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In pursuit of neuromorphic (brain-inspired) devices, memristors (memory-resistors) have emerged as promis-
ing candidates for emulating neuronal circuitry. Here we mathematically define a class of Simple Volatile
Memristors (SVMs), which notably includes various fluidic iontronic devices that have recently garnered sig-
nificant interest due to their unique quality of operating within the same medium as the brain. We show that
symmetric SVMs produce non self-crossing current-voltage hysteresis loops, while simple asymmetric SVMs
produce self-crossing loops. Additionally, we derive a general expression for the enclosed area in a loop, pro-
viding a relation between the voltage frequency and the SVM memory timescale. These general results are
shown to materialise in physical finite-element calculations of microfluidic memristors. An SVM-based circuit
has been proposed that exhibits all-or-none and tonic neuronal spiking. We generalise and analyse this spiking
circuit, characterising it as a two-dimensional dynamical system. Additionally, we demonstrate that stochastic
effects can induce novel neuronal firing modes absent in the deterministic case. Through our analysis, the circuit
dynamics are well understood, while retaining its explicit link with the physically plausible underlying system.
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1 Introduction

The rapid advancement and widespread deployment of
computing devices, especially in the realm of Artificial In-
telligence, have led to an exponential and unsustainable in-
crease in energy consumption, posing a critical challenge for
future advancements of computation [1]. Neuromorphic com-
puting, inspired by the human brain’s remarkable capabili-
ties and energy efficiency, is one of the promising pursuits
to tackle this in contemporary computational research [2–4].
To this end, memristors (memory resistors) have emerged as
promising candidates [5, 6] due to their analogous behaviour
to biological synapses, the connections between neurons, and
to neuronal ion channels that enable signal propagation within
individual neurons [7]. The conductance of a memristor can
be tuned, either in a non-volatile or a volatile way, where
a non-volatile memristor will retain its altered conductance
and a volatile memristor will dynamically relax back to its
equilibrium state when external driving forces are removed
[8]. Among the diverse types of memristors, fluidic iontronic
memristors have recently garnered significant interest [9–13],
with recent advances in novel devices [14, 15], proposals for
artificial neuronal spiking circuits [16–19] and initial demon-
strations of neuromorphic computations [20]. These memris-
tors can emulate the behaviour of biological neurons while
operating in the same environment as the brain, offering the
possibility for multiple information carriers in parallel, chem-
ical regulation, and bio-integrability [21].

In this work, we introduce a general class of Simple Volatile
Memristors (SVMs). This class of SVMs not only includes
various volatile fluidic memristors [14, 17, 18, 20], but also
memristors naturally appearing in plants [22]. The work we
present here is of a generic mathematical nature, however we
also provide a clear and explicit link to a physical iontronic
model system and verify our predictions with physical nu-
merical calculations of memristive microfluidic ion channels.
These simulations solely incorporate the physical equations

governing the device dynamics and include no explicit prior
knowledge of the generic mathematical framework presented
in this work. In our comparison to physical devices, our fo-
cus is specifically directed towards fluidic iontronic memris-
tors as these devices are the topic of much recent research, as
discussed above.

We begin with introducing the class of SVMs in Sec. 2,
the definition of which is based on natural characteristics of
generic volatile memristors. A standard feature of memris-
tors is the pinched hysteresis loop that emerges in the current-
voltage diagram when a periodic potential is applied [24]. In
Secs. 3 and 4 we will make various general statements about
the hysteresis loops that emerge from SVMs. In Sec. 3 we
demonstrate a relation between the spatial symmetry of an
SVM and the type of current-voltage hysteresis loops that
emerge from it. Specifically, we establish that spatially sym-
metric SVMs consistently display hysteresis loops that are
not self-crossing in the origin, in contrast to their asymmet-
ric counterparts which produce self-crossing loops under rea-
sonable assumptions. This prediction is shown to materialise
in physical simulation results of symmetric and asymmetric
memristive microchannels. In Sec. 4, we will derive a general
expression for the area enclosed within the current-voltage
hysteresis loop and show that the frequency of the periodic po-
tential for which this area is maximal can be predicted when
the steady-state conductance of an SVM is known. The en-
closed area is (typically) maximal when 2π f τ ≈ 1, with f
the (dimensional) frequency of the applied (sinusoidal) volt-
age and τ the memory timescale of the device. For steady-
state conductances that are linear functions of the voltage, the
relation 2π f τ = 1 is exact. Since pinched hysteresis loops are
a standard feature to investigate for memristors [24], our re-
sult provides a straightforward method to use experimentally
observed hysteresis loops to determine the memory timescale
τ of the device, a method already shown to be of value [20].
Conversely, if an estimate for τ is already known, then experi-
ments can be sped up significantly by directly pinpointing the
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SVMs

(a) (b) (c)

FIG. 1. SVMs have been shown to include various distinct memristive devices. A few examples include (a) conical microchannels containing
an aqueous electrolyte [17, 18], (b) naturally occurring memristors in plants [22], and (c) fluidic channels containing a Nanochannel Network
Membrane embedded within a colloidal structure [20, 23].

optimal frequency regime.
Expanding our investigation to SVM based applications,

we shift our attention in Sec. 5 to a recently proposed flu-
idic iontronic circuit that exhibits characteristic features of
neuronal communication in the form of all-or-none action
potentials and spike trains [17]. We convert the originally
four-dimensional system of equations to a two-dimensional
dynamical system containing containing merely four param-
eters. This system is reminiscent of the FitzHugh-Nagumo
[25, 26] and Morris-Lecar [27] models, while being com-
pletely physically plausible due to its direct derivation from
physical equations. Additionally, we will show that the inclu-
sion of voltage noise, inherently present in any circuit [28],
enables new characteristic features of neuronal spiking that
are not present in the deterministic case.

Given that various memristors were already found to be
well described by the SVM class we define in Sec. 2 [14, 17,
18, 20, 22], it is reasonable to expect that new devices will be
presented in the future that will also fall within our definition
of SVMs. The properties we derive here will then automati-
cally hold for such new devices, so our work here can provide
clear insights into future memristors and the spiking circuits
they possible enable. Therefore, the results we derive here
form a step towards a constructive frameworks for this class
of memristors, which could be of particular value to the newly
emerging field of fluidic iontronic neuromorphic devices.

2 Simple Volatile Memristors

The dynamic conductance g(t) of volatile memristors dy-
namically transitions to some steady-state conductance h and
reverts back to its equilibrium conductance if external driving
forces are removed. In the case of a voltage-driven memristor,

the steady-state conductance is determined by the voltage V
over the memristor, i.e. h = h(V ) [24]. Since volatile mem-
ristors transition to their steady-state conductance for a given
voltage, a natural assumption is that the time-derivative ġ of
a volatile memristor equals some function f of the difference
h(V (t))−g(t), i.e.

dg(t)
dt

= f
(
h(V (t))−g(t)

)
.

For stability arguments, under the above assumption, it must
hold that f (0) = 0. However, system dynamics can be notori-
ously difficult physics problems, so the full form of f is often
unknown. Let us therefore expand f to first order, yielding

dg(t)
dt

= f (0)+
h(V (t))−g(t)

τ
+O

(
(h(V (t))−g(t))2),

where f ′(0) = τ−1 and O
(
(h(V (t))−g(t))2

)
indicates higher

order terms. The unknown factor τ must be some timescale
on the basis of its dimensionality, which we can absorb in our
time variable t/τ → t to obtain a dimensionless time. With
this we arrive at the simple expression ġ(t) = h(V (t))− g(t).
Because this description entails volatile memristors with a
simple decay towards some steady-state conductance h(V (t)),
we name the class of memristor described by this method as
Simple Volatile Memristors (SVMs). The full definition of an
SVM is laid out below in Def. 1.

Definition 1. A Simple Volatile Memristor (SVM) exhibits a
dynamic conductance g(t) that traces a steady-state conduc-
tance h(V (t)) such that the current through the SVM Im(t)
and the dynamic conductance upon applying a voltage V (t)
are described by 

Im(t) = g(t)V (t), (2.1)
dg(t)

dt
= h(V (t))−g(t), (2.2)
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with h(x) an analytical function which, without loss of gener-
ality, we consider to be of the form

h(x) =

(
1+

∞

∑
i=1

α2i−1x2i−1 +
∞

∑
j=1

β2 jx2 j

)
, (2.3)

with x ∈R, and αi,β j ∈R for all i, j ∈ N.

It is straightforward to check that Def. 1 forms a subclass of
the general definition of voltage-driven memristors [24].

Via Eq. (2.3) we can make a link to the symmetry of the
memristor. A symmetric SVM must exhibit the same equation
of state h(V ) for a potential of V and −V (i.e. h(V ) = h(−V )),
since changing the sign is equivalent to switching the two ter-
minals of the SVM. Since the sign of the potential can have no
impact, we can conclude that all αi = 0 for a symmetric SVM.
This is how we will distinguish between symmetric and asym-
metric SVMs as defined in Def. 2.

Definition 2. A symmetric SVM is an SVM as in Def. 1 such
that α2i−1 = 0 as in Eq. (2.3) ∀i ∈ N. An asymmetric SVM
is an SVM such that there exists an index i ∈ N such that
α2i−1 ̸= 0 as in Eq. (2.3). A simple asymmetric SVM is an
asymmetric SVM such that h(x) ̸= h(y) for all x> 0 and y< 0.

