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Abstract

Recent advancements in machine learning have showcased its potential to sig-
nificantly accelerate the discovery of new materials. Central to this progress is
the development of rapidly computable property predictors, enabling the iden-
tification of novel materials with desired properties from vast material spaces.
However, the limited availability of data resources poses a significant challenge
in data-driven materials research, particularly hindering the exploration of inno-
vative materials beyond the boundaries of existing data. While machine learning
predictors are inherently interpolative, establishing a general methodology to
create an extrapolative predictor remains a fundamental challenge, limiting the
search for innovative materials beyond existing data boundaries. In this study,
we leverage an attention-based architecture of neural networks and meta-learning
algorithms to acquire extrapolative generalization capability. The meta-learners,
experienced repeatedly with arbitrarily generated extrapolative tasks, can acquire
outstanding generalization capability in unexplored material spaces. Through the
tasks of predicting the physical properties of polymeric materials and hybrid
organic–inorganic perovskites, we highlight the potential of such extrapolatively
trained models, particularly with their ability to rapidly adapt to unseen material
domains in transfer learning scenarios.

1

ar
X

iv
:2

40
4.

08
65

7v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  2
5 

M
ar

 2
02

4



Introduction

In recent years, the potential of machine learning to accelerate the process of discov-
ering new materials has been demonstrated across diverse material systems, such as
polymers [1], inorganic compounds [2, 3], alloys [4], catalysts [5, 6], aperiodic materials
[7–9]. At the heart of this advancement lies a rapidly computable property predictor
obtained through machine learning that represents the compositional and structural
features of any given material in a vector form and learns the mathematical mapping
from such vectorized materials to their physicochemical properties. By employing such
a property predictor with millions or even billions of candidate materials, novel mate-
rials with tailored properties can be identified effectively by navigating the expansive
search space.

The most significant challenge in such data-driven materials research is the scarcity
of data resources [10–12]. In most research tasks, ensuring sufficient quantity and
diversity of data remains a formidable hurdle. Furthermore, the ultimate goal of mate-
rials science is to discover “innovative” materials that exist in a material space no
one has gone before. However, machine learning is generally interpolative, and its pre-
dictability is limited to the domain neighboring the given training data. Even large
language models, currently revolutionizing various fields, are essentially memorization
learners, making interpolative predictions based on vast data. Establishing fundamen-
tal methodologies for extrapolative predictions poses an unsolved challenge not only
in materials science but also in the next generation of artificial intelligence [13–15].

Methodological research related to extrapolative machine learning has progressed
within various frameworks, including domain generalization [16, 17], transfer learn-
ing [18], domain adaptation [19, 20], meta-learning [21], and multi-task learning [22],
all of which are closely interrelated. These methodologies seek to overcome the chal-
lenge of limited data availability by integrating heterogeneous datasets with different
generative processes, from the source and target domains. Wu et al. (2019) employed
transfer learning to successfully discover three new amorphous polymers with notably
high thermal conductivity [1]. Given the limited availability of thermal conductivity
data for only 28 amorphous polymers in the target domain, they constructed a trans-
ferred model for thermal conductivity prediction by refining a collection of source
models, pre-trained on other related properties, such as glass transition temperature,
specific heat, and viscosity, for which a well-supplied dataset existed. Remarkably, the
dataset for the target task lacked similar instances for the three synthesized poly-
mers. Nevertheless, the transferred model exhibited out-of-distribution generalization
performance, attributed to the presence of relevant cases in the source datasets. In
materials research, several instances have been reported where transfer learning suc-
cessfully acquired extrapolative capabilities [23, 24]. In the growing fields of artificial
intelligence, such as computer vision and natural language processing, research on
domain generalization is much more active than in materials science [16, 17]. In
domain generalization, for example, numerous sets of data from different domains,
called episodes, are generated from the entire given dataset, and the model undergoes
domain adaptation repeatedly [25, 26]. During this repeated training, the resulting
model often acquires domain-invariant feature representations, thus achieving gen-
eralization performance for unseen domains. For example, a set of episodes can be
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generated by manipulating an original image with varying appearances, brightness,
and backgrounds. In materials research, different material classes, such as polyester
or cellulose, could correspond to different domains. However, it remains uncertain
whether the generic methodologies of domain generalization can maintain effective-
ness in materials property prediction tasks. It is intuitively plausible that there exists
a domain-invariant representor or predictor across synthetically manipulated images.
However, it is not obvious that such invariance exists in different material systems.

