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Abstract

Establishing quantitative correlations between various molecular properties and chemical
structures is of great technological importance for environmental and medical aspects. These
approaches are referred to as Quantitative Structure-Property Relationships (QSPR), which
relate the physicochemical or thermodynamic properties of compounds to their structures.
The main goal of QSPR studies is to find a mathematical relationship between the prop-
erty of interest and several molecular descriptors derived from the structure of the molecule.
Topological indices are the molecular descriptors that characterize the formation of chemical
compounds and predict certain physicochemical properties. In this study, the QSPR models
are designed using certain temperature-based topological indices such as the sum connectiv-
ity temperature index, product connectivity temperature index, F-temperature index, and
symmetric division temperature index to predict the thermodynamic properties, such as en-
thalpies of formation (∆H0

f liquid), enthalpies of combustion (∆H0
C liquid), and enthalpies

of vaporization (∆H0
vap gas) of monocarboxylic acids (C2H4O2 - C20H40O2). The relation-

ship analysis between thermodynamic properties and topological indices is done using linear,
quadratic, and cubic equations of a curvilinear regression model. These regression models
are then compared.

Keywords: Temperature of a vertex, sum connectivity temperature index, product connec-
tivity temperature index, F-temperature index, symmetric division temperature index.

1 Introduction

The properties of a molecule are indeed closely tied to its structural characteristics and com-
position. This concept is fundamental to understanding how molecules behave and interact in
various chemical reactions and physical processes. In this connection, graph theory has been
successfully applied and some thermodynamic properties [1, 2, 6, 13, 17].

Chemical graph theory is a specialized field within mathematical chemistry that focuses on
the study of molecules and chemical systems through the lens of graph theory.
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Graph theory provides a mathematical framework for analyzing the relationships between
objects connected by edges, and in the context of chemical graph theory, these objects are atoms
and the edges represent chemical bonds. Chemical graph theory has practical applications in
fields such as drug discovery, materials science, computational chemistry, and chemical infor-
matics. It provides a powerful approach to understanding the relationships between molecular
structure and properties, which is crucial for designing new molecules with desired characteristics
and predicting how molecules will behave under different conditions.

Chemical graph theory plays a crucial role in developing QSPR models. These models cor-
relate graph-based molecular descriptors with various properties such as boiling points, melting
points, solubility, etc. For more details, the reader can refer to [3, 7, 9, 10, 11, 12, 15]. Numerous
studies have been made relating to QSPR models by using what are called topological indices
(TI). The first topological index was the Wiener index, which was introduced by Harold Wiener
in 1947. It was used to determine the physical properties of paraffin [17]. Since then, many
topological indices have been defined and used in many applications.

A topological index can be classified according to the structural characteristics of the graph
such as the degree of a vertex, the distance between vertices, the matching, and the spectrum.
The best-known topological indices are the Wiener index which is based on distance, the Zagreb
and the Randić indices which are based on degree, the Estrada index which is based on the
spectrum of a graph, the Hosaya index based on the matching.

Shafiei in [14] designed the QSPR models using topological indices such as the connectivity
index, Szeged index, Balaban index, and Harary number to predict the thermodynamic prop-
erties such as enthalpies of formation of liquid, enthalpies of combustion of liquid, enthalpies
of vaporization, and enthalpies of sublimation of monocarboxylic acids (C2H4O2 - C20H40O2).
Later in [5], Havare designed the QSPR models using topological indices such as the Gutman
index, variance of degree index, product connectivity Banhatti index, and Sigma index to predict
these thermodynamic properties of monocarboxylic acids.

Motivated by these, the structure-property relationship between certain temperature-based
topological indices such as sum connectivity temperature index, product connectivity tempera-
ture index, F-temperature index, and symmetric division temperature index to the enthalpies of
formation (∆H0

f liquid), enthalpies of combustion (∆H0
C liquid), and enthalpies of vaporiza-

tion (∆H0
vap gas) of monocarboxylic acids and their quantitative structure-property relationship

are presented in this paper.

2 Basic definitions

Let G = (V,E) be a simple connected graph with vertex set |V (G)| = n and edge set E(G).
The number of edges incident to a vertex v is called the degree of the vertex v and is denoted
by deg(v). Fajtolowicz [4] introduced the notion of the temperature of a vertex v as follows.