We note that asymmetric physical SVMs presented so far are
often also simple asymmetric SVMs [17, 18, 20, 22].

The formulation in Def. 1 has been successfully applied
to quantitatively describe various fluidic iontronic memristors
[14, 17, 18, 20] and has also been applied in the modelling
of memristors that naturally appear in plants [22]. Therefore,
depending on the form of h(V (t)), SVMs include a variety of
memristors. It should be noted that ordinarily the dynamic
variable of a memristor is some internal state variable which
then in turn determines the conductance, while Def. 1 treats
the conductance itself directly as the dynamic variable. Within
our SVM framework, it is in fact also possible that there is an
internal physical state parameter which is equal to the con-
ductance up to a multiplicative factor [17, 20], meaning that
Def. 1 still applies while the actual dynamical variable is some
internal (physical) state of the memristor.

In experiments, a periodic sweeping potential V (t) is typi-
cally imposed which creates a pinched hysteresis loop in the
current-voltage (I −V ) plane, the hallmark of a memristor
[24]. In Def. 3 we define the class of potentials V (t) that in-
cludes virtually all signalling waveforms used to create hys-
teresis loops.

Definition 3. A sweeping potential V : R → R is a T -
periodic smooth bounded function with bounded derivatives,
with V (t) = 0 exactly twice per period at times t1 and t2 =
t1 +T/2 and which is differentiable in t1 and t2. An antisym-
metric sweeping potential additionally satisfies that V (t) =
−V (t +T/2) for all t.

Although square and sawtooth waveforms are not differen-
tiable in both t1 and t2, they can be approximated arbitrarily
closely by smooth harmonics. Therefore Def. 3 effectively
includes most typical signalling waveforms such as sine, tri-
angle, square, and sawtooth waves.

The dynamics conductance and current in Def. 1 can be
written in an integral form, where we can fix the integra-
tion constant using the periodicity of a sweeping potential.
Eq. (2.2) has the general solution

g(t) = e−t
∫ t

0
h(V (s))esds+ e−tg(0), (2.4)

where g(0) is an integration constant. The periodicity of a
sweeping potential V (t) results (after all transients have de-
cayed) in a periodic conductance, i.e. g(t) = g(t + T ) [29].
By using that g(0) = g(T ) we calculate

g(0) = e−T
[∫ T

0
h(V (s))esds+g(0)

]
,

g(0) =
∫ T

0 h(V (s))esds
eT −1

.

Now that we have expressions for g(t) and g(0) (in the case
of a periodic V (t)), we can calculate the current through the
memristor Im(t) = g(t)V (t) with the following expression

Im(t) =V (t)e−t
[∫ t

0
h(V (s))esds+g(0)

]
. (2.5)

Once we know the function h, i.e. the steady-state conduc-
tance, we can evaluate Eqs. (2.4) and (2.5) to calculate the dy-
namic conductance g(t) and current Im(t) for a V (t) of choice.

2.1 Connection to a physical SVM

To make the connection to a physical SVM example ex-
plicit, we link our general model to (conical) microfluidic ion
channels, iontronic model systems that have been extensively
studied experimentally [30–36] as well as numerically [37–
41], with several analytical descriptions for the static proper-
ties of the channel [42–45]. Specifically, we consider axisym-
metric tapered channels of length L with a charged surface
connecting two electrolyte reservoirs. Recently the analytical
understanding of such conical channels was extended to its
conductance dynamics [17], for which the framework laid out
in Def. 1 was used.

Ref. [17] focuses on a physical device and hence the used
quantities are in physical and not dimensionless units. Here
we delineate how to transform the dimensionless mathemati-
cal results into the relevant physical dimensions correspond-
ing to a conical channel, making the practical applicability
and interpretation of the results presented in this work ex-
plicit. The dynamical conductance of a single conical chan-
nel was found to be well described by τ ġs(t) = g0h∞(Vs(t))−
gs(t), describing a relaxation to the steady-state conductance
g0h∞(Vs(t)) depending on the voltage Vs(t) over the channel
over a timescale τ , with g0 being the steady-state Ohmic con-
ductance of the channel when no voltage is applied. We see
that it is straightforward to write this equation in dimension-
less form in agreement with Def. 1 by converting to dimen-
sionless time t/τ , dimensionless conductance gs/g0, and di-
mensionless voltage V/Vr, with Vr = 1 V a reference voltage
indicating a typical voltage scale that emerges from the circuit
presented in Ref. [17].
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3 The (a)symmetry of SVMs

Memristors are characterized by an emerging hysteresis
loop in the current-voltage (I −V ) plane when a periodic po-
tential is applied that is pinched in the origin [24]. At this
pinch, the loop can be self-crossing or not. A memristor that
produces a self-crossing loop is named a type I memristor and
a type II memristor produces a loop which does not cross it-
self, but rather has opposite tangent trajectories at the pinch
[46]. Here we show that whether an SVM is of type I or II
depends on the symmetry of the device. With the help of the
tangent vector γ⃗(t) of the hysteresis loop in the I −V plane
we can investigate these classifications. This tangent vector is
given by

γ⃗(t) =


dIm(t)

dt
dV (t)

dt

 .

Let us first give some more rigorous definitions of type I and
type II memristors below in Def. 4.

Definition 4. Let V (t) be a sweeping potential as in Def. 3.

• An SVM is of type I if and only if ∀λ ∈ R\{0} it holds
that γ⃗(t1) ̸= λ γ⃗(t2).

• An SVM is of type II if and only if ∃λ ∈ R\{0} such
that γ⃗(t1) = λ γ⃗(t2).

Note that the class of periodic potentials V (t) as defined in
Def. 4 includes any harmonic waveform that has precisely one
distinct positive area and precisely one distinct negative area
per period.

3.1 Relation between type of SVMs and their
symmetry

In the next two lemmas we prove that Symmetric SVMs are
of type II and that simple asymmetric SVMs are of type I.

Lemma 1. Let V (t) be an antisymmetric sweeping potential
as in Def. 3, then a symmetric SVM as in Def. 2 is of type II.

Proof. Let us start by calculating γ⃗(t) in t1 and t2, which yields

γ⃗(t1) =

(
g(t1)V̇ (t1)

V̇ (t1)

)
, γ⃗(t2) =

(
g(t2)V̇ (t2)

V̇ (t2)

)
,

where we used that V (t1) = V (t2) = 0. Since αi = 0 for all
i in Eq. (2.3), h is T/2-periodic as h solely contains even
powers of V (t) and V (t) =−V (t +T/2) for all t for antisym-
metric sweeping potentials. So Eq. (2.2) is a nonautonomous
ordinary differential equation with T/2-periodic parameters,
therefore there exists a unique, T/2-periodic solution g(t)
[29]. Since g(t) is T/2-periodic and t1 = t2 +T/2, it follows
directly that g(t1)= g(t2). Now choose λ = V̇ (t1)/V̇ (t2), from
which it follows that γ⃗(t1) = λ γ⃗(t2) and we conclude that the
SVM is of type II.

Lemma 2. Let V (t) be a sweeping potential as in Def. 3, then
a simple asymmetric SVM as in Def. 2 is of type I.

Proof. For all t− ∈ (t1 − T/2, t1) and all t+ ∈ (t1, t1 + T/2)
we know that sgn(V (t+)) = −sgn(V (t−)). Therefore either
h(V (t+)) < h(V (t−)), or h(V (t+)) > h(V (t−)), for all t− ∈
(t1 −T/2, t1) and all t+ ∈ (t1, t1 +T/2). With this in mind we
can define the following integrals G+ and G− and conclude
that they must be unequal

G− =
∫ t1

t1−T/2
h(V (s))esds,

G+ =
∫ t1

t1−T/2
h(V (s+T/2))esds ̸= G−.

We then calculate g(t2 −T ) and g(t2)

g(t2 −T ) =e−t1+T/2
∫ t1−T/2

0
h(V (s))esds+ e−t1+T/2g(0)

=e−t1+T/2
[∫ t1

0
h(V (s))esds−

∫ t1

t1−T/2
h(V (s))esds

]
+ e−t1+T/2g(0)

=eT/2g(t1)− e−t1+T/2g(0)

− e−t1+T/2
∫ t1

t1−T/2
h(V (s))esds+ e−t1+T/2g(0)

=eT/2g(t1)− e−t1+T/2G−

A similar calculation for g(t2) yields

g(t2) =e−t1−T/2
∫ t1+T/2

0
h(V (s))esds+ e−t1−T/2g(0)

=e−t1−T/2
[∫ t1

0
h(V (s))esds+

∫ t1+T/2

t1
h(V (s))esds

]
+ e−t1−T/2g(0)

=e−T/2g(t1)+ e−t1−T/2
∫ t1

t1−T/2
h(V (s+T/2))es+T/2ds

=e−T/2g(t1)+ e−t1 G+

By then adding g(t2 −T )e−T/2 and g(t2) we obtain

g(t2)+g(t2 −T )e−T/2 =g(t1)− e−t1 G−+ e−T/2g(t1)+ e−t1G+.

