 4.1. Let S be a right restriction monoid.

(1) If A and B are order-ideals then AB is an order-ideal.
(2) If A is an order-ideal then A∗ is an order-ideal.
(3) If A and B are both left-compatible sets then AB is a left-compatible set.

We shall generalize [24] and prove that every right restriction monoid can be
embedded in a complete right restriction monoid, although the same construction
can be found in [6]. We say that a subset of S is acceptable if it is a left-compatible
order-ideal. Put R(S) equal to the set of all acceptable subsets of S. Observe that
subsets of S of the form a↓ are acceptable by Lemma 2.5. We may therefore define
a function ι : S → R(S) by ι(a) = a↓.

Proposition 4.2. Let S be a right restriction monoid. Then R(S) is a complete
right restriction monoid in which the natural partial order is subset inclusion and the
projections are the order-ideals of Proj(S). In addition, the function ι : S → R(S)
is an embedding of right restriction monoids.

Proof. We first show that R(S) is a right restriction monoid. Using parts (1) and
(3) of Lemma 4.1, the set R(S) is a semigroup under subset multiplication. The
set of all order-ideals of Proj(S) is a set of idempotents for R(S). Observe that the
set of all projections, 1↓, is an identity for R(S) which is therefore a monoid. If
we define a unary map on R(S) by A 7→ A∗ then this is well-defined by part (2) of
Lemma 4.1. It remains to check that R(S) is a right restriction monoid with respect
to these operations. The proofs of axioms (RR1), (RR2) and (RR3) are immediate.
To prove that axiom (RR4) holds, it is immediate that A ⊆ AA∗. The proof that
the reverse inclusion holds follows from the fact that A is an order-ideal. The proof
that axiom (RR5) holds is immediate. It remains to show that axiom (RR5) holds.
It is immediate that A∗B ⊆ B(AB)∗ by axiom (RR6). We now prove the reverse
inclusion. Let b(ab1)

∗ be such that b, b1 ∈ B and a ∈ A. We shall prove that this is
an element of A∗B. Because b, b1 ∈ B, an acceptable set, we have that bb∗1 = b1b

∗.
We have that

b(ab1)
∗ = b(ab1)

∗b∗1 = bb∗1(ab1)
∗ = b1b

∗(ab1)
∗ = b1(ab1)

∗b∗.

Thus
b(ab1)

∗ = b1(ab1)
∗b∗ = a∗b1b

∗.

But b1b
∗ ∈ B because B is an order-ideal. We have therefore proved that B(AB)∗ ⊆

A∗B This completes the proof that R(S) is a right restriction monoid.



THE STRUCTURE OF ÉTALE BOOLEAN RIGHT RESTRICTION MONOIDS 7

Claim: if A and B are acceptable sets then A ≤ B in R(S) if and only if A ⊆ B.
We now prove the claim. Suppose first that A ≤ B. By definition A = BA∗. Let
a ∈ A. Then a = bc∗ where b ∈ B and c ∈ A. But a ≤ b and b ∈ B an order-ideal.
It follows that a ∈ B because B is an order-ideal. We have proved that A ⊆ B. We
now prove the converse. Suppose that A ⊆ B. We prove that A = BA∗. Observe
that A ⊆ BA∗. Let x ∈ BA∗. Then x = bc∗ where c ∈ A. We have that A ⊆ B

and so b ∼l c. It follows that bc
∗ = cb∗. Thus x = cb∗ and so x ≤ c. But c ∈ A and

A is an order-ideal and so c ∈ A, as required.
Claim: if A and B are acceptable sets then A ∼l B in R(S) if and only if

A ∪ B ∈ R(S). We now prove the claim. Suppose first that A ∪ B ∈ R(S). We
prove that A ∼l B. In fact, we shall prove that AB∗ ⊆ BA∗ and then appeal to
symmetry. Let ab∗ ∈ AB∗. By assumption, A ∪ B is an acceptable set and so, in
particular, ab∗ = ba∗. It follows that ab∗ ∈ BA∗. Suppose now that A ∼l B. We
shall prove that A ∪B ∈ R(S). It is enough to prove that if a ∈ A and b ∈ B then
a ∼l b. We are given that AB∗ = BA∗. We have that ab∗ ∈ AB∗ and so ab∗ = b1a

∗
1

where b1 ∈ B and a1 ∈ A. By assumption, a ∼ a1 and b ∼ b1. We claim that
ab∗ ≤ ba∗ and symmetry delivers the result. To prove the claim, we use the fact
that ab∗ = b1a

∗
1. Thus

ab∗ = b1a
∗
1b

∗a∗ = b1b
∗a∗1a

∗ = bb∗1(a
∗
1a

∗).

With these two results, we can now prove that R(S) is a complete right restriction
monoid. Let {Ai : i ∈ I} be a left-compatible subset of R(S). We claim that
A =

⋃

i∈I Ai ∈ R(S). We therefore have to prove that A is acceptable. It is
clearly an order-ideal and so we have to show that any two elements of A are left-
compatible. Without loss of generality, suppose that a ∈ Ai and b ∈ Aj . Then,
by the above, Ai ∪ Aj is acceptable and so a and b are left-compatible. We have
proved that A is an acceptable set. Also, by what we proved above we have that
Ai ≤ A for any i ∈ I. Suppose that Ai ≤ B for any i ∈ I where B is acceptable.
Then Ai ⊆ B for any i ∈ I, by what we proved above. Thus A ⊆ B and so A ≤ B.
We have therefore proved that R(S) has joins of left-compatible subsets. Now, let
{Ai : i ∈ I} be a left-compatible subset of R(S) and let B be any acceptable set. We
have to prove that

(
⋃

i∈I Ai

)

B =
⋃

i∈I AiB. However, this is true on set-theoretic
grounds alone. This completes the proof that R(S) is a complete right restriction
monoid.