Definition 2.1 The temperature of a vertex v ∈ V (G) is defined by T (v) = deg(v)
n−deg(v)
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Later in 2019, Kulli [8] introduced the concept of sum connectivity temperature index, prod-
uct connectivity temperature index, F-temperature index, and symmetric division temperature
index of a graph G as follows:
Sum connectivity temperature index:

ST (G) =
∑

uv∈E(G)

1√
T (u) + T (v)

(1)

Product connectivity temperature index:

PT (G) =
∑

uv∈E(G)

1√
T (u)× T (v)

(2)

F-temperature index:

FT (G) =
∑

uv∈E(G)

(
T (u)2 + T (v)2

)
(3)

Symmetric division temperature index:

SDT (G) =
∑

uv∈E(G)

(
T (u)

T (v)
+

T (v)

T (u)

)
(4)

3 Methods and techniques

The method used in this article includes finding the temperature of vertices, division of tempera-
ture of vertices, and partition of edges based on the temperature of end vertices. The temperature
of vertices and the edge separation methods are used for the computation of temperature-based
topological indices. The correlation coefficients are calculated using JMP statistical software.
2D graphs are drawn using JMP statistical software/Microsoft Excel.

4 2D molecular structures and computations of monocarboxylic
acids

With the help of these four temperature-based topological indices, the molecular structures of
19 monocarboxylic acids are explored. There are three thermodynamic properties of monocar-
boxylic acids under observation. These properties are enthalpies of formation (∆H0

f liquid),

enthalpies of combustion (∆H0
C liquid), and enthalpies of vaporization (∆H0

vap gas). Ther-
modynamic properties of monocarboxylic acids as given in Table 1 are taken from [5, 14].

Let α=Enthalpies of formation of liquids; β=Enthalpies of combustion of liquids; and
Γ=Enthalpies of vaporization. Then,
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Name of compounds Formula α β Γ

Acetic acid C2H4O2 483.50 875.16 46.3

Propanoic acid C3H6O2 510.8 1527.3 50

Butanoic acid C4H8O2 533.9 2183.5 54.9

Pentanoic acid C5H10O2 558.9 2837.8 58.2

Hexanoic acid C6H12O2 581.8 3494.3 63

Heptanoic acid C7H14O2 608.5 4146.9 64.8

Octanoic acid C8H16O2 634.8 4799.9 69.4

Nonanoic acid C9H18O2 658 5456.1 72.3

Decanoic acid C10H20O2 713.7 6079.3 76.6

Undecanoic acid C11H22O2 736.2 6376.5 78.9

Dodecanoic acid C12H24O2 775.1 7377 82.2

Tridecanoic acid C13H26O2 807.2 8024.2 84.9

Tetradecanoic acid C14H28O2 834.1 8676.7 87.7

Pentadecanoic acid C15H30O2 862.4 9327.7 91.4

Hexadecanoic acid C16H32O2 892.2 9977.2 94.5

Heptadecanoic acid C17H34O2 924.4 10624.4 100.7

Octadecanoic acid C18H36O2 947.2 11280.1 102.8

Nonadecanoic acid C19H38O2 984.1 11923.4 105

Eicosanoic acid C20H40O2 1012.6 12574.2 109.9

Table 1. The values of enthalpies of formation of liquid (∆H0
fkJ/mol), enthalpies of

combustion of liquid (∆H0
CkJ/mol), and enthalpies of vaporization (∆H0

vapkJ/mol of monocar-
boxylic acids at conditions, normally at 298.15 K, 1 atm.

5 Computation of temperature-based topological indices

Table 2 shows the temperature-based topological indices of 19 monocarboxylic acids calculated
using the formulas (1-4).
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Formula ST (G) PT (G) FT (G) SDT (G)

C2H4O2 1.643167 3 27.3333333 27.3333333

C3H6O2 3.23569 6.715476 7.826389 18.069445

C4H8O2 4.837467 9.048627 4.12 17.8

C5H10O2 6.585927 16.355579 2.730833 18.669444

C6H12O2 8.478948 22.649944 2.030113 19.993658

C7H14O2 10.97437 32.485281 1.421875 21.5

C8H16O2 12.671578 38.220202 1.338057 23.224868

C9H18O2 14.957559 47.500261 1.143533 24.985648

C10H20O2 17.700444 59.821403 0.998127 26.8

C11H22O2 19.879457 69.054894 0.885875 28.651768

C12H24O2 22.505505 81.330388 0.796447 30.530691

C13H26O2 25.235916 94.605041 0.723516 32.429945

C14H28O2 28.066954 106.017218 0.662893 34.344811

C15H30O2 30.995246 124.1525061 0.611696 36.271925

C16H32O2 34.017723 140.425548 0.567881 38.208823

C17H34O2 37.131587 157.698239 0.529953 39.581903

C18H36O2 40.334265 175.9706351 0.496798 42.105034

C19H38O2 43.62339 195.2427855 0.467565 44.061842

C20H40O2 46.99677 215.514726 0.441595 47.229573

Table 2. The values of temperature-based topological indices of monocarboxylic acids.

6 Regression models

Regression analysis is a statistical method that shows the relationship between two or more
variables.

To study the relationship between thermodynamic properties of monocarboxylic acids and
the temperature-based topological indices, the following equations from [14] are used.
Linear equation:

Y = a+ b1X1; n,R2, s, F

Quadratic equation:
Y = a+ b1X1 + b2X

2
1 ; n,R2, s, F

Cubic equation:
Y = a+ b1X1 + b2X

2
1 + b3X

3
1 ; n,R2, s, F

Here, Y is the dependent variable, a is the regression model, bi (1 ≤ i ≤ 3) are the coefficients
for the individual descriptor, Xi (1 ≤ i ≤ 3) are the independent variables, n is the number
of samples used for building the regression equation, R2 is the correlation coefficient, s is the
standard error of deviation, and F is the calculated value of the F-ration test.
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Note that the quality of a QSPR model can be conveniently measured by the correlation
coefficient (R2). A good QSPR model must have R2 > 0.99. The observed values and model
predictions must be compared to measure the predictive quality of the model. So, we deal with
the RMSE (Root Mean Square Error) metric for the predictive power of the model. The best
predictive model is the minimum error, i.e. the minimum RMSE.

Furthermore, R2 and F parameters will be considered for the goodness of fit of the model.
As given in [16], the best goodness of fit in models is selected by using the parameters either
max (R2) or max (F ).

We now determine the linear, quadratics, and cubic curvilinear models of the sum connec-
tivity temperature index, product connectivity temperature index, F-temperature index, and
symmetric division temperature index for ∆H0

f , ∆H0
C , and ∆H0

vap.

The significance of bold numbers in each table denote highest correlation value.

6.1 Curvilinear regression models of ST (G), PT (G) , FT (G), SDT (G) for ∆H0
f

Table 3. The curvilinear regressions models of ST (G) index for ∆H0
f .

∆H0
f R2 F RMSE

485.412+11.8001(ST (G)) 0.9918 2056.329 15.8062

456.784+15.606(ST (G))-0.08110(ST (G)2) 0.9988 6658.513 6.2330

460.745+14.626(ST (G))-0.0296(ST (G)2) -0.000717(ST (G)3) 0.9988 4449.708 6.2257

The analysis as mentioned in Table 3 indicates that the best goodness of fit among obtained
curvilinear equations using ST (G) topological index for ∆H0

f are:

∆H0
f = 456.784 + 15.606(ST (G))− 0.08110(ST (G)2); and

∆H0
f = 460.745 + 14.626(ST (G))− 0.0296(ST (G)2)− 0.000717(ST (G)3).

Table 4. The curvilinear regressions models of PT (G) index for ∆H0
f .

∆H0
f R2 F RMSE

532.892+2.465(PT (G)) 0.9662 487.167 32.053

489.678+4.024(PT (G))-0.0077(PT (G)2) 0.9972 2950.84 9.355

479.340+4.754(PT (G))-0.0168(PT (G)2) -2.995e-5(PT (G)3) 0.9986 3753.734 6.777

The analysis as mentioned in Table 4 indicates that the best goodness of fit among obtained
curvilinear equations using PT (G) topological index for ∆H0

f is:

∆H0
f = 479.340 + 4.754(PT (G))− 0.0168(PT (G)2)− 2.995e− 5(PT (G)3)
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Table 5. The curvilinear regressions models of FT (G) index for ∆H0
f .

∆H0
f R2 F RMSE

782.969-14.820(FT (G)) 0.2913 6.9901 146.942

873.844-87.507(FT (G))+2.692(FT (G)2) 0.6220 13.1658 110.619

1013.011-271.1496(FT (G))+34.177(FT (G)2)-0.9134(FT (G)3) 0.8510 28.574 71.713

The analysis as mentioned in Table 5 indicates that the best goodness of fit among obtained
curvilinear equations using FT (G) topological index for ∆H0

f is:

∆H0
f = 1013.011− 271.1496(FT (G)) + 34.177(FT (G)2)− 0.9134(FT (G)3).

Table 6. The curvilinear regressions models of SDT (G) index for ∆H0
f .

∆H0
f R2 F RMSE

224.623+17.044(SDT (G)) 0.8630 107.0981 64.607

276.589+13.4216(SDT (G))+0.0578(SDT (G)2) 0.8636 50.6906 66.429

653.886-26.121(SDT (G))+1.3603(SDT (G)2)-0.0135(SDT (G)3) 0.8658 32.275 68.059

The analysis as mentioned in Table 6 indicates that the best goodness of fit among obtained
curvilinear equations using SDT (G) topological index for ∆H0

f is:

∆H0
f = 653.886− 26.121(SDT (G)) + 1.3603(SDT (G)2)− 0.0135(SDT (G)3).

From the analysis as mentioned in Table 3 - Table 6, the topological indices ST (G) and
PT (G) are the best suitable for predicting the ∆H0

f of monocarboxylic acids (C2H4O2 - C20H40O2)

since R2 > 0.99.

6.2 Curvilinear regression models of ST (G), PT (G) , FT (G), SDT (G) for ∆H0
C

Table 7. The curvilinear regressions models of ST (G) index for ∆H0
C .

∆H0
C R2 F RMSE

1258.293+253.772(ST (G)) 0.9889 1526.730 394.502

512.470+352.946(ST (G))-2.1129(ST (G)2) 0.9992 1038.96 107.495

274.317+411.859(ST (G))-5.2041(ST (G)2) +0.0431(ST (G)3) 0.9998 3037.92 51.341

The analysis as mentioned in Table 7 indicates that the best goodness of fit among obtained
curvilinear equations using ST (G) topological index for ∆H0

C is:
∆H0

C = 274.317 + 411.859(ST (G))− 5.2041(ST (G)2) + 0.0431(ST (G)3).
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Table 8. The curvilinear regressions models of PT (G) index for ∆H0
C .

∆H0
C R2 F RMSE

2288.883+52.909(PT (G)) 0.9594 402.091 757.149

1304.786+88.4016(PT (G))-0.1753(PT (G)2) 0.9941 1351.173 297.2921

920.142+115.588(PT (G))-0.5165(PT (G)2) +0.0010(PT (G)3) 0.9982 2795.027 169.119

The analysis as mentioned in Table 8 indicates that the best goodness of fit among obtained
curvilinear equations using PT (G) topological index for ∆H0

C is:
∆H0

C = 1304.786 + 88.4016(PT (G))− 0.1753(PT (G)2).

Table 9. The curvilinear regressions models of FT (G) index for ∆H0
C .

∆H0
C R2 F RMSE

7702.569-334.266(FT (G)) 0.3195 7.9835 3101.051

9679.411-1915.462(FT (G))+58.562(FT (G)2) 0.6569 15.3177 2269.749

12543.022-5694.203(FT (G))+706.436(FT (G)2)-18.795(FT (G)3) 0.8659 32.312 1465.029

The analysis as mentioned in Table 9 indicates that the best goodness of fit among obtained
curvilinear equations using FT (G) topological index for ∆H0

C is:
∆H0

C = 12543.022− 5694.203(FT (G)) + 706.436(FT (G)2)− 18.795(FT (G)3).

Table 10. The curvilinear regressions models of SDT (G) index for ∆H0
C .

∆H0
C R2 F RMSE

-4241.663+362.973(SDT (G)) 0.8437 91.831 1485.794

-3123.265+284.995(SDT (G))+1.2453(SDT (G)2) 0.8444 43.4386 1528.186

1084.461-156.0012(SDT (G))+15.7711(SDT (G)2)-0.1515(SDT (G)3) 0.8450 27.269 1575.346

The analysis as mentioned in Table 10 indicates that the best goodness of fit among obtained
curvilinear equations using SDT (G) topological index for ∆H0

C is:
∆H0

C = 1084.461− 156.0012(SDT (G)) + 15.7711(SDT (G)2)− 0.1515(SDT (G)3).

From the analysis as mentioned in Table 7 - Table 10, the topological indices ST (G)
and PT (G) are the best suitable for predicting the ∆H0

C of monocarboxylic acids (C2H4O2

- C20H40O2) since R2 > 0.99.
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6.3 Curvilinear regression models of ST (G), PT (G) , FT (G), SDT (G) for
∆H0

vap

Table 11. The curvilinear regressions models of ST (G) index for ∆H0
vap.

