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Abstract

Establishing quantitative correlations between various molecular properties and chemical
structures is of great technological importance for environmental and medical aspects. These
approaches are referred to as Quantitative Structure-Property Relationships (QSPR), which
relate the physicochemical or thermodynamic properties of compounds to their structures.
The main goal of QSPR studies is to find a mathematical relationship between the prop-
erty of interest and several molecular descriptors derived from the structure of the molecule.
Topological indices are the molecular descriptors that characterize the formation of chemical
compounds and predict certain physicochemical properties. In this study, the QSPR models
are designed using certain temperature-based topological indices such as the sum connectiv-
ity temperature index, product connectivity temperature index, F-temperature index, and
symmetric division temperature index to predict the thermodynamic properties, such as en-
thalpies of formation (AH} liquid), enthalpies of combustion (AHg liquid), and enthalpies
of vaporization (AHSW gas) of monocarboxylic acids (CoHy4O2 - Ca9H40O2). The relation-
ship analysis between thermodynamic properties and topological indices is done using linear,
quadratic, and cubic equations of a curvilinear regression model. These regression models
are then compared.

Keywords: Temperature of a vertex, sum connectivity temperature index, product connec-
tivity temperature index, F-temperature index, symmetric division temperature index.

1 Introduction

The properties of a molecule are indeed closely tied to its structural characteristics and com-
position. This concept is fundamental to understanding how molecules behave and interact in
various chemical reactions and physical processes. In this connection, graph theory has been
successfully applied and some thermodynamic properties [1, 2, 6, 13, 17].

Chemical graph theory is a specialized field within mathematical chemistry that focuses on
the study of molecules and chemical systems through the lens of graph theory.



Graph theory provides a mathematical framework for analyzing the relationships between
objects connected by edges, and in the context of chemical graph theory, these objects are atoms
and the edges represent chemical bonds. Chemical graph theory has practical applications in
fields such as drug discovery, materials science, computational chemistry, and chemical infor-
matics. It provides a powerful approach to understanding the relationships between molecular
structure and properties, which is crucial for designing new molecules with desired characteristics
and predicting how molecules will behave under different conditions.

Chemical graph theory plays a crucial role in developing QSPR models. These models cor-
relate graph-based molecular descriptors with various properties such as boiling points, melting
points, solubility, etc. For more details, the reader can refer to [3, 7, 9, 10, 11, 12, 15]. Numerous
studies have been made relating to QSPR models by using what are called topological indices
(TT). The first topological index was the Wiener index, which was introduced by Harold Wiener
in 1947. It was used to determine the physical properties of paraffin [17]. Since then, many
topological indices have been defined and used in many applications.

A topological index can be classified according to the structural characteristics of the graph
such as the degree of a vertex, the distance between vertices, the matching, and the spectrum.
The best-known topological indices are the Wiener index which is based on distance, the Zagreb
and the Randi¢ indices which are based on degree, the Estrada index which is based on the
spectrum of a graph, the Hosaya index based on the matching.

Shafiei in [14] designed the QSPR models using topological indices such as the connectivity
index, Szeged index, Balaban index, and Harary number to predict the thermodynamic prop-
erties such as enthalpies of formation of liquid, enthalpies of combustion of liquid, enthalpies
of vaporization, and enthalpies of sublimation of monocarboxylic acids (CoH4O2 - CagHa002).
Later in [5], Havare designed the QSPR models using topological indices such as the Gutman
index, variance of degree index, product connectivity Banhatti index, and Sigma index to predict
these thermodynamic properties of monocarboxylic acids.

Motivated by these, the structure-property relationship between certain temperature-based
topological indices such as sum connectivity temperature index, product connectivity tempera-
ture index, F-temperature index, and symmetric division temperature index to the enthalpies of
formation (AHJQ liquid), enthalpies of combustion (AH, 8 liquid), and enthalpies of vaporiza-
tion (AH, Sap gas) of monocarboxylic acids and their quantitative structure-property relationship
are presented in this paper.

2 Basic definitions

Let G = (V, E) be a simple connected graph with vertex set |V(G)| = n and edge set E(G).
The number of edges incident to a vertex v is called the degree of the vertex v and is denoted
by deg(v). Fajtolowicz [1] introduced the notion of the temperature of a vertex v as follows.