It remains to prove that the function ι is a homomorphism of right restriction
monoids. Observe that a↓b↓ = (ab)↓; this is true since if a′ ≤ a and b′ ≤ b

then a′b′ ≤ ab and if x ≤ ab then x = a(bx∗) = a′b′ where a′ = a and b′ =
bx∗ ≤ b. We therefore have a homomorphism of semigroups which is also a monoid
homomorphism since the identity of R(S) is 1↓. Thus we finish if we show that
ι is a homomorphism of right restriction monoids. This requires us to show that
ι(a∗) = ι(a)∗. Let x ∈ ι(a∗). Then x ≤ a∗ and so is a projection. Consider the
element ax. Because x is a projection, we have that ax ≤ a and so ax ∈ ι(a). But
(ax)∗ = a∗x = x. It follows that x ∈ ι(a)∗. On the other hand, let b∗ ∈ ι(a)∗ where
b ≤ a. It follows that b∗ ≤ a∗ and so b∗ ∈ ι(a∗). �

The above procedure can be applied, inter alia, when S is a Boolean inverse
monoid. This is the only case that will interest us in Section 5.

We can say more about the function ι : S → R(S) and so the construction of
R(S). A homomorphism between complete right restriction semigroups is a right
restriction homomorphism that preserves joins.

Proposition 4.3. The map ι : S → R(S) is universal for right restriction monoid
homomorphisms to complete right restriction monoids.
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Proof. Let T be a complete right restriction monoid and let α : S → T be a
monoid homorphism of right restriction monoids. Define β : R(S) → T by β(A) =
∨

a∈A α(a). This makes sense since the elements of A are pairwise left-compatible
and left-compatibility is preserved by homomorphisms of right restriction semi-
groups. We now calculate β(ι(a)). By definition this is β(a↓) which is

∨

x≤a α(x).

Observe that x ≤ a implies that α(x) ≤ α(a). It follows that β(ι(a)) = α(a). We
show that β is a right restriction monoid homomorphism. It is immediate from
the definitions that this is a monoid homomorphism. We need to prove that it is a
homomorphism of right restriction semigroups. Let A be an acceptable set. Then,
by definition,

β(A∗) =
∨

a∗∈A∗

α(a∗).

But α is a homomorphism of right restriction semigroups. Thus α(a∗) = α(a)∗.
Now apply part (2) of Lemma 3.1 to get

β(A∗) =

(

∨

a∗∈A∗

α(a)

)∗

.

We now use the fact that a ∈ A if and only if a∗ ∈ A. This gives us

β(A∗) =

(

∨

a∈A

α(a)

)∗

= β(A)∗.

We have therefore shown that β is a homomorphism of right restriction semigroups.
We show that β preserves arbitrary left-compatible joins. Let {Ai : i ∈ I} be a left-
compatible set in R(S). Put A =

⋃

i∈I Ai, the join of the Ai in R(S). By definition

β(A) =
∨

a∈A

α(a) =
∨

a∈Ai,i∈I

α(a) =
∨

i∈I

(

∨

a∈Ai

α(a)

)

.

But this is equal to
∨

i∈I

β(Ai).

We finish off by proving the categorical property we need. Observe that for any
acceptable set A we have that A =

⋃

a∈A a↓, because A is an order-ideal. It now
follows that if β′ is a homomorphism of complete right restriction monoids such
that α = β′ι then β′ = β �

Proposition 4.2 tells us how to manufacture complete right restriction monoids
from monoids that are merely right restriction monoids. For the rest of this section,
we shall work with an arbitrary complete right restriction monoid S. A function
ν : S → S is called a nucleus if it satisfies the following six conditions:

(N1). a ≤ ν(a).
(N2). a ≤ b implies that ν(a) ≤ ν(b).
(N3). ν2(a) = ν(a).
(N4). ν(a)ν(b) ≤ ν(ab).
(N5). If e is a projection then ν(e) is a projection.
(N6). ν(a∗) = ν(ν(a)∗).

This clearly generalizes to a non-commutative setting the classical notion of nucleus,
to be found in, say, [13]. We shall use nuclei to construct new complete restriction
monoids from old ones.

Lemma 4.4. Let ν be a nuclus defined on the complete right restriction monoid S.
Then

ν(ab) = ν(aν(b)) = ν(ν(a)b) = ν(ν(a)ν(b)).
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Proof. By (N1), we have that a ≤ ν(a) and b ≤ ν(b). In particular, ab ≤ ν(a)ν(b).
Thus by (N2), we have that ν(ab) ≤ ν(ν(a)ν(b)). But by (N4), we have that
ν(a)ν(b) ≤ νν(ab). Thus by (N2), we have that ν(ν(a)ν(b)) ≤ ν2(ab). But by
(N3), we have that ν(ν(a)ν(b)) ≤ ν(ab). We have therefore proved that ν(ab) =
ν(ν(a)ν(b)). The other cases are proved similarly. �

Let S complete right restriction monoid equipped with a nucleus ν. Define

Sν = {a ∈ S : ν(a) = a},

the set of ν-closed elements. Define · on Sν by

a · b = ν(ab).

The following result tells us exactly how to build a new complete right restriction
monoid from an old one equipped with a nucleus.

Proposition 4.5. Let ν be a nucleus defined on the complete right restriction
monoid S. Then (Sν , ·) is also a complete right restriction monoid.

Proof. By Lemma 4.4, (Sν , ·) is a semigroup. It is, in fact, a monoid with identity
ν(1) since a·ν(1) = ν(aν(1)) where a ∈ Sν . By Lemma 4.4, we have that ν(aν(1)) =
ν(a1) = ν(a) = a. We have proved that ν(1) is a right identity. It is a left identity
by symmetry.

We now prove that Sν is a right restriction monoid. Put Proj(Sν) = {ν(e) : e ∈
Proj(S)}. This is a set of projections of S by axiom (N5). Thus ν(1) is a projection.
If a ∈ Sν , define

a⋆ = ν(a∗);

observe that on the left we have an honest-to-goodness star, whereas on the right
we have an asterisk. It is a projection by (N5). We now show that the axioms for
a right restriction semigroup hold. Let a, b ∈ Sν .