∆H0
vap R2 F RMSE

49.7480+1.3369(ST (G)) 0.9835 1015.590 2.5482

45.531+1.897(ST (G))-0.0119(ST (G)2) 0.9952 1681.431 1.4087

42.932+2.540(ST (G))-0.0456(ST (G)2) +0.000470(ST (G)3) 0.9978 2317.041 0.9811

The analysis as mentioned in Table 11 indicates that the best goodness of fit among obtained
curvilinear equations using ST (G) topological index for ∆H0

vap is:
∆H0

vap = 42.932 + 2.540(ST (G))− 0.0456(ST (G)2) + 0.000470(ST (G)3).

Table 12. The curvilinear regressions models of PT (G) index for ∆H0
vap.

∆H0
vap R2 F RMSE

55.201+0.278(PT (G)) 0.9522 338.806 4.341

49.973+0.4670(PT (G))-0.00039(PT (G)2) 0.9872 621.4481 2.3079

47.306+0.655(PT (G))-0.0032(PT (G)2) +7.510(PT (G)3) 0.9943 880.0532 1.5891

The analysis as mentioned in Table 12 indicates that the best goodness of fit among obtained
curvilinear equations using PT (G) topological index for ∆H0

vap is:
∆H0

vap = 47.306 + 0.655(PT (G))− 0.0032(PT (G)2) + 7.510(PT (G)3).

Table 13. The curvilinear regressions models of FT (G) index for ∆H0
vap.

∆H0
vap R2 F RMSE

83.876-1.822(FT (G)) 0.3402 8.7681 16.1314

94.306-10.164(FT (G))+0.308(FT (G)2) 0.6767 16.7478 11.6393

108.734-29.203(FT (G))+3.5733(FT (G)2)-0.09470(FT (G)3) 0.8669 32.572 7.7128

The analysis as mentioned in Table 13 indicates that the best goodness of fit among obtained
curvilinear equations using FT (G) topological index for ∆H0

vap is:
∆H0

vap = 108.734− 29.203(FT (G)) + 3.5733(FT (G)2)− 0.09470(FT (G)3).
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Table 14. The curvilinear regressions models of SDT (G) index for ∆H0
vap.

∆H0
vap R2 F RMSE

21.241+1.896(SDT (G)) 0.8255 80.4709 8.2942

28.6641+1.3792(SDT (G))+0.00826(SDT (G)2) 0.8266 38.1525 8.5231

36.2095+0.5884(SDT (G))+0.03431(SDT (G)2)-0.08027(SDT (G)3) 0.8267 23.8565 80800973

The analysis as mentioned in Table 14 indicates that the best goodness of fit among obtained
curvilinear equations using SDT (G) topological index for ∆H0

vap is:
∆H0

vap = 36.2095 + 0.5884(SDT (G)) + 0.03431(SDT (G)2)− 0.08027(SDT (G)3).

From the analysis as mentioned in Table 11 - Table 14, the topological indices ST (G)
and PT (G) are the best suitable for predicting the ∆H0

vap of monocarboxylic acids (C2H4O2 -
C20H40O2) since R2 > 0.99.

7 Plots of the cubic regression equation

The analysis as mentioned in Table 3 - Table 14 indicates that the cubic equation gives the best
goodness of fit among three regression equations.

Figure 1 - Figure 3 shows the correlation of ST (G) and PT (G) with ∆H0
f , ∆H0

C , and ∆H0
vap

using cubic regression equation.

Figure 1: (a) Cubic regression equation of ∆H0
f with ST (G). (b) Cubic regression equation of

∆H0
f with PT (G).

10



Figure 2: (a) Cubic regression equation of ∆H0
C with ST (G) using normal probability plot. (b)

Cubic regression equation of ∆H0
C with PT (G).

Figure 3: (a) Cubic regression equation of ∆H0
vap with ST (G). (b) Cubic regression equation

of ∆H0
vap with PT (G).
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8 Conclusion

The temperature-based topological indices such as the sum connectivity temperature index,
product connectivity temperature index, F-temperature index, and symmetric division tem-
perature index of 19 monocarboxylic acids (C2H4O2 - C20H40O2) are calculated. Using these
topological indices, curvilinear regression models are designed to predict certain thermodynamic
properties such as enthalpies of formation (∆H0

f liquid), enthalpies of combustion (∆H0
c liq-

uid), and enthalpies of vaporization (∆H0
vap gas) of monocarboxylic acids. The most accurate

results for the prediction of these thermodynamic properties can be calculated by using the
sum connectivity temperature index and product connectivity temperature index. Further-
more, these thermodynamic properties also have a good correlation with the symmetric division
temperature index, but the F-temperature index is not enough to make a good prediction of
thermodynamic properties of monocarboxylic acids (C2H4O2 - C20H40O2). The optimum is the
cubic equation form among curvilinear equations.
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