Definition 2.1 The temperature of a vertex v € V(G) is defined by T (v) = nfilge(;}()v)




Later in 2019, Kulli [3] introduced the concept of sum connectivity temperature index, prod-
uct connectivity temperature index, F-temperature index, and symmetric division temperature
index of a graph G as follows:

Sum connectivity temperature index:

1
ST(G) = e 1)
quZE(G) T(u) +T(v)

Product connectivity temperature index:

PTG = Y )

weE(G) T(U) X T(U)
F-temperature index:
FT(@) = Y (T?+T(v)?) (3)
weE(G)

Symmetric division temperature index:

SDT(G)= Y

weE(G)

3 Methods and techniques

The method used in this article includes finding the temperature of vertices, division of tempera-
ture of vertices, and partition of edges based on the temperature of end vertices. The temperature
of vertices and the edge separation methods are used for the computation of temperature-based
topological indices. The correlation coeflicients are calculated using JMP statistical software.
2D graphs are drawn using JMP statistical software/Microsoft Excel.

4 2D molecular structures and computations of monocarboxylic
acids

With the help of these four temperature-based topological indices, the molecular structures of
19 monocarboxylic acids are explored. There are three thermodynamic properties of monocar-
boxylic acids under observation. These properties are enthalpies of formation (AH]Q liquid),
enthalpies of combustion (AHg liquid), and enthalpies of vaporization (AH),, gas). Ther-
modynamic properties of monocarboxylic acids as given in Table 1 are taken from [5, 11].

Let a=Enthalpies of formation of liquids; S=Enthalpies of combustion of liquids; and

I'=Enthalpies of vaporization. Then,



H Name of compounds | Formula ‘ « ‘ 8 ‘ r H

Acetic acid CoH4O5 | 483.50 | 875.16 | 46.3
Propanoic acid C3HgOo 510.8 1527.3 50
Butanoic acid CyHgOo 533.9 | 2183.5 | 54.9
Pentanoic acid C5H100O2 | 558.9 | 2837.8 | 58.2
Hexanoic acid CgH1205 | 581.8 | 3494.3 63
Heptanoic acid C;H1405 | 608.5 | 4146.9 | 64.8
Octanoic acid CsH1602 | 634.8 | 4799.9 | 69.4

Nonanoic acid CyH1509 658 5456.1 | 72.3
Decanoic acid C10H2009 | 713.7 | 6079.3 76.6
Undecanoic acid C11H2205 | 736.2 | 6376.5 | 78.9
Dodecanoic acid Ch19H24045 | 775.1 7377 82.2
Tridecanoic acid Ci3Ho05 | 807.2 | 8024.2 | 84.9
Tetradecanoic acid | C14HogO9 | 834.1 | 8676.7 | 87.7
Pentadecanoic acid | Ci5H3009 | 862.4 | 9327.7 | 91.4
Hexadecanoic acid | C1gH3209 | 892.2 | 9977.2 | 94.5
Heptadecanoic acid | C17H3402 | 924.4 | 10624.4 | 100.7
Octadecanoic acid | C1gH3ggO2 | 947.2 | 11280.1 | 102.8
Nonadecanoic acid | CigHsgOo | 984.1 | 11923.4 | 105
Eicosanoic acid Co0H49045 | 1012.6 | 12574.2 | 109.9

Table 1. The values of enthalpies of formation of liquid (AHJQkJ /mol), enthalpies of
combustion of liquid (AHQk.J/mol), and enthalpies of vaporization (AHJ, kJ/mol of monocar-
boxylic acids at conditions, normally at 298.15 K, 1 atm.

5 Computation of temperature-based topological indices

Table 2 shows the temperature-based topological indices of 19 monocarboxylic acids calculated
using the formulas (1-4).



H Formula ‘ ST(G) ‘ PT(Q) ‘ FT(G) ‘ SDT(G) H
CoH409 1.643167 3 27.3333333 | 27.3333333
C3HgOo 3.23569 6.715476 7.826389 18.069445
C41HgOs 4.837467 9.048627 4.12 17.8
C5H1002 | 6.585927 16.355579 2.730833 18.669444
CeH1205 | 8.478948 22.649944 2.030113 19.993658
C7H1409 10.97437 32.485281 1.421875 21.5
CsH1605 | 12.671578 | 38.220202 1.338057 23.224868
CoH1509 | 14.957559 | 47.500261 1.143533 24.985648
CroH2005 | 17.700444 | 59.821403 0.998127 26.8
C11H2505 | 19.879457 | 69.054894 0.885875 28.651768
C1aH2405 | 22.505505 | 81.330388 0.796447 30.530691
C13H2605 | 25.235916 | 94.605041 0.723516 32.429945
C14H2305 | 28.066954 | 106.017218 0.662893 34.344811
C15H3002 | 30.995246 | 124.1525061 | 0.611696 36.271925
CieH32045 | 34.017723 | 140.425548 0.567881 38.208823
C17H34045 | 37.131587 | 157.698239 0.529953 39.581903
Ci1gH36042 | 40.334265 | 175.9706351 | 0.496798 42.105034
Cr9H3305 | 43.62339 | 195.2427855 | 0.467565 44.061842
CooHy0O2 | 46.99677 | 215.514726 0.441595 47.229573

Table 2. The values of temperature-based topological indices of monocarboxylic acids.