Since h(V (t)) is T -periodic, so is g(t), thus g(t2 −T ) = g(t2)

g(t2)(1+ e−T/2) =g(t1)(1+ e−T/2)+ e−t1 (G+−G−)

As we saw in the beginning of this proof G+ ̸= G− so

e−t1 (G+−G−) ̸= 0 =⇒ g(t1) ̸= g(t2).

We already calculated γ⃗(t) in t1 and t2 in the proof of Lemma
1. It is clear that ∀λ ∈ R\{0} it holds that γ⃗(t1) ̸= λ γ⃗(t2) if
g(t1) ̸= g(t2). We conclude that a simple asymmetric SVM as
in Def. 2 is of type I.
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FIG. 2. I −V diagrams of SVMs with V (t) = sin(ωt) with ω = 2π/T , T = 2π , and h(V (t)) = 1+αV (t)+βV (t)2 for (a) α =−2/3, β = 0
and (b) α = 0, β =−2/3. This corresponds to (a) a simple asymmetric SVM and (b) a symmetric SVM, where we see the asymmetric SVM
is of type I in agreement with Lemma 2 and that the symmetric SVM is of type II in agreement with Lemma 1.

Lemmas 1 and 2 nicely explain the observation on how dif-
ferent iontronic memristors produce different I−V hysteresis
loops remarked in Ref. [47], where we now identify the device
(a)symmetry as the relevant discerning factor (provided the
iontronic device is an SVM). In the case of Lemma 1 the re-
sult is not surprising, as it is intuitive that a symmetric device
will yield point symmetric (type II) I −V diagrams for anti-
symmetric sweeping potentials, whereas Lemma 2 provides
some less trivial criteria for the case of when an SVM is of
type I (see, e.g. Remarks 1 and 2). In Sec. 3 .3 we provide a
physical example of Lemmas 1 and 2 by evaluating numeri-
cal simulations of (a)symmetric fluidic channels, showing that
they indeed are of type (I) II.

Remark 1. In the case of antisymmetric sweeping potentials,
to prove Lemma 2 the constraint for simple asymmetric SVMs
on h that h(x) ̸= h(y) for x > 0 and y < 0 can be relaxed to
either of the two alternative constraints:

1. h(x) ̸= h(−x), for all x > 0.

2. There is only one i ∈ N such that αi ̸= 0.

These alternative constraints would also ensure that G+ ̸=G−,
the rest of the proof goes the same. This is relevant since
various typical signalling waveforms, such as sine, triangle,
and square waves are also antisymmetric sweeping potentials.

Remark 2. Not all asymmetric SVMs will be self-crossing in
the origin. For example, we can pick specific V (t), α1, and α3
such that the corresponding terms precisely cancel out in the
integrals G+ and G−, which implies that g(t1) = g(t2). How-
ever this would require rather convoluted steady-state conduc-
tances h(V ), not often reported in the physical SVMs pre-
sented thus far.

3.2 Solving an SVM example

Let us calculate the memristor current Im(t) for example
SVMs of the form h(x) = 1+αx+βx2 and show that they are
indeed of type I if α ̸= 0 and of type II if α = 0. Consider
the sweeping potential V (t) = sin(ωt) with t1 = nT and t2 =
(n+1/2)T , for some n ∈N. In this case γ⃗(t1) = λ γ⃗(t2) if and
only if λ = −1. So all that is left now to see if γ⃗(t1) ∥ γ⃗(t2)
is check whether İm(t1) =−İm(t2). If this is the case then our
example SVM is of type II, otherwise it is of type I. Using
Eq. (2.4) we find the following explicit expression for Im(t)

Im(t) =sin(ωt)
[

1+α
(sin(ωt)−ω cos(ωt))

1+ω2

+
1
2

β − 1
2

β
cos(2ωt)+2ω sin(2ωt)

1+(2ω)2

]
.

A straightforward calculation of İm evaluated at t1 = nT and
t2 = (n+1/2)T then yields

dIm(t)
dt

∣∣∣∣
t=t1

=ω

[
1−α

ω

1+ω2 +
1
2

β − 1
2

β
1

1+(2ω)2

]
,

dIm(t)
dt

∣∣∣∣
t=t2

=−ω

[
1+α

ω

1+ω2 +
1
2

β − 1
2

β
1

1+(2ω)2

]
.

As detailed, we know that the loop is self crossing at the origin
only if İm(t1)+ İm(t2) = 0. We find that

dIm(t)
dt

∣∣∣∣
t=t1

+
dIm(t)

dt

∣∣∣∣
t=t2

=−α
2ω2

1+ω2 .

Since ω > 0, we see that γ⃗(t1) + γ⃗(t2) = 0 if and only if
α = 0. Thus we conclude that indeed for any α ̸= 0, the cor-
responding SVM is of type I, while it is of type II if α = 0.
In Figs. 2(a) and 2(b) we see I −V diagrams for β = 0 and
α = 0, respectively. Indeed we see a self-crossing hysteresis
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FIG. 3. I −V diagrams from physical continuum transport FE calculations of (a) a conical channel and (b) an hourglass channel when a
periodic potential V (t) = sin(ωt) is applied, with ω = 2π f and f = 25 Hz. These types of microfluidic channels were shown to be SVMs
[17, 18]. The set of physical transport equations used for the results are described in the Appendix. Due to their respective geometries these
are (a) an asymmetric SVM and (b) a symmetric SVM. The asymmetric conical channel is of type I in agreement with Lemma 2 and the
symmetric hourglass channel is of type II in agreement with Lemma 1.

in Fig. 2(a) while a the hysteresis loop in Fig. 2(b) does not
cross itself.

As a final notion we consider the high frequency limit, since
any memristor should behave like an ohmic resistor when the
periodic potential is of high frequency [48] (compared to the
typical system timescale). So the slope of the curve in the
I −V plane should always be equal for t1 and t2 if ω → ∞,
even when α ̸= 0. The slope in the I −V plane in the limit
ω → ∞ at t1 and t2 for our example SVM is given by

lim
ω→∞

(
dIm(t)

dt

)
/

(
dV (t)

dt

)∣∣∣∣
t=t1

=1+β/2,

lim
ω→∞

(
dIm(t)

dt

)
/

(
dV (t)

dt

)∣∣∣∣
t=t2

=1+β/2.

So we indeed see that for ω → ∞, the slope for both t1 and t2
reduces to 1+β/2, which is in agreement with the expectation
of a generic memristor [48].

3.3 Comparison to fluidic microchannel memristors

We claim that the SVMs we describe mathematically corre-
spond to various physical devices [14, 17, 18, 20, 22]. There-
fore, Lemmas 1 and 2 should materialise in such systems.
To show this explicitly we will conduct physical continuum
transport finite element (FE) calculations of (symmetric) hour-
glass and (asymmetric) conical microfluidic ion channels, us-
ing the FE analysis package COMSOL [49, 50]. The asym-
metric conical channels are directly based on the channels
discussed in Ref. [17], while the symmetric hourglass chan-
nels only differ in their geometry, but are otherwise subject
to the same system parameters and physics. The FE calcula-
tions only incorporate the microscopic physical ion and fluid
transport equations which contain no direct knowledge of any

memristive properties, or channel conductance in general for
that matter. Consequently, our FE calculations contain no
prior knowledge whatsoever of the definitions and properties
of SVMs shown in this work. In Fig. 3(a) we show the I −V
diagram resulting from a conical (and thus asymmetric) chan-
nel. A characteristic self-crossing hysteresis loop emerges,
from which we conclude that the asymmetric channel indeed
is of type I, as predicted by Lemma 2. Lemma 1 then states
that if the same system is converted to a symmetric channel,
that the channel should form a type II memristor. Indeed, in
Fig. 3(b) we see that the hysteresis loop that emerges from an
hourglass (and thus symmetric) channel does not cross itself.
The results shown in Fig. 3 are direct physical manifestations
of Lemmas 1 and 2.

3.4 Capacitor in parallel with a memristor

Def. 1 does not include any capacitance and thus we al-
ways have I(t) = 0 if V (t) = 0. In reality, physical systems
can have an intrinsic capacitive element, which then materi-
alises in a I −V curve that does not pass through the origin
[51]. This is because a capacitive current is proportional to
the time-derivative of the voltage over the capacitor, which is
not necessarily zero when the voltage is zero. Capacitance has
been reported for many different memristive devices [22, 52–
60]. Therefore, a more accurate circuit of a memristive de-
vice might be the circuit depicted in Fig. 4, where a mem-
ristor is connected in parallel with a series of a resistor with
resistance R and a capacitor with capacitance C. After trans-
forming to dimensionless units, i.e. VC/Vr →VC, ICR/Vr → IC,
τRC = RC/τ , the dimensionless capacitive current is given
by IC = τRCV̇C, with VC the voltage over the capacitor. The
total current through the device is then Im(t)+ IC(t), mean-
ing that the measured current will no longer be described by
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IC

C

R

Im

g

FIG. 4. Circuit including the capacitance of a memristive device [22]
by a conductive pathway with a capacitor with capacitance C and a
resistor with resistance R connected in parallel to a pathway with a
memristor with conductance g. Over the circuit a voltage V can be
applied, a current Im(t) = g(t)V (t) flows through the pathway con-
taining the memristor. A dimensionless capacitive current IC(t) =

τRC
dVC(t)

dt
flows through the capacitive pathway, where VC(t) is the

dimensionless potential over the capacitor and τRC = RC/τ the di-
mensionless RC time.