(RR1) holds: (a⋆)⋆ = ν(ν(a∗)∗) = ν(ν(a∗)) = ν(a∗) = a⋆ by (N5) and (N3).
(RR2) holds: (a⋆ · b⋆)⋆ = (ν(a⋆b⋆))⋆. This is equal to ν(ν(a∗)ν(b∗))⋆ = ν(a∗b∗)⋆

using Lemma 4.4. This is equal to ν((ν(a∗b∗)∗) = ν(a∗b∗) using (N6). Whereas
a⋆ · b⋆ = ν(a⋆b⋆) = ν(ν(a∗)ν(b∗)) = ν(a∗b∗) using Lemma 4.4.

(RR3) holds: a⋆ · b⋆ = ν(a⋆b⋆) = ν(b⋆a⋆) = b⋆ · a⋆ where we have used (N5).
(RR4) holds: a · a⋆ = ν(aa⋆) = ν(aν(a∗) = ν(aa∗) = ν(a) = a by Lemma 4.4.
(RR5) holds: (a · b)⋆ = ν(ν(ab)∗) = ν((ab)∗) by (N6). On the other hand,

(a⋆ · b)⋆ = ν(ν(ν(a∗)b)∗) = ν(ν(a∗b)∗) = ν((a∗b)∗) = ν((ab)∗) by (N3) and (N6).
(RR6) holds: b⋆ · a = ν(b⋆a) = ν(ν(b∗)a) = ν(b∗a) by Lemma 4.4. Whereas

a · (b · a)⋆ = ν(a(b · a)⋆) = ν(aν(ba)⋆) = ν(aν(ν(ba)∗)) = ν(a(ba)∗) by (N6) and
Lemma 4.4. Thus, we have proved that (Sν , ·) is a right restriction monoid.

Let a, b ∈ Sν . Denote the natural partial order on Sν by �. Claim: a � b if
and only if a ≤ b. Proof of claim. Suppose first that a � b. Then a = b · a⋆.
Thus a = ν(ba⋆) = ν(bν(a∗)) = ν(ba∗) using Lemma 4.4. But ba∗ ≤ b and so
ν(ba∗) ≤ ν(b) = b by (N2). Thus a ≤ b. Suppose now that a ≤ b. This means that
a = ba∗. Thus a = ν(ba∗) = ν(bν(a∗)) = b · a⋆ by Lemma 4.4. Whence we have
proved that a � b.

Claim: a ∼l b in Sν if and only if a ∼l b in S. Proof of claim. Suppose, first,
that a ∼l b in Sν . Then a · b⋆ = b · a⋆. This means that ν(aν(b∗)) = ν(bν(a∗)).
Consequently, we have that ν(ab∗) = ν(ba∗) by Lemma 4.4. But ab∗ ≤ ν(ab∗) by
(N1). Similarly, ba∗ ≤ ν(ba∗). It follows that ab∗ ∼l ba∗ by Lemma 2.5. Thus
ab∗(ba∗)∗ = ba∗(ab∗)∗. Whence ab∗ = ba∗ and so a ∼l b in S. Now, suppose that
a ∼l b in S. This means that ab∗ = ba∗. But a · ν(b∗) = a · b⋆ and a · ν(b∗) =
ν(aν(b∗)) = ν(ab∗) by Lemma 4.4. It follows that a ∼l b in S.
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Claim: if X = {ai : i ∈ I} is a left-compatible set in Sν then the join in Sν of X
exists, it is denoted by

⊔

i∈I ai, and is equal to ν
(
∨

i∈I ai
)

. Proof of claim. By the
above, this is a left-compatible set in S. It therefore has a join a in S. We claim
that ν(a) is the join of X in Sν . It is an element of Sν by (N2). We have that
ai ≤ a for all i. Thus ai ≤ ν(a) for all i by (N2). Let ai ≤ b for all i where b ∈ Sν .
This means that ai ≤ b in S. Thus a ≤ b. It follows that ν(a) ≤ b in Sν . Thus
the join of X exists in Sν . It follows that all joins of left-compatible subsets of Sν

exists.
Claim: ν

(
∨

i∈I ν(ai)
)

= ν(
∨

i∈I ai), where the ai are arbitrary elements of S
which form a left-compatible set. Proof of claim. We have that ai ≤

∨

i∈I ai.

Thus ν(ai) ≤ ν
(
∨

i∈I ai
)

by (N2). Thus
∨

i∈I ν(ai) ≤ ν
(
∨

i∈I ai
)

. Whence

ν
(
∨

i∈I ν(ai)
)

≤ ν
(
∨

i∈I ai
)

using (N2). To prove the reverse inequality, we
start with ai ≤ ν(ai) by (N1). It follows that

∨

i∈I ai ≤
∨

i∈I ν(ai) and so

ν
(
∨

i∈I ai
)

≤ ν
(
∨

i∈I ν(ai)
)

.

Claim:
(
⊔

i∈I ai
)

·b =
⊔

i∈I ai·b in Sν . Proof of claim. We have that
(
⊔

i∈I ai
)

·b =

ν
(
∨

i∈I aib
)

and
⊔

i∈I ai · b = ν
(
∨

i∈I ν(aib)
)

. The result now follows by what we
proved above. �

We are actually interested in constructing Boolean right restriction monoids.
The following concept is just what we need to cut down from arbitrary joins to
finitary ones. Let S be a complete right restriction monoid. An element a ∈ S is
said to be finite if whenever a ≤

∨

i∈I ai then a ≤
∨m

i=1
ai, relabelling if necessary.

Denote the set of finite elements of a complete right restriction monoid S by fin(S).

Lemma 4.6. Let S be a complete right restriction monoid.

(1) a ∈ S is finite if and only if a∗ is finite.
(2) If a and b are finite and a ∼l b then a ∨ b is finite.
(3) If the finite elements are closed under multiplication then they form a dis-

tributive right restriction semigroup.

