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Abstract

This study introduces a Kalman Filter tailored for homogeneous gas Time
Projection Chambers (TPCs), adapted from the algorithm utilized by the
ALICE experiment. In order to describe semi-circular paths in the plane
perpendicular to the magnetic field, we introduce a novel mirror rotation
technique into the Kalman Filter algorithm, enabling effective tracking of
trajectories of varying lengths, including those with multiple circular paths
within the detector, also known as “loopers”. Demonstrated relative im-
provements of up to 80% in electron momentum resolution and up to 50% in
muon and pion momentum resolution underscore the significance of this en-
hancement. Such advancements hold promise not only for the future of the
ALICE TPC but also for neutrino high-pressure gas TPCs, where loopers
become significant owing to the randomness of production points and their
relatively low energies in neutrino interactions.

Keywords: Track Reconstruction, Kalman Filter, Time Projection
Chamber

1. Introduction

The time projection chamber (TPC) has enjoyed ample success in high-
energy particle physics. Since its original proposal by Nygren in 1975 [1],
it has been utilized in various experiments and setups [2, 3|. In a TPC,

Email addresses: federico.battisti@physics.ox.ac.uk (Federico Battisti),
marian.ivanov@cern.ch (Marian Ivanov), Xianguo.Lu@warwick.ac.uk (Xianguo Lu)

Preprint submitted to Computer Physics Communications April 15, 2024


http://arxiv.org/abs/2404.08614v1

signal and track formation are achieved through the production of ioniza-
tion electrons induced by the energy deposition of passing charged particles.
The electrons then drift towards a sensor region in an electric field produced
through an electrode plane. Subsequently, the electrons undergo multipli-
cation through electromagnetic avalanches and are read out using technolo-
gies such as multi-wire proportional chambers (MWPCs) [4] or gas electron
multipliers (GEMs) [5]. Additionally, the TPC is usually equipped with a
magnetic field, enabling momentum measurement by curvature and charge
identification. The avalanche-induced signals provide hit coordinates in two
dimensions, while the drift time provides the third.

The ALICE TPC at the LHC stands out as the most notable among those
currently operational [6]. ALICE is a nucleus-nucleus collision experiment,
designed to study the physics of strongly interacting matter at extreme values
of energy density and temperature. The gas TPC technology was chosen by
the ALICE collaboration due to its robustness in providing charged-particle
momentum measurements with good two-track separation, particle identifi-
cation, and vertex determination, even at the extreme levels of occupancy
reached in Pb-Pb collisions. A similar TPC, but relatively smaller, has been
used by the STAR experiment at RHIC [7]. Recently, ALICE has undergone
a significant upgrade [8], sparking renewed interest in TPC R&D.

The TPC technology is also heavily discussed in the realm of accelerator
neutrino experiments, where it is typically used in the form of liquid argon
TPCs [9] as an interaction target and a tracking device, such as those em-
ployed in the Short-Baseline Neutrino program (SBN) [10] and as the Deep
Underground Neutrino Experiment (DUNE) Far Detector [11]. Alternatively,
gas TPCs like those of the T2K Near Detector [12] serve as trackers for par-
ticles produced in neutrino interactions in the upstream denser components
of the detector. DUNE will include the Gaseous Argon Near Detector (ND-
GAr) in its near detector complex. ND-GAr will feature a high-pressure gas
TPC (HPgTPC), heavily inspired by ALICE’s design [13].

ND-GAr’s TPC will have a cylindrical shape with the same dimensions
of the ALICE TPC: a radius of 250 cm and a length of 500 cm. It will
also incorporate the recently decommissioned MWPCs used by the ALICE
experiment up to Run-3 [14], which achieved hit resolutions of approximately
1 mm [15]. However, ND-GAr will not feature an internal tracking system;
instead, its central region will be filled with additional MWPCs, making it
the largest gas TPC ever built. Furthermore, its gas mixture will be argon-
based and maintained at a pressure of 10 atm, whereas ALICE operates

2



at atmospheric pressure. ND-GAr’s design is unique in that its TPC will
have sufficient mass to provide its own sample of neutrino interactions while
maintaining relatively low tracking thresholds. These characteristics will
make it an ideal laboratory for studying neutrino interactions on gas, while
also providing charge separation and full 47 acceptance. ND-GAr’s physics
program will be centered on the reduction of systematic uncertainties in the
neutrino oscillation measurement. A major source of systematics derives from
the nuclear medium effects in neutrino interactions, which are less understood
for heavier nuclei than carbon [16]. ND-GAr has the potential to be extremely
useful in the study of nuclear effects, using a variety of techniques, including
transverse kinematic imbalance [17, 18, 19, 20, 21]. The efficacy of these
studies depend heavily on the detector’s reconstruction resolution.

The Kalman Filter, an iterative Bayesian technique, facilitates estimating
the state of a dynamic system by reconciling discrete measurements with pre-
dictions derived from prior knowledge of the system. Introduced by Kalman
in 1960 [22] and independently discovered by Stratonovich a year prior [23],
the technique has been the standard in TPC track fitting since its introduc-
tion by the DELPHI experiment [24], and remains the method with the best
overall performance for most applications [25]. The Kalman Filter developed
by the ALICE experiment for track formation and reconstruction can be con-
sidered the state of the art in the field [26, 27], but it has some limitations
which make its direct application to a neutrino experiment such as ND-GAr
problematic.

The paper will be divided into four sections. In Sec. 2, we provide a gen-
eral introduction to the Kalman Filter technique and present a Kalman Filter
application developed for a homogeneous cylindrical gaseous TPC, which is
based on and expands the track fitting algorithm developed by the ALICE ex-
periment. Part of the code is directly taken from AliExternalTrackParam,
the ALICE TPC Kalman Filter framework [28, 29, 30]. A limitation of the
parametrization used by the ALICE experiment’s Kalman Filter is that it
can only follow tracks that describe at most a semicircle in the plane perpen-
dicular to the magnetic field, introducing non-physical breaking points in the
reconstruction. Using a simple mirror rotation operation, the new algorithm
is capable of following the track indefinitely, especially in the case of low-
energy, low-mass (i.e. low energy loss) particles which form several circular
trajectories inside the detectors, also known as “loopers”. The application of
this novel technique could be particularly relevant for a neutrino experiment
detector such as ND-GAr, for which particles are relatively low energy and



are produced in neutrino interactions on gas at random points in the TPC
volume. In Sec. 3, we introduce a toy Monte Carlo simulation tool capable
of generating and propagating arbitrary particle tracks in a simplified de-
tector geometry. This tool, which will be referred to as fastMCKalman, has
been used to develop and test the algorithm [31]. Two samples have been
produced for this study. The first includes a spectrum of different detector
characteristics and particle properties and is used to validate the algorithm
across a wide range of parameter space. To analyze this sample, a recently
developed interactive data visualization tool called ROOTInteractive has
been used [32]. The second sample is designed to produce performance esti-
mates for a HPgTPC similar to ND-GAr. Finally, in Sec. 4, we discuss the
results of the study and the possible application of the algorithm.

2. The Kalman Filter

In this Section we offer a brief review of the Kalman Filter technique,
specifically in the context of track fitting [33, 24]. Details related to ALICE’s
AliExternalTrackParam can be found in Ref. [29]. Track fitting consists in
estimating track parameters, while filtering involves analyzing linear dynamic
systems. By viewing a track in space as a dynamic system, we can utilize
filtering techniques for track fitting, including Kalman Filters. This can be
achieved by uniquely describing the conditions of the particle with a number
of parameters grouped into a true state vector, s""*—a function of a suitable
coordinate, xj, known as the free parameter—at each trajectory point k,
Struo(a:k) = S‘Icfruo.

Assuming that the system is linear, the propagation of s{™° can be de-
scribed by a linear transformation, Fj. The propagation of the system can
be corrupted by inherent processes, such as multiple scattering for a charged
particle moving across a medium. This random disturbance can be encap-
sulated in a process noise vector, wy, and can affect all or only some of the
state vector variables. The propagation of the system can then be written
as:

S = Fr_180™M + wpy. (1)

By using a detector we are able to measure some properties of the particle
at specific intervals of x;, where the trajectory and the detector intersect.
We can encapsulate these properties in a measurement vector, my, which is

a linear combination of the properties in s{™°. If the detection process is



affected by noise, m, will also be corrupted by a measurement noise vector,
€. The whole measurement operation can be written as :

my = Hks?“ + €k, (2)

where Hj, is a linear transformation.

We assume that all components of wy and €, are Gaussian distributed,
unbiased, and uncorrelated. The expectation values and covariances for the
k'™ are defined as:

E[wi] = 0, Cov|wy] = Qp, (3)
E [ex] 0, Cov lex] = Ry. (4)

The Kalman Filter is a Bayesian iterative algorithm which produces an
estimate, s, of the true state vector, si™°, at each trajectory point. It com-
bines a priori knowledge of the system, condensed in the track propagator,
Fy, and the measurement information from my. The covariance matrix as-

sociated with the estimated state vector, s, is defined as:
Cov [sg] = C. (5)

The Kalman Filter procedure can be divided into discrete operational steps,
that are applied iteratively:

1. Seeding: Produce an initial estimate for the state vector and covariance
matrix, sg and Cp, respectively, using a certain technique.

2. Propagation: Produce an a prior: estimate for the state vector and the
covariance matrix, s and CY, respectively, at the next x (k > 1) step,
using only the track propagator and no measurement knowledge:

Sk = Fr—15k-1, (6)
Cr = Fy 1O FE + Qo (7)

where the process noise matrix (), is added as a correction to the
covariance matrix. Note that T" stand for transpose.

3. Update: Produce an updated estimate for the state vector and the co-
variance matrix, sp and C}, respectively, using information from the
current measurement. The update is performed, requiring that the co-
variance for the new estimate is minimized. The update transformation
is based on the use of the so called Kalman gain:

~ ~ -1
Ky, = CoHT (Rk + H, O HT ) . ®)
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Using the Kalman gain, the update operation, also known as filtering,
follows as:

sk = sp + Ky (my, — Hysy,) (9)
Cr = (1 — K Hy,) Cy. (10)
To proceed to the next point, the algorithm is repeated from the prop-

agation step, using the current updated estimate, s;, as the input.

An illustration of the basic functioning of the Kalman Filter algorithm is
provided in Fig. 1.
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Figure 1: Schematic representation of a Kalman Filter: y represents one of the variables
of the state vector s which is a function of the free parameter x. The coordinates of the
free parameter xj are taken at the points of intersection between the detector and the
particle trajectory. Starting from the first estimate (z,yo), which is obtained from a
seeding algorithm, the Kalman Filter produces an a prior: estimate at the following point
(z1,71), shown in orange. The result is compared with the measurement (z1,yf") shown
in green and the filtering step is applied, producing an updated estimate (z1,y1). The
procedure is repeated until no more track points are available.

The machinery described so far, assumes that the evolution of the dy-
namic system is determined by linear transformations. However, the propa-
gation of a charged particle in a magnetic field is non-linear. Equation 6 in
this case takes the more general form:

Sk = fr—1 (8k-1) (11)
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where fr_1 is a non-linear function. In order to apply the Kalman Filter
technique, the track propagator in Eq. 7, Fj_1, has to be approximated by
the Taylor expansion coefficient defined as follows:

Je—1(8") = fro1 (Sk—1) + Frer - (8" — 55-1) (12)
~ O0fk
Fk—l - Os* (13)

where s* is a generic state vector coordinate near the point of expansion,
sg—1. All the other Kalman Filter steps (Eqgs. 8-10) remain identical to the
linear procedure. This technique is known as extended Kalman Filter. Every
Kalman Filter discussed in this paper is an extended Kalman Filter unless
stated otherwise.