In this study, we leverage an attention-based architecture originally designed for
few-shot learning, referred to as matching neural networks (MNNs) [27], to learn the
learning method for obtaining extrapolative predictors. We employ the meta-learning
algorithm [27–31], commonly known as “learning to learn”, to achieve extrapolative
prediction capability and out-of-distribution generalization performance. From a given
dataset D, numerous episodes are generated, each comprising a training set S and
a test set Q containing instances outside the training domain S. The objective is
to learn a generic model y = f(x,S) representing the mapping from material x to
property y in which (x, y) belongs to any domain Q. A distinctive feature of MNNs
is to explicitly include the training dataset S as an input variable. Instances of the
input-output pair (x, y) are assumed to follow a distribution different from S. Unlike
other domain adaptation methods, MNNs explicitly describe in the model y = f(x,S)
how it predicts y from x in an unseen domain given a training dataset S.

In the following, we demonstrate how the extrapolatively trained predictors acquire
extrapolation capabilities through two property prediction tasks for polymeric mate-
rials and hybrid organic–inorganic perovskite compounds. For a given dataset, we can
generate a set of episodes for extrapolative learning, flexibly in terms of quantity and
quality. This is considered a form of self-supervised learning. As shown later, the con-
dition of generating episode sets, such as the overall data size and the size of S in
the training and inference phases, significantly influences the resulting generalization
performances. Through various numerical experiments, we provide guidelines for con-
figuring these parameters. Moreover, we use the extrapolatively trained predictor as a
pre-trained model for downstream tasks, adapting it to the target domain using data
from an extrapolative domain of the material space. The extrapolatively trained pre-
dictor exhibits remarkable transferability, adapting to the downstream extrapolative
prediction tasks with much smaller training instances, compared to conventionally
trained models.

Results

Methods outline

A conventional machine learning predictor describes the relationship between input x
and output y as y = fϕ(x). After training the model, the parameter ϕ is given as an
implicit functional of the training dataset S as y = fϕ(S)(x). In contrast, the meta-
learner y = fϕ(x,S) takes both the input–output variables (x, y) and the training
dataset S = {xi, yi|i = 1, . . . ,m} consisting of m instances, as its arguments. In the
context of meta-learning, S is referred to as the support set. We will use this term
hereafter. From a given dataset D = {xi, yi|i = 1, . . . , d}, a collection of n training
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Fig. 1 Extrapolative episodic training (E2T) with MNNs involves generating numerous episodes
from a given dataset, comprising a support set (S) and an input-output pair (x, y). By including a
large number of S and (x, y) with extrapolative relationships into the episode set, the trained MNN
learns the general way y = f(x,S) for predicting extrapolatively from x to y with any given S.

instances, referred to as episodes, is constructed as T = {xi, yi,Si|i = 1, . . . , n} to
train the meta-learner. In this scenario, for each episode (xi, yi) and Si, tuples in an
extrapolative relationship can be arbitrarily chosen. For instance, (xi, yi) represents
a physical property yi of a cellulose derivative xi, while Si represents a dataset from
other polymer classes, such as conventional plastic resins. Alternatively, (xi, yi) can be
defined by a compound containing element species that are not present in the training
compounds comprising Si. An essential aspect here is that such extrapolative episodes
can be arbitrarily generated from a given dataset. We refer to such a learning scheme
as extrapolative episodic training (E2T) (Fig. 1).