6 Regression models

Regression analysis is a statistical method that shows the relationship between two or more
variables.

To study the relationship between thermodynamic properties of monocarboxylic acids and
the temperature-based topological indices, the following equations from [11] are used.

Linear equation:
Y =a+bX; n R%sF

Quadratic equation:
Y =a+b X, +b X% n R%s,F

Cubic equation:
Y =a+bX; +boX? 4+ b3X}: n, R s, F

Here, Y is the dependent variable, a is the regression model, b; (1 < i < 3) are the coefficients
for the individual descriptor, X; (1 < i < 3) are the independent variables, n is the number
of samples used for building the regression equation, R? is the correlation coefficient, s is the
standard error of deviation, and F' is the calculated value of the F-ration test.



Note that the quality of a QSPR model can be conveniently measured by the correlation
coefficient (R?). A good QSPR model must have R? > 0.99. The observed values and model
predictions must be compared to measure the predictive quality of the model. So, we deal with
the RMSE (Root Mean Square Error) metric for the predictive power of the model. The best
predictive model is the minimum error, i.e. the minimum RMSE.

Furthermore, R? and F parameters will be considered for the goodness of fit of the model.
As given in [16], the best goodness of fit in models is selected by using the parameters either
max (R?) or max (F).

We now determine the linear, quadratics, and cubic curvilinear models of the sum connec-
tivity temperature index, product connectivity temperature index, F-temperature index, and

symmetric division temperature index for AHY, AHg,, and AHSap.

The significance of bold numbers in each table denote highest correlation value.

6.1 Curvilinear regression models of ST(G), PT(G) , FT(G), SDT(G) for AHY

Table 3. The curvilinear regressions models of ST (G) index for AHJQ.

H AHJQ \ R2 \ F \ RMSE H
485.412+11.8001(ST(G)) 0.9918 | 2056.329 | 15.8062
456.784415.606(ST (G))-0.08110(ST (G)?) 0.9988 | 6658.513 | 6.2330

460.745+14.626(ST (G))-0.0296(ST (G)?) -0.000717(ST(G)?) | 0.9988 | 4449.708 | 6.2257

The analysis as mentioned in Table 3 indicates that the best goodness of fit among obtained
curvilinear equations using S7 (G) topological index for AHJQ are:
AHY = 456.784 4 15.606(ST (G)) — 0.08110(ST (G)?); and
AH}) = 460.745 4+ 14.626(ST(G)) — 0.0296(ST(G)?) — 0.000717(ST(G)3).

Table 4. The curvilinear regressions models of P7(G) index for AHJQ.

H AHJQ \ R2 \ F \ RMSE H
532.8924-2.465(PT(G)) 0.9662 | 487.167 | 32.053
489.6784-4.024(PT (G))-0.0077(PT(G)?) 0.9972 | 2950.84 | 9.355

479.340+4.754(PT (G))-0.0168(PT (G)?) -2.995¢-5(PT (G)%) | 0.9986 | 3753.734 | 6.777

The analysis as mentioned in Table 4 indicates that the best goodness of fit among obtained
curvilinear equations using P7 (G) topological index for AH}) is:
AHY = 479.340 + 4.754(PT(G)) — 0.0168(PT (G)?) — 2.995¢ — 5(PT(G)?)



Table 5. The curvilinear regressions models of F'7(G) index for AHJQ.

H AHJQ \ R2 \ F \ RMSE H
782.969-14.820(FT(G)) 0.2913 | 6.9901 | 146.942
873.844-87.507(F T (G))+2.692(FT (G)?) 0.6220 | 13.1658 | 110.619

1013.011-271.1496 (F T (G))+34.177(F T (G)?)-0.9134(FT(G)?) | 0.8510 | 28.574 | 71.713

The analysis as mentioned in Table 5 indicates that the best goodness of fit among obtained
curvilinear equations using F'T (G) topological index for AHJQ is:
AHY =1013.011 — 271.1496(F T (G)) + 34.177(FT(G)?) — 0.9134(F T (G)?).