Def. 1. However, most physical SVMs exhibit a vanishing
current when V (t) = 0, implying that their intrinsic capaci-
tance is negligible [14, 17, 18, 20]. Here we will show that in
the limit of vanishing capacitance, i.e. τRC → 0, that IC → 0
and thus that Def. 1 still applies, despite the (negligible) ca-
pacitance.

In Ref. [22] it was shown that the capacitive current IC(t)
for the circuit in Fig. 4 is given by

IC(t) =
d
dt

(
e−t/τRC

[∫ t

0
V (s)es/τRCds+VC(0)

])
, (3.1)

VC(0) =
1

τRC

∫ T
0 V (s)es/τRCds

eT/τRC −1
, (3.2)

where we again assume a sweeping potential V (t) as per
Def. 3. We remark that if one does want to take capacitance
into account, rather than ignoring it, that this is also possible
by evaluating Eq. (3.1) once C and R are known.

Let us show that the capacitive current vanishes for C → 0,
which is equivalent in our case to the limit τRC → 0. Firstly,
note that Im(t) is not dependent on C, so this quantity stays
unchanged when we take the limit τRC → 0. The capacitive
current IC(t) is given by

IC(t) =− e−t/τRC

[
1

τRC

∫ t

0
V (s)es/τRCds+VC(0)

]
+V (t).

It is clear that the initial condition term VC(0) will trivially
vanish in the limit τRC → 0. Let us then focus on the first term

−e−t/τRC
1

τRC

∫ t

0
V (s)es/τRCds =−

∫ t

0
V (s)e−(t−s)/τRC

ds
τRC

We substitute y = (t − s)/τRC and integrate by parts to obtain

−
∫ t/τRC

0
V (t − τRCy)e−ydy

=−V (t)+V (0)e−t/τRC − τRC

∫ t/τRC

0
V ′(t − τRCy)e−ydy,

where V ′ = dV/dy. Now we need to show that the second
and third term vanish in the limit τRC → 0. The second term
trivially vanishes, for the third term we find

τRC

∫ t/τRC

0
V ′(t − τRCy)e−ydy ≤||V ′||∞

∫ t/τRC

0
e−ydy

=||V ′||∞τRC

[
1− e−t/τRC

]
.

This vanishes in the limit τRC → 0 since V ′ is bound and thus
||V ′||∞ is finite. Thus we find that

lim
τRC→0

−e−t/τRC
1

τRC

∫ t

0
V (s)es/τRCds =−V (t).

Therefore we conclude that

lim
τRC→0

τRC
dVC(t)

dt
=−V (t)+V (t) = 0.

We see that indeed τRC
dVC(t)

dt
→ 0, thus the overall measured

current is again given by Im in agreement with Def. 1.

4 Quantitative measure of SVM I-V hysteresis

The area H enclosed inside the hysteresis loop has been a
property of interest [61–63]. Here we will present how the
area can be used as a tool to estimate the typical timescale τ

of an SVM, a method we already successfully applied in SVM
experiments [20]. We present a general expression for H for
a type I SVM where the I−V loop only intersects itself at the
origin, for the case that a sweeping potential V (t) = sin(ωt) is
applied of period T = 2π/ω , where we recall that our dimen-
sionless time t is in units of the typical SVM memory retention
time τ . The enclosed surface area within a loop is given by

H =

∣∣∣∣∫ (n+1/2)T

nT
Im(s)V̇ (s)ds−

∫ (n+1)T

(n+1/2)T
Im(s)V̇ (s)ds

∣∣∣∣
=

∣∣∣∣∫ (n+1/2)T

nT
sin(ωs)cos(ωs)g(s)ds

−
∫ (n+1)T

(n+1/2)T
sin(ωs)cos(ωs)g(s)ds

∣∣∣∣ .
We take the absolute value to ensure that traversing a loop in
either orientation yields the same H. In the Appendix Sec. A 3
we show after a rather involved calculation that H is given by

H =

∣∣∣∣∣−ω ∑
k∈O

αk

[
(k+1)/2

∑
i=2

Di(ω)
Γ(i)

Γ(i−1/2)

(k+1)/2

∏
j=i+1

C2 j−1(ω)

+
4

3(1+ω2)

(k−1)/2

∏
n=1

C2n+1(ω)

]∣∣∣∣∣ , (4.1)

with O the set of odd integers and

C j(ω) =
ω2( j−1) j

1+ω2 j+ω2( j−1) j
,

Di(ω) =
4
√

π

(1+2i)(1+(1−2i)2ω2)
.
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FIG. 5. (a) Enclosed surface area H in the I −V diagram for h(x) = 1+αx with α = −2/3 as a function of ω . (b) Enclosed surface area in
the I −V diagram of a conical channel determined by FE calculations of physical continuum transport equations.

We note that any contributions from possible βi terms are T/2
periodic and thus do not contribute to H (as long as the SVM
is of type I).

In general the ω for which H is maximal depends on the
values αk. If the function h is known, then H can be evaluated
to observe for which value of ω the area is maximal, thereby
uncovering the typical timescale of the device. In an experi-
mental context, it is relatively straightforward to uncover the
function h since this is the steady-state conductance of the de-
vice, for which no dynamic measurements are required. In
Sec. 4 .1 we show that for the typical simple case of α1 ̸= 0
and αk = 0 for all k > 1, k ∈ O, that H will always be maxi-
mal for ω = 1, regardless of the value of α1, where we recall
that our dimensionless time t is in units of the typical SVM
memory retention time τ . Therefore, in dimensionless time
this means that H is maximal if ωτ = 1. We remark that H
is still maximal at ω ≈ 1 for higher order terms in h, e.g. the
α3 and α5 terms of H are maximal at ω ≈ 0.91 and ω ≈ 0.86
respectively.

4.1 Comparison to fluidic microchannel memristor

As we showed in Secs. 3 .2 and 3 .3, the self-crossing hys-
teresis loop of a conical channel is well approximated by
h(x) = 1+αx. Let us then calculate H explicitly, where we
recall that V (t) = sin(ωt) with ω = 2π/T is the dimension-
less angular frequency and that our dimensionless time t is in
units of the typical SVM memory retention time τ . A straight-
forward calculation shows that in this case

H =− 8παT
12π2 +3T 2 =− (4/3)αω

ω2 +1
.

We can then investigate when H is maximal,

dH
dω

=−4α(3ω2 +3)−24αω2

(3ω2 +3)2 = 0 ⇒ ω =±1.

Remarkably, the value of ω where H is maximal in this case
does not depend on α . Therefore, any SVM with h(x) =
1+αx and V (t) = sin(ωt) will have a maximal enclosed area
in the hysteresis loop at ω = 1. In dimensional units this
means that H is maximal if ωτ = 1. This is again a general
statement which should then also apply to a specific physical
example of a conical channel, which we saw in Fig. 3(a) is
well described by h(x) = 1+αx. In Fig. 5(a) we show H as a
function of ω , where we clearly see it indeed peaks at ω = 1.
In Fig. 5(b) we show the enclosed surface area in the I −V
diagram determined through physical continuum transport FE
calculations of a conical channel.

To convert dimensional results form the FE calculations to
the dimensionless ω used in Fig. 5(b) we need the timescale
τ that we used to convert to dimensionless time units. In
Ref. [17] an expression was derived for an estimate of τ , how-
ever this is an approximation and not necessarily the precise
value. To make the best comparison between the mathemati-
cal model and a specific realisation of an SVM, we estimate τ

empirically. The steady-state conductance h∞(Vs(t)) and equi-
librium conductance g0 of a conical channel are known (full
details in the Appendix) [42] so the only unknown for evalu-
ating τ ġs(t) = g0h∞(Vs(t))−gs(t) to obtain dynamic conduc-
tance gs(t) is the timescale τ . Therefore we can treat τ as a
fit parameter that yields the optimal solution gs(t) to best fit
the empirically found conductance with full FE calculations
of the microscopic physical equations.

By comparing Figs. 5(a) and 5(b) we indeed see a striking
similarity. Both functions exhibit a nearly identical function
form and the H from the conical channel also peaks approxi-
mately at ω = 1 as predicted. Zooming in reveals that the peak
in H from the FE calculations is slightly offset to the left of
ω = 1, which could indicate a more detailed agreement with
Eq. (4.1) as higher order terms in h(x) slightly shift the peak
of H to ω < 1. Even though the conical channel is well de-
scribed by a linear h(x), there are in reality higher order terms
present in the physical h(x).
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(a) (b) (c)

E

I
τ*V g(t)

V(t)

aF(V(t))

FIG. 6. (a) Schematic circuit representation described by Eqs. (5.1) and (5.2). We distinguish four dimensionless current pathways, a capacitive
current τ∗V̇ , an imposed stimulus current I, a combined current of aF(V (t)) through two current rectifiers connected to individual batteries,
and a current g(t)(V (t)−E) through the SVM. These combined currents form Eq. (5.1) by invoking Kirchhoff’s law and as per Def. 1 g(t)
is described by Eq. (5.2). Figure adapted from Ref. [17]. (b) V − t solutions for Eqs. (5.1) and (5.2) for a subcritical input I with no spike
(green), a subcritical input that I that generates a single spike (red) and a supercritical input that generated a periodic solution in the form of a
spike train (blue). (c) A bifurcation diagram showing the Hopf bifurcations, with a spike train emerging for stimuli I ∈ [0.7595,791].

5 SVM spiking circuit

Thus far we have focused on the properties of a single
SVM. Now we will turn our attention to an SVM based neu-
romorphic spiking circuit which was shown to exhibit key
features of neuronal signalling [17]. The four dimensional
physical circuit equations in Ref. [17] can be reduced to a
two-dimensional dynamical system featuring a vastly simpli-
fied parameter space, thereby offering the combination of a
physically plausible system while remaining mathematically
treatable. The emerging function forms bear a resemblance
to that of the FitzHugh-Nagumo (FN) [25, 26] and Morris-
Lecar (ML) [27] models, but it is actually a different system
as we will see. We first analyse the two-dimensional dynam-
ical system that describes the circuit in Sec. 5 .1. To make it
explicit that our dynamical system corresponds to a physical
system, we convert the physical governing system of equa-
tions [17] to its reduced dimensionless two-dimensional form
in Sec. 5 .1 .1. Then, in Sec. 5 .2 we show that the natural
presence of voltage noise [28] can induce stochastic spiking,
thereby presenting additional features of neuronal signaling
[64–67] from essentially the same circuit.

5.1 Deterministic SVM spiking circuit

Consider the circuit schematically illustrated in Fig. 6(a)
containing an SVM with conductance g(t), over which a volt-
age V (t) forms. In total there are four contributions to the
dimensionless current in the circuit, given by i) a capacitive
current τ∗V̇ , ii) an imposed stimulus current I, iii) a combined
current aF(V (t)) through two current rectifiers connected to
individual batteries, and iv) a current g(t)(V (t)−E) through
the SVM. Therefore there are only two dynamical variables
in this circuit, V (t) and g(t). With Kirchhoff’s law we ob-
tain Eq. (5.1) for V (t) and as per Def. 1, we know that g(t)
described by Eq. (5.2), yielding the following system of equa-
tions that describe the SVM spiking circuit


τ
∗ dV (t)

dt
= I −g(t)(V (t)−E)+aF(V (t)), (5.1)

dg(t)
dt

= h(E −V (t))−g(t), (5.2)

where F(x) = Gx − (Gx)3/3, h(x) = 1 − 1.07x + 0.06x2 +
0.167x3 (as described in Sec. 5 .1 .1), with x ∈ R, and lastly
I ∈ R is a control parameter, typically of order unity. Here
we will use τ∗ = 0.01, E = −0.5, a = 0.6, and G = 3.46.
The system of Eqs. (5.1) and (5.2) seems reminiscent of the
FN and ML models [25, 26], but the coupled g(t)V (t) term
is not present in the FN model. The ML model [27] does
feature such a coupled term, but lacks the simple cubic func-
tion F(x). Therefore Eqs. (5.1) and (5.2) represent a distinct
model, which directly corresponds to a physical circuit as we
show in Sec. 5 .1 .1, and hence is physically fully plausible.

In Fig. 6(b) we show three distinct solutions V (t) for stimuli
that undergo a step function from I = 0 to I = 0.65, I = 0.75,
and I = 0.76, corresponding to no spike (green), a single iso-
lated spike (red) and a spike train (blue), respectively. Thus
we reproduce the earlier reported results [17] with Eqs. (5.1)
and (5.2). In Fig. 6(c) the different regimes for different stim-
uli are clearly visible in a bifurcation diagram, showing a Hopf
bifurcation at I = Itrain ≈ 0.7595 and I ≈ 0.791. The Jacobian
of Eqs. (5.1) and (5.2) is

J(V,g) =
( −g+aF ′(V )

τ∗ −V−E
τ∗

−h′(E −V ) −1

)
.

Upon evaluating J(V,g) at the steady point(s) we see that in-
deed a Hopf bifurcation manifests at two distinct parameter
values. The conjugate pair of eigenvalues crosses the imagi-
nary axis for a stimulus I ≈ 0.7595, rendering the real parts
of the eigenvalues positive and marking the onset of oscilla-
tory behaviour in the system around two new unstable steady
points. A second Hopf bifurcation transpires at I ≈ 0.791,
where the real parts of the eigenvalues revert to negative val-
ues, indicating a return to a single stable steady point.
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FIG. 7. Phase portraits for Eqs. (5.1) and (5.2) for no stimulus I = 0, a subcritical stimulus I = 0.65, a subcritical stimulus such that one spike
occurs I = 0.75, and a supercritical stimulus I = 0.76. On the left we show the nullclines for V (purple) and g (black) for a wide regime. On
the right we zoomed in on the physically relevant domain in the phase space, where we also show the vector field (V̇ , ġ) and the solutions that
initiate from the steady-state when I = 0 (indicated by the orange dot in the top-right figure).

Eqs. (5.1) and (5.2) feature the nullclines fV (V ) =
I +aF(V )

V −E
, (5.3)

fg(V ) = h(E −V ), (5.4)

where we denoted the V -nullcline with fV and the g-nullcline

with fg. The difference with the FN model is particularly clear
in Eq. (5.3), which diverges around V = E in our case due to
the coupled g(V −E) term in Eq. (5.1). In Fig. 7 we show
the nullclines for 4 different values of stimulus I, correspond-
ing to no stimulus I = 0, a subcritical stimulus I = 0.65, a
subcritical stimulus such that one spike occurs I = 0.75, and
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INy

(a) (b) (c)

E

I
τ*

g(t)

V(t)

aF(V(t))

FIG. 8. (a) Schematic representation of the SVM spiking circuit that is equivalent to Eqs. (5.9) and (5.10). The noise is incorporated as an
extra current INy through the circuit. This figure is adapted from Ref. [17]. (b) Spiking behaviour when the stimulus I is subcritical (i.e. no
spike train in deterministic case). When the noise is weak with σNy = 1 ·10−4 the system exhibits no spikes (top), for intermediate noise with
σNy = 4 ·10−4 we see irregular spiking (middle) and for strong noise with σNy = 10 ·10−4 the circuit exhibits a regular spike train (bottom).
(c) The Fano Factor (FF) for various noise strengths, showing a regime where no spikes emerge (in the solved interval t ∈ [0,103]), a regime
where spikes emerge irregularly resulting in a high FF, and a regime where we observe regular spiking which translates into a low FF.

a supercritical stimulus I = 0.76. On the right hand side we
zoom in on the physically relevant regime in the phase space,
where we also show the vector field (V̇ , ġ) and the solutions
that initiate from the steady-state when I = 0 (indicated by the
orange dot in the top-right figure). This reveals three distinct
traces, one where the system directly settles to a new steady-
state (green), one where the solution traverses the phase space
once before settling (red) and a periodic solution (blue). The
green, red, and blue trajectories we show in Fig. 7 correspond
to the green, red, and blue voltage traces we show in Fig. 6(b).

5.1.1 Physical fluidic spiking circuit equations

The system of Eqs. (5.1) and (5.2) is directly derived from
a theoretically proposed physical fluidic iontronic circuit [17].
The neuromorphic circuit in Ref. [17] contains three coni-
cal ion channels (two with fast dynamics, one with slow),
with gs the conductance of the slow channel, and a capac-
itor over which a membrane potential Vm forms. This cir-
cuit was described by four differential equations, correspond-
ing to the three channels and the potential Vm. However, the
two fast channels respond sufficiently quickly that they can be
treated as instantaneous current rectifiers, rather than dynami-
cal memristors. Consequently, the circuit dynamics were also
shown to be well described by the following (dimensional)
system of equations

τm
dVm(t)

dt
=

I(t)
g0

− gs(t)
g0

(Vm(t)−Es)+
gr

g0
F(Vm(t)), (5.5)

τ
dgs(t)

dt
= g0h∞(−Vm(t)+Es)−gs(t), (5.6)

where Eq. (5.5) follows from Kirchhoff’s law and describes
the total current through the circuit and Eq. (5.6) describes
the dynamical conductance of the slow channel in the circuit.

Here, I is a stimulus current, Es = −0.5 V is a battery poten-
tial, and gr = 1 pS is a characteristic conductance scale. The
membrane response RC-like time is denoted by τm = C/g0
(in Ref. [17] τm is defined as C/gr, which is of similar magni-
tude). The function F is the total current through the two fast
channels given by

F(Vm(t)) = GVm(t)−
(GVm(t))3

3V 2
r

, (5.7)

where Vr = 1 V is a characteristic voltage scale and G = 3.46
Let us then rewrite these equations such that they become

dimensionless. We define t → t/τ , τ∗ = τm/τ , Vm(t)/Vr →
V (t), I(t)/(g0Vr) → I, Es/Vr → E, g = gs(t)/g0, and a =
gr/g0. Additionally, to be in agreement with Eq. 2.3 we de-
fine h(E−V (t)) in this Section as the third order expansion of
h∞(Vr(E −V (t))) given in Eq. (A.5), i.e.

h(V (t)) =h∞(VrE)+
3

∑
i=1

1
i!

dh∞(Vr(E −V ))

dV

∣∣∣∣
V=0

(V (t))i

=h∞(VrE)+
3

∑
i=1

Vr(−1)i

i!
dh∞(ν)

dν

∣∣∣∣
ν=E

(E −V (t))i

≈1−1.07V (t)+0.06(V (t))2 +0.167(V (t))3.

where we used ν =Vr(E −V ). This yields the function h used
in Eq. (5.2)

h(x) = 1−1.07x+0.06x2 +0.167x3. (5.8)

With this we arrive at the dimensionless Eqs. (5.1) and (5.2)
and effectively simplify the originally extensive parameter
space to a simple two dimensional system that contains only
4 parameters.
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FIG. 9. The potential U∗(V,Vg) as in Eq. (5.9) for a subcritical stimulus I = 0.75 for three different Vg. (a) The stable state Vg =V ∗ case, (b)
an intermediate case Vg = 0, and (c) Vg =V+ with V+ the maximal V during a spike.