This study focuses on real-valued output y ∈ R representing a physical property.
Our model is based on an attention-based neural network that associates input and
output variables as follows:

y =
∑

(xi,yi)∈S

a(ϕx, ϕxi
)yi = a(ϕx)

⊤y (1)

Here the output y is computed by taking the weighted sum of yi within the support
set S using the weight a(ϕx, ϕxi

). The second equation represents this in a vector form
with y⊤ = (y1, . . . , ym) ∈ Rm and a(x)⊤ = (a(ϕx, ϕx1

), . . . , a(ϕx, ϕxm
)) ∈ Rm. The

attention a(ϕx, ϕxi
) measures the similarity between the input x and xi in the support

set through the neural embedding ϕ.
In this study, we employ the following attention mechanism resembling a kernel

ridge regressor:

y = g(ϕx)
⊤(Gϕ + λI)−1y (2)
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where y⊤ = (1, y1, . . . , ym) ∈ Rm+1, g(ϕx)
⊤ = (1, k(ϕx, ϕx1), . . . , k(ϕx, ϕxm)) ∈ Rm+1,

and Gϕ is the (m+ 1)× (m+ 1) Gram matrix of positive definite kernels k(ϕxi , ϕxj )
defined as

Gϕ =


1 1 . . . 1
1 k(ϕx1

, ϕx1
) . . . k(ϕx1

, ϕxm
)

...
...

. . .
...

1 k(ϕxm
, ϕx1

) . . . k(ϕxm
, ϕxm

)


In Eq. 2, I is the (m+1)×(m+1) identity matrix, and λ ∈ R represents a controllable
smoothing parameter. Note that element 1 is included in y, g(ϕx), and Gϕ to introduce
an intercept term into the regressor. Here, a(ϕx)

⊤ = g(ϕx)
⊤(Gϕ + λI)−1 in relation

to Eq. 1. In Bertinetto et al. [32], this model was proposed as a differentiable closed-
form solver in the context of few-shot learning using the model-agnostic meta-learning
(MAML) [31] to obtain a meta-learner rapidly adaptable to a variety of tasks.

The E2T learning is formulated as the ℓ2 loss minimization:

Jϕ =
∑

(xi,yi,Si)∈T

(
yi − f(xi,Si)

)2

=

n∑
i=1

∑
(x′

j ,y
′
j)∈Si

(
yi − a(ϕxi , ϕx′

j
)y′j

)2

(3)

In the two case studies presented below, we model the feature embedding ϕ by neural
networks (see the Methods section for details).

The method of generating episodes involves different strategies in each case study.
Intuitively, it is natural to include both extrapolative and interpolative episodes into
a dataset, rather than solely relying on extrapolative episodes. The mixing rate of
extrapolative to interpolative episodes would influence learning performance. It is also
important to see that the size of S can be adjusted arbitrarily. In particular, the
size of S can differ in the training and inference phases. Increasing S escalates the
computational burden, particularly calculating the inverse matrix in Eq. 2. To miti-
gate the computational cost, randomly sampled S should be used. Here, the question
arises regarding the optimal size of S during the training and inference phases. To
address these questions, we conducted various numerical experiments across the two
case studies.

Experimental results

The learning behavior and potential mechanisms of E2T were experimentally inves-
tigated in terms of predicting properties for materials out of the training sets. Here,
we present performance evaluation experiments focusing on extrapolative prediction
tasks for amorphous polymers and organic–inorganic hybrid perovskites.
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Property prediction of out-of-domain polymers

E2T was applied to a dataset of polymer properties calculated using RadonPy [33].
RadonPy is a software tool to automate the overall process of all-atom classical molecu-
lar dynamics (MD) simulations for various polymeric properties, including the specific
heat at constant pressure (Cp) and refractive index. The dataset encompasses 69,480
amorphous polymers, which are classified into 20 polymer classes according to the
chemical structures of their repeating units, such as polyimide, polyester, polystyrene,
and so on (see Table S1 for the list of polymer classes and the number of polymers).
The visualization of the chemical space using UMAP [34] shows that these polymer
classes are structurally distinct (Fig. S1), indicating that the prediction tasks across
different polymer classes are extrapolative.