Proof. The proof of (1) follows from Lemma 3.1. To prove (2), suppose that a and b

are both finite and a ∼l b. We prove that a∨b is finite. Suppose that a∨b ≤
∨

i∈I ai.
Since a ≤ a∨b there is a finite subset I1 of I such that a ≤

∨

i∈I1
ai. Likewise, there

is a finite subset I2 of I such that b ≤
∨

i∈I2
ai. It follows that a ∨ b ≤

∨

i∈I1∪I2
ai,

and so a ∨ b is finite. The proof of (3) now follows from (1) and (2) above. �

There is no guarantee that the product of finite elements is finite though, as we
shall see, this will hold in the case of interest to us.

5. The structure of étale Boolean right restriction monoids

The goal of this section is to show how to construct étale Boolean right restriction
monoids from Boolean inverse monoids [27].

Remark 5.1. Observe that if S and T are isomorphic as inverse semigroups, then
the partially ordered sets (S,≤) and (T,≤) are order isomomorphic. We shall use
this observation below in the course of the proof of our first theorem.

Our first theorem below shows that the structure of an étale Boolean right re-
striction monoid is completely determined by the structure of its Boolean inverse
monoid of partial units.

Theorem 5.2. Let S and T be étale Boolean right restriction monoids. If Inv(S) ∼=
Inv(T ) then S ∼= T as right restriction semigroups.
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Proof. Let θ : Inv(S) → Inv(T ) be the isomorphism. Our goal is to extend θ to an
isomorphism φ of right restriction monoids φ : S → T . Let a ∈ S. Then, under the
assumption that S is étale, we may write

a =

m
∨

i=1

ai,

where the ai are partial units such that ai ∼l aj . From ai ∼l aj , it follows that
θ(ai) ∼l θ(aj) and so

∨m
i=1

θ(ai) is defined in T . This means that we can define

φ(a) =

m
∨

i=1

θ(ai).

Of course, this appears to depend on our choice of partial units ai. We prove that
this is not the case. Accordingly, suppose that a =

∨n
j=1

bj, where the bj are partial
units. Then

m
∨

i=1

ai =
n
∨

j=1

bj.

Thus ai ≤
∨n

j=1
bj. It follows by Lemma 3.1, that ai =

∨n
j=1

ai ∧ bj . Now, ai ∧ bj
is a partial unit by Lemma 3.3. In addition, ai ∧ bj ≤ ai. It follows that these
elements are pairwise compatible. Thus the join is an honest-to-goodness join in
Inv(S). It follows that θ(ai) =

∨n

j=1
θ(ai ∧ bj). But the elements ai and bj are

partial units and we know that they are ∼l-related (because they are all below a).
It follows that the meet ai ∧ bj is algebraic. Thus θ(ai ∧ bj) = θ(ai) ∧ θ(bj) and
so θ(ai) =

∨n

j=1
θ(ai) ∧ θ(bj). By Lemma 3.1, we deduce that θ(ai) ≤

∨n

j=1
θ(bj).

Thus
∨m

i=1
θ(ai) ≤

∨n

j=1
θ(bj). By symmetry we get equality. This proves that φ is

a well-defined function extending θ. The fact that φ is a semigroup homomorphism
follows from the observation that if a =

∨m

i=1
ai and b =

∨n

j=1
bj , where the ai and

bj are partial units, then ab =
∨

i,j aibj , where each product aibj is a partial unit by

Lemma 3.3. We now prove that φ is a bijection. Let a, b ∈ S such that φ(a) = φ(b).
We can write

a =

m
∨

i=1

ai and b =

n
∨

j=1

bj ,

where the ai and bj are partial units. By assumption

m
∨

i=1

θ(ai) =

n
∨

j=1

θ(bj).

Thus θ(ai) ≤
∨n

j=1
θ(bj). It follows by Lemma 3.1, that θ(ai) =

∨n

j=1
θ(ai)∧ θ(bj).

The element θ(ai)∧θ(bj) is a partial unit by Lemma 2.13. Since θ is an isomorphism
(and so an order isomorphism) it follows that ai ∧ bj exists and θ(ai) ∧ θ(bj) =

θ(ai ∧ bj). Again, since θ is an isomorphism
∨n

j=1
θ(ai ∧ bj) = θ

(

∨n
j=1

ai ∧ bj

)

.

It follows that ai =
∨n

j=1
ai) ∧ bj . Whence ai ≤ b. This means that a ≤ b. By

symmetry we have that a = b and we have proved that φ is injective. We now
prove that φ is surjective. Let a′ ∈ T . Then a′ =

∨m
i=1

a′i where the a′i are partial
units which are pairwise left-compatible. Let ai be the partial unit of S such that
θ(ai) = a′i. The elements ai are also left-compatible. Put a =

∨m

i=1
ai. Then, by

construction, φ(a) = a′. We have therefore proved that φ is an isomorphism of
semigroups. It remains to check that we have an isomorphism of right restriction
semigroups. Suppose that a =

∨m
i=1

ai, where the ai are partial units. We claim

that a∗ =
∨m

i=1
a−1

i ai. But a
∗
i = a−1

i ai. The result now follows. �
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The above result is purely theoretical in that it shows that Boolean inverse
monoids determine the structure of étale Boolean right restriction monoids. We
now show how to actually construct all étale Boolean right restriction monoids
directly from Boolean inverse monoids.

Let S be a Boolean inverse monoid. Given any subset B ⊆ S, define B to be
the set of all compatible joins of elements of B. We say that B is closed if B = B.
The following two results are for motivation.

Lemma 5.3. Let S be an étale Boolean right restriction monoid. If a ∈ S then the
set a↓ ∩ Inv(S) has the following properties:

(1) It is acceptable.
(2) It is closed.
(3) There is a finite set of left-compatible partial units {b1, . . . , bn} in a↓∩Inv(S)

such that if c ∈ a↓ ∩ Inv(S) then c is a compatible join of partial units in
{b1, . . . , bn}

↓.

Proof. (1) a↓ is an order-ideal by construction, and Inv(S) is an order-ideal by part
(2) of Lemma 3.3. Thus a↓ ∩ Inv(S) is an order-deal. The fact that the set is
left-compatible follows by Lemma 2.5.

(2) Suppose that {a1, . . . , an} is a compatible set of partial units each less than
or equal to a. Then their join is less than or equal to a.

(3) By the definition of étale, we may write a =
∨n

i=1
bi, where the bi are a

finite left-compatible set of partial units. Let c be any partial unit c ≤ a. Then
c =

∨n
i=1

c ∧ bi by Lemma 3.1. By part (2) of Lemma 3.3, each c ∧ bi is a partial
unit and c ∧ bi ≤ bi. �

We now prove that the data assumed in the lemma above is actually enough to
determine elements of a étale Boolean right restriction monoid.

Lemma 5.4. Let S be an étale Boolean right restriction monoid. Suppose that
a, b ∈ S are such that a↓ ∩ Inv(S) = b↓ ∩ Inv(S). Then a = b.

Proof. We prove first that a ≤ b; the result then follows by symmetry. By defintion,
a =

∨m

i=1
ai where the ai ∈ a↓∩ Inv(S) and so are elements of b↓∩ Inv(S). It follows

that ai ≤ b from which it follows that a ≤ b. �

Lemma 5.3 and Lemma 5.4 motivate what we now do. Given a Boolean inverse
monoid S, we shall construct an étale Boolean right restriction monoid Etale(S),
called the (right restriction) companion of S, such that S ∼= Inv(Etale(S)). It is here
that we use the results from Section 4. By Proposition 4.2, the semigroup R(S) is
a complete right restriction monoid. We shall now show how to define a nucleus on
R(S).

Lemma 5.5. Let S be a Boolean inverse monoid.

(1) If A is acceptable in S then A is acceptable in S and A ⊆ A.
(2) The function A 7→ A is a nucleus on R(S).

Proof. (1) We prove that A is acceptable. We prove first that A is an order-ideal. A
typical element of A has the form

∨m
i=1

ai where {a1, . . . , am} is a compatible subset
of A. Suppose that x ≤

∨m
i=1

ai. Then by Lemma 3.1, we have that x =
∨m

i=1
ai∧x.

Because A is an order-ideal, we have that ai ∧ x ∈ A. Thus x ∈ A. We prove
first that A is left-compatible. Suppose that x, y ∈ A. Then x =

∨m
i=1

xi and
y =

∨n
j=1

yj where xi, yj ∈ A. By assumption, xi ∼l yj for all i and j then

x ∼l y. Thus by Lemma 2.7, we have that xiy
−1

j is an idempotent. We have that

xy−1 =
∨

i,j xiy
−1

j . Thus xy−1 is an idempotent and so by Lemma 2.7 we have



THE STRUCTURE OF ÉTALE BOOLEAN RIGHT RESTRICTION MONOIDS 13

proved that x and y are left-compatible. Thus A is acceptable. It is immediate
that A ⊆ A.

(2) The function is well-defined by part (1) above. The proof that the properties
(N1), (N2) and (N3) of a nucleus hold are immediate. It is easy to verify that (N4)
and (N5) hold. We prove that (N6) holds. Only one direction needs proving. Let

x ∈ (A)∗. Suppose that x =
∨m

i=1
xi where xi ∈ (A)∗. Now, each xi = (

∨

ji
yji)

∗

where yji ∈ A. Thus x =
∨m

i=1
(
∨

ji
yji)

∗ where yji ∈ A. It follows that x =

(
∨

i

∨

ji
yji)

∗ where yji ∈ A. This is just x =
∨

i

∨

ji
y∗ji where yji ∈ A. Whence

x ∈ (A∗). �

Put ν(A) = A. Then we have the following by Proposition 4.5 and Lemma 5.5.

Lemma 5.6. Let S be a Boolean inverse monoid. Then R(S)ν is a complete right
restriction monoid.

The monoid R(S)ν , constructed in Lemma 5.6, is too big for our purposes and
so we shall cut it down. Define

Etale(S) = fin(R(S)ν),

the finite elements of R(S)ν . Currently, this is just a set. Our first job, therefore,
is to describe the finite elements in R(S)ν .

Lemma 5.7. Let S be a Boolean inverse monoid. The finite elements of R(S)ν
are the subsets of the form {a1, . . . , am}↓, where {a1, . . . , am} is a left-compatible
subset of S.

Proof. Put A = {a1, . . . , am}. Then A↓ is an acceptable set, using Lemma 2.9,

and so a well-defined element of R(S). Observe that if X = {a1, . . . , am}↓, then

X = a
↓
1
⊔ . . . ⊔ a

↓
1
by the proof of Proposition 4.5. It is easy to check that each set

of the form a↓, where a ∈ S, is finite. By part (2) of Lemma 4.6, it follows that
X is finite. We now show that all finite elements have this form. Suppose that X
is a finite element of R(S)ν . Thus X is a closed acceptable subset. We may write

X =
⊔

a∈A a↓. But we have assumed that X is finite. Thus X =
⊔m

i=1
a
↓
i for some

m. �

The proof of the following is now easy by Lemma 5.7.

Lemma 5.8. In R(S)ν , the product of finite elements is a finite element.

We can now state and prove the main theorem of this paper. This shows us
how to construct all étale Boolean right restriction monoids from Boolean inverse
monoids.

Theorem 5.9. Let S be a Boolean inverse monoid. Then Etale(S) is an étale
Boolean right restriction monoid whose semigroup of partial units is isomorphic to
S.

Proof. The product of two finite elements is finite by Lemma 5.8. It follows by
part (3) of Lemma 4.6, that Etale(S) is a distributive right restriction monoid. If

A is finite then A⋆ is finite by Lemma 4.6. However, A⋆ is of the form {a∗
1
. . . a∗m}↓

which is equal to (a∗1 ∨ . . . a∗m)↓. We deduce that the projections of Etale(S) are
the principal order ideals of the idempotents of S and so form a meet-semilattice
isomorphic with the set of idempotents of S, which is a Boolean algebra. It follows
that Etale(S) is, in fact, a Boolean right restriction monoid. We now locate some
of the partial units. Elements of the form a↓, for some a ∈ S, are partial units
because a↓(a−1)↓ = (aa−1)↓ and (a−1)↓a↓ = (a−1a)↓. However, every element

of Etale(S) can be written ⊔m
i=1a

↓
i , for some left-compatible subset {a1, . . . , am}.
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This immediately implies that Etale(S) is étale. We shall now prove that every
partial unit Etale(S) is of the form a↓ from which it follows that the partial units

of Etale(S) form a semigroup isomorphic to S. Let A = {a1, . . . , am}↓ be a partial

unit of Etale(S). Then there is an element X = {x1, . . . , xn}↓ of Etale(S) such
that A · X = (x∗

1 ∨ . . . ∨ x∗
n)

↓ and X · A = (a∗1 ∨ . . . ∨ a∗m)↓. Choose any ai.
Then a∗i ∈ X · A. It follows that a∗i =

∨s

j=1
yjbj where yj ∈ {x1, . . . , xn}

↓ and

bj ∈ {a1, . . . , am}↓. Since each bj ∈ {a1, . . . , am}↓, we may write bj = bjb
−1

j a′j
where a′j is one of the elements a1, . . . , am. It is therefore immediate that yjbj =

(yjbjb
−1

j )a′j . But yjbjb
−1

j ∈ {x1, . . . , xn}
↓ since this is an order-ideal. Thus we can

write (relabelling if necessary) a−1

i ai =
∨s

j=1
yja

′
j where yj ∈ {x1, . . . , xn}

↓ and the

a′j is one of the elements a1, . . . , am. It follows that a−1

i =
∨s

j=1
yj(a

′
ja

−1

i ) since

a−1

i = a−1

i aia
−1

i . Because {a1, . . . , am} is a left-compatible set the element a′ja
−1

i

is always a projection/idempotent by Lemma 2.7. Thus yj(a
′
ja

−1

i ) ∈ {x1, . . . , xn}
↓.

We have therefore shown that a−1

i ∈ X . The elements of X are left-compatible. It

follows that a−1

i and a−1

j are left-compatible, and so, ai and aj are right-compatible

by Lemma 2.8. Thus ai and aj are compatible. It follows that A = {a1, . . . , am}↓ =
(a1 ∨ . . . ∨ am)↓. �

We can now determine for which class of Boolean inverse monoids S the com-
panion is actually isomorphic to S.

Proposition 5.10. Let S be a Boolean monoid. Then Etale(S) ∼= S if and only if
in S left-compatible elements are compatible.

Proof. Suppose first that in S left-compatible elements are compatible. Then it is
immediate from the way that Etale(S) is constructed that Etale(S) ∼= S. We now
prove the converse. Suppose that Etale(T ) ∼= S. Thus, we are given an étale Boolean
right restriction monoid T such that T ∼= Inv(S). Thus T is an étale Boolean right
restriction monoid which is also inverse. We prove first that T = Inv(T ). We
therefore need to prove that every element of T is a partial unit. Let a ∈ T . Then
there is a unique element b ∈ T such that a = aba and b = bab. By assumption

a =

m
∨

i=1

ai and b =

m
∨

j=1

bj ,

where the ai and bj are partial units. It follows that

ab =
∨

1≤i≤m,1≤j≤n

aibj ,

where aibj is a partial unit by part (1) of Lemma 2.13. But ab is an idempotent
and so aibj is an idempotent. By part (3) of Lemma 2.13, it follows that aibj is
a projection. By part (2) of Lemma 3.1, it follows that ab is a projection. By
symmetry, ba is a projection. Thus a is a partial unit. We have therefore proved
that T = Inv(T ). We can now finish off the proof. Suppose that a, b ∈ T are such
that a ∼l b. Then a ∨ b exists and, by assumption, is a partial unit. We have
that a, b ≤ a ∨ b. It follows by part (2) of Lemma 2.13, that a = aa−1(a ∨ b). By
Lemma 3.1, we have that a = a ∨ aa−1b. Thus, in particular, aa−1b ≤ a. But
bb−1a ≤ a. Now check that (aa−1b)∗ = (bb−1a)∗, using the fact that projections
commute. By part (1) of Lemma 2.5, we have that aa−1b = bb−1a. Thus a ∼r b.
We have therefore proved that a ∼ b. �

The above result therefore highlights the class of inverse semigroups in which ∼l

⊆∼r. The E-reflexive inverse semigroups, discussed in [17, page 86], are examples.
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6. Examples

In this section, we shall illustrate the theory developed in this paper by describing
two examples.

6.1. Partial functions on a set. We return to Example 2.1. The monoid PT(X)
is a Boolean right restriction monoid. We locate the partial units. We claim that
these are precisely the elements I(X), the set of partial bijections on X . It is
clear that I(X) ⊆ Inv(X). Let f ∈ PT(X) be a partial unit. Then there is an
element g ∈ PT(X) such that fg = g∗ and gf = f∗. Suppose that f(x) = f(y)
where x, y ∈ dom(f). Then g(f(x)) = g(f(y)). But gf is the identity function on
dom(f). Thus x = y. We have proved that f is injective. Put im(f) = dom(g).
Let y ∈ dom(g). Then (fg)(y) = y. Put x = g(y). Then f(x) = (fg)(y) = y. We
therefore have a bijection from dom(f) onto dom(g). It follows that f ∈ I(X). We
now specialize to the case where X is finite. Define the partial function gxy which
has domain of definition {x} and maps x to y. Clearly, gxy is a partial unit and each
element of PT(X) is a finite join of left-compatible elements of the form gxy . Thus
PT(X) is étale. It follows that in the case where X is finite, PT(X) arises from
I(X) via the construction of this paper.

6.2. A general example. Let X be any Boolean space. Denote by I(X) the set
of all partial homeomorphisms between the clopen sets of X . This is a Boolean
inverse monoid by [20, Proposition 2.16, Proposition 5.2]. Let S(X) be the set of
all local homeomorphisms θ : U → X where U is clopen. This is a Boolean right
restriction monoid [21, Example 5.6]. Observe that U is compact and so θ(U) is
compact. But X is Hausdorff. It follows that θ(U) is also clopen. Thus S(X) is
the set of all surjective local homeomorphisms between the clopen subsets of X .
Clearly, I(X) ⊆ S(X) and the set of partial units of S(X) is I(X). Let θ : U → V be
a surjective local homeomorphism between two clopen sets. For each x ∈ U , there
is an open set Ux ⊆ U such that θ restricted to this set is a homeomorphism. But
the clopens form a base for the topology on X . So, without loss of generality, we
may assume that Ux is clopen. Thus, the Ux cover U . But U is compact. It follows
that we can write θ as a finite union of partial homeomorphisms. We have therefore
shown that S(X) is étale. Since the set of partial units of S(X) is I(X), it follows
by Theorem 5.2 that S(X) is the companion of I(X); that is, S(X) = Etale(I(X)).

Although not needed, we shall show how to actually construct S(X) from I(X).

Let A = {f1, . . . , fm}↓ be a finite closed acceptable set in I(X). We have that
f1, . . . , fm ∈ I(X) and to say that they are left-compatible simply means that
θ = f1 ∪ . . . ∪ fm is a well-defined partial function of X . Put U = U1 ∪ . . . ∪ Un

where Ui is the domain of definition of fi. Put V = V1 ∪ . . . ∪ Vn where Vi is
the range of fi. The sets U and V are both clopen and θ : U → V is a surjective
local homeomorphism. We have therefore defined an element of S(X). We show
that A = θ↓ ∩ I(X). Let f ∈ A. Then f is a compatible join of elements of
{f1, . . . , fm}↓. But each element of {f1, . . . , fm}↓ is below an element such as fi
and so f ≤ θ. In addition, a compatible join of partial homeomorphisms is itself a
partial homeomorphism. We have proved that A ⊆ θ↓ ∩ I(X). To prove the reverse
inclusion, let f be any partial homeomorphism between the clopens of X where
f ⊆ θ. Then f is the compatible join of partial homemorphisms each of the form
f ∩ fi. Thus f ∈ A. We have therefore demonstrated the construction.

6.3. The classical Thompson-Higman groups Gn,1. We need some prepara-
tion before we can describe our example.

String theory
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We refer the reader to [1] for more on strings. Let An be an n-element alphabet.
We shall always assume that n ≥ 2. The free monoid on An is denoted by A∗

n

with identity ε. If x, y ∈ A∗
n then we say that x and y are (prefix) incomparable if

xA∗
n ∩ yA∗

n = ∅, otherwise they are said to be (prefix) comparable. A finite subset
X of A∗

n is said to be a prefix code if the elements are pairwise prefix incomparable.
A prefix code X is said to be a maximal prefix code if every element of A∗

n is
comparable with an element of X . The smallest maximal prefix code is {ε}, which
we call the trivial maximal prefix code.

Let X ⊆ A∗
n. If x ∈ A∗

n then x−1X is the set of all elements y such that xy ∈ X .
Denote by Aω

n the set of all right-infinite strings over the n-element alphabet An.
This set is equipped with the topology in which the open sets of X are the subsets
XAω

n where X ⊆ A∗
n. With this topology Aω

n is the Cantor space and is a Boolean
space. The clopen subsets are precisely those where X is finite. The following is
[14, Lemma 3.16].

Lemma 6.1. Let An be a finite alphabet such that n ≥ 2. Then for finite strings
x and y we have that xAω

n = yAω
n implies x = y.

Observe that requiring n ≥ 2 is necessary in the lemma above, since over a
1-element alphabet the above result is not true; for example, a{a}ω = aa{a}ω.

The following is [14, Lemma 3.15].

Lemma 6.2. xAω
n ∩ yAω

n 6= ∅ if and only if x and y are prefix comparable.

We have the following, which is well-known but a proof can be deduced from
[18, Lemma 4.3].

Lemma 6.3. Let Z be a prefix code in A∗
n. Then Z is a maximal prefix code if and

only if ZAω
n = Aω

n.

Lemma 6.4. Suppose that X is a finite set of finite strings. Then XAω
n = Y Aω

n

where Y ⊆ X and Y is a prefix code.

Proof. Suppose that x, x′ ∈ X are prefix-comparable. Without loss of generality,
we assume that x = x′u. Let w be a right-infinite string. Then xw = x′uw. Thus
X ′ = X \ {x} has the property that XAω

n = X ′Aω
n and X ′ ⊆ X . This process can

be repeated until we have whittled X down to a prefix code. �

The Boolean right restriction monoid Hn

This section bears an analogous relationship to [3], as [2] does to my original
paper [18].3 We now apply the constructions of this paper to the Boolean inverse
monoids that arise in constructing the Thompson-Higman groups Gn,1. These
Boolean inverse monoids were first described in [18] and then in [23] with a more
general perspective provided by [21]. According to [25], the starting point for
constructing the classical Thompson-Higman groups involves free actions [15]4 of
free monoids A∗

n. We shall simplify things by considering only those Boolean in-
verse monoids that arise in the construction of the groups Gn,1. This involves free
monoids alone. To give a little perspective, we shall specialize what we did in the
previous subsection by taking as our Boolean space X = Aω

n .

Assumption: in this section, we shall always want to think of finite sets with
elements having a specific order and where repetitions are allowed. Thus if X is
such a ‘set’ its elements are x1, . . . , xp where the order is as shown by the subscript

3I am grateful to Richard Garner for reminding me of this.
4My thanks to Victoria Gould for supplying this reference.
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and where we do not rule out the possibility the xi = xj .

We shall define some functions on the clopen subsets of Aω
n . If x ∈ A∗

n then the
function λx : A

ω
n → xAω

n is defined by w 7→ xw where w ∈ Aω
n . This is a partial

bijection and, therefore, has a partial inverse λ−1
x . We shall denote the function

λxλ
−1
y by xy−1. This means that xε−1 denotes the function λx. Let X and Y be

finite sets of finite strings having the same number of elements (and bear in mind
our assumption). We shall always assume that X is a prefix code. Define a function
fX
Y : XAω

n → Y Aω
n by fX

Y (xiw) = yiw where w ∈ Aω
n . We can equally denote this

function by
⋃p

i=1
yix

−1

i if X = {x1, . . . , xp} and Y = {y1, . . . , yp}. We shall usually
denote

⋃

by
∨

. The set of all such functions is denoted by Hn. The set of all
functions of the form fX

Y where both X and Y are prefix codes is denoted by Cn.
We shall prove that Hn is a Boolean right restriction monoid, that Cn is a

Boolean inverse monoid, that Inv(Hn) = Cn, that Hn is étale and that Etale(Cn) =
Hn. To do all of this, we shall first of all describe the building blocks of the elements
of Hn. Let x and y be finite strings. Define the function xy−1, as above, from yAω

n

to xAω
n by (xy−1)(yw) = xw where w is any right-infinite string.

Lemma 6.5. The function xy−1 is a well-defined partial homeomorphism.

Proof. This is well-defined by Lemma 6.1 and is clearly a bijection. It remains to
prove that this is a homeomorphism. Let XAω

n ⊆ xAω
n . Then all strings in X begin

with x. It follows that the inverse image of XAω
n under the function xy−1 is the set

y(x−1X)A∗
n which is also open. It follows that xy−1 is a partial homeomorphism

and is the function f
{y}
{x} . �

We call functions of the form xy−1 basic. Observe that (xy−1)−1 = yx−1.

Lemma 6.6.

(1) (xy−1)(uv−1) = 0 if and only if y and u are prefix incomparable.
(2) (xy−1)(uv−1) = x(vz)−1 if y = uz.

Proof. (1) Suppose that (xy−1)(uv−1) = 0. Then yA−1
n ∩ uAω

n = ∅. Thus y and u

are prefix incomparable by Lemma 6.2. The converse is proved similarly.
(2) We use the fact that u−1u = 1. �

Lemma 6.7. Suppose that the elements xy−1 and uv−1 satisfy neither xy−1 ≤
uv−1 nor uv−1 ≤ xy−1. Then xy−1 ∼l uv−1 if and only if y and v are prefix
incomparable.

Proof. Suppose that xy−1 ∼l uv−1. Then xy−1vv−1 = uv−1yy−1. If y and v

are prefix comparable then, by symmetry, we can suppose that y = vz. Then
xy−1vv−1 = x(vz)−1 and uv−1yy−1 = uz(vz)−1. Thus x = uz. Thus xy−1 ≤ uv−1.
But this contradicts our assumptions. The proof of the converse is immediate by
Lemma 6.6. �

Suppose now that we have a join of left-compatible basic functions
∨m

i=1
xiy

−1

i

We do not change the join if we eliminate the smaller of two elements. We shall
assume this has been done. Put X = {x1, . . . , xm} and Y = {y1, . . . , ym}. Thus we
can assume, by Lemma 6.7, that X is a prefix code. We therefore have that

m
∨

i=1

yix
−1

i = fX
Y .

Thus Hn is a well-defined monoid. So, too, is Cn whose elements have the form fX
Y

where both X and Y are prefix codes. Observe that both of these monoids contain
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all the projections of S(Aω
n). Thus we have a Boolean algebra of projections in both

cases.

Lemma 6.8. The semigroup Hn is closed under left-compatible joins.

Proof. Let the two elements be f =
∨p

i=1
xiy

−1

i and g =
∨q

j=1
xjy

−1

j and we are

given that f ∼l g. We may form f ∨ g in S(Aω
n). By Lemma 2.9, we have that

xiy
−1

i ∼l xjy
−1

j . In the join f ∨ g we may eliminate any basic functions which are
smaller than other basic functions in the join. If we do that, then by Lemma 6.7,
we obtain a function of the form fX

Y where X is a prefix code. �

The proofs of the following are now immediate; for the second lemma, recall
what we proved in the previous subsection.

Lemma 6.9. Cn is a Boolean inverse monoid with group of units the Thompson-
Higman group Gn,1.

Lemma 6.10. The monoid Hn is an étale Boolean right restriction monoid with
monoid of partial units isomorphic to Cn.

We can restrict the result we obtained in the previous subsection to dedcuce that
Etale(Cn) = Hn.

Here is a broader descrption of what we have accomplished. Let Pn be the
polycyclic monoid on n generators [17]. Then there is an injective homomorphism of
semigroups Pn → I(Aω

n) whose isomorphic image consists of the basic functions and
zero. This is an example of what we called a strong representation of the polycyclic
monoid [19]. This was our original approach to constructing the Thompson-Higman
groups. See [21] for a retrospective. A parallel, but more general, approach was
pioneered by [7]. See, for example, [7, Example 4.1]. Observe that Hughes works
from geometry whereas we work from language theory. The connection with the
theory of inverse semigroups is slightly obscured by the approach Hughes adopts,
but his [7, Definition 3.1] is really the definition of a particular kind of inverse
semigroup of which the polycyclic inverse monoids are special cases. Hughes is
working with ultrametric spaces in which closed balls are also open and if two balls
intersect then one must be contained in the other. This parallels what happens
in free monoids in that if two finite strings are comparable then one must be the
prefix of the other.
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