2.1. The custom Kalman Filter

The Kalman Filter described in this work has been developed to be used in
an homogeneous cylindrical gas TPC. We assume that an ideal magnetic field
is applied along the drift direction identified by the coordinate z. Deviations
from the ideal mono-directional magnetic field lines can be simulated and be
accounted for using the infrastructure available in Al1iExternalTrackParam,
but were not implemented in this study. The spatial information in the
perpendicular zy plane is given by detector elements disposed in radial layers
on the two sides of the cylinder. The detector elements will be referred to
as pads and no assumption on the underlying technology is made. The x
coordinate identifies the horizontal direction, while the y coordinate identifies
the vertical. A diagram of the detector cylinder is shown in Fig. 2a.

The algorithm is evolved along the free parameter, z, and its state vector
is defined as:

s(x) = (y, z,sin g, tan A, q/pr) , (14)

where y is the vertical direction; z is the drift direction; ¢ is the azymuthal
angle of the transverse momentum i.e. the component of the momentum
vector transverse to the drift direction; A is the “dip angle” between the
transverse momentum and the total momentum vector; q is the charge sign
of the particle and pr is the module of the transverse momentum. Note
that the inverse transverse momentum can also be written in terms of track
curvature 1/r. The conversion is easily obtained using the standard formula
for charged particles moving in a magnetic field:

pr (GeV/c)=0.3 B(T) r(m). (15)
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Figure 2: (a) Diagram of the simplified detector geometry, showing the direction of the
magnetic field and the position of one of the radial pad layers. (b) Diagram illustrating
the definition of the coordinates defining the evolution of the custom Kalman Filter.

A visual representation of the coordinates is given in Fig. 2b.

The evolution of the state vector is divided into two steps: a rotation of
the global coordinates to a local frame and a propagation along the helix
trajectory. The rotation is applied in the xy plane around the center of the
TPC cylinder. The rotation angle o = arctan(y/x) is defined so that the x
coordinate becomes the radial distance from the center of the TPC and the
y coordinate is ~ 0. After the rotation the state vector is moved along the
trajectory using a propagator function, as described in Eq. 11:

. ~

- sin ¢p_1 + sin ¢y,

Ur = Yr—1+ - ~ Ay,
COS Q1 + COS Py,

_ ~ r
2k = Zk—1 + (¢k — ¢k—1> - tanA,_j,
qr—

gk = fk—l(sk—l) = sin 5k = sin gbk_l + g A:L’k, (16>
Tk—1

tan Xk = tan \,_1,

q q % Pk—1

L DTk C preer Apk et

where Axy, is the distance in the x direction between the previous and current
points, py is the total momentum and Ap, is the total momentum loss. In



order to obtain the propagation matrix, Fj, one only needs to calculate the
Taylor expansion coefficient 0 f;/Jsy, as described in Eqgs. 12 and 13, with the
exception of the g/pr term, which is treated separately as discussed below.

In order to compute the momentum loss, Apy, at each trajectory point,
the ionization energy loss, —dF/ (pdx) (where p is the density of the mate-
rial in g/ cmg), of the particle is evaluated using the standard Bethe-Bloch
formula [34]:

20922
_;icl—i — 47TNA7’§m60222§% <% In 2mec i;)/ T inax . 52 - g) ’ (17)
where N, is Avogadro’s number, r, is the classical electron radius, m.c? is
the electron mass energy, z is the charge of the particle, Z and A are the
atomic number and mass of the absorbing material, 8 and v are the usual
relativistic factors for the passing particle, I is the material mean excitation
energy, Ty is the maximum kinetic energy which can be imparted to a free
electron in a single collision and §/2 is a density effect correction factor.

The differential energy loss, —dE/ (pdx), is calculated using the proper-
ties of the most abundant gas present in the gas mixture in standard con-
ditions and then multiplied by the material’s density to obtain a reasonable
approximation of the d&/dx [35]. The total momentum loss between two
steps is then calculated by numerical integration [36].

In the evaluation of Fy, the q/pr parameter is treated as if it were static.
A correction term, ¢y is added to the ¢/pr diagonal element of the covariance

matrix, 5k, after the propagation step:

Ck:@.%.i )2, (18)

Pk—1 PTg—1

where a = 3.162 x 1073 is a constant multiplicative factor which is directly
taken from the ALICE TPC framework [30].

Multiple scattering is treated through the noise correction matrix, Q.
At each step the scattering angle, fy, is calculated using the formula given
by Lynch and Dahl [37]:

13.6 MeV  [Ad Ad 2?
Oy = ————2y/— [1+0.038In | —— 19

. Bpc - Xo [ " H<X052>]’ (19)
where Ad is the total distance traveled between two steps and X, the ra-

diation length in cm. The @) terms relative to sin¢, tan A and ¢/pr are
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evaluated through error propagation and added to the covariance matrix as
described in Eq. 7:

0 0 0 0 0
0 0 0 0 0
2 . cos? ¢
Q: 0 0 QM cos? \ 9(3 . 20 . (20)
0 0 0 Cosl\‘/ll)\ E'2M. cos \
an A
00 0 gk () gty

Each step in the evolution of the Kalman Filter can potentially fail, in
which case the algorithm is stopped. This can happen mainly in two sce-
narios: sin ¢ can be calculated to be out of range, i.e. |sing| > (1 —1077)
or the particle can lose all its remaining energy. Once the Kalman Filter is
stopped, the information for each of the reconstructed points is saved, while
only the truth level information is recorded for the other points. Flags are
used to preserve information on which of the reconstruction steps have been
successful and which have failed.

One inherent limitation exists in the propagator function in Eq. 16, specif-
ically in the equation describing the evolution of sin ¢. The formula can only
be applied within the range of sin ¢ € [—1, 1], which describes one semi-plane.
For |sin¢| — 1 the uncertainty on the parameter tends to infinity and the
operation is no longer well defined. In radial coordinates this coincides with
the moment when the particle is moving parallel to a pad layer (see Fig. 2a)
and the radial direction of the propagation is inverted. In order to overcome
this limitation and further evolve the Kalman Filter, one can apply a “mirror
rotation” or reflection on the state vector [38]. The mirror plane is the one
perpendicular to the xy-plane, which connects the coordinate frame’s center
(i.e. the center of the TPC) with the center of the circular motion of the
particle. The application of this technique to a Kalman Filter for charged
particle tracking in a magnetic field has no precedent in the literature. In
the local coordinate frame the mirror rotation is linear and can be written
as:

10 0 0 0
= M 01 0 0 0

¥ , Wwhere M =0 0 -1 0 0 (21)
Cp = MC M, 00 0 -1 0
00 0 0 -1
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The angle o, which defines the local coordinate frame, needs to be updated
accordingly. This is done by finding the angle a¢ corresponding to the mirror
plane, and updating « as:

' = ac — Aa

= ¢ — (Oék — Ozc). (22>

Finally, to update the 2z position the angular displacement around the center
of rotation is calculated as:

A
A¢pe = 2 arcsin <2—xy> : (23)

Tk

where A, is the distance between the two points in the xy plane. From Agc,
the correspondent circumference arch in the xy plane, a,,, can be found, and
from it, the displacement in the drift direction, Az, reads:

Az = agy - tan A (24)

= A¢C Tk tan )\k
Once all the mirror operations are complete the closest trajectory point is
found and the Kalman Filter is further evolved from there. From this point
on-wards we will refer to the Kalman Filter algorithm, not including the
mirroring operation as the Basic Kalman Filter or BKF. We will refer to the
full algorithm, which includes both the BKF and the mirroring operation as
the Corrected Kalman Filter or CKF. A flow chart describing the algorithm
is shown in Fig. 3.

The seeding strategy used for the CKF (as well as for the BKF) consists
in a simple three-point circle finding algorithm and will be referred to from
now on simply as Seed. In the plane perpendicular to the magnetic field,
the trajectory of a charged particle is a circle. Since only one circumference
will pass through any three points, one can find a point which is roughly at
the start of the particle trajectory, one at the end and one in the middle and
obtain the properties of the circle that passes though them. This equates
to solving a system of three linear equations for three unknown variables:
the coordinates of the center of the circumference (z¢,yc) and its radius r.
From the circle properties and the coordinates of the three points, one can
find an estimate for the state vector sy at the starting point (xg, %o, 20): Yo
and z are taken as the measured values; ¢q/pr, is converted form the track
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Figure 3: Flow chart describing the CKF algorithm. A seeding algorithm is used to obtain
an estimate for the status of the system at the start of the trajectory £ = 0. Energy loss
and multiple scattering corrections are applied to the estimate. The fit is then moved to
the next point k — k + 1 either by applying the the BKF procedure or by using the mirror
rotation, in the case that the limits of the sin ¢ range have been surpassed. The algorithm
is iterated point by point until the end of the trajectory is reached.

curvature 1/r; sin gy = xo/r; tan \g is estimated as the ratio between the
displacement in the drift direction between the first and middle point and
the correspondent circumference arch in the transverse plane. The three-
point method for the estimation of the initial-state vector sy, can be written
as:

so = h (2o, 21, T2); (Yo, Y1, Y2, 20, 21, 22)] = h((5 1), (25)
where x;, y; and z; are the measured coordinates of the three points, all taken

to be independent and uncorrelated. In order to compute an estimate for C
one can use the matrix expression for error propagation [39]:

Co=gVg" (26)
Oh;
ij = , 2
g] 8773 ( 7)

where V' is the covariance matrix of the vector 7, which is determined by the
resolution of the detector in y and z. The coordinate x is taken to be the free
parameter and thus is not considered in the error propagation. The partial

12



derivatives are estimated numerically as:

Oh; h(Csmizjs my + o;) — B(C ity my)
n; Tn; 7

J

(28)

where ¢, is the resolution of the vector element 7;. The Seed estimation
for both the covariance matrix Cy and the state vector sq is adjusted for
energy loss and multiple scattering using the same method as the Kalman
Filter. The q/pr ratio is corrected with the factor described in Eq. 16, and the
relative covariance matrix element is updated by adding the ¢, factor from
Eq. 18. To handle multiple scattering, the ) matrix calculated in Eq. 20
is added to the covariance. The total distance traveled, needed to calculate
total energy loss and the scattering angle oy, is determined by summing the
distances between the starting and midpoint, and the endpoint used for circle
finding.

3. Toy Monte Carlo Simulation

To generate particle samples and validate the CKF algorithm, we employed
a toy Monte Carlo (MC) tool called fastMCKalman [31]. This tool, stemming
from the AliExternalTrackParam framework in the AliRoot code-base [28],
was designed to be complemented by RootInteractive [32], an advanced
statistical analysis tool. fastMCKalman has been developed with several ob-
jectives in mind: conducting rapid Monte Carlo (MC) simulations to evaluate
tracking performance metrics, particle identification, and time-of-flight mea-
surements across various detector setups. It was also designed to facilitate
detailed studies on signal distortion in the ALICE detector and the deriva-
tion of performance metrics for its Run-3 upgrade and future iterations. In
this discussion, we highlight the effectiveness of fastMCKalman in rapid sim-
ulation and tracking performance assessment within a TPC setting.

The first step in the toy Monte Carlo simulation consists in defining a
simplified detector geometry. The radius and length of the TPC cylinder
are specified, together with the number of pad rows, the spatial resolution
of the detector in the radial and drift directions (defined as o,, and oy
respectively) and the gas properties (i.e. the radiation length in cm, Xj,
the density in g/cm?, p, and the gas pressure in atm, Py,s). Each simulated
particle is defined by specifying its type, charge, transverse momentum, pr,
azimuth angle, ¢, dip angle tangent, tan A, and the starting position. From

this information, the initial MC-true (henceforth “true”) state vector sfe
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is built. The true state vector is moved through the detector by applying
the same operations of the propagation steps of CKF in reverse, moving from
layer to layer of pads.

The propagation of the state vector is obtained by applying Eq. 16. At
each step the energy loss is calculated using the Bethe-Bloch formula as de-
scribed in Eq. 17 and multiplying by the distance traveled and the material
density. The energy loss is then converted in the ¢/pr multiplicative fac-
tor described in Eq. 16 and smeared with a Landau distribution having a
width equal to the ¢; factor described in Eq. 18. The multiple scattering
effects are simulated by calculating the scattering angle #y; and the process
noise matrix (). The diagonal elements of the matrix are then used as the
widths of smearing Gaussian distributions that are applied to parameters
Sy = sin @, s3 = tan A and s; = ¢/pr. To reproduce the measurement noise
encapsulated in matrix R, a Gaussian smearing is applied to the position
parameters s = y and s; = z. The widths of the distributions are equal to
the position resolutions 0,4 and o, respectively.

The propagation continues until any of the following happens: the particle
reaches the edges of the detector cylinder; the energy loss of the particle gets
so close to the Bragg peak region that the Bethe-Bloch model is no longer
applicable; the track has traversed a predefined maximum number of points;
one of the propagation steps fails. Once the track is fully generated, the track
fit is done as described in Sec. 2.1. No element of track formation or particle
identification is included. After saving all information, a new simulation and
track fit start.

3.1. Sample definition

The aforementioned fastMCKalman was used to produce two separate
samples, simulated in the same simplified gas TPC geometry. The TPC has
a cylindrical form with a radius » = 250 ¢cm and the length of the cylinder is
taken as L = 500 cm. There are 250 circular layers of pads placed radially
at each of the two end caps (z = £250 cm). A magnetic field of intensity
B = 0.5 T is placed in the drift direction along the cylinder axis.

The first sample, which includes a total of 5 x 10° tracks, contains a wide
variety of detector properties, particle types and energies and was used to
validate the CKF algorithm and its Seed in as wide a parameter space as
possible. We will refer to this sample as the parameter scan sample or PS
sample. The PS sample is composed of two equally large sub-samples with
different starting position distributions: a sample of primaries—emulated
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as in a collider event geometry—starting from the center of the detector
(z,y,2) = (0,0,0) cm and a sample of secondaries with randomized starting
positions within a fiducial cylinder of radius » = 200 ¢m and length [ =
400 cm. The initial spatial distribution of the secondaries in the sample is
shown in Fig. 4.

1 — T T T —
200 R 200 e
80 9 g0 &
= & = g
§ o 0% 5 60
~ 40 > 40
-200} 20 200} 20
1 1 1 O 1 1 1 0
-200 0 200 200 0 200
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Figure 4: Starting positions for secondary particles in the PS sample. The primaries are
not shown, as all of their starting positions are in (x,y, z) = (0,0,0). The left plot shows
the distribution in the zy plane, while the plot on the right shows the distribution in the
xy plane. The edges of the TPC are drawn on top.

The tracking pad response as well as the gas properties of the detector
were sampled in each simulated event: The resolutions 0,4 = o, were uni-
formly distributed between 0.1 cm and 0.5 cm and the pressure P,,s was
randomized between 0.1 atm and 10 atm. The gas composition was taken to
be the Ne/CO2/N2 (90/10/5) gas mixture used by the ALICE experiment
during Run-1 [6]. The radiation length and density of the gas at atmospheric
pressure are Xy = 1.2763 x 10* cm and p = 0.0016265 g/cmg. The particles
produced are equally divided in electrons, muons, pions, kaons and protons,
corresponding to the ALICE’s convention for particle types, tip, 0, 1, 2, 3,
and 4, respectively. The angles ¢ and A\ are fully randomized. The initial
pr is sampled from a two-component distribution: a high-pt component uni-
formly distributed in [0,20] GeV/c, which covers 70% of the total, and a
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Figure 5: Distributions of (a) transverse momentum pr, (b) lever arm La,y, and (c)
number of points per track N in the PS sample. In all the plots the distributions for
primary and secondary particles are shown separately. A at low pr is produced by the
sample component regulated by Eq. 29. The spikes around N = 250 and La;m = 250 in
the primary sample are explained by the simulated geometry having 250 radial pad layers
and the particles starting from the center of the detector.

low-pt component flat in 1/pr:

Py
pT — min -, 29
mein/meax _'_ j ( )

where pr,. = 0.01 GeV/c, pr,.. = 20 GeV/c and j is a random variable
uniformly distributed between 0 and 1. Some key properties of the tracks
composing the PS sample are plotted in Fig. 5. These include the pr spec-
trum, the lever arm LA, and the number of points per track N separated
between primaries and secondaries. The lever arm is defined as the distance
in the xy plane between the first and last point in the track. All the tracks
included in this and future plots have been successfully reconstructed, un-
less stated otherwise. The PS sample track reconstruction efficiencies € as a
function of the same variables considered in Fig. 5 are shown in Fig. 19 in
the Appendix.

Primaries and secondaries have analogous pr, but significant differences
in their La,, and N. Since the primaries all start at the center of the
detector, most tracks will cross the detector exiting from the cylinder’s barrel,
producing a track with as many points as the 250 pad layers. In alternative
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the track can exit from the sides of the detector, producing tracks with a
slightly smaller N or be stopped inside the detector having N < 50. For
the secondaries the spread is much more homogeneous and the chance of
producing tracks with N > 250 is more significant.

A second sample containing a total of 10° particle tracks was produced
to recreate conditions analogous to the ones that would be experienced by a
HPgTPC in a accelerator neutrino experiment, such as the ND-GAr detector.
The goal for this second sample is to explore the potential performance of
such a detector, using realistic particle spectra and spatial resolutions. This
sample will be referred to as the high-pressure sample or HP sample. The HP
sample is produced with randomized starting positions in the same manner as
the ones applied to the secondaries in the PS sample. This is done to emulate
the randomness of particle track formation in a neutrino experiment. The
detector characteristics are fixed, having the same cylinder dimensions and
pad distribution of the previous sample. The point resolutions are taken as
0,4 = 0, = 0.1 cm, comparable to what is quoted in ALICE [15]. The gas is a
mixture of argon and methane at a 90 to 10 ratio at 10 atm of pressure, which
is the nominal gas suggested for the ND-GAr detector in the DUNE Near
Detector [13]. This composition corresponds to a X = 1.193 x 10 cm and a
density of p = 0.01677 g/ cm”®. Only three particle types were considered in
this case: muons, pions and protons. These were chosen because they are the
key particles produced in v, charged-current interactions that are the most
relevant in an accelerator neutrino experiment such as DUNE. The initial
transverse momenta were randomized to be uniformly distributed between
0.01 GeV/c and 5 GeV/c and the angles are randomized over the whole
spectrum. The pp, La.m and N distributions for the sample are shown in
Fig. 6. Similar to the PS sample, the reconstruction efficiencies are shown in
the Appendix in Fig. 20.

3.2. Tests and results: parameter scan sample

The study performed on the PS sample focuses on the validation of
the Seed and CKF algorithms as well as on evaluating the improvement in
performance produced by the mirroring technique introduced in Sec. 2.1.
The first test performed on the PS sample was a so-called pull test. A
pull, II, is defined as the difference between the true value and the recon-
structed value of one of the state vector parameters s = (y, z,sin ¢, tan A,
q/pr) = (So, S1, S2, S3, 84), normalized by the square root of the correspon-
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Figure 6: Distributions of (a) transverse momentum pr, (b) lever arm La,y, and (c)
number of points per track N in the HP sample. For the HP sample only secondaries are
produced, to emulate particles produced in neutrino interactions inside the detector.

dent diagonal element of the covariance matrix Cj;:

s; — Sgrue

Cn

If the covariance matrix is well defined, the distributions of the pulls should
be normal, centered in 0 with o ~ 1.

The pulls were tested for the sample, both for the results of the Seed and
for the estimates evaluated at the start of the track, after the full propagation
of the CKF: the resulting distributions for all the state vector parameters are
shown in Figs. 7 and 8, respectively. All the pull distributions were fitted to a
standard Gaussian distribution and were found to be centered in 0 and have
o ~ 1; this implies that the diagonal elements of the covariance matrices well
describe the uncertainties.

The standard pull distributions, while being effective at testing the un-
certainties associated with the individual parameters, do not provide any
information regarding the off-diagonal correlation terms. In order to test the
quality of the estimates for the full covariance matrix, the Mahalanobis dis-
tance was used [40]. Given a probability distribution, D, on R" with mean
1 and positive-definite covariance matrix, C', the Mahalanobis distance, M,
of a point s from D, is defined as:

M = /(s = 0701 (s — ), (31)
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Figure 7: Pull distributions for the Seed algorithm over the whole PS sample. All dis-
tributions were fitted to a Gaussian function. Results for parameters sg to s4 (i.e. y, z,
sin ¢, tan A and ¢/pr) are shown from left to right and labeled from (a) to (e) accordingly.

where in our case, u corresponds to the true value of state vector, s™"¢ s
and C' are the estimates obtained from the reconstruction and n = 5. The
Mahalanobis distance, M, of a set of points belonging to the distribution D,
follows a x? distribution with n degrees of freedom. One can check if C is
well defined, by verifying that the corresponding M follow a x? distribution
with the correct number of degrees of freedom. In Fig. 9, we show the results
of a x? fit over the M distribution for the whole sample. The plot on the
left shows the results obtained from the Seed algorithm, while the one on
the right shows the results after the full CKF propagation. In both cases the
n.d.f. obtained with the x? fit are very close to n = 5: both Seed and CKF
estimates accurately the covariances of the reconstructed track parameters
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Figure 8: Pull distributions obtained after the full propagation of the CKF algorithm over
the whole PS sample. See Fig. 7 for comparison.

in the state vector.

The PS sample was also used to test whether the CKF algorithm produced
results that are consistent with the theoretical expectations. The analytical
formula for the ideal q/pr resolution, e (q/pr) = 1/Cii°, obtainable using
a curvature measurement in a TPC, can be written as [41, 42]:

Utheo(l/pT) = \/Cﬂeo = \/O-IZ{ + al%/IS' <32>

The oy component is determined by the point resolution and can be written

as:
720

N +4

___Ore
"~ 0.3BL2

Arm

ou(1/pr) (33)
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Figure 9: Mahalanobis distance M distribution for the PS Sample fitted by a standard y?2
p-d.f. showing the results for the n.d. f. parameter. The expected result for a 5-dimentional
matrix is n.d.f. = 5. The results for the Seed and for the fully propagated CKF are shown
in plots (a) and (b) respectively.

The multiple scattering component can be written as:

B 1 \0.016 (GeV/e) |1
ons(1/pr) = <ﬂpT> 0.3Blcos A \/;0’ (34)

where [ is the length of the track in the xy-plane. Note that the value of
1/ (Bpr) is averaged along the trajectory to take into account energy loss.
In Figs. 10, 11 and 12, the upper plots show the CKF covariance estimates,

CS$EY | while the bottom plots show their ratios to the theoretical expec-
tations, \/Ci. The points analyzed are randomly taken along the recon-
structed tracks and down-sampled to 10% of the total to avoid correlations.

In Fig. 10, histograms are color-scaled based on particle type, denoted
as tip. Conversely, in Figs. 11 and 12, the color scaling corresponds to gas
pressure, Py, and point resolution 0,4 = o, respectively. The CKF results
show overall good agreement with the theoretical expectation, with ratios
~ 1 for momenta down to 20 MeV /¢ within statistical uncertainties.

The PS sample was further used to test the improvement in ¢/pr reso-
lution brought by the introduction of the “mirror rotation” technique in the
CKF, compared to BKF. The fraction of the total tracks for which the mirror-
ing technique was used €yfiror 18 shown in Fig. 13 as a function of ¢ip, initial
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Figure 10: (a) CKF ¢/pr resolution o(q/pr) = /CSEY as a function of the true q¢/pr.
(b) Ratio of the CKF ¢/pr resolution, over the theoretical expectations oiheo(q/pr) =
VCOleoas a function of the true g/pr. The histograms include all particles in the
PS sample and are color-coded according to the ALICE convention for particle types
tip = (0,1,2,3,4) = (e, u, 7, K,p). These plots have been produced using the interactive
analytical tool ROOTInteractive [32]. The error bars are statistical.

true pr and P, with primaries and secondaries being shown separately. In
general, primary particles are less likely to produce looping particles than
secondaries. From Fig. 13a we can see that the likelihood of the particles
producing looping trajectory drops significantly with mass due to the higher
dE/dx, with electrons having €yfirror ~ 0.2 and protons having eygior < 0.01.
From Fig. 13b we can also see that the only particles that loop in the de-
tector have low initial transverse momenta pr < 0.3 GeV/c, which comes
directly from the relationship between momentum and curvature shown in
Eq. 15. Finally from Fig. 13c we see that while for primaries the probability
of producing looping trajectory remains roughly constant in this range, for
secondaries it increases significantly at lower pressures.

The difference in performance due to the mirror rotation can be quantified
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Figure 11: Similar plots to the ones presented in Fig. 10. The histograms in this case are
color-coded according to the according to the gas pressure Pyas.

using the ratios between the full reconstruction resolution /C{KF and the
OBEY obtained with the basic reconstruction at a given point along the
track. Figure 14 shows the ratios /CSEF /1/CEEF as a function of the true
q/pr, color-coded according to the gas pressure Pgas. Figure 14a shows the
results for a sample of only electrons, while Fig. 14b shows the results for a
sample of muons and pions and Fig. 14c for a sample of protons and kaons.
The points are again randomly taken along the reconstructed tracks and
down-sampled to 10% of the total. For the electron sample, an overall relative
improvement of ~ 60% is shown at pr < 100 MeV /¢, with peaks of up to
~ 80% for the lowest momentum tracks in low pressure environments. This
behavior is in agreement with Eqgs. 33 and 34 which show a dependency of
the 1/py resolution on 1/v/N and 1/v/Iamm respectively: using the mirroring
technique, more space points of the tracks are used, resulting in larger N
and La,,. The dependence on the number of points is shown more clearly in
Fig. 15, where the histograms are color coded for total number of points in
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Figure 12: Similar plots to the ones presented in Fig. 10. The histograms in this case are
color-coded according to the according to the radial resolution o,.4.

the track, including those only accessible through the mirroring technique.
Tracks containing more that 800 points are excluded for easier legibility of
the results. It is shown that for the longest tracks, relative improvements of
up to 80% can be achieved.

The difference between the results is shown to be less dramatic in more
pressurized environments, where particles tend to be absorbed sooner and
tracks are generally shorter. This trend is confirmed looking at the results
obtained for the muons and pions sample in Fig.. 14b, for which dF/dz will
on average be higher due to their higher masses: the improvement in this
case is by ~ 20% for pr < 150 MeV /c with peaks of up to ~ 50% for the
lowest momentum tracks in low pressure environments. No improvements
were found for the more massive particles shown in the sample, except for
minor ones at lower pressures (Fig. 14c).
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Figure 13: Portion of tracks in the PS sample for which the mirror rotation was applied,
€Mirror, as a function of (a) ALICE particle identification convention tip = (0,1,2,3,4) =
(e, 1, m, K, p), (b) gas pressure Pyas and (c) transverse momentum pr. Primary and Sec-
ondary tracks are drawn separately.

3.3. Tests and results: high-pressure sample

The HP sample is used to evaluate the detector performance of a HPgTPC
as described in Sec. 3.1. We focus on the total momentum relative resolution
and bias, defined as the o and p of a standard Gaussian fit applied to the
momentum fractional residuals:

R= Py (35)

Ptrue

The formulas that we quoted for the expected resolution of the 1/pr factor
in Egs. 33 and 34 can be adapted for the relative momentum resolution by
applying error propagation. The new formulas can then be written as:

ou(p) cosApaoy | 720
p  03BILI3,, VN-+4

oums(p) _ 0.016 (GeV/e) [ 1 (37)
p  0.3BIlBcosA \ Xo
where oy (p) is the point resolution component of the total momentum reso-
lution and opg(p) is the multiple scattering component.