To evaluate the predictive performance regarding an unseen polymer class, the
following procedure was conducted: (1) a model was trained using randomly chosen
samples from 19 out of the 20 polymer classes, and (2) its generalization capability
was accessed using data from the remaining polymer class. Two tasks were per-
formed to predict Cp and refractive index, respectively. The chemical structure of a
polymer repeating unit was encoded with the Morgan fingerprint [35, 36] into a 2,048-
dimensional descriptor vector, which serves as input for a three-layer fully connected
neural network (FCNN) acting as the embedding function ϕ of MNN. As a baseline,
a conventional FCNN with three hidden layers, which has an architecture similar to
the embedding function of the MNN, was subjected to ordinary supervised learning.

We assessed the scalability of the models’ generalization capability on the sample
size in the training dataset D and the support set S, respectively. In each step of E2T,
a training instance on (x, y) was sampled from a randomly selected polymer class,
while the support set S was sampled entirely from the 19 polymer classes including
interpolative and extrapolative episodes. Throughout the training process, the size of
the support set was fixed at m = 30, whereas during the inference phase, the overall
training dataset D was set to S. The hyperparameter λ was set to be 0.1, where its
influence on the resulting out-of-domain generalization performance was investigated
through the sensitivity analysis shown later. These experiments were repeated inde-
pendently 10 times to calculate the mean predictive accuracy with their variability.
Further details are described in the Methods section.

Figs. 2 and 3 summarize the out-of-domain predictive performance on each of the
20 unseen polymer classes, improving almost monotonically to the increasing size of
the training set D. In each task on Cp (Fig. 2) or refractive index (Fig. 3), E2T consis-
tently and significantly outperformed the ordinary supervised learning with FCNN for
most polymer classes across the different size of D varying in the range [950, 38000],
respectively. The generalization capability of E2T was scaled according to a power
law with increasing training set on approximately the same order of magnitude as the
ordinary supervised learning. In particular, there were no cases where E2T signifi-
cantly underperformed compared to the ordinary learning. There were several polymer
classes such as polyimides (p13), polyanhydrides (p14), and polyphosphazenes (p18)
in the prediction of Cp, where E2T does not show notable improvement. Unfortu-
nately, the underlying cause for the lack of improvement in several polymer classes
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could not be identified. The distributional features of property values for each poly-
mer class, as shown in Fig. S2, did not exhibit any notable pattern associated with
the observed extrapolative behaviors. In addition, the structure visualization using
the UMAP projections in Fig. S1 did not reveal any structural uniqueness of these
unsuccessful polymer classes. For instance, while p14 and p18 exhibited no significant
improvement in the Cp prediction task. E2T displayed substantial improvement over
the ordinary learning in the refractive index prediction. This observation indicates that
the potential gain in extrapolative prediction does not stem from cross-domain struc-
tural relationships but rather from the potential transferability regarding the presence
or absence of physicochemical mechanisms.

In addition, we investigated the generalization performance of the FCNN trained
on approximately 55,580 samples randomly chosen entirely from all polymer classes
containing the target domain. As shown in Fig. 2 and Fig. 3 with red dashed lines, for
many of the polymer classes, the extrapolative capability of E2T could not reach the
level of the interpolative prediction of this baseline model. This suggests that while
E2T enhances the extrapolative performance, it does not gain fundamental extrap-
olation capability. However, as demonstrated later, E2T can attain generalization
performance equal to or significantly better than the baseline with much fewer train-
ing samples when fine-tuned to the target domain. This implies that extrapolatively
trained models can adapt to a target domain rapidly with a small dataset.
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Fig. 2 Scaling behavior of the out-of-domain generalization performance (RMSE: root mean squared
error) of the specific heat (Cp) prediction task with the increasing number of training samples. RMSEs
of MNNs trained with E2T and conventional FCNNs are shown in blue and orange, respectively.
The red dashed lines denote the generalization performance of conventional domain-inclusive learning
using data from all polymer classes.
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Fig. 3 Scaling behavior of the out-of-domain generalization performance (RMSE) of the refractive
index prediction task with the increasing number of training samples. RMSEs of MNNs trained with
E2T and conventional FCNNs are shown in blue and orange, respectively. The red dashed lines denote
the generalization performance of conventional domain-inclusive learning using data from all polymer
classes.