Table 6. The curvilinear regressions models of SDT (G) index for AH}).

H AHJQ \ R? \ F \ RMSE H
224.623+17.044(SDT(G)) 0.8630 | 107.0981 | 64.607
276.589+13.4216(SDT(G))+0.0578(SDT(G)?) 0.8636 | 50.6906 | 66.429

653.886-26.121(SDT (G))+1.3603(SDT (G)?)-0.0135(SDT(G)?) | 0.8658 | 32.275 | 68.059

The analysis as mentioned in Table 6 indicates that the best goodness of fit among obtained
curvilinear equations using SDT (G) topological index for AHJQ is:

AH}) = 653.886 — 26.121(SDT(G)) + 1.3603(SDT(G)?) — 0.0135(SDT(G)3).
From the analysis as mentioned in Table 3 - Table 6, the topological indices S7(G) and

PT(G) are the best suitable for predicting the AH JQ of monocarboxylic acids (Co H4O3 - CogH4002)
since R? > 0.99.
6.2 Curvilinear regression models of ST(G), PT(G) , FT(G), SDT(G) for AH

Table 7. The curvilinear regressions models of ST(G) index for AHQ.

[ AH, | R | F | RMSE |
1258.293+253.772(ST(G)) 0.9889 [ 1526.730 | 394.502
512.4704+352.946(ST (G))-2.1129(ST (G)?) 0.9992 | 1038.96 | 107.495

274.317+411.859(ST (G))-5.2041(ST (G)?) +0.0431(ST(G)?) | 0.9998 | 3037.92 | 51.341

The analysis as mentioned in Table 7 indicates that the best goodness of fit among obtained
curvilinear equations using S7(G) topological index for AH is:
AHQ =274.317 4+ 411.859(ST(G)) — 5.2041(ST (G)?) + 0.0431(ST(G)?).



Table 8. The curvilinear regressions models of PT(G) index for AHQ.

H AHY, ‘ R? ‘ F RMSE H
2288.883+52.909(PT (G)) 0.9594 | 402.091 | 757.149
1304.786+88.4016(PT (G))-0.1753(PT (G)?) 0.9941 | 1351.173 | 297.2921
920.142+115.588(P7 (G))-0.5165(PT (G)2) +0.0010(PT(G)3) | 0.9982 | 2795.027 | 169.119

The analysis as mentioned in Table 8 indicates that the best goodness of fit among obtained

curvilinear equations using P7(G) topological index for AH, is:
AHQ = 1304.786 + 88.4016(PT(G)) — 0.1753(PT(G)?).

Table 9. The curvilinear regressions models of FT(G) index for AHQ.

[ AHY, | R® | F | RMSE |
7702.569-334.266(FT (G)) 0.3195 | 7.9835 | 3101.051

9679.411-1915.462( F T (G))+58.562(F T (G)?) 0.6569 | 15.3177 | 2269.749
12543.022-5694.203( F T (G))+706.436( FT (G)?)-18.795(FT (G)?) | 0.8659 | 32.312 | 1465.029

The analysis as mentioned in Table 9 indicates that the best goodness of fit among obtained
curvilinear equations using F'7(G) topological index for AH is:
AHY, = 12543.022 — 5694.203(F' T (G)) + 706.436( FT (G)?) — 18.795(F' T (G)?).

Table 10. The curvilinear regressions models of SDT(G) index for AHQ.

H AHY, \ R? \ F \ RMSE H
-4241.663+362.973(SDT(G)) 0.8437 | 91.831 | 1485.794
-3123.265+284.995(SDT(G))+1.2453(SDT(G)?) 0.8444 | 43.4386 | 1528.186
1084.461-156.0012(SDT (G))+15.7711(SDT(G)?)-0.1515(SDT(G)3) | 0.8450 | 27.269 | 1575.346

The analysis as mentioned in Table 10 indicates that the best goodness of fit among obtained
curvilinear equations using SDT(G) topological index for AHY, is:

AHY =1084.461 — 156.0012(SDT(G)) + 15.7711(SDT(G)?) — 0.1515(SDT(G)?).

From the analysis as mentioned in Table 7 - Table 10, the topological indices ST (G)
and PT(G) are the best suitable for predicting the AHg of monocarboxylic acids (CoH405

- C20H4002) since R2 > 0.99.



6.3 Curvilinear regression models of ST(G), PT(G) , FT(G), SDT(G) for
AH?

vap

Table 11. The curvilinear regressions models of ST (G) index for AH?

vap*

H AHY,, \ R? \ F RMSE H
49.7480+1.3369(ST (Q)) 0.9835 | 1015.590 2.5482
45.531+1.897(ST(G))-0.0119(ST (G)?) 0.9952 | 1681.431 1.4087

42.932+2.540(ST (G))-0.0456(ST (G)?) +0.000470(ST(G)3) | 0.9978 | 2317.041 0.9811

The analysis as mentioned in Table 11 indicates that the best goodness of fit among obtained
curvilinear equations using S7(G) topological index for AHY, i
AHY,, = 42932+ 2.540(ST(G)) — 0.0456(ST (G)?) + 0.000470(ST (G)?).

Table 12. The curvilinear regressions models of P7(G) index for AH?

vap*

H AHY,, \ R? \ F \ RMSE H
55.2014+-0.278( PT(Q)) 0.9522 | 338.806 | 4.341
49.973+0.4670(PT (G))-0.00039( PT(G)?) 0.9872 | 621.4481 | 2.3079

47.306-+0.655(P7 (G))-0.0032(PT (G)?) +7.510(PT(G)?) | 0.9943 | 880.0532 | 1.5801

The analysis as mentioned in Table 12 indicates that the best goodness of fit among obtained
curvilinear equations using P7 (G) topological index for AHSap :
AH? = 47.306 + 0.655(PT(G)) — 0.0032(PT(G)?) + 7.510( PT(G)3).

vap

Table 13. The curvilinear regressions models of F7(G) index for AHJ,,

H AHY,, \ R? \ F \ RMSE H
83.876-1.822(F T (Q)) 0.3402 | 8.7681 | 16.1314

94.306-10.164(F'7 (G))+0.308(F T (G)?) 0.6767 | 16.7478 | 11.6393
108.734-29.203(FT(G))+3.5733(FT(G)?)-0.09470(FT (G)?) | 0.8669 | 32.572 | 7.7128

The analysis as mentioned in Table 13 indicates that the best goodness of fit among obtained
curvilinear equations using F'7(G) topological index for AH?

AHY, =108.734 — 29.203(FT(G)) + 3.5733(FT(G)?) — 0.09217)0(F7'(G)3).

vap



Table 14. The curvilinear regressions models of SDT (G) index for AH?

vap*
H AHY,, \ R? \ F \ RMSE H
21.241+1.896(SDT(G)) 0.8255 [ 80.4709 | 8.2942
28.6641+1.3792(SDT (G))+0.00826(SDT(G)?) 0.8266 | 38.1525 | 8.5231

36.2095+0.5884(SDT (G))+0.03431(SDT (G)?)-0.08027(SDT(G)3) | 0.8267 | 23.8565 | 80800973

The analysis as mentioned in Table 14 indicates that the best goodness of fit among obtained
curvilinear equations using SD7T (G) topological index for AHgap is:
AHD = 36.2095 + 0.5884(SDT(G)) + 0.03431(SDT(G)?) — 0.08027(SDT(G)3).

vap

From the analysis as mentioned in Table 11 - Table 14, the topological indices ST (G)
and PT(G) are the best suitable for predicting the AHY,, of monocarboxylic acids (CoH4Os -
020H4002) since R? > 0.99.

7 Plots of the cubic regression equation

The analysis as mentioned in Table 3 - Table 14 indicates that the cubic equation gives the best
goodness of fit among three regression equations.

Figure 1 - Figure 3 shows the correlation of ST (G) and PT (G) with AHJQ, AHP, and AHY,,
using cubic regression equation.
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8 Conclusion

The temperature-based topological indices such as the sum connectivity temperature index,
product connectivity temperature index, F-temperature index, and symmetric division tem-
perature index of 19 monocarboxylic acids (CoH4O09 - CogH4002) are calculated. Using these
topological indices, curvilinear regression models are designed to predict certain thermodynamic
properties such as enthalpies of formation (AHJQ liquid), enthalpies of combustion (AH? lig-

uid), and enthalpies of vaporization (AHSap gas) of monocarboxylic acids. The most accurate
results for the prediction of these thermodynamic properties can be calculated by using the
sum connectivity temperature index and product connectivity temperature index. Further-
more, these thermodynamic properties also have a good correlation with the symmetric division
temperature index, but the F-temperature index is not enough to make a good prediction of
thermodynamic properties of monocarboxylic acids (CoHyO2 - Ca9Hy9O2). The optimum is the

cubic equation form among curvilinear equations.
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