5.2 Stochastic SVM spiking circuit

Thermal noise is an intrinsic element of RC circuits [28],
often referred to as Nyquist noise [68, 69]. Since we are essen-
tially working with an RC-circuit, there will be thermal fluctu-
ations in the circuit voltage of order [28]

√
kBT/C ≈ 3.7mV,

with kB the Boltzmann constant, T = 293.15 K room temper-
ature, and C = 0.3 fF the capacitance. A natural way to model
the presence of voltage noise is by adding Brownian fluctu-
ations to the ODE (5.1). As we shall show, the solutions of
the corresponding Stochastic Differential Equations (SDEs)
present interesting modes of neuronal spiking, not found in
the deterministic case.

We incorporate the noise by the replacement V (t) →
V (t) + σNydWt in Eq. (5.1), which would result in an
extra noise current of magnitude dINy = (g + h+(V ) +

h−(V ))σNydWt/
√

τ∗ = ε(V )dWt, where h±(V ) is the in-
stantaneous conductance of the two channels that form
the current aF(V (t)), approximated by a third order ex-
pansion of the physical functions from Ref. [17], laid
out in the Appendix. Additionally, we can write
Eq. (5.1) in terms of a time-dependent potential U ′(V (t)) =
− 1

τ∗ [I −g(t)(V (t)−E)+aF(V (t))]. This yields the follow-
ing compact stochastic differential equations{

dV (t) =−U ′(V (t))dt + ε(V (t))dWt, (5.9)
dg(t) = [h(E −V )−g(t)]dt, (5.10)

where ε(V ) := 1√
τ∗
(g+h+(V )+h−(V ))σNy.

If we consider voltage noise in the circuit, we would ob-
tain the equivalent circuit schematically depicted in Fig. 8(a),
which is the circuit we showed in Fig. 6(a) adapted to in-
clude a noise current component INy. In the deterministic

limit σNy → 0 we then see that the noise current INy → 0 such
that we recover the original circuit and the results presented
in Fig. 6. In Fig. 8(b) we show solutions for Eqs. (5.9) and
(5.10) solved on the interval t ∈ [0,103] with I = 0.75 < Itrain
(i.e. subcritical) for weak σNy = 1 ·10−4, intermediate σNy =

4 · 10−4, and strong noise σNy = 10 · 10−4 in the top, middle,
and bottom figure, respectively. For weak noise the system
essentially shows the same subcritical behaviour as the deter-
ministic case, i.e. Fig. 6(b,green), exhibiting no spikes in the
interva t ∈ [0,103]. When we move on to intermediate noise
then we observe a new response in the form of irregular spik-
ing, rather than the periodic “tonic” firing that we observe in
Fig. 6(b,blue). Then for strong noise we retrieve essentially
regular tonic spiking, even though the stimulus is subcritical.

By reviewing Fig. 8(b) it is clear that various forms of
noise induce various forms of spiking with differing regular-
ities. The Fano Factor (FF) is a measure of the variability of
a stochastic process, which in the context of neuronal spiking
is given by the ratio of the variance and the squared expec-
tation value of the Inter-Spike Interval ISI (the time between
subsequent spikes) [70], thus FF = Var(ISI)/(E [ISI])2. When
we look at the corresponding FF for various strengths of noise
we obtain Fig. 8(c). Initially the noise is not strong enough
to induce spiking in the interval t ∈ [0,103], after which spo-
radic spikes or bursts occur resulting in a high FF. Lastly, for
stronger noise the essentially tonic spiking results in a vanish-
ing FF. In biological neuronal spiking it is common for neu-
rons to exhibit a non-zero FF [64–67], therefore the inclusion
of noise effectively captures another characteristic of neuronal
signalling.

We can make sense of the stochastic features we observe
in Fig. 8 by analysing the potential U in Eq. (5.9). Recall
that τ∗ ≪ 1, the resulting fast-slow characteristic of Eqs. (5.9)
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FIG. 10. Power spectra S( f ), with f the frequency, of the solutions
generated by the SDEs (5.9) and (5.10) for various noise strengths
σNy. For σNy = 4 · 10−4 we find sporadic spiking, resulting in a
spread out power spectrum. For σNy = 10 ·10−4 and σNy = 30 ·10−4

we find more regular spiking, visible as a clear spike in the power
spectrum. Lastly, for σNy = 100 · 10−4 the system is dominated by
noise and consequently no clear peak emerges anymore.

and (5.10) ensures that V exhibits much faster dynamics than
g. This is especially visible in Fig. 7, where we see that the
vectors (V̇ , ġ) are essentially horizontal and in the solutions
we see that g remains essentially constant when V changes
from a negative to positive state (or vice versa). We can use
this separation in timescale to simplify the coupled relation
of Eqs. (5.9) and (5.10) in this context by considering g to be
equal to its steady-state function h(Vg) for a given Vg, yielding
the following equation

U∗(V,Vg) =− 1
τ∗

∫ [
I −h(Vg)(V −E)+aF(V )

]
dV. (5.11)

We will consider U∗ in the subcritical case I = 0.75 used for
Fig. 8(b), such that the deterministic case is stable at V ∗ ≈

−0.187. Without any noise the system will remain in its corre-
sponding stable state (V ∗,h(V ∗)). The potential U∗(V ∗,V ∗) is
shown in Fig. 9(a) where we see that (V ∗,h(V ∗)) is a shallow
stable steady state in an energy well of depth ∆U ≈ 3.7 ·10−3.
Once spikes start appear in the solved time interval, we indeed
find a sufficiently short Kramers’ time. E.g. the Kramers’
time TKramers = e2∆U/ε(V ⋆) ≈ 1.1 for the intermediate noise
strength used for Fig. 8(b, middle).

If a spike is induced then V increases to V+ quickly com-
pared to g since τ∗ ≪ 1. Consequently there is a period
where the system (approximately) is in the state (V+,h(V ∗))
(which is the right side deeper well in Fig. 9(a)), and not in
(V+,h(V+)). This features translates into the all-or-none be-
haviour of the action potentials. Either the stimulus is not
strong enough to exceed the energy barrier ∆U , i.e. no spike
occurs, or the system completely transitions to the second
deeper well, i.e. a complete spike occurs. Then Vg will transi-
tion from V ∗ to V+ over a timescale of order O(1) (or O(τ) in
dimensional units), i.e. the typical timescale of the dynamics
of g. In Fig. 9(b) we show an intermediate case where Vg = 0,
the right-side well still exists, so V remains in its positive state,
but the left-side well has re-emerged. In Fig. 9(c) we plot U∗

for Vg = V+, so the case when g has had time to transition to
the state h(V+). The right-side well has now completely dis-
appeared and the system transitions back to the left-side well,
eventually returning V to its subcritical steady state V ∗.

The results shown in Fig. 9 explain the observed FF results
shown in Figs. 8(b) and 8(c). For a weak noise, the fluctua-
tions are not strong enough to escape the shallow energy well
of depth ∆U in the interval t ∈ [0,103], so no spikes are found.
For intermediate noise, the shallow energy well can be es-
caped, but only sporadically as the fluctuations are only rarely
strong enough, resulting in irregular spiking with a high FF.
Lastly for strong noise the fluctuations are strong enough to
essentially always escape the shallow well whenever the sys-
tem is in the state depicted in Fig. 9(a), thus quickly gener-
ating a new spike after the previous ended. This results into
essentially regular spiking, and a low FF, despite the subcriti-
cal stimulus.

In Fig. 10, we present the power spectra derived from the
solutions of the SDEs (5.9) and (5.10), displaying the influ-
ence of noise strength on the spectral characteristics of the
system dynamics. Under weak noise σNy = 4 ·10−4, the power
spectrum exhibits a spread out peak, reflecting the sporadic
and irregular nature of spiking events. As the noise intensity
increases to σNy = 10 ·10−4 and σNy = 30 ·10−4, a discernible
sharper peak emerges in the power spectrum, indicative of a
more structured periodicity in the system behaviour akin to the
tonic firing of the deterministic system. Lastly, for very strong
noise levels σNy = 100 · 10−4, the power spectrum shows no
particular peaks due to the dominating influence of noise on
the system dynamics.

6 Conclusion

In summary, we established a concise and simple mathe-
matical framework for Simple Volatile Memristors (SVMs),
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catering to a broad class of volatile memristors. We derive this
framework, specifically Def. 1, with a general volatile mem-
ristor in mind. Of particular interest is a novel family of fluidic
memristors that use ions in an aqueous environment as signal
carriers, inspired by the brain’s aqueous ion transport [9–13].
Several of these fluidic devices, as well as naturally occurring
memristors in plants [22], were found to be well described
by our definition of SVMs [14, 17, 20], therefore the math-
ematical framework discussed here is of direct relevance to
novel physical systems. Throughout Secs. 3 and 4 we showed
that our mathematical predictions materialised in full FE cal-
culations of microscopic physical continuum transport equa-
tions that incorporate no prior knowledge of our mathematical
definitions. Specifically, in Sec. 3 we proved that symmetric
SVMs will produce a current-voltage hysteresis loop that does
not cross itself in the origin, while an asymmetric SVM (un-
der reasonable constraints) will produce self-crossing hystere-
sis loops. These predictions are then demonstrated through
FE calculations of asymmetric (conical) and symmetric (hour-
glass shaped) microfluidic ion channels which indeed produce
self-crossing and non self-crossing hysteresis loops, respec-
tively. In Sec. 4 we presented a general equation for the en-
closed area within one self-crossing loop and explain how
this can be used to estimate the typical conductance memory
timescale τ of an SVM. We show that the maximal enclosed
area is found when 2π f τ ≈ 1, with f the (dimensional) fre-
quency of the applied (sinusoidal) voltage and τ the mem-
ory timescale of the device. For SVMs where the steady-state
conductance is linear in the voltage, the relation 2π f τ = 1 is
exact. This is again shown to also materialise within physical
continuum transport FE calculations of a conical microchan-
nel, showing good agreement with the general mathematical
predictions.

Building on our SVM framework, we turned our attention
to a proposed application of SVMs, a circuit that exhibits key
features of neuronal signaling [17], initially described by a
coupled four-dimensional system of physical equations rely-
ing on a large parameter space. We first present this circuit as
a two-dimensional system, with variables g and V , of equa-
tions relying on merely 4 parameters, which we explicitly
show to be completely equivalent the original physical equa-
tions. This mathematically treatable system is first charac-
terised by investigating its phase portraits revealing that it is
in fact rather different from the seemingly similar FitzHugh-
Nagumo [25, 26] and Morris-Lecar models [27]. We then
show that we can use the intrinsic instability of the system
in combination with stochastic effects, naturally present in
any circuit [28], to extract features of irregular spiking not
found in the deterministic case. These features are well un-
derstood through a mathematical analysis of the underlying
equations, revealing a double-well energy potential structure
that requires sufficiently strong noise to spontaneously es-
cape a local minimum, thereby inducing a spike. Our work
here provides insights into a physically plausible description
of a neuromorphic spiking system, thus offering the combi-
nation of a mathematically treatable two-dimensional system
of equations that has an explicit and direct correspondence to
physical equations.

For future prospects, the spiking circuit could be expanded
to feature more SVMs. An expanded (physical) SVM circuit
has already been proposed that features additional bursting
spiking modes [19], which could undergo a similar mathe-
matical reduction to a (in this case three-dimensional) dynam-
ical system. Additionally, the simple mathematical model that
described the SVM circuit paves the way for mathematically
modeling networks of SVM based spiking “neurons". Lastly,
the emergence of spiking in SVM based circuits is sensitive
to parameter changes [17–19]. The mathematical model we
provide here could be used to find more stable conditions for
spiking which can then (possibly) be reverse engineered to be
featured in actual devices, where the clear and explicit link we
provide between our mathematical model and physical quan-
tities can be of help.

In conclusion, by defining a relatively simple mathematical
framework we are able to make some remarkable powerful
statements on a wider class of memristive devices. We make
explicit that our work pertinent to actual physical systems by
explicitly transforming the system parameters to the physical
ones that describe fluidic microchannels and by showing that
our general mathematical predictions materialised in physical
simulations on multiple occasions. This places our work at
an interesting intersection between mathematics and physics
in the context of the emerging field of iontronic neuromor-
phics, where insights are gained through mathematical analy-
sis while retaining a clear and explicit connection to specific
and relevant physical systems, devices, and applications. Our
results here provide general tools for the characterisation of
SVMs and spiking circuit applications thereof, specifically in
the quickly emerging fascinating direction of fluidic iontronic
devices.
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A Appendix

A.1 Poisson-Nernst-Planck-Stokes equations

In order to demonstrate the realisation of our mathematical predictions in Secs. 3 and 4, we conducted finite-element (FE)
calculations using the FE analysis package COMSOL [49, 50]. To do so, we consider an azimuthally symmetric single conical
channel, schematically depicted in Fig. 11, of length L = 10 µm with the central axis at radial coordinate r = 0 and a radius
described by R(x) = Rb − x∆R/L for x ∈ [0,L] where Rb = 200 nm at x = 0 and Rt = Rb −∆R = 50 nm at x = L ≫ Rb. For the
hourglass channel results, the geometry we constructed consists of two conical channels of length L = 5 µm connected by the
tip, with all other parameters identical. The channel connects two bulk reservoirs of an incompressible aqueous 1:1 electrolyte
with viscosity η = 1.01 mPa · s, mass density ρm = 103 kg ·m−3 and electric permittivity ε = 0.71 nF ·m−1, at the far side of
both reservoirs we impose a fixed pressure P = P0 and fixed ion concentrations ρ± = ρb = 1 mM. The channel wall carries a
uniform surface charge density eσ = −0.02 enm−2, screened by an electric double layer with Debye length λD ≈ 10 nm, that
imposes an electric surface potential of ψ0 ≈−40 mV. The ions have diffusion coefficients D± = D = 1 µm2ms−1 and charge
±e with e the proton charge. On the far side of the reservoir connected to the base we impose an electric potential V (t), while
the far side of the other reservoir is grounded, which leads to an electric potential profile Ψ(x,r, t), an electro-osmotic fluid flow
with velocity field u(x,r, t) and ionic concentrations and fluxes ρ±(x,r, t) and j±(x,r, t), respectively.

The transport dynamics are assumed to be described by the Poisson-Nernst-Planck-Stokes (PNPS) Eqs. (A.1)-(A.4) given by

∇
2
Ψ =− e

ε
(ρ+−ρ−), (A.1)

∂ρ±
∂ t

+∇ · j± = 0, (A.2)

j± =−D±

(
∇ρ±±ρ±

e∇Ψ

kBT

)
+uρ±, (A.3)

ρm
∂u
∂ t

= η∇
2u−∇P− e(ρ+−ρ−)∇Ψ; ∇ ·u = 0. (A.4)

The Poisson Eq. (A.1) accounts for electrostatics, the continuity Eq. (A.2) ensures the conservation of ions, the Nernst-Planck
Eq. (A.3) incorporates the combination of Fickian diffusion, Ohmic conduction, and Stokesian advection, and finally the Stokes
Eq. (A.4) describes the force balance on the (incompressible) fluid. To make the system of Eqs. (A.1)-(A.4) closed we impose
boundary conditions of no-slip blocking flux and Gauss’ law on the channel wall, i.e. u = 0, n · j± = 0, and n ·∇Ψ = −eσ/ε

with n the wall’s inward normal vector.

Lρ±=ρb ρ±=ρb

------------

----

--

- -----
------

--
--

--

Rb
x

r
Rt

eσ

V(t)

FIG. 11. Schematic representation of an azimuthally symmetric conical channel of length L, base radius Rb, and tip radius Rt < Rb, connecting
two bulk reservoirs of a 1:1 aqueous electrolyte, with bulk concentrations ρb. The channel wall carries a surface charge density eσ . An AC
electric potential drop V (t) over the channel drives an ionic charge current I(t) = gs(t)V (t) with g(V (t), t) the channel conductance. Figure
adapted from Ref. [17].

A.2 Channel conductance

The steady state conductance of a conical channel depends on the voltage-dependent salt concentration profile ρs(x,V ),
that exhibits salt concentration polarisation upon an applied voltage. The consequent voltage-dependent steady-state channel



16

conductance is described by [42]

h∞(V ) =
g∞(V )

g0
=
∫ L

0
ρs(x,V )dx/(2ρbL)

=1+∆g
∫ L

0

 x
L

Rt

R(x)
− e

Pe(V ) x
L

R2
t

RbR(x) −1

ePe(V )
Rt
Rb −1

dx/L,
(A.5)

where g0 = (πRtRb/L)(2ρbe2D/kBT ), Pe(V ) = Q(V )L/(DπR2
t ) the Péclet number at the narrow end, Q(V ) =

−πRtRbεψ0/(ηL)V the volumetric fluid flow through the channel, and ∆g ≡−e∆RησD/(ρbRbRtεψ0kBT ).
The dynamic (dimensional) conductance gs(t) was found to be well described by [17]

dgs(t)
dt

=
g0h∞(V (t))−gs(t)

τ
, (A.6)

with τ = L2/12D the typical conductance memory time of the channel.
The circuit in Ref. [17] contains three channels with a voltage dependent conductance. The “fast" channels can be assumed

to be instantaneous and are therefore not treated as dynamical equations in the circuit in this work, simplifying the system of
equations to a two-dimensional one. To model the noise current we use the steady-state conductance of these channels, which
we approximate by a third-order expansion of the physical equations from Ref. [17], this gives

h+(x) =h+,∞(VrE+)+
3

∑
i=1

1
i!

dh+,∞(Vr(E+−V ))

dV

∣∣∣∣
V=0

xi ≈ 7.89+9.16x+6.76x2 +2.91x3,

h−(x) =h−,∞(VrE−)+
3

∑
i=1

1
i!

dh−,∞(Vr(V −E−))

dV

∣∣∣∣
V=0

xi ≈ 7.89−9.16x+6.76x2 −2.91x3.

Note that these channels are normalized by g0, which is the Ohmic conductance of the third “slow" channel. Therefore h±(0) ̸= 1,
unlike how we defined SVMs in Def. 1. This is not an issue since these channels are not considered to be SVMs in the treatment
of the circuit here, but rather as (instantaneous) current-rectifying circuit elements.

A.3 Enclosed surface area H

The enclosed area H inside a hysteresis loops, resulting rom a sweeping potential V (t), that crosses itself in the origin and
does not intersect itself anywhere else is given by

H =

∣∣∣∣∫ (n+1/2)T

nT
Im(s)V ′(s)ds−

∫ (n+1)T

(n+1/2)T
Im(s)V ′(s)ds

∣∣∣∣
=

∣∣∣∣∫ (n+1/2)T

nT
g(s)V (s)V ′(s)ds−

∫ (n+1)T

(n+1/2)T
g(s)V (s)V ′(s)ds

∣∣∣∣ .
The absolute value bars are there to account for either orientation of the hysteresis loop. We will consider a typical sinusoidal
sweeping potential V (t) = sin(ωt) and we focus on the first integral for simplicity, but all calculations below apply similarly to
the second integral. Using the general solution Eq. (2.4) we find

∫ (n+1/2)T

nT
g(s)V (s)V ′(s)ds =ω

∫ (n+1/2)T

nT
cos(ωs)sin(ωs)e−s

[∫ s

0
h(V (t ′))et ′dt ′+g(0)

]
ds.

From here on out we will ignore the g(0) term as this represents a transient that vanishes due to the e−s term. Moreover, as
discussed in the main text we can choose g(0) such that the solution for g(t) is periodic without any transients. Therefore we can
safely ignore transient terms here and that appear later on, as these cancel out with this choice of g(0) that facilitates a periodic
solution. Additionally we can ignore any β j terms in h(V (t)) as these even terms terms result in equal area terms of the two
loop components. However, as we assume a self-crossing hysteresis loop, we subtract the second integral from the first integral
due to the opposite orientations of the two loop components. Therefore the equal area terms cancel each other out and do not
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contribute to H. With these considerations we calculate

∫ (n+1/2)T

nT
g(s)V (s)V ′(s)ds =ω ∑

k∈O
αk

∫ (n+1/2)T

nT
cos(ωs)sin(ωs)e−s

∫ s

0
sin(ωt ′)2i+1et ′dt ′ds

=ω ∑
k∈O

αk

∫ (n+1/2)T

nT
cos(ωs)sin(ωs)e−s

∫ s

0
sin(ωt ′)ket ′dt ′ds

=ω ∑
k∈O

αk

∫ (n+1/2)T

nT
cos(ωs)sin(ωs)Akds.

Here O is the set of odd integers and we denoted Ak = e−s ∫ s
0 sin(ωt ′)ket ′dt ′. As Ak is the most convoluted term to calculate, let

us focus solely on Ak, where we find that

Ak =e−s
∫ s

0
sin(ωt ′)ket ′dt ′

=e−s
[

sin(ωt ′)ket ′
∣∣∣s
0
− kω

∫ s

0
cos(ωt ′)sink−1(ωt ′)et ′dt ′

]
=e−s

[
sink(ωs)es − kω

∫ s

0
cos(ωt ′)sink−1(ωt ′)et ′dt ′

]
=e−s

[
sink(ωs)es − kω

(
cos(ωt ′)sink−1(ωt ′)et ′

∣∣∣s
0
−
∫ s

0

(
ω(k−1)cos2(ωt ′)sink−2(ωt ′)−ω sin(ωt ′)k

)
et ′dt ′

)]
=e−s

[
sink(ωs)es − kω cos(ωs)sink−1(ωs)es +ω

2(k−1)k
∫ s

0
cos2(ωt ′)sink−2(ωt ′)et ′dt ′−ω

2k
∫ s

0
sin(ωt ′)ket ′dt ′

]
=sink(ωs)− kω cos(ωs)sink−1(ωs)+ω

2(k−1)ke−s
∫ s

0
cos2(ωt ′)sink−2(ωt ′)et ′dt ′−ω

2kAk

=sink(ωs)− kω cos(ωs)sink−1(ωs)+ω
2(k−1)ke−s

∫ s

0
(1− sin2(ωt ′))sink−2(ωt ′)et ′dt ′−ω

2kAk

=sink(ωs)− kω cos(ωs)sink−1(ωs)+ω
2(k−1)ke−s

∫ s

0
sink−2(ωt ′)et ′dt ′−ω

2(k−1)ke−s
∫ s

0
sink(ωt ′)et ′dt ′−ω

2kAk

=sink(ωs)− kω cos(ωs)sink−1(ωs)+ω
2(k−1)ke−s

∫ s

0
sink−2(ωt ′)et ′dt ′−ω

2(k−1)kAk −ω
2kAk.

We see that we have expressed Ak in terms of itself, which we can easily rearrange to find

Ak =
sink(ωs)− kω cos(ωs)sink−1(ωs)

1+ω2k+ω2(k−1)k
+

ω2(k−1)k
1+ω2k+ω2(k−1)k

e−s
∫ s

0
sink−2(ωt ′)et ′dt ′

=
sink(ωs)− kω cos(ωs)sink−1(ωs)

1+ω2k+ω2(k−1)k
+

ω2(k−1)k
1+ω2k+ω2(k−1)k

Ak−2.

We see that we have now expressed Ak in terms of Ak−2, allowing us to calculate Ak further using an iterative approach. Before
we do so, we can simplify the above expression slightly further by noting that the sink(ωs) always vanishes in the integral term∫ (n+1/2)T

nT cos(ωs)sin(ωs)Akds because k is odd. To tidy the notation we then introduce the terms

Bk(ω,s) =
−kω cos(ωs)sink−1(ωs)

1+ω2k+ω2(k−1)k
,

Ck(ω) =
ω2(k−1)k

1+ω2k+ω2(k−1)k
.
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We can now find our final expression for Ak as follows

Ak =
−kω cos(ωs)sink−1(ωs)

1+ω2k+ω2(k−1)k
+

ω2(k−1)k
1+ω2k+ω2(k−1)k

Ak−2

=Bk(ω,s)+Ck(ω)Ak−2

=Bk(ω,s)+Ck(ω)(Bk−2(ω,s)+Ck−2(ω)Ak−4) = Bk(ω,s)+Bk−2(ω,s)Ck(ω)+Ck(ω)Ck−2(ω)Ak−4

=
(k+1)/2

∑
i=2

B2i−1(ω,s)
(k+1)/2

∏
j=i+1

C2 j−1(ω)+
(k−1)/2

∏
n=1

C2n+1(ω)e−s
∫ s

0
sin(ωt ′)dt ′

=
(k+1)/2

∑
i=2

B2i−1(ω,s)
(k+1)/2

∏
j=i+1

C2 j−1(ω)+
ωe−s −ω cos(ωs)+ sin(ωs)

1+ω2

(k−1)/2

∏
n=1

C2n+1(ω).

In the fourth line we used that k is odd and thus the iterative aproach ends with a
∫ s

0 sin(ωt ′)dt ′ term (rather than a squared sine).
As mentioned before, the e−s term is a transient that cancels out with our choice of g(0) (and would otherwise vanish too),
yielding our final expression for Ak as follows

Ak =
(k+1)/2

∑
i=2

B2i−1(ω,s)
(k+1)/2

∏
j=i+1

C2 j−1(ω)+
−ω cos(ωs)+ sin(ωs)

1+ω2

(k−1)/2

∏
n=1

C2n+1(ω).

Returning to our expression for H, we now find

H =

∣∣∣∣∣ω ∑
k∈O

αk

[∫ (n+1/2)T

nT
cos(ωs)sin(ωs)Akds−

∫ (n+1)T

(n+1/2)T
cos(ωs)sin(ωs)Akds

]∣∣∣∣∣
=

∣∣∣∣∣−ω ∑
k∈O

αk

[
(k+1)/2

∑
i=2

4
√

π

(1+2i)(1+(1−2i)2ω2)

Γ(i)
Γ(i−1/2)

(k+1)/2)

∏
j=i+1

C2 j−1(ω)+
4

3(1+ω2)

(k−1)/2

∏
n=1

C2n+1(ω)

]∣∣∣∣∣ .
To write the above expression a bit more concisely we introduce

Di(ω) =
4
√

π

(1+2i)(1+(1−2i)2ω2)
.

This yields our final expression

H =

∣∣∣∣∣−ω ∑
k∈O

αk

[
(k+1)/2

∑
i=2

Di(ω)
Γ(i)

Γ(i−1/2)

(k+1)/2)

∏
j=i+1

C2 j−1(ω)+
4

3(1+ω2)

(k−1)/2

∏
n=1

C2n+1(ω)

]∣∣∣∣∣ ,
which is Eq. (4.1) presented in the main text.
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