Bandgap prediction of out-of-domain perovskite compounds

To verify the generality of E2T, we conduct another experiment using the hybrid
organic–inorganic perovskite (HOIP) dataset [37]. This dataset records 1,345 per-
ovskite structures with their properties, including bandgaps, calculated by density
functional theory. Each perovskite consists of a combination of organic/inorganic
cations and an inorganic anion. The inorganic elements in the cations consist of ger-
manium (Ge), tin (Sn), and lead (Pb), and the anions consist of fluorine (F), chlorine
(Cl), bromine (Br), and iodine (I). Na et al. [38, 39] demonstrated state-of-the-art
extrapolation performance using the automated nonlinearity encoder (ANE) on the
HOIP dataset. ANE aims to enhance extrapolative prediction capability by utilizing
an embedding function of input crystal structures that is pre-trained through self-
supervised learning based on deep metric learning. Specifically, the embedding function
was trained by minimizing the Wasserstein distance between the distances of given
data in the embedding and property spaces, followed by ordinary supervised learning
to predict physical properties using the embedded crystal structures. They considered
two tasks mimicking real-world scenarios in exploring novel solar materials: (1) exclud-
ing perovskites containing both Ge and F from the training dataset, and (2) excluding
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perovskites containing both Pb and I from the training dataset. We refer to these tasks
as “HOIP-GeF” and “HOIP-PbI”, respectively. As shown in Fig. S3, in both tasks,
the distributions of the training and test sets are extrapolatively related in both the
structure and property spaces. In particular, the bandgap distribution of HOIP-GeF
or HOIP-PbI is significantly biased toward the higher or lower tail respectively.

We performed numerical experiments in the same setting as Na et al. [38, 39]. We
divided the HOIP dataset into twelve groups based on combinations of four anions
and three cations. When creating a training episode, we excluded the HOIP-GeF or
HOIP-PbI dataset, and randomly selected 50 instances of (x, y) from one group, while
drawing S of size 50 from the remaining groups. In total, 1,248 or 1,228 training
samples were drawn from the overall data other than HOIP-GeF or HOIP-PbI, respec-
tively. Further experimental details are given in the Methods section. In the inference
phase, the entire training dataset D was given to S.

We examined the performance of E2T in comparison with ANE and conventional
supervised learning. ANE and E2T were modeled by an embedding function followed
by a regression header responsible for computing the bandgap as output. For the
embedding of input crystal structures, the message passing neural network (MPNN)
[40], a graph neural network, was used for ANE and E2T. As the models for the header
part, ANE and E2T employed FCNN and the kernel ridge regressor, respectively. As
for the additional baselines, we used “MPNN-Linear” with the linearly modeled top
layer and “MPNN-FCNN”.

The assessment of out-of-domain prediction accuracy is summarized in Table 1.
Similar to the polymer property prediction tasks, E2T showcased extrapolation perfor-
mance that overwhelmingly surpassed the conventional learning (MPNN-Linear and
MPNN-FCNN) for both tasks of HOIP-GeF and HOIP-PbI. Moreover, the extrapola-
tion capability of E2T significantly exceeded that of ANE. Interestingly, while E2T did
not attain the baseline prediction performance of an ordinary FCNN trained using the
entire dataset, including instances from the target domain, it achieved a performance
level remarkably close to it (Table 1). For instance, the coefficients of determination
(R2) for HOIP-PbI were 0.605 ± 0.057 for E2T and 0.675 ± 0.162 for the baseline,
respectively, while R2 of ANE was 0.510 ± 0.108; similar results were observed for
HOIP-GeF. This suggests that E2T has indeed acquired an extrapolation mechanism.

In the episodic training framework, several hyperparameters, such as the size of
the support set, need to be adjusted. We conducted an ablation study using the HOIP
dataset to investigate the influence of the training and inference support sizes, |Strain|
and |Sinfer|, and the smoothing parameter λ for the ridge regressor head on the E2T
performance.

As shown in Fig. 4(a), the generalization performance tends to improve with an
increase in the training support size |Strain|, but the scaling behaviors were observed
unclearly. Particularly in the HOIP-GeF task with the optimal support size λ = 10
exhibiting the best performance among the trials, the generalization performance did
not change monotonically with increasing |Strain|. In summary, it is practically appro-
priate to keep the training support set relatively small, while controlling the value of
λ appropriately.
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Table 1 Evaluation of extrapolation prediction performance (RMSE and R2) based on the
HOIP dataset. Two benchmark sets (HOIP-GeF and HOIP-PbI), excluding perovskite
compounds with specific constituent elements, were used to predict the band gap of the unseen
extrapolative compounds. MPNN-Linear (all) refers to non-extrapolative models trained using
data from the entire domain including the target. We conducted 30 runs independently and
the standard deviation of the performance metrics is indicated after the symbol ±.

Methods
HOIP-GeF HOIP-PbI

R2 RMSE (eV) R2 RMSE (eV)

MPNN-Linear 0.255± 0.198 0.361± 0.046 0.545± 0.064 0.207± 0.014
MPNN-FCNN −0.088± 0.614 0.427± 0.106 0.508± 0.185 0.213± 0.037

ANE [38] 0.361± 0.105 0.336± 0.027 0.510± 0.108 0.214± 0.024
E2T 0.486± 0.095 0.301± 0.027 0.605± 0.057 0.193± 0.013

MPNN-Linear (all) 0.551± 0.418 0.244± 0.045 0.675± 0.162 0.168± 0.037

Conversely, as shown in Fig. 4(b), the generalization performance scales monoton-
ically with an increase in the inference support size |Sinfer|. However, the decay of
generalization performance nearly halts around |Sinfer| ≈ 102, regardless of the size
of the training support set. From this test, it is concluded that setting |Sinfer| ≈ 103

is adequate to achieve satisfactory accuracy. In summary, it is preferable to use a
large support set for inference, while ensuring an appropriate value of λ. In practice,
|Sinfer| should be taken to be sufficiently large relative to |Strain| under the constraint
of computational cost.
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Fig. 4 Sensitivity analysis of E2T in the two extrapolative prediction tasks (HOIP-GeF and HOIP-
PbI) using the HOIP dataset. (a) Variation of the RMSE to varying the training support size with
the inference support size fixed at 1,248 (left panel) and 1,228 (right panel). (b) Variation of the
RMSE for varying the inference support size at λ = 100. In the panel (a), the colored lines indicate
different smoothing parameters λ. In the panel (b), the colored lines represent the different training
support sizes. The shaded areas indicate the standard deviations.

Fine-tuning to extrapolative domains

So far, our focus has been on scenarios where no data are available during the episodic
training for the target domain. Here, we shift our attention to scenarios where a limited
amount of data is accessible in the target domain such scenarios are common in practi-
cal materials development. In such cases, leveraging data from a related source domain
via transfer learning including fine-tuning is a pragmatic approach [1, 23]. Moreover,
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meta-learning methods have proven effective for few-shot classification problems, such
as toxicity prediction [41–43]. Inspired by these previous studies, we adapted a pre-
trained meta-learner to data from the target domain via fine-tuning, as detailed in the
Methods section. Below, we present the results of applying our methodology to the
two distinct problem settings.

The fine-tuning was performed on the RadonPy dataset. In this experiment, a
pre-trained model of E2T with a source data size of 38,000 was fine-tuned using data
from the target domain corresponding to a particular polymer class. To fine-tune a
pre-trained model of E2T, episodes (xi, yi,Si) were randomly sampled from all data
containing the polymer class of the target domain to modify the entire network. The
pre-trained FCNNs underwent fine-tuning across all layers of their respective networks
using data from the target polymer class.

As shown in Figs. 5 and 6, the loss decreases as the target data increases almost
monotonically for E2T and FCNN. Focusing on the difