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In this review, we survey the current progress in computing transport properties in semimetals
which harbour non-Fermi liquid phases. We first discuss the widely used Kubo formalism, which can
be applied to the effective theory describing the stable non-Fermi liquid pase obtained via a renor-
malization group procedure and, hence, is applicable for temperatures close to zero (e.g., optical
conductivity). For finite temperature regimes, which apply to the computations of the generalized
dc conductivity tensors, we elucidate the memory matrix approach. This approach is based on an
effective hydrodynamic description of the system, and is especially suited for tackling transport
calculations in strongly-interacting quantum field theories, because it does not rely on the existence
of long-lived quasiparticles. As a concrete example, we apply these two approaches to find the
response of the so-called Luttinger-Abrikosov-Benelavskii phase of isotropic three-dimensional Lut-
tinger semimetals, which arise under the effects of long-ranged (unscreened) Coulomb interactions,
with the chemical potential fine-tuned to cut exactly the nodal point. In particular, we focus on the
electric conductivity tensors, thermal and thermoelectric response, Raman response, free energy,
entropy density, and shear viscosity.
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I. INTRODUCTION

The Landau’s Fermi liquid theory has been incredibly
successful in describing most metallic phases, serving as a

paradigm to treat condensed matter systems in terms of
quasiparticles and their effective intercations. However, we
are aware of metallic states with unconventional/strange
properties for which the paradigmatic description in terms
of Fermi liquids fails. Although of widely different ori-
gins, these systems are widely known as non-Fermi liq-
uids (NFLs), in which the quaiparticles get destroyed, often
brought about by the strong interactions of the soft fluc-
tuations at a Fermi surface/Fermi point with some mass-
less bosonic fluctuations. There has been intensive efforts
in formulating controlled approximations to describe such
NFL phases involving a well-defined Fermi surface [1–24].
Such metallic states are often dubbed as strange metals
because of the observation of strange transport proper-
ties in many strongly-correlated quantum materials such as
cuprate superconductors [25–27], iron-based superconduct-
ing compounds [28], some heavy fermion materials [29], and
magic-angle twisted bilayer graphene [30, 31]. Instead of
a conventional quadratic dependence on the temperature
T , the normal phases of these materials/heterostructures
often show a linear-in-T resistivity within a large temper-
ature window, violating the Mott-Ioffe-Regel limit. Other
manifestations of an NFL behaviour involve novel scaling-
dependence of optical conductivity [17, 19, 32, 33] and en-
hanced susceptibility towards superconducting instability
[8, 9, 18, 19, 34]. In these scenarios, which involve a finite
and sharply defined Fermi surface (although no Landau
quasiparticles), the NFL character emerges due to finite-
density fermions interacting with a massless boson arising
at a quantum critical point [6, 7, 11, 13, 14, 21, 31], or
with massless gauge field(s) [8, 9, 22, 35], leading to the
alternate name of critical Fermi surface states [36]. How-
ever, additionally, there has been the investigation of NFL
phases appearing at a Fermi point, i.e., when the chemical
potential cuts a band-crossing point in a semimetal [37–44],
which is the focus of this review article. For these cases,
when the Fermi level tuned at the band-touching points of
semimetals in the presence of long-ranged Coulomb inter-
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actions [37–39, 43, 44], a stable non-Fermi liquid fixed point
emerges.

Transport coefficients, such as the electrical and thermal
conductivity and the viscosity tensors, play a central role in
describing condensed matter systems. They are experimen-
tally measurable and contain signatures which character-
ize the different phases of matter. Computing such trans-
port properties using the effective theories of NFLs states is
challenging, because we cannot use the conventional frame-
works available, as described below. Determining transport
properties implies that we want to theoretically compute
the response of the system to an external perturbation. If
the perturbation is small, the response is expected to be
a linear function of the perturbation. This is the basic
assumption of linear response theory. In the framework
of many-particle theory, the linear response theory results
in the Kubo formula (detailed discussion can be found in
Sec. II A), which refers to relations that express the linear
response function in terms of the equilibrium eigenstates
of the system, and were first obtained by Kubo [45, 46].
However, let us first discuss a different route, mainly to ex-
plain why it does not work for the NFL systems we want
to analyze. If the external perturbation changes slowly in
time and space on atomic scales, we can use a semiclassi-
cal description known as the Boltzmann formalism. This
formalism originates from the Boltzmann equation (BE),
introduced by Boltzmann in 1872, to study irreversibility
in dilute (i.e., low-density) gases from a statistical mechan-
ics point of view. He obtained the BE by visualizing the
dynamics of the constituent gas-molecules as free motions,
occasionally interrupted by mutual collisions. In the mod-
ern literature, the term BE is used in a very wide context
(or a more generic sense), referring to any kinetic equation
that describes the change of a macroscopic quantity (such
as density of energy, charge, or particle number) in a ther-
modynamic system. In particular, the transport properties
in a condensed matter systems are often related to the well-
defined quasiparticle-excitations, which, at a phenomeno-
logical level, resemble a dilute gas of molecules for which
a BE (or a closely related kinetic equation) can indeed be
formulated. The quasiparticle concept is crucial to apply-
ing the Boltzmann transport concept in condensed matter.
Depending on the physical system under consideration, var-
ious types of quasiparticles emerge quantum-mechanically
(for example, dressed electrons in metals), whose kinetics
can then be modelled by an appropriate semiclassical ap-
proach of the BE. The idea is to consider the phase space
distribution function f(r,k, t) of the quasiparticles, and de-
termine the evolution of f(r,k, t) in phase space by us-
ing the Liouville equation (arising from the Liouville the-
orem) modified by adding the correction term arising due
to quasiparticle-collisions as a perturbation [47]. However,
the bootmline is, since the BE crucially depends on the
existence of well-defined and long-lived fermionic quasipar-
ticles, the absence of quasiparticles in NFLs is a major im-
pediment to using it for NFLs. Nevertheless, we must add
that the methodology of invoking a generalized quasipar-
ticle distribution, within the nonequilibrium Keldysh for-
malism, has been employed in extracting the behaviour of
collective modes of critical Fermi surfaces [48–51].

Another limitation of BE approach stems from the fact

that we use a semiclassical distribution function for com-
puting the transport properties. The Kubo formalism
[45, 46] remedies this issue by replacing the semiclassical
statistics with quantum statistics. The move from clas-
sical statistical mechanics to quantum statistical mechan-
ics is implemented by calculating the average of a macro-
scopic observable by its trace weighted with the density
matrix of the system. Kubo’s linear response formalism,
we compute the linear-order response coefficient as a cor-
relation function of the operator of interest and the oper-
ator which couples to the applied external probe field. In
fact, the Kubo formula gives the exact linear-order response
function, as no approximations are made in its derivation.
Therefore, it captures the quantum coherent effects that
cannot be captured by Boltzmann transport theory. On the
other, since the time evolution in the Kubo formula is eval-
uated by tracking the full microscopic dynamics through
the time evolution operator constructed out of the equilib-
rium Hamiltonian of the system. Therefore, it can work
only if we have a controlled perturbative description of the
corresponding quantum field theory, where the free part of
the quantum effective action can be used to find the exact
eigenstates and energies of the system, which feed into the
expressions for the correlation functions. For NFLs, we can
thus use the Kubo formula only if we succeed in achieving
a controlled perturbative expansion and, using the theory
in the vicinity of a stable NFL fixed point, we can then
compute the required correlators using the order-by-order
perturbative corrections.

We have now understood that although the Kubo for-
malism is an improvement upon the Boltzmann trans-
port theory by replacing classical statistical mechanics with
quantum statistical mechanics, it does not include the
coarse-graining of the microscopic dynamics which renders
the Boltzmann transport theory tractable in the thermo-
dynamic limit. The memory matrix formalism [52–59]
addresses this problem by devising a method of coarse-
graining that is compatible with quantum statistical me-
chanics. Because the Kubo formalism is an exact quantum
statistical mechanical description, it is a very useful starting
point. Hence, the memory matrix approach is not so much
different, as it is a reformulation of the time evolution in the
Kubo formalism by making the coarse-graining approxima-
tions natural. The general philosophy of a coarse-graining
procedure is to (1) find the most relevant collective vari-
ables to describe a macroscopic system, (2) separate out
the contributions arising from the relevant variables and
rewrite the equations of motion for the relevant variables,
and (3) approximate the effects of the irrelevant variables
on the evolution of the relevant operators. This leads to
a macroscopic equation of motion, governing the evolution
of the relevant observables, that reproduces the most in-
teresting and leading order manifestation of the underlying
microscopic physics. A simple example is obtained from the
Navier–Stokes equation in hydrodynamics, which describes
the motion of viscous fluids in terms of the collective vari-
ables of pressure, density, and flow, rather than by tracking
the positions and velocities of individual molecules. Such
a description is derived from the microscopic physics by
applying universal constraints like conservation of particle
number and conservation of momentum, which brings into
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consideration the behaviour of the average density and the
average flow, ignoring the microscopic fluctuations. In a
similar spirit, the memory matrix procedure starts with
applying the Mori projection on the equations of motion
for the operators, obtained using the same time evolution
as used in the Kubo formalism. After splitting the dy-
namics into the subspaces of the relevant and irrelevant
operators, the so-called Mori’s projected equations of mo-
tion consist of the generalized Langevin equations for the
relevant dynamical variables, with the effects of the irrel-
evant operators appearing in the equations as correlation
functions with the relevant operators. In recent times, this
formalism has attracted a significant amount of interest,
especially because it has successfully reproduced the sig-
nature transport properties of many strongly-coupled sys-
tems, which were earlier computed from nonperturbative
approaches (e.g., those obtained by exploiting the gauge-
gravity duality between the strongly-coupled quantum field
theory and the corresponding classical gravity theory in one
higher spatial dimension [60, 61]).

In view of the discussed presented above, both the Kubo
formula and the memory matrix formalism have emerged
as central tools to compute the transport coefficients of
various NFL phases exhibited by correlated quantum ma-
terials. In this review, we will demonstrate how these two
approaches can be employed to compute the scalings of var-
ious response coefficients of a nodal-point NFL.

In recent years, modelling and understanding NFL
behaviour has witnessed enormous progress in connec-
tion with the various aspects of the transport proper-
ties of strange-metallic-phases. Such descriptions include
strongly-correlated systems like the Sachdev-Ye-Kitaev
(SYK) models [24, 62–69], strongly-coupled field theo-
ries that are holographically dual to black hole physics
[60, 61, 70–72], and experimentally-motivated phenomeno-
logical models describing high-Tc materials [17, 19, 33, 73–
83]. However, these systems involve a finite Fermi surface,
while we will mostly be interested in NFL phases appearing
at Fermi points. Important examples of nodal-point NFLs
are described below:

1. From the analysis of the electronic bandstructures of
compounds like pyrochlore iridates [84], half-Heusler
compounds [85, 86], grey-tin [87], and rhodium oxides
[88], a minimal effective low-energy model to describe
such systems turns out to be the well-known three-
dimensional (3d) Luttinger semimetals [37–42, 89–
93]. The resulting dispersion has a single doubly-
degenerate quadratic band crossing at the center of
the Brillouin zone (i.e., at the Γ-point). This novel
class of materials feature a strong spin-orbit cou-
pling (SOC) and, together with a strong electron-
electron interaction caused by unscreened Coulomb
interactions, demonstrate Mott correlation physics
and NFL behaviour. The itinerant NFL physics was
predicted theoretically back in 1974 by Abrikosov
[37], who demonstrated, using the quantum field the-
oretical framework, that the Coulomb interactions
drive the system into a stable NFL fixed point, which
is now widely known as the Luttinger-Abrikosov-
Beneslavskii (LAB) phase [39]. Moon et al. [39]
revisited this problem and characterized the NFL

fixed point using a dimensional regularization scheme,
which enabled them to calculate the universal power-
law exponents describing various physical observables
like conductivity, susceptibility, specific heat, and the
magnetic Gruneisen number. The data from exper-
iments [84] on the pyrochlore iridate Pr2Ir2O7 show
evidence for the LAB phase.

2. Quasiparticles with pseudospin-3/2 and having a
birefringent linear spectrum with two distinct Fermi
velocities, can be realized from simple tight-binding
models in both two-dimensional (2d) and three-
dimensional (3d) systems. Examples in 2d include
decorated π-flux square lattice [94–96], honeycomb
lattices [97, 98], and shaken optical lattices [99, 100].
The 3d counterparts are captured in various systems
having strong spin-orbit coupling [101, 102], such
as the antiperovskite family [103] (with the chemi-
cal formula A3BX) and the CaAgBi-family materi-
als with a stuffed Wurtzite structure [104]. The low-
energy effective Hamiltonian of such semimetals show
that Coulomb interactions drive a clean system (i.e.
without disorder) into a marginal Fermi liquid phase
[43, 44] in both 2d and 3d.

Using the dimensional regularization scheme (applied to
the Kubo formula) and the memory matrix formalism, we
computed various transport properties of the LAB phase,
which we will summarize in this review [105–108].

The review is organized as follows. In Sec. II, we review
the Kubo formalism and the memory matrix technique to
set the stage for deriving the transport theories of NFL
states. Sec III is devoted to the application of both the
methodologies to the specific example of the LAB phase.
Finally, in Sec. IV, we end with a summary and discussion,
providing an outlook concerning the open problems in this
field of research.

II. TRANSPORT METHODOLOGIES BEYOND
THE FERMI LIQUID PARADIGM

In this section, we will discuss the basic framework of
applying the Kubo formalism and the memory matrix tech-
nique to a system which can be described by a field the-
ory action. The need for these two kinds of approaches
can be motivated as follows. For NFLs at finite temper-
atures, there remain great difficulties in calculating trans-
port coefficients analytically due to the lack of a quasipar-
ticle description. This holds true even when the nature of
the underlying critical point is well-understood via a con-
trolled approximation (e.g., dimensional regularization and
ϵ-expansion) and the scaling of the transport coefficients
are determined by universal physics at the renormalization
group (RG) flow fixed points [108]. As a simple example,
let us consider the electrical conductivity σ at finite fre-
quencies (ω) temperatures (T ), which is obtained from the
current-current correlation function via the Kubo formal-
ism. Suppose the expected scaling behaviour is captured

by the relation σ(ω, T ) ∼ T
d−2
z F(ω/T ), where d is the

dimensionality of the system in space, z is the dynamical
critical exponent, and F(u) is a universal scaling function.
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It is well-known that the small and large limits of ω and T
do not commute, leading to very different physical conse-
quences in the two regimes ω ≫ T and ω ≪ T [109]. The
ω ≫ T limit essentially corresponds to that of the T = 0
stable NFL fixed point of a controlled perturbative approxi-
mation of the field theory, thus enabling the current-current
correlator to be computed using the T = 0 action. In con-
trast, the opposite limit of T ≫ ω falls into the hydrody-
namic regime of thermally activated scale-invariant excita-
tions moving through the sample and interacting amongst
themselves other over long-distance-scales. Calculating the
form of the correlators in this limit is significantly more
complex, even in a controlled perturbative expansion. As a
result, while we can apply the Kubo formalism for comput-
ing the optical conductivity, valid in the regime ω ≫ T , the
T ≫ ω dc conductivity has to be computed by some other
method, which we choose here to be the memory matrix
technique.

A. Kubo formula

In this subsection, we review the Kubo formula to cal-
culate the transport properties of a correlated model, fol-
lowing the treatment outlined in Refs. [110, 111]. Let the
quantum system in question in its thermodynamic equi-
librium state be described by the Hamiltonian H(0). The
expectation value of a physical observable O is given by

⟨O⟩ ≡ Tr[ρ(0) O] , (1)

where

ρ(0) =
e−β H(0)

Z(β)
(2)

is the density operator (or the density matrix), β =
1/ (kB T ) (with kB set to unity, as we are using the natu-

ral units everywhere in this review), Z(β) = Tr[e−β H(0)

] is
the partition function, and T is the equilibrium tempera-
ture. We are interested in the measurement of an observ-
able that follows some external perturbation, which helps
to shed light into the inner workings of complex systems.
and get dynamical information. To this end we consider
the system to be coupled to an external field that is char-
acterized by a time-dependent interaction part V (t) to the
Hamiltonian, leading to the total Hamiltonian

Htot(t) = H(0) + V (t) , (3)

with the new density matrix ρ(t). To emphasize once more,
while H(0) describes the quantum system in isolation, an
external time-dependent V (t) perturbation is applied. Wee
will consider the scenario where the system is not affected
by the perturbation in the infinite past, i.e., we are deal-
ing with the case when limt→−∞ V (t) = 0. For example,
when the external perturbation is a spatially uniform time-
dependent electric field, a convenient way to realize this is
via

E(t) = lim
δ→0+

E(0) e−i ω t+δ t , (4)

where we have included an infinitesimal positive imaginary
part to the frequency ω of a sinusoidal time-dependence.
For the cases of more generic time-dependence of V (t), we
would use the form

V (t) = lim
δ→0+

∫ ∞

−∞

dω

2π
Ṽ (ω) e−i ω t+δ t , (5)

where Ṽ (ω) denotes the Fourier transform of V (t) in the
temporal space.

1. Expectation value in the linear response regime

As a consequence of the applied external perturbation,
the observable O becomes time-dependent as well, and its
time-evolution is obtained from

⟨O⟩t = Tr[ρ(t)O] , (6)

where the density matrix itself obeys the von Neumann
equation

i ℏ ∂tρ(t) =
[
Htot(t), ρ(t)

]
. (7)

We would like to emphasize that for ρ(t) and V (t), we are
analyzing the time-dependence of operators that are in the
Schrödinger picture, since the von Neumann equation fol-
lows for an arbitrary density matrix defined with the help
of many-body wavefunctions obeying the Schrödinger equa-
tion with the Hamiltonian Htot(t).

Since the perturbation is switched on in the infinite past,
till when the system is assumed to be in equilibrium, we
have

lim
t→−∞

ρ(t) = ρ(0) . (8)

If we restrict ourselves to small/weak external perturba-
tions, we can focud on the so-called linear response regime,
which refers to retaining changes that are proportional to
linear order in V (t). In order to proceed further, we need
to adopt the interaction picture. In this representation, the
density matrix ρ(I)(t) [of the interaction picture Hamilto-
nian Htot(t)] obeys the equation

ρ(t) = e−
iH(0)t

ℏ ρ(I)(t) e
iH(0)t

ℏ (9)

Note that if considered with respect to H(0), ρ(I)(t) must
be interpreted as corresponding to the Heisenberg picture.
This is the reason why, henceforth, we will state that the
operators are taken in the Heisenberg picture. Eq. (9) gives
us the time evolution of ρ(I)(t) as

i ℏ ∂tρ(t) =
[
H(0)(t), ρ(t)

]
+ i ℏ e−

iH(0)t
ℏ ∂tρ

(I)(t) e
iH(0)t

ℏ

⇒ e
iH(0)t

ℏ [V (t), ρ(t)] e−
iH(0)t

ℏ = i ℏ ∂tρ(I)(t)

⇒ i ℏ ∂tρ(I)(t) =
[
V (I)(t), ρ(I)(t)

]
, (10)

where we have used Eq. (7). The formal solution of the
above differential equation is given by

ρ(I)(t) = ρ(0) − i

ℏ

∫ t

−∞
dt′
[
V (I)(t′), ρ(I)(t′)

]
. (11)
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Going back to the Schrödinger picture, the solution above
leads to

ρ(t) = ρ(0) − i

ℏ

∫ t

−∞
dt′ e

−iH(0)(t−t′)
ℏ [V (t′), ρ(t′)] e

iH(0)(t−t′)
ℏ ,

(12)

which can be solved recursively order by order by generat-
ing a systematic expansion with respect to V (t). At zeroth
order, we have ρ(t) = ρ(0) + O(V (t)). At first order, we
insert the zeroth order result, and obtain

ρ(t) = ρ(0) − i

ℏ

∫ t

−∞
dt′ e

−iH(0)(t−t′)
ℏ

[
V (t′), ρ(0)

]
e

iH(0)(t−t′)
ℏ

+ O
(
V 2(t)

)
= ρ(0) − i

ℏ

∫ t

−∞
dt′
[
V (I)(t′), ρ(0)

]
+ O

(
V 2(t)

)
,

(13)

which is the regime of linear response. Hence, it follows
from Eq. (6) that

⟨O⟩t = Tr[ρ(0) O] − i

ℏ

∫ t

−∞
dt′ Tr

[
[V (t′), ρ(0)]O(I)(t)

]
= ⟨O⟩ − i

ℏ

∫ t

−∞
dt′ Tr

[
[O(I)(t), V (t′)] ρ(0)

]
= ⟨O⟩ − i

ℏ

∫ t

−∞
dt′
〈

[O(I)(t), V (t′)]
〉
, (14)

where the symbol ⟨· · · ⟩ stands for an equilibrium expecta-
tion value with respect to the Hamiltonian H(0).

Using the definition of the retarded correlator for two
operators A1 and A2 as〈〈

A(I)
1 (t); A(I)

2 (t′)
〉〉

=
i

ℏ
Θ(t− t′)

〈
[A(I)

1 (t), A(I)
2 (t′)]

〉
,

(15)

Eq. (14) can finally be expressed as

⟨O⟩t = ⟨O⟩ −
∫ ∞

−∞
dt′
〈〈

O(I)(t); V (I)(t′)
〉〉

. (16)

which demonstrates the core fact that the linear response
of a quantum system is characterized by retarded Green’s
functions. This is indeed an extremely useful result, be-
cause the inherently nonequilibrium observable ⟨O⟩t has
been expressed as a correlation function of the system in
equilibrium. The physical reason for this remarkable result
is that the effects of the interactions between the excitations
created in the nonequilibrium state show up at second or-
der in the perturbation and, hence, not included in linear
response.

2. The Kubo identity and the retarded Green’s function in the
frequency domain

We consider an external and time-dependent perturba-
tion of the form

V (t) = −B F (t) , (17)

where B’ is an of the theory and F (t) is a classical time-
dependent function. For an observable A, Eq. (16) yields
the linear response relation

⟨A⟩t = ⟨A⟩ +

∫ ∞

−∞
dt′GR

AB(t− t′)F (t′) (18)

where

GR
AB(t− t′) ≡ ⟨⟨A(t); B(t′)⟩⟩

=
i

ℏ
Θ(t) ⟨[A(t), B(t′)]⟩ , (19)

is the retarded Green’s function1 for the operators A(t)
and B(t′). Here, the time-dependent observables have been
expressed in the Heisenberg representation of H(0) (as ex-
plained earlier).

We will need to use the Kubo identity

i

ℏ
[O(t′), ρ(0)] = ρ(0)

∫ β

0

dτ Ȯ(t)|t=t′−i ℏ τ , (20)

where an overhead dot indicates total derivative with re-
spect to t and, for a general operator O in the Schrödinger
picture, the Heisenberg picture version O(t) is defined by

O(t) = e
iH(0)t

ℏ O e−
iH(0)t

ℏ . (21)

The Kubo identity can be proved easily via the following
steps, starting from the right-hand-side of Eq. (20):

ρ(0)
∫ β

0

dτ
dO(t)

dt

∣∣∣∣
t=t′−i ℏ τ

=
i ρ(0)

ℏ

∫ β

0

dτ
d

dτ
O(t′ − i ℏ τ)

=
i ρ(0)

ℏ
[O(t′ − i ℏβ) −O(t′)]

=
i

ℏ

[
e−β H(0)

Z(β)
eH

(0) β O(t′) e−H(0) β − ρ(0) O(t′)

]

=
i

ℏ

[
O(t′) ρ(0) − ρ(0) O(t′)

]
=
i

ℏ
[O(t′), ρ(0)] . (22)

Using Eq. (20) in Eq. (19), we get

GR
AB(t− t′) ≡ i

ℏ
Θ(t) Tr

[
ρ(0) [A(t), B(t′)]

]
= − i

ℏ
Θ(t− t′) Tr

[
ρ(0) B(t′)A(t) − B(t′) ρ(0) A(t)

]
= −Θ(t− t′) Tr

[ i
ℏ

[ρ(0), B(t′)]A(t)
]

= Θ(t− t′) Tr
[
ρ(0)

∫ β

0

dτ Ḃ(t′ − i ℏ τ) A(t)
]

= Θ(t− t′)

∫ β

0

dτ
〈
Ḃ(t′ − i ℏ τ) A(t)

〉
. (23)

1 An alternate convention, differening by an overall sign, appears in
the literature (e.g., in Ref. [111]) for the definition of the retarded
Green’s function, and Θ(t) is Heaviside step function. However, the
convention adopted here is much more standard and is the common
choice in condensed-matter physics [58].
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Further simplifying the expressions, we can write

GR
AB(t) = Θ(t)

∫ β

0

dτ
〈
Ḃ(−i ℏ τ) A(I)(t)

〉
= Θ(t)

∫ β

0

dτ
〈
Ḃ(−t− i ℏ τ) A

〉
. (24)

We now go to the Fourier space, defining the Fourier trans-
form G̃R

AB(ω) ≡
∫∞
−∞ dt ei ω+ tGR

AB(t), where ω+ = ω+i 0+.

The part 0+ denotes an infinitesimally small positive num-
ber, which is incorporated in order to ensure the correct
physical result, namely the retarded correlator decays at
large times. The Fourier transform evaluates to

G̃R
AB(ω) =

∫ ∞

0

dt

∫ β

0

dτ ei ω+ t
〈
Ḃ(−t− i ℏ τ) A

〉
= g1 + g2 ,

g1 =
1

i ω+

∫ β

0

dτ ei ω+ t
〈
Ḃ(−t− i ℏ τ) A

〉 ∣∣∣∣t=∞

t=0

,

g2 = − 1

i ω+

∫ ∞

0

dt

∫ β

0

dτ ei ω+ t d

dt

〈
Ḃ(−t− i ℏ τ) A

〉
.

(25)

Let us first analyze the second term, which simplifies to

− i ω+ g2

=

∫ −∞

0

dt e−i ω+ t Tr

[ {
ρ(0)

∫ β

0

dτ
d

dt
Ḃ(t− i ℏ τ)

}
A
]

=
i

ℏ

∫ −∞

0

dt e−i ω+ t Tr
[
[Ḃ(t), ρ(0)] A

]
=
i

ℏ

∫ ∞

0

dt ei ω+ t Tr
[
[ρ(0), Ḃ] A(t)

]
=
i

ℏ

∫ ∞

0

dt ei ω+ t Tr
[
ρ(0) Ḃ A(t) − ρ(0) A(t) Ḃ

]
=

∫ ∞

−∞
dt ei ω+ t (−i)

ℏ
Θ(t)

〈
[A(t), Ḃ]

〉
= − G̃R

AḂ(ω) , (26)

where

GR
AḂ(t− t′) ≡ i

ℏ
Θ(t)

〈
[A(t), Ḃ(t′)]

〉
,

G̃R
AḂ(ω) =

∫ ∞

−∞
dt ei ω+ tGR

AḂ(t) . (27)

As for the first term g1, the part evaluated at t = ∞ must
go to zero, as that is the boundary condition, which we have
ensured by including convergence factor (= −0+ t) in the
argument of the exponential. Thus, g1 = 1

i ω+
χℓ1ℓ2 , where

χAḂ =

∫ β

0

dτ
〈
Ḃ(−i ℏ τ) A

〉
= lim

ω→0
G̃R

AḂ(ω) , (28)

which is called the static susceptibility. Hence, the final
expressions for the retarded Green’s function in the Fourier
space reduces to

G̃R
AB(ω) =

1

i ω+

[
G̃R

AḂ(ω) − χAḂ

]
. (29)

3. Conductivity tensor

Let us consider a system of charged particles (which are
electrons in usual condensed matter systems) subjected to
an external spatially homogeneous time-dependent electric
field E(t) [cf. Eq. (4)]. The electric field induces a current,
and the conductivity tensor is the linear response coeffi-
cient. For definiteness, let us consider electrons to be the
charge carriers, each of which has charge e.

Let us first define the electric current density operator.
In the position space representation for the equilibrium
Hamiltonian of the system (which is expressed in terms
of the fermionic quantum fields), we make the replacement

−i ℏ ∂rp → −i ℏ ∂rp − e
cA

p, which we denote by H̃(0)[A].
The components of J is then derived as the functional
derivatives

Jp = −δH̃
(0)[A]

δAp
. (30)

However, for a parabolic spectrum, in addition to the A-
independent term, this generates a linear-in-A term for a
parabolic spectrum. This necessitates gauge-fixing while
finding the finding the final expressions. A simpler alter-
nate way is to define the current operator using the relation
J = Ṗ = i

ℏ [H(0), P ], where P is the electrical dipole mo-
ment operator, which couples to the external electric field.
We can express as P as

∫
ddr rnc, where nc is the electric

charge density operator. Using this line of argument, we
need to set

V (t) = −P ·E(t) . (31)

We can now use Eqs. (18) and (19) by setting A = Jp,

B = Pq, and F (t) = Eq(t) = E
(0)
q e−i ω+ t. The identity

Ṗq = Jq leads to

χJpṖq
(t) ≡ χJpJq

(t) =
i

ℏ
Θ(t) ⟨[Jp(t), Jq]⟩ . (32)

Since the conductivity in the temporal space is defined as

⟨Jp⟩t =

∫ ∞

−∞
dt′ σtemp

pq (t− t′)Eq(t′) , (33)

and Eq. (18) results in (since the average current in the
equilibrium distribution is zero)

⟨Jp⟩t =

∫ ∞

−∞
dt′GR

JpPq
(t− t′)Eq(t′) , (34)

we conclude that

σtemp
pq (t− t′) = GR

JpPq
(t− t′) . (35)

Fourier transforming to the frequency space, and using
(29), we finally obtain the Fourier-space conductivity as

σpq(ω) ≡ G̃R
JpPq

(ω) =
− i

ω+

[
G̃R

JpJq
(ω) − χJpJq

]
. (36)

We point out that yet another widely used procedure
[110, 112] is to express E in terms of the scalar and vector
potentials and, then, using the continuity equation

∂tnc(r, t) = −∇ · J(r, t) . (37)
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B. Memory matrix formalism

The memory matrix formalism is the second formalism
we are going to focus on in this review, which is a power-
ful technique for describing transport in strongly correlated
systems without quasiparticles. In this subsection, we dis-
cuss the procedure to compute the response at finite tem-
peratures, mainly following the treatment in Refs. [57, 58].

The simplest framework of describing transport without
reference to quasiparticles is, in fact, hydrodynamics, which
has been known for a very long time. Although hydro-
dynamics was synonymous with fluid dynamics before the
twentieth century, the modern understanding of hydrody-
namics is that it describes the long-wavelength and long-
time-scale dynamics of an interacting classical or quantum
system close to thermal equilibrium, when there is a small
number of conserved quantities [113]. In other words, the
key assumption of hydrodynamics is that the field theory
has locally reached a thermal equilibrium. A more generic
treatment allows for some of these conserved quantities to
decay on long time scales, while still retaining the nomen-
clature of “hydrodynamics” [58]. The only requirement for
applying this generalized treatment is that the list of such
conserved quantities must be finite. Although this require-
ment cannot be fulfilled in Fermi liquids, because we have
occupation numbers of the long-lived quantities at every
single wavevector (which forms an infinite set). However,
for NFLs, it is believed that generic higher dimensional
theories do not admit infinite families of nearly-conserved
quantities at strong coupling, and, therefore, the require-
ment is easily satisfied.

Despite the fact that the effective theory of hydrody-
namices provides the relaxation of an interacting classical
or quantum system towards thermal equilibrium, without
any reference to the existence of quasiparticles, it is im-
portant to note that hydrodynamics is an incomplete de-
scription. This implies that although hydrodynamics pro-
vides a universal framework, via a set of constraints that
any reasonable (and, at least, approximately translation-
invariant) quantum field theory at finite density and tem-
perature must obey, it does not give us any specific values
or temperature-dependence for the microscopic coefficients.
The memory matrix approach provides a way of obtain-
ing the microscopic coefficients. In particular, one does
not need to add a phenomenological momentum relaxation
time, as required in hydrodynamics, as this coefficient can
be computed separately using the memory matrix formal-
ism. Although, in principle, the memory matrix technique
is an exact microscopic calculation, its practical usefulness
stems from the fact that it can be efficiently approximated
in a hydrodynamic regime where there are only a small
handful of quantities which do not quickly relax to thermal
equilibrium.

As discussed in the introduction, the memory matrix
technique is essentially employing the coarse-graining pro-
cedure to obtain the time-evolution of the slow/long-lived
(hydrodynamic) modes by “integrating out” the fast (mi-
croscopic) modes. This approach was introduced by Mori
[52, 53], Zwanzig [54, 55], and developed further by Götze
and Wölfle [56, 57] more than half a century ago. Zwanzig
separated the ensemble density into relevant and an ir-

relevant parts by means of a projection, solved the lat-
ter part formally in terms of the former one, and substi-
tuted the solution back into the equation for the relevant
part [52]. This exact transformation is particularly suitable
for integrating out the fast modes (i.e., modes having fast
variations in time) [55]. Following the earlier arguments,
the method works best when quasiparticles are not long-
lived, and the only conserved (or approximately conserved)
quantities are charge, energy, and momentum. In the last
two decades, this computational tool has become a method
of choice for studying transport in NFL phases arising in
one-dimensional [114, 115] and higher-dimensional systems
[58, 70, 71, 75–77, 116–122], as well as strongly-interacting
quantum field theories in the context of using gauge-gravity
duality [123–127].

Let us now briefly outline the notations required in ap-
plying the memory matrix framework. In the following, we
will set ℏ and kB to unity, agreeing to use natural units.
Let us consider the set of linear operators {A, B, C, · · · }
in a time-translation invariant theory. The space of lin-
ear operators acting on a Hilbert space is called Liouville
space. When dealing with a complicated quantum sys-
tem, we are usually neither interested in nor capable of
describing the time evolution of all its microscopic prop-
erties. Rather, most of the times, we want to compute to
determine the linear response, which require the knowledge
of the dynamics of only a small set of selected (“relevant”)
observables. These relevant observables, together with the
identity operator, span a (relatively small) subspace of the
Liouville space, which is known as the level of description
[128]. Consequently, the dynamics is projected onto the
level of description, which yields closed equations of mo-
tion for the relevant observables only (although it is, in
general, no longer Markovian).

The detection and systematic exploitation of a separation
of time scales is the basic practical merit of the projection-
operator method [128]. A simple example to illustrate this
is the Brownian motion of a massive particle within a fluid
of small molecules. This process consists of damping on
a macroscopic scale due to the viscosity of the fluid, and
fast vibrations due to stochastic residual forces. Both the
processes are caused by collisions between the particle and
the fluid molecules, but they take place on different time
scales — the damping process is much more relevant for
the observable “position of the particle”, compared to the
vibrations, since the latter vanish when averaged over time.
However, only if the relevant processes are filtered out, we
can neglect the fast modes.

1. Memory function formalism

A necessary condition for the definition of a projector is
the existence of a scalar product within the Liouville space.
There are multiple possibilities to doso. Here, we use the
definition put forward by Mori [52], using the inner product

ΥAB(t) ≡ (A(t)|B(0)) ,

(A(t)|B(0)) ≡
β∫

0

dλ
〈
A†(t)B(i λ)

〉
, (38)
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with averages over thermal and quantum fluctuations de-
noted by the symbol ⟨· · · ⟩. Here, L is the Liouvillian (or
Liouville operator), defined by

L ◦ = [Htot(t), ◦] = [H(0), ◦] + [V (t), ◦] , (39)

and |A(t)) ≡ ei L t |A(0)). Note that the usual convention
is to denote A(0) simply by A — hence, we will use these
two alternate notations interchangeably. The expression
follows from the fact that, when written in terms of the
Liouvillian, the Heisenberg equation of motion for A reads

dA(t)

dt
= i LA ⇒ A(t) = ei L tA(0) . (40)

Rather than working in the time domain, we will take
Laplace transforms to work in the frequency domain. The
Laplace transform of a funcition F (t) is defined by

F̃ (z) =

∫ ∞

0

dt ei z t F (t) . (41)

Furthermore, we need the counterpropagator

R(z) =

∫ ∞

0

dt ei z t ei L t =
i

z − L
, (42)

where Im(z) > 0. We denote the Laplace-transformed cor-

relation function in Eq. (38) by the symbol Υ̃AB(z), such
that

Υ̃AB(z) ≡
∫ ∞

0

dt ei z t ΥAB(t)

=

∫ ∞

0

dt ei z t (A(0) ei L t|B(0))

=

∫ ∞

0

dt ei z t (A(0)| e−i L tB(0))

= (A(0)|R(z)B(0)) . (43)

By using R(z) = [LR(z) − LR(0)] /z, we obtain

Υ̃AB(z) =
1

i z

[
G̃R

AB(z) − G̃R
AB(i 0)

]
, (44)

where G̃R
AB(z) is the Laplace transform of the retarded

Green’s function (in real space and time) is defined as

GR
AB(t, r) ≡ iΘ(t) ⟨[A(t, r), B(0,0)]⟩ . (45)

This is the same as Eq. (19), except that the position-
dependence has been suppressed in the former equa-
tion, since there we were dealing with a spatially uni-
form perturbation. Henceforth, we will suppress the posi-
tion/momentum dependence of the retarded Green’s func-
tions [as already done in Eq. (44)], as in this entire review,
we are only interested in the response functions evaluated
at zero momentum. Here, we will only be computing ther-
moelectric transport coefficients, for which G̃R

AB(ω → 0) ∼
i ω sAB, where sAB is the generalized conductivity between
the operators A and B. Since sAB is strictly finite, we have
G̃R

AB(i 0) = 0 and, hence, can be omitted in the rest of the

discussions. Therefore, in this context, Υ̃AB(z) turns out
to be equal to sAB.

After performing some formal manipulations on the
Hilbert space of operators lead to

sAB(z) ≡ Υ̃AB(z)

= χAC

[
1

M(z) +N − i z χ

]
CD

χDB , (46)

where χ is the matrix with elements

χAB = (A(0)| B(0)) . (47)

χAB is known as the static susceptibility between the op-
erators A and B [same as Eq. (28)]. The symbol M stands
for the so-called memory matrix, whose components are
defined as

MAB(z) = i

(
Ȧ
∣∣∣∣Q 1

z −QLQ Q
∣∣∣∣ Ḃ) , (48)

where

P =
∑
AB

|A(0))χ−1
AB (B(0)| , Q = I− P , (49)

and the matrix N has the components

NAB ≡ χAḂ = −χȦB . (50)

Clearly, NAB is antisymmetric, and it vanishes identically
in a time-reversal-invariant system if the operators A and
B transform identically under time reversal.

We implement the above formula by projecting onto a
basis of nearly-conserved operators, which we denote by
{ξi}, with a long relaxation time compared to microscopic
timescales. These conservation laws are related to symme-
tries in the model that protect these operators from decay-
ing — a small amount of symmetry-breaking cause these
operators to become nearly conserved (rather than com-
pletely conserved). With this in mind, we define the pro-
jection operator P [defined above in Eq. (49)] to project
onto the slow-mode basis as [57]

P =
∑
ij

|ξi(0)) χ−1
ξiξj

(ξj(0)| . (51)

Therefore, the complement operator Q projects out of the
space spanned by these nearly-conserved observables. We
want to extract from the Liouville operator that part which
changes a given ξi0 (for i = i0) only in the subspace spanned
by {ξi}. Since P + Q = I, we use the form L = LP +LQ.
By using the operator identity [57]

1

A + B =
1

A − 1

A B 1

A + B , (52)

and using the fact that P acts as an identity operator in
the space {ξi}, we get

Υ̃ξiξj (z) ≡ (ξi(0)| i

z − L
|ξj(0))

= (ξi(0)| i

z − LQ− LP |ξj(0))

= (ξi(0)|
[

i

z − LQ +
i

z − LQ LP 1

z − L

]
|ξj(0)) .

(53)
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For the first term, we first observe that

i

z − LQ =
i

z

[
1 +

1

z
LQ +

1

z2
LQLQ + . . .

]
, (54)

which shows that, except the first term, each term ends
with the operator Q, and Q |ξi) = 0. As for the second
term in Eq. (53), we observe that

P i

z − L
|ξj(0)) = |ξi′(0))χ−1

ξi′ξj′
(ξj′(0)| i

z − L
|ξj(0))

= |ξi′(0))χ−1
ξi′ξj′

Υ̃ξj′ξj (z) . (55)

Putting these results together, Eq. (53) evaluates to

Υ̃ξiξj (z) − i

z
χξiξj

= (ξi(0)| 1

z − LQ L |ξi′(0))χ−1
ξi′ξj′

Υ̃ξj′ξj (z)

= (ξi|
[

1

z
+

1

z
LQ 1

z − LQ

]
L |ξi′)χ−1

ξi′ξj′
Υ̃ξj′ξj (z)

=
1

z

[
(ξi|L |ξi′) + (ξi|LQ 1

z −QLQ QL |ξi′)
]

× χ−1
ξi′ξj′

Υ̃ξj′ξj (z) . (56)

The step can be proven with the help of a geometric series
(similar to Eq. (54)), and using the identity Q2 = Q.

2. Generalized conductivity tensors in the absence of
magnetic fields

Our goal is to compute the conductivity tensors at zero
momentum, but finite frequency in general. To start with,
we want to consider the case with zero magnetic field, which
means that the time-reversal symmetry-breaking matrix N
will vanish.

In NFLs, the kinematics of the almost-conserved quanti-
ties is entirely different from Fermi liquid theory, and the
Wiedemann-Franz law is expected not to hold, even ap-
proximately [75]. Since an infinite collection of conserved
densities does not exist in the effective low-energy theory,
it follows that generically the total electrical and heat cur-
rents (unlike in a Fermi liquid). The only conserved quan-
tities are the momenta, up to the effect of irrelevant or
weak marginal operators.The conservation of momentum,
up to effects that are small at low energies, is a key as-
sumption that allows the memory matrix method to work.
While there are strong interactions in an NFL, it is still
possible that there emerges a decoupling of the excitations
into patches in the momentum space, for example a criti-
cal Fermi suface in (2 + 1)-dimensions [11, 13, 22, 31]. For
such cases, there exist a family of conserved momenta mo-
mentum vectors. However, here we are interested in NFLs
arising at nodal points (with no patch structure), which
implies that we will focus on scenarios when there is only
one almost-conserved vector operator in the effective low-
energy theory.

In the systems we are interested in, the total momentum
vector operator P is relaxed on a much longer timescale

than all other quantities, including the currents [75]. Nev-
ertheless, our discussion can easily be adapted to cases in
which the electric current is equal to the momentum. The
only general requirement for the results to hold is that there
exists only one almost-conserved vector operator. For sim-
plicity, we will assume that the system is spatially isotropic,
such that all the diagonal components of M are equal and
all its transverse components vanish (i.e., MPpPq ∝ δpq).

The dc conductivity determines the dissipation due to
an arbitrarily low-frequency current being driven through
the system. In a translationally invariant field theory at
finite density, such that the only conserved vector quantity
is the total momentum, the dc conductivity tensors diverge
[129, 130]. Intuitively, the conductivity diverges because
the current operator has some overlap with the momen-
tum operator, which is conserved. To remedy the infinite
dc conductivity result, we perturb this theory by an irrel-
evant operator that breaks translational invariance, so the
infrared is still described by the original fixed point. This
renders the total momentum a nearly-conserved operator.

Some standard mechanisms that can cause momentum
relaxation in a transport theory are Umklapp processes,
coupling to phonons, and impurity scattering. Umklapp
scattering is usually exponentially suppressed at low tem-
peratures and, since it depends on details associated with
the shape of the underlying Fermi surface of a quantum sys-
tem, its contribution for transport is expected to be non-
universal. On the other hand, the universal contribution
for transport are expected to originate from either disorder
effects or coupling to a phonon bath. Moreover, conven-
tional wisdom suggests that scattering of charge carriers
by phonons turns out to be most effective as a relaxation
mechanism for many systems only at high temperatures,
since they tend to be generally suppressed at low-enough
temperatures. Because of this, we will choose to concen-
trate mainly on impurity scattering as the main mechanism
that causes momentum relaxation in the transport theory.

To implement momentum relaxation induced by impu-
rity scatterings, we will add a weak random impurity poten-
tial that couples to the fermionic density in a system with
Nf fermion flavours as a quenched disorder (i.e., with no
time evolution). If the fermionic field is denoted as ψ(t, r),
we need to add the impurity action [131]

Simp =

∫
dt ddrW (r)ψ†(t, r)ψ(t, r) . (57)

It is common to take W (r) to be a zero-mean Gaussian
random function, with the mean and the variance obeying
[124]

W (r) = 0 , W (r)W (r′) = W 2
0 δ

d(r− r′) , (58)

where the overline denotes disorder averaging, and W 2
0 rep-

resents the average magnitude square of the random poten-
tial experienced by the fermionic fields. We will work work
to order W 2

0 .

To apply the memory matrix method explained in the
previous subsection, we need to calculate the time depen-
dence of the slowly-varying operator Pp using the total
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Hamiltonian H(0) +Himp, where

Himp = −
∫
ddrW (r)O(t, r) ,

O(t, r) ≡ ψ†
i (t, r)ψi(t, r) . (59)

is the part of the total Hamiltonian representing the con-
tribution from disorder. The time evolution of Pp is given

by Ṗp = i
[
H(0) +Himp, Pp

]
, which, in the position space

representation, reduces to

Ṗp(t, r) = i

∫
ddr′W (r′) [Pp(r), O(t, r′)]

=

∫
ddr′ δd(r− r′)W (r′) ∂rpO(t, r′)

= W (r) ∂rpO(t, r) . (60)

For convenience, we define

FṖpṖq
(t, r, r̃)

= W (r)W (r̃) ⟨[∂rpO(t, r), ∂r̃qO(0, r̃)]⟩
= −W 2

0 δ
d(r− r̃)

×
∫
ddk ddk′

(2π)2d
kp k

′
q [O(t,k), O(0,k′)] ei (k+k′)·r . (61)

Taking a Fourier transform and evaluating the zero mo-
menta parts, we get

F̃ṖpṖq
(t, k̃, k̃′)

∣∣
k̃=k̃′=0

= −W 2
0

∫
ddr ddr̃ δd(r− r̃)

×
∫
ddk ddk′

(2π)2d
kp k

′
q [O(t,k), O(0,k′)] ei (k+k′)·r

= −W 2
0

∫
ddr

∫
ddk ddk′

(2π)2d
kp k

′
q [O(t,k), O(0,k′)] ei (k+k′)·r

= −W 2
0

∫
ddk ddk′

(2π)d
δ(k + k′) kp k

′
q [O(t,k), O(0,k′)]

= W 2
0

∫
ddk

(2π)d
kp kq [O(t,k), O(0,−k)] . (62)

This gives us the retarded Green’s function

G̃R
ṖpṖq

(ω,0) ≡ i

∫ ∞

0

dt ei ω+tF̃ṖpṖq
(t,0,0)

= W 2
0

∫
ddk

(2π)d
kp kqG̃

R
OO(ω,k) , (63)

which we will simply write as G̃R
ṖpṖq

(ω) to avoid clutter-

ing of notations. Note that we have defined our retarded
Green’s function in presence of disorder as the one obtained
after disorder averaging.

Due to the presence of the projection operator Q in
Eq. (48)], it is very hard to calculate the memory ma-
trix M exactly. For this reason, we will resort to a useful
approximation, which also shows the effectiveness of the
approach. Since Ṗp is linear in the disourder strength W0,
the leading contribution to MPpPq

is of order W 2
0 . Here, we

wish to keep the leading contribution only and, therefore,
we approximate the full Liouville operator (after adding
weak disorder) by simply the one without disorder, i.e.,
L = [H(0), ◦]. Additionally, we will calculate the ensemble-
averages by using only H(0) instead of H(0) +Himp. Since
P is completely conserved for a clean system, LPp = 0
and, consequently, LQ = L. Hence, the memory matrix
[cf. Eq. (48)] can be approximated by

MPpPq (z) ≈ i

(
Pp

∣∣∣∣LQ 1

z −QLQ QL

∣∣∣∣Pq

)
= i

(
Pp

∣∣∣∣LQ 1

z − LQ L

∣∣∣∣Pq

)
= i

(
Pp

∣∣∣∣L 1

z − LQ L

∣∣∣∣Pq

)
= i

(
Ṗp

∣∣∣∣ 1

z − L
L

∣∣∣∣ Ṗq

)
= Υ̃ṖpṖq

(z), (64)

using Eq. (44). In the limit z going to zero, we define

MPpPq
(0) ≡ lim

ω→0

1

i ω

[
G̃R

ṖpṖq
(ω) − G̃R

ṖpṖq
(0)
]

=
1

i
∂ωG̃

R
ṖpṖq

(ω)
∣∣∣
ω=0

= lim
ω→0

Im G̃R
ṖpṖq

(ω)

ω
.

(65)

The last equality follows from the fact that Re G̃R
ṖpṖq

(ω)

is an even function of ω, whereas Im G̃R
ṖpṖq

(ω) is an odd

function of ω [124].
In a time-reversal-invariant theory, in which momen-

tum is the only almost-conserved observable, N = 0, and
Eq. (46) gives us a diagonal component of the electrical
conductivity tensor as

σpp(ω, T ) ≡
χ2
JpPp

MPpPp(ω) − i ω χPpPp

. (66)

Here, χPpPq
is the momentum-momentum static suscepti-

bility, and χJpJq
is the current-momentum static suscepti-

bility. This immediately tells us that the corresponding dc
electrical conductivity is given by

σdc
pp ≡ σpp(0, T ) =

χ2
JpPp

MPpPp(0)
. (67)

Electric and thermal transport generally couple together in
charged quantum matter. Hence, we would want to com-
pute not just the electrical conductivity, but a more general
matrix of thermoelectric conductivity tensors. For this, we
need to consider the heat current JQ, which naturally cou-
ples to a temperature gradienat ∇rT [110]. At the linear
order, we have the generalized Ohm/Fourier law [71](

Jp

JQ
p

)
=
∑
q

(
σpq αpq

T αpq κ̄pq

)(
Eq

−∂rqT

)
, (68)

following the notations of Ref. [131]. While the thermoelec-
tric conductivity tensor α determines the Peltier, Seebeck,
and Nernst effects, κ̄ is the linear response coefficient be-
tween the heat current and the temperature gradient at
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vanishing electric field. The latter applies to samples con-
nected to conducting leads, allowing for a stationary cur-
rent flow. In experiments, one often measures the compo-
nents of the thermal conductivity tensor κ, which provide
the coefficients between the heat current and temperature
gradient at vanishing electric current (i.e., J = 0), and are
given by

κ = κ̄− T ασ−1 α . (69)

Finally, the Nernst response is defined as the electric field
(Eind) induced by a thermal gradient, in the absence of an
electric current, and is given in by the relation

Eind = −ϑ∇rT , where ϑ = −σ−1 α . (70)

From our discussions, we find that we need to specify a
set of three tensors, viz. σ, α, and κ̄, from which we can
derive the remaining tensors listed above. In conjunction
with Eq. (66), we have the relations

κ̄pq(ω, T ) =
1

T
ΥJQ

p JQ
q

(ω) ,

αpq(ω, T ) =
1

T
ΥJpJ

Q
q

(ω) . (71)

Analogous to the electrical dc conductivity tensor, the di-
agonal components in the low-frequency limit are given by

κ̄dcpp =
1

T

χ2
JQ
p Pp

MPpPp(0)
,

αdc
pp(T ) =

1

T
χJpPp

M−1
PpPp

(0)χPpJ
Q
p
. (72)

3. Generalized conductivity tensors in the presence of a weak
magnetic field

We will now rederive the expressions for the conductivity
tensors in the presence of a uniform magnetic field B, with
B denoting its magnitude [28, 58, 119, 120, 132]. We will
focus on the regime where B is perturbatively small, such
that the cyclotron frequency ωc is a perturbatively small
parameter as well, and follow the route of Ref. [58]. In
this case, the time-reversal symmetry breaking matrix N is
nonvanishing. We note that each component of M is first
order within a perturbation theory — hence, it will suffice
to consider only the B-dependent corrections to the M .
This is because considering B-dependent corrections to the
static susceptibility matrices will generate a higher-order
correction. However, within the memory matrix formalism,
any B-dependent correction to a parity-even component
like MPpPq

must be O
(
B2
)
. Consequently, the only matrix

which may admit an O(B) correction is N . Therefore, we
need compute the consequences of a nonzero B on N only.

For nonzero B, the zero-momentum component of the
canonical momentum operator PB , which generates trans-
lations, no longer equivalent to the physical momentum
operator. Instead, it is given by

P(B) = P +

∫
ddrnc AB , (73)

where AB is a vector potential corresponding to the ap-
plied magnetic field B. Although P is gauge-invariant, the
second term is not, since the form of AB depends on the
choice of gauge. the effective Hamiltonian also needs to be
modified as H(0) → H(0) +HB , where

HB = −
∫
ddr J ·AB . (74)

For demonstration purposes, let us choose to consider
a two-dimensional system (i.e., set d = 2). In order to

evaluate Ṗx, for example, a convenient gauge choice is
AB = −B yx̂. This leads to

Ṗx = i
[
H(0) +HB , Px

]
= i

[
H(0) +HB , P(B)

x +
B

2

∫
d2r nc y

]
= i
[
HB ,P(B)

x

]
+B

∫
d2r ṅc y + O

(
B2
)

= B

∫
d2r (∂xJx + ṅc) y

= −B
∫
d2r ∂yJy y = B

∫
d2r Jy . (75)

A similar argument works for Ṗy with the gauge choice
AB = B x ŷ. This leads to the expressions for the nonzero
elements of N to be

NPxPy = −NPyPx = χPxṖy
= −B χJxPx . (76)

With these ingredients, we obtain

M(ω) +N − i ω χ

=

(
MPxPx − i ω χPxPx −B χJxPx

B χJxPx MPyPy − i ω χPyPy

)
+ O

(
B2
)

=

(
MPxPx

− i ω χPxPx
−B χJxPx

B χJxPx
MPxPx

− i ω χPxPx

)
. (77)

We can use this expression to evaluate the forms of the ten-
sors σ, α, and κ̄. In particular, the longitudinal and trans-
verse components of the dc electrical conductivity tensor
are given by

σdc
xx =

χ2
JzPz

MPxPx

M2
PxPx

+B2 χ2
JzPz

and

σxy = −σyx =
B χ3

JxPx

M2
PxPx

+B2 χ2
JxPx

, (78)

respectively.

C. Generic scaling arguments

Hyperscaling is the property that the free energy scales
by its naive dimension [109, 133]. In a quantum system in
d spatial dimensions, with dynamical critical exponent z,
the free energy F has the scaling dimension

[F ] = d+ z . (79)
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Therefore, if hyperscaling is not violated, we should have
the temperature-dependence

F ∼ T d/z+1 . (80)

The spatial components of the stress-energy tensor Tpq
have the same scaling dimension as the Lagrangian density
and, hence,

[Tzx] = d+ z . (81)

Using the deifnition that

η ∼ G̃R
TpqTpq

(ω) , (82)

where η is the shear viscosity, this implies that

[η] = 2 [Tzx] − z − [Volume in energy-momentum space]

= 2 (d+ z) − z − d− z = d . (83)

This shows that η has the same scaling dimension as the
entropy density s, which, by definition, is the derivative of
the free energy with respect to T . Hence, the ratio η/s
turns out to be dimensionless. If hyperscaling is not vio-
lated, Eq. (83) also implies the scaling form

η(ω) ∼ ωd/z (84)

for optical viscosity (i.e., for ω ≫ T ), and

ηdc(T ) ∼ T d/z (85)

for dc viscosity (i.e., for T ≫ ω).
In view of Eqs. (30) and (82), the scaling dimension for

the conductivity tensor is [71]

[σpq] = 2 [J] − z − [Volume in energy-momentum space]

= 2 (d+ z − 1) − z − d− z = d− 2 , (86)

which implies the scaling form

σpq(ω) ∼ ω(d−2)/z (87)

for the optical conductivity. In scenarios when the hyper-
scaling is violated (see, for example, Ref. [17] for a an NFL
with a finite Fermi surface), the above scaling form is mod-
ified to

σpq(ω) ∼ ω(d−2−θ)/z , (88)

where θ represents a hyperscaling-violating exponent [134].
In Ref. [105], our results for the optical conductivity com-
puted in the LAB phase shows hyperscaling violation.

III. TRANSPORT PROPERTIES OF THE LAB
PHASE

As an example of an NFL arising at a Fermi point, we
consider the 3d Luttinger semimetals [39–42, 89, 90, 92,
93, 105–107, 135–142], as discussed in the introduction.
In this review, we will focus on isotropic but band-mass-
asymmetric Luttinger semimetals, and show how various
transport properties can be computed in the LAB phase
by applying the techniques reviewed in the last section.

A. Minimal low-energy effective model

The effective low-energy continuum Hamiltonian, in the
vicinity of the nodal point of an isotropic band-mass asym-
metric Luttinger semimetal, is given by

H0 =
|k|2
2m′ −

5
4k

2 − (k ·J )2

2m
, (89)

where J represents the vector angular momentum operator
in the spin-3/2 representation of the SO(3) group. There-
fore, the Hamiltonian represents a system of noninteract-
ing pseudospin-3/2 quasiparticles. The energy eigenvalues
evaluate to

ϵ±(k) =
|k|2
2m′ ±

|k|2
2m

, (90)

where the “+” and “-” signs refer to the conduction and
valence bands, respectively, which are doubly-degenerate.
Fig. 1(a) shows the schematics of the doubly-degenerate
dispersion. The symbols m and m′ represent the mass pa-
rameters of the quadratically dispersing bands. Since the

term |k|2
2m′ multiplies an identity matrix, it causes the effec-

tive band masses of the conduction and valence bands to
be asymmetric/unequal.

Following Refs. [40, 41, 89, 143], the Hamitonian in
Eq. (89) can be brought to the form

H0 =

5∑
a=1

da(k) Γa +
|k|2
2m′ , (91)

where the set of five Γa-matrices forms a rank-four ir-
reducible representation of the Euclidean Clifford alge-
bra. Therefore, they obey the anticommutation relation
{Γa,Γb} = 2 δab. They can always be chosen such that
three are real and two are imaginary [144].

The five da(k)-functions are the real ℓ = 2 spherical har-
monics with the following structures [40, 41, 143]:

d1(k) =

√
3 ky kz
2m

, d2(k) =

√
3 kx kz
2m

, d3(k) =

√
3 kx ky
2m

d4(k) =

√
3 (k2x − k2y)

4m
, d5(k) =

2 k2z − k2x − k2y
4m

. (92)

Henceforth, we will use the notation

dk ≡ [d1(k), d2(k), d3(k), d4(k), d5(k)] (93)

to refer to the vector consisting of the five da(k)-functions.
Analogously, Γ will denote the vector whose components
are the five Γa-matrices.

Adding the Coulomb interactions via a non-dynamical
scalar boson field φ, the Euclidean action of the resulting
interacting system can be straightforwardly written as

Sint =

∫
dτ d3r

[
ψ†(τ, r) {∂τ + H0 + i e φ}ψ(τ, r)

+
c

2
{∇φ(τ, r)}2

]
. (94)

Here, ψ denotes the fermionic field, which is a four-
component spinor, and c is a constant equal to 1/(4π).
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(a)

e2Λε/2 V (q)
2 c

ω + Ω,k + q ω − Ω,k′ − q

ω,k ω′,k′

(b)

FIG. 1. (a) Schematics of the low-energy effective dispersion of an isotropic but band-mass-asymmetric Luttinger semimetal
that harbours a doubly-degenerate quadratic band-touching at the Γ-point. (b) The four-fermion vertex arising due to Coulomb
interactions.

We now extend the theory to a generic number of spa-
tial dimensions d, to make it possible to apply dimensional

regularization. Finally, we integrate out φ to express the
Coulomb interaction as an effective four-fermion interaction
vertex, resulting in the form

S =

∫
dτ ddk

(2π)d
ψ†(τ,k) (∂τ + H0)ψ(τ,k)

+
e2 Λε

2 c

∫
dτ ddk ddk′ ddq

(2π)3d
V (q)ψ†(τ,k + q)ψ(τ,k)ψ†(τ,k′ − q)ψ(τ,k′)

=

∫
dω ddk

(2π)d+1
ψ̃†(ω,k) (−i ω + H0) ψ̃(ω,k)

+
e2 Λε/2

2 c

∫
dω dω′ dΩ ddq ddk ddk′

(2π)3(d+1)
V (q) ψ̃†(ω,k) ψ̃†(ω′,k′) ψ̃(ω + Ω,k + q) ψ̃(ω′ − Ω,k′ − q) , (95)

where V (q) = 1/|q|2. In the momentum space, the

Coulomb interaction vertex is given by e2 Λε

2 c V (|q|), and ψ̃†
i

and ψ̃ represent Fourier-transformed fermionic fields. The
four-fermion vertex is depicted schematically in Fig. 1(b).
We have also scaled e2/c by using the floating mass scale Λ
(of the RG flow) so that its engineering dimension vanishes
at d = 4−ε. Here, we have determined the tree-level scaling
dimensions of the fields and couplings by setting the scaling
dimension of k as [k] = 1. Hence, the various engineering
dimensions are given by: [τ ] = −z = −2 (where z is the
dynamical critical exponent), [1/m] = [1/m′] = z − 2, and
[e2] = 2 z − d (before using the scaling factor Λε).

The bare Green’s function for each fermionic flavour, ob-
tained from H0, is given by

G0(k0,k) =
i k0 − |k|2

2m′ + dk · Γ

−
(

i k0 − |k|2
2m′

)2
+ |dk|2

, (96)

where |dk|2 evaluates to |k|4/(4m2). From the one-loop
fermionic self-energy, the upper critical dimension of the
interacting system described by Eq. Eq. (95) turns out to

be dc = 4 . When we derive the RG flow equations of
the model, a stable NFL fixed point in the infrared (which
is the LAB fixed point) is found to exist for d = 4 − ε
(analogous to the Wilson-Fisher fixed point of the bosonic
ϕ4-theory in 4 − ε dimensions [145]). As a result, we can
extract the critical scalings of the system by a controlled
approximation using an ε-expansion about dc [37, 39]. At
the LAB fixed point, the coupling constant e takes the value

e∗2 =
60π2 c ε

19m
. (97)

The fixed point value of the dynamical critical exponent z
is given by z∗ = 2 − 4 ε/19 [39]. It is to be noted that the
results obtained using dimensional regularization can also
be obtained by large-N methods.

Employing the Noether’s theorem [146], the current (J)
and the momentum (P) operators, associated with the in-
variance of the action of Eq. (95) under the global U(1)
symmetry and the continuous spatial translations, are given
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(a) (b) (c)

FIG. 2. Representation of the Feynman diagrams for the current-current correlator at two-loop order. Subfigures (a) and (b)
denote the diagrams with fermionic self-energy insertions, while subfigure (c) represents the diagram with the insertion of a vertex
correction.

.

by [105]

J(q0,q)

=
∑
i

∫
dk0 d

dk

(2π)d+1
ψ̃†
i (k0 + q0,k + q) [∇kd(k) · Γ] ψ̃i(k0,k) ,

P(q0,q)

=
∑
i

∫
dk0 d

dk

(2π)d+1
(k + q/2) ψ̃†

i (k0 + q0,k + q) ψ̃i(k0,k) .

(98)

Analogously, the thermal current operator can be expressed
as [106]

JQ(t,q) =
1

2

∫
ddk

(2π)d

[
∂tψ

†
i (t,k + q)

(
∇dk · Γ +

k

m′

)
ψ(t,k) + ψ†

i (t,k + q)

(
∇dk · Γ +

k

m′

)
∂tψ(t,k)

]
, (99)

where ∂tψ ≡ i [H0, ψ].

B. Optical electrical conductivity

Using the Kubo formula derived in Sec. II A [cf. Eq. (82)],
each longitudinal component of the isotropic optical con-
ductivity tensor at T = 0 is equal to [105]

σzz(ω, T ) = −⟨Jz Jz⟩ (k0)

k0

∣∣∣∣
i k0→ω+i 0+

, (100)

with Jz is given by Eq. (98). Here, the symbol ⟨· · · ⟩ de-
notes a correlator evaluated using the action in the Matsub-
ara frequency space [in particular, using the second line of
Ef. (95)]. By calculating the correlator ⟨Jz Jz⟩ in d = 4− ε
upto two-loop order (cf. Fig. 2), we obtain [105]

σzz(ω) ∼ ω1− ε
2+

5 ε
114 , (101)

This scaling dependence differs from the form ω(d−2)/z,
which indicates hyperscaling violation, similar to the NFLs
arising at hot-spots of a finite Fermi surface in a 2d fermion-
boson system [147].

C. dc electrical conductivity

To find the dc electrical conductivity, we resort to the
momery matrix formalism of Sec. II B, as we are then con-

sidering the limit T ≫ ω. We first calculate χJzPz
and

MPzPz (0) appearing in Eq. (67). For this calculation, we
work directly in d = 3, as the memory matrix approach
inherently takes care of the NFL behaviour of the system,
without the need for a controlled expansion (e.g., by us-
ing small-ε or large-N). Since we are required to provide
a mechanism of momentum relaxation via adding a weak
disorder, it is not valid in the T → 0 limit. This is because
the impurity term in Eq. (57) is a relevant perturbation
[40, 41] when we add it to the action described in Eq. (95).
Consequently, the assumption of weak disorder is valid only
in the T ≫ ω limit, where the temperature plays the role
of a cutoff in the RG flows (thus preventing the disorder
strength from flowing to nonperturbative values), and the
perturbative evaluation of the memory matrix to O

(
W 2

0

)
stands on firm ground.

While computing the momentum integrals, we are re-
quired to impose a ultraviolet (UV) cutoff Λ0 at the out-
set, which is physical since there is a natural lattice cutoff
for any solid state system. By taking into account the dia-
grams with self-energy feedback and vertex corrections (see
Fig. 2), and evaluting the corresponding integrals numeri-
cally, we have obtained σdc

zz ∼ Tnσ , where 2 ≲ nσ ≲ 4 [105].
We note that this prediction compares well with the experi-
mental data [148] for (Y1−xPrx)2Ir2O7, which predicts the
same scaling for with the value n ≈ 2.98 at zero doping
(i.e., when the chemical potential cuts the nodal point).
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FIG. 3. Electron-photon coupling vertices for the Raman response. The blue curly lines represent the incident and scattered
photons. (a) The first type of vertex represents coupling the electron’s current to a single photon, and is denoted with a black
square. (b) The second type of vertex represents coupling the electron’s charge to two photons, and is denoted by a green dot.

D. Thermal and thermoelectric response

We apply the memory matrix formalism to calculate the
thermal and thermoelectrical response, upto two-loop or-
der, by taking into account Feynmann diagrams similar to
those shown in Fig. 2. The final results are found to be
[106] are captured by

κ̄dc ∼ T−nκ , where 0 ≲ nκ ≲ 1 , (102)

αdc ∼ Tnα , where 1/2 ≲ nα ≲ 3/2 . (103)

For T < 1, although κ̄dc is suppressed as a power-law as
a function of T , αdc can be reasonably high in the same
regime. Since the experimentally relevant thermal con-
ductivity is given by κ, we compute it using Eq. (69).
The result shows that κ vanishes at leading order [106].
Consequently, in this system, the thermal conductivity at
zero electric current could potentially be dominated by the
phonon contribution, even below the Debye temperature.

Regarding the thermoelectric properties of the LAB
phase, its efficiency is better captured in terms of either
the Seebeck coefficient S = α/σdc, or the figure of merit
S2 σdc T/κ. Analyzing their scaling forms, we have found
that they can be quite high [106], which suggests that the
Luttinger semimetals might be extremely useful for ther-
moelectric applications.

E. Raman response

Raman scattering is another fundamental tool that pro-
vides valuable information about the dynamics of the sys-
tem [149–152]. A comprehensive review about this exper-
imental technique can be found in Ref. [153]. Raman ex-
periments involve the coupling of the electrons to an elec-
tromagnetic field representing the incoming and outgoing
photons. This is incorporated by adding a gauge coupling
via the Peierls substitution k → k + eA/c, where A is the
vector potential. In the resulting Hamiltonian, the terms
depending on the vector potential are given by [107]

HA =
e

c
Aα jp(k) +

e2

2 c2
ApAq γpq(k) , (104)

where jp =
kp

m′ +∂kpda(k) Γa represents the pth-component
of the current operator, and

γxx =
Γ0

m′ +

√
3 Γ4 − Γ5

2m
, γyy =

Γ0

m′ −
√

3 Γ4 + Γ5

2m
,

γzz =
Γ0

m′ +
Γ5

m
, γxy = γyx =

√
3 Γ3

m
,

γyz = γzy =

√
3 Γ1

m
, γxz = γzx =

√
3 Γ2

m
. (105)

We note that Eq. (104) gives rise to two types of electron-
photon coupling vertices. While calculating the loop dia-
grams, we find that the contributing vertices can only be
either (Γ0,Γ0) or (Γa,Γb) for a, b ∈ {1, · · · , 5}, since the
remaining cross-terms turn out to vanish identically [107].

Quantizing the vector potential, one obtains

A(k) =

√
c2

ωk V

(
êk a−k + ê∗k a

†
k

)
, (106)

where V is the volume. The operators a†q and aq are the cre-
ation and annihilation operators, respectively, of the pho-
tons with the dispersion relation ωk = c |k|, and having a
polarization direction defined by êk.

The Raman scattering cross-section within the Born ap-
proximation is given by:

d2σ

dΩ dωin
∝
∑
F,I

exp(−βEI)

Z
|MFI |2 δ(EF + ωfi − EI − ωin) ,

(107)

where I and F represent the initial and final states of the
Luttinger semimetal, Z is the (canonical) partition func-
tion, and MFI = ⟨F |M | I⟩, where M is the effective
light-scattering operator. The summation over F and I
stands for a thermodynamic average over all possible ini-
tial and over final states of the system, possessing energies
EI and EF , respectively, with the momentum vectors in-
side the solid angle element dΩ. Moreover, ω = ωin − ωfi is
the frequency and q is the momentum transferred by the
photons.

We define the operators ρ0 = ψ† ψ and ρa = ψ† Γaψ,
since their two-point correlators will contribute to the Ra-
man response |MFI |2. If we consider scattering in the
visible range, a good approximation for the relevance of
such a quantity is the zero momentum limit. Hence, we
will focus on expressions for the correlators ⟨ρ0 ρ0⟩ (k0) and
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FIG. 4. Feynman diagram for the contribution to the Raman response at one-loop order.

(a) (b) (c)

FIG. 5. Feynman diagrams for the contributions to the Raman response at two-loop order, with subfigures (a) and (b) representing
the self-energy corrections, and subfigure (c) depicting the vertex correction.

⟨ρa ρb⟩ (k0) upto the two-loop order. The Feynman dia-
grams for computing |MFI |2 involve vertices of two types,
as depicted in Fig. 3. However, only diagrams consisting
solely of green vertices involve non-resonant scatterings,
while the others give rise to resonant and mixed scatterings
which can be neglected in the low-energy limit [153]. Con-
sequently, we consider here only the leading-order Feynman
diagrams for |MFI |2 contributed by the non-resonant scat-
terings.

In the T = 0 limit, we employ the ε-expansion at the NFL
fixed point to evaluate the relevant correlators. Figs. 4 and
5 show the Feynman diagrams at the one-loop and two-loop
orders, respectively. The final results come out to be [107]:

⟨ρa ρb⟩(ω) = 0 ,

⟨ρa ρb⟩(ω) ≃ −m
2− ε

2 |ω|1− ε
2+

ε
38 δab

10π

(m
Λ2

) ε
38

. (108)

This shows that the Raman response in the LAB phase

should scale as |ω|1−ε/2+ε/38 ε=1
= |ω|1/2+1/38, in the regime

where ω ≫ T .

Next, we review our results illustrating the behavior ob-
tained for the Raman response in the T ≫ ω regime. For
this part, analogous to the calculations for the generalized
conductivity tensors, we use the memory matrix formalism.
As explained in Se, II B, the existence of a nearly-conserved
operator is essential for applying the memory matrix for-
malism, which we have taken to tbe the momentum so far.
However, the momentum operator turns out to have no
influence on the Raman response [122], because it has no
overlap with the operators {ρa}. For this reason, we use
here ρa itself for computing the Raman response, since it
is also a nearly conserved operator in the presence of weak
disorder. Therefore, we set O = ρa in Eq. (59), and the
time evolution of ρa is given by ρ̇a = i [H0 +Himp, ρa].

The Raman response at T > 0 is defined as [121, 122]

DRaman(ω, T ) = i ω Υ̃ρaρb
(ω) , (109)

which can be approximated as

DRaman(ω, T ) ≈ χρaρb

i ω

Mρbρb
(ω) − i ω χρbρb

χρbρa
. (110)

In this case, the memory matrix has the components

Mρaρb
(ω) ≈ Im G̃R

ρ̇aρ̇b
(ω, T )/ω , (111)

for small ω-values. For the LAB phase, the above expres-
sion reduces to

Mρaρb
(ω) =

W 2
0

ω

∫
d3k

(2π)3
Im Π̃R

ab(ω,k) , (112)

where

Π̃R
ab(ω,k) = Π̃ab(k0,k)|i k0→ω+i 0+ , and

Π̃ab(k0,k)

= −T
∑
q0

∫
d3q

(2π)3
Tr[ ΓaG0(q0 + k0,q + k) ΓbG0(q0,q) ] .

(113)

At low frequencies and finite temperatures, the real part
can be approximated by its ω ⇒ 0 value, which vanishes
as a power law of T [121]. Therefore, we focus on the
imaginary part, which, using the fact that χρaρb

∝ δab,
takes the form [107]

ImDRaman(ω, T ) =
ωMρaρa χ

2
ρaρa

ω2 χ2
ρaρa

+M2
ρaρa

≡ ω Γ̃χρaρa

ω2 + Γ̃2
,

Γ̃ = Mρaρa
χ−1
ρaρa

. (114)

Fig. 6 shows a representative behaviour of ImDRaman(ω, T ).
From the nature of the curves, we can clearly see that
the Raman response in the LAB phase exhibits a quasi-
elastic peak at ω ≈ ωmaxReMρaρa

(0)/χρaρa
, with a peak-

height equal to χρaρa
/2. The static susceptibility, to the

leading order, can be fitted to the functional form of
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FIG. 6. Raman response as a function of frequency ω, for some representative values of the temperature T (as shown in the
plotlegends). The chosen parameter values for numerical evaluation are Λ0 = 10, m = 1, m′ = 2, e2/c = 1, and W0 = 1. The
parameters T and ω are in units of EΛ = Λ2

0/(2m), which is the ultraviolet energy cutoff used. EΛ is of the order of the energy
scale upto which the dispersion of the conduction and valence bands can be taken to be quadratic in the vicinity of the nodal point
of the Lutiinger semimetal.

χρaρa
≃ a1 + a2 T

1/2 + a3/T , where a1, a2, and a3 cor-
respond to temperature-independent constants. Further-
more, Mρaρa

(0) is either T -independent, from a numerical
point of view, or displays an extremely weak T -dependence,
which is not observed within our numerical accuracy [107].

F. Shear viscosity and entropy density

In the hydrodynamic regime, shear viscosity η is one of
the fundamental physical properties that describe the in-
herent characteristics of the system. In fluid mechanics, for
example, η determines whether the hydrodynamic flow will
be laminar or turbulent. In strongly correlated systems, η
takes an even more important role — it expressess the de-
gree of many-body quantum entanglement of the electronic
phase. In a landmark paper by Kovtun, Son and Starinets
[123], the authors have shown (by employing the AdS/CFT
correspondence) that in strongly-interacting quantum field
theories, the ratio of t η with the entropy density s satisfies
an inequality given by (η/s) ≥ ℏ/(4πkB). If the univer-
sal lower bound is approximately saturated, the system is
said to exhibit the “minimal-viscosity scenario”. Important
examples of systems that satisfy the lower band include
quark-gluon plasma [123] generated in heavy-ion colliders,
ultracold quantum gases trapped in optical lattices tuned
to the unitary limit [154], and ultraclean graphene in the
vicinity of the charge neutrality point [155]. Here, we re-
view our results for η and s for the LAB phase.

Using the Kubo formula [156, 157], the isotropic optical
shear viscosity in the T = 0 limit is given by

η(ω) = lim
q→0

⟨Txy Txy⟩(ω,q)

ω

= lim
q→0

⟨Tyz Tyz⟩(ω,q)

ω

= lim
q→0

⟨Tzx Tzx⟩(ω,q)

ω
, (115)

where Tµν is the stress tensor. The variables µ and ν span

over the Matsubara frequency and the spatial components.
For the LAB phase, the stress tensor takes the form

Tµν(q0,q) =

∫
dk0 d

3k

(2π)4
(kν + qν/2) ψ̃†(k0 + q0,k + q)

× [∂kµ(dk · Γ)] ψ̃(k0,k). (116)

Evaluating the above expression using the fixed-point ac-
tion, the optical viscosity is found to scale as [107]

η(ω) ∼ ω2− ε
2−

367 ε
2736 . (117)

Comparing with Eq. (84), we find that there is a small
hyperscaling violation proportional to ε.

Using the memory matrix formalism, the temperature-
dependent isotropic shear viscosity is given by [107]

η(ω, T ) =χTpqTpq

[
1

MTpqTpq
− i ω χTµνTpq

]
χTpqTpq

, (118)

We point out that, here, we have used the fact that the
stress tensor turns out to be another nearly-conserved op-
erator for the LAB phase in the limit of weak disorder [107].

In the dc limit, we obtain

ηdc(T ) = χ2
Tzx Tzx

/MTzx Tzx
. (119)

In Ref. [107], we have evaluated the right-hand-side to get
the result

ηdc ∼ Tλ, (120)

where λ turns out to be a non-universal exponent lying
within the range 0 < λ < 1.

The next step is to calculate the free energy at T > 0.
Since the bosons have no dynamics, the contributions to
this quantity come only from the free fermions and the
perturbative corrections due to the Coulomb interactions
[107]. We compute the latter by using the ε-expansion
about dc = 4. The contribution from the free fermions
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is given by ∆F (0) = F (0) − F (0)(0), where

∆F (0) = −2

∫
ddk

(2π)d

[
T
∑
l=±

ln

(
1 + e−

l |k|2
2mT

)
− |k|2

2m

]
,

(121)

where we must subtract the contribution from the T -
independent ground state energy, and include a factor of
2 to account for the double-degeneracy of the bands. This
final result takes the form [107]

∆F (0) ≃ − η̄(3) (mT )
3− ε

2

π2m
− 3 ζ(3) (mT )

3− ε
2

4π2m
, (122)

with η̄(u) =
∫ ∞
0

dt tu−2 ln(1+e−u)
Γ(u−1) symbolizing the Dirichlet

eta function, and we have set ε = 0 in the numerical prefac-
tors of the scaling arguments. The lowest-order correction
in the free energy due to the Coulomb interaction reads
[107]

Fint =
e2 Λε T 2

c

×
∑

Ωn, ωn′

∫
ddq ddk

(2π)2d
Tr [G(ωn′ + Ωn,k + q)G(ωn′ ,k)]

|q|2 ,

(123)

where ωn′ and Ωn represent the fermionic and bosonic Mat-
subara frequencies, respectively. Setting d = 4−ε, we need
to isolate the contributions due to poles in the parameter ε.
To lowest order in ε, these poles are obtained by evaluating
one Matsubara frequency sum at T > 0 exactly, and the
other one as an integral in the limit of T → 0. Employing
these steps, we get the final scaling form of the free energy
as [107]

F ≃ −3 ζ(3)m2− ε
2 T 3− ε

2−
4 ε
19

4π2

(
Λ2

m

) 4 ε
19

. (124)

Extrapolating our results to the physical scenario of d = 3,
we find that the free energy scales as

F (T ) ∼ T 3− ε
2−

4 ε
19

ϵ=1
= T

5
2−

4
19 . (125)

This implies that the specific heat scales as

C(T ) ∼ T 2− ε
2−

4 ε
19

ϵ=1
= T

3
2−

4
19 . (126)

Comparing with Eq. (80), and taking into account the fixed
point value z∗ = 2− 4 ε

19 for the dynamical critical exponent,
we find that there is a hyperscaling violation, which is pro-
portional to ε.

Using the fact that the entropy density is the derivative
of the free energy with respect to the temperature, we get
s ∼ T 2− ε

2−
4 ε
19 . Setting d = 3 (i.e., ε = 1), this leads to

s ∼ T 2− 27
38 . (127)

Therefore, (
ηdc

s

)
∼ Tλ− 49

38 , (128)

which indicates that η/s always tends to diverge at low
temperatures, rather than saturating to a constant univer-
sal value. This divergent behavior bears some resemblances
to the result found in the finite Fermi suface NFL arising
at the Ising-nematic critical point [33]. In that particu-
lar scenario, the divergence emerges due to the violation
of the hyperscaling property, whose origin can be related
to the presence of a finite sharply-defined Fermi surface.
We would like to point out that this divergent behavior of
η/s, as a function of T , contrasts with the results obtained
in Refs. [139, 158] which employed a quantum Boltzmann
equation method.

IV. DISCUSSION AND OUTLOOK

In this review, we have examined the recent progress
in constructing non-quasiparticle transport theories, which
can be applied to various NFL phases. In particular, we
have identified the Kubo formalism and the memory ma-
trix approach as two useful framewoeks to extract the trans-
port properties. As an application of these two methods,
we have demonstrated the computation of generalized con-
ductivity tensors, Raman response, freen energy, viscosity,
and entropy density. in the so-called LAB phase of the Lut-
tinger semimetals acted upon by unscreened Coulomb in-
teractions. We have discussed the history and phenomenol-
ogy of identifying the materials harbouring the LAB phase.

Overall, the investigation of NFL phases arising in nodal-
point semimetals has seen great progress over the last
decade. From a more theoretical standpoint, some future
directions worthy of investigations are as follows:

1. The effect of phonons as a relaxation mechanism as
a function in the finite-temperature transport prop-
erties is a very important aspect. As we have seen in
our discussions for the LAB phase, phonons are ex-
pected to be relevant for some of the response char-
acteristics. We would like to point out that this is in
accord with the results reported in recent experimen-
tal works [159].

2. Finding a way to go beyond the weak disorder ap-
proximation usually used in the memory matrix for-
malism, when we want to slowly relax one of the con-
served charges. One way to do so might be to follow in
the footsteps of the SYK-Yukawa models [64–66, 68]),
where an exact treatment of the effects of disorder
have been achieved in the large-N limit.

3. The calculation of other fundamental magnetotrans-
port coefficients like the planar Hall and planar ther-
mal Hall effects [160–164], Nernst response [47, 165,
166], Magnus Hall effect [167–169], to name a few.

4. Computation of many-body quantum chaos param-
eters, such as the Lyapunov exponent λL and the
“butterfly-effect” velocity vB , by using the out-of-
time-order correlators (OTOCs) [170], for example.
Although these quantities are not experimentally
measured, it was proposed in Refs. [171, 172] that
they are related to important physical quantities such
as the charge and energy diffusivities. The inverse of
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the Lyapunov exponent represents the time in which
the quantum information, associated with a local per-
turbation, gets “scrambled” into non-local degrees of
freedom. On the other hand, vB refers to the speed
at which the effects of such a perturbation propagate
in the system. Recently, Maldacena et al. [173] has
shown that the Lyapunov time, τL ≡ 1/λL, satis-
fies the inequality τL ≥ ℏ/(2πkBT ). The Lyapunov
time saturates to the universal lower bound of the in-
equality in scenarios like the SYK model [174], and if
the corresponding quantum field theory is holograph-
ically dual to a black hole [175] and also .

On the experimental front, although some recent explo-
rations [84, 159, 176, 177]) have found smoking-gun signa-
tures that might turn out to be precursors to the physics
of the LAB state, there is still no unambiguous evidence
for the NFL phase appearing at the nodal point. More
precise experiments are needed in this direction. Apart
from the predictions for several transport signatures that
we have reviewed here, other complementary charcateris-
tics, amenable to experimental measurements, will provide

important information about these systems. One import-
nat tool might be to apply the angle-resolved photoemis-
sion spectroscopy (ARPES) technique [178], that measures
the single-particle lifetime for the low-energy excitations
in the system. In such an experiemnt, a strong departure
from the Fermi liquid behavior should be detected if the
NFL phase can be accessed. Another promising experi-
mental technique is the momentum-resolved electron en-
ergy loss spectroscopy (M-EELS) [179–181], that probes
the dynamic charge response resolved in momentum.
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M. Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z. Z. Li,
P. Auban-Senzier, N. Doiron-Leyraud, P. Fournier, D. Col-

https://doi.org/10.1016/0550-3213(94)90158-9
https://doi.org/10.1016/0550-3213(94)90477-4
https://doi.org/10.1103/PhysRevB.73.085101
https://doi.org/10.1103/PhysRevB.73.085101
https://doi.org/10.1103/PhysRevB.82.045121
https://doi.org/10.1038/nature11732
https://doi.org/10.1103/PhysRevB.82.075127
https://doi.org/10.1103/PhysRevB.82.075128
https://doi.org/10.1103/PhysRevB.88.045127
https://doi.org/http://dx.doi.org/10.1016/j.aop.2014.09.021
https://doi.org/http://dx.doi.org/10.1016/j.aop.2014.09.021
https://doi.org/10.1103/PhysRevB.90.045121
https://doi.org/10.1103/PhysRevB.90.045121
https://doi.org/10.1103/PhysRevB.88.245106
https://doi.org/10.1103/PhysRevB.88.245106
https://doi.org/10.1103/PhysRevB.91.125136
https://doi.org/10.1103/PhysRevB.91.125136
https://doi.org/10.1103/PhysRevB.92.035141
https://doi.org/10.1140/epjb/e2016-70509-4
https://doi.org/10.1140/epjb/e2016-70509-4
https://link.aps.org/doi/10.1103/PhysRevB.92.075123
https://link.aps.org/doi/10.1103/PhysRevB.92.075123
https://link.aps.org/doi/10.1103/PhysRevB.93.115144
https://doi.org/10.1103/PhysRevB.94.045133
https://doi.org/10.1103/PhysRevB.94.115138
https://doi.org/https://doi.org/10.1016/j.aop.2016.11.009
https://doi.org/https://doi.org/10.1016/j.aop.2016.11.009
https://doi.org/10.1146/annurev-conmatphys-031016-025531
https://doi.org/10.1146/annurev-conmatphys-031016-025531
https://doi.org/10.1103/PhysRevB.98.024510
https://doi.org/10.1103/PhysRevB.98.024510
https://doi.org/10.1103/PhysRevResearch.2.043277
https://doi.org/10.1103/PhysRevResearch.2.043277
https://arxiv.org/abs/2403.02322
http://dx.doi.org/10.1103/RevModPhys.94.035004
https://doi.org/10.1103/PhysRevB.75.024515


20

son, L. Taillefer, and C. Proust, Universal T-linear resis-
tivity and Planckian dissipation in overdoped cuprates,
Nature Physics 15, 142 (2018).

[27] J. Ayres, M. Berben, M. Čulo, Y.-T. Hsu, E. van Heumen,
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