(36)
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Figure 14: Ratios of the ¢/pr resolutions obtained using the full CKF algorithm includ-
ing the mirror rotation method /CEEY, over the reconstruction without mirror rotation
VCEEY. The plots were produced for the whole PS sample. The histograms are color
coded according to the gas pressure Py,s. Plot (a) contains only electrons, plot (b) contains
pions and muons and plot (c¢) contains kaons and protons. Only tracks with a minimum of
30 points are considered. These plots have been produced using the interactive analytical
tool ROOTInteractive [32]. The error bars are statistical.

In Fig. 16 we show the relative momentum resolution and bias as a func-
tion of the true momentum for the three particle types present in the sample.
At lower momenta (pywe < 1GeV/c) the resolution is close to 2% for pions
and muons while it is closer to 8% for the protons. In this momentum re-
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Figure 15: Similar plots to Fig. 14. The plot contains all particle types in the PS sample.
The histograms are color coded according to the number of points in the track N.

gion the multiple scattering component of the resolution is dominant. This
component is inversely proportional to the particles’ g factor. With a given
momentum, the proton, having a higher mass, will always have a smaller g
and thus a worse expected resolution. Furthermore, while muons and protons
at lower energies have the chance to produce longer and even looping tracks
inside the detector, protons will tend to loose their energy more quickly, again
due to their masses. This is clearly shown in Fig. 17b where the average par-
ticle lengths as a function of their true momentum is shown. Somewhat
significant biases are also shown at these lower momenta, especially for pro-
tons. For momenta py.. > 1 GeV/c, the resolution is comparable for the
three particle types and increases slowly with the particle momentum. At
higher momenta the point resolution component is dominant, so a direct
proportionality on the momentum is expected, with no distinction between
the particle types. An inverse dependency on the lever arm and number of
points and thus indirectly on the length is also expected, but as shown in
Fig. 17b, in this momentum range the average length of the track becomes
roughly the same for all particle types, since muons and pions have momenta
that are too high to produce looping tracks, as shown in Fig. 13b.

In Fig. 18 we show the momentum resolution and bias as a function of
the true track lengths [ for the three particle types. As could be predicted
from Eq. 37, an inverse proportionality of the relative resolution on [ can
be observed for all particle types. The worse performance observed for the
protons can be explained by the average § shown in Fig. 17a, which is always
smaller for more massive particles regardless of the length of the tracks.
For longer tracks the hit component of the resolution is dominant and the
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difference in [ is not as impactful. A somewhat significant bias can be seen
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at lower lengths. Similar dependencies on lever arm La,, and number of
points in the track /N, which can be treated as a proxy for [ in most cases,
are shown in Figs. 21 and 22 in the Appendix.
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Figure 18: Similar plots to Fig. 16. In this case the relative momentum resolution (a) and
bias (b) are shown as a function of the true track length [ for the HP sample.

4. Conclusions

We introduced a Kalman Filter tailored for homogeneous gas TPCs,
adapted from the one used in the ALICE experiment. An inherent limi-
tation in the original ALICE approach arises from its suitability only for
tracks describing a semi-circle at most in the xy plane, perpendicular to
the detector’s magnetic field. We discovered that this challenge can be ad-
dressed by applying a mirror rotation to the state vector when reaching the
semi-circle’s boundaries. This adjustment is facilitated by introducing an xy
plane rotation during the Kalman Filter’s propagation step, converting the
longitudinal x coordinate into the radial distance from the rotation center.
By implementing this technique, the new algorithm can effectively track tra-
jectories of any length, including multiple circular paths within the detector
(loopers). This enhancement has no precedent in the literature and signifi-
cantly improves upon the ALICE Kalman Filter, making it highly promising
for both the ALICE TPC [43] and the neutrino HPgTPCs like ND-GAr,
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which, due to the randomness in the production points of charged particles
coupled with their relatively low energy, are prone to longer track forma-
tions. To evaluate the new algorithm, we developed a toy MC simulation
tool named fastMCKalman and generated a sample with diverse detector and
particle properties to validate its performance across a wide parameter space.
Multiple tests conducted on this sample demonstrated that the algorithm’s
estimates for parameter covariance effectively describe the sample and align
closely with theoretical expectations. Furthermore, we examined the impact
of the mirroring technique by comparing the ratios of ¢/pr resolutions with
and without its application, revealing relative improvements by up to 80%
for low-energy electrons and up to 50% for muons and pions. Additionally,
we evaluated the new Kalman Filter algorithm’s performance using a sample
of particles propagated in a high material budget environment, simulating
conditions akin to a HPgTPC like ND-GAr. Realistic assessments of relative
momentum resolution and bias showed behaviors consistent with theoretical
expectations, affirming the viability of applying the method to a neutrino
gas TPC.
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Appendix

We define the reconstruction efficiency e as the fraction of the correctly

simulated tracks for which the CKF algorithm is fully propagated. In Figs. 19
and 20, we show the reconstruction efficiencies as a function of the initial true
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pr, Larm and N for the PS and HP samples, respectively. The reconstruction
efficiencies in both samples are shown to be very close to 100% except for
very short low momentum tracks, for which other approaches than a Kalman
Filter would most likely be used [25].
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Figure 19: Portion of tracks in the PS sample for which the reconstruction was successful

as a function of (a) initial pr, (b) lever arm L., and (¢) number of points in the track
N.

In Figs. 21 and 22, we show the relative momentum resolution and bias
for the three particle types present in the HP sample, as a function of L.y,
and N, respectively. These are analogous to Fig. 18 in the main text.
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Figure 20: Portion of tracks in the HP sample for which the reconstruction was successful
as a function of (a) initial pr, (b) lever arm L., and (¢) number of points in the track
N.
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Figure 21: Similar plots to Fig. 16. In this case the relative momentum resolution (a) and
bias (b) are shown as a function of the true track lever arm L, for the HP sample.
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Figure 22: Similar plots to Fig. 16. In this case the relative momentum resolution (a) and
bias (b) are shown as a function of the number of points in the track N for the HP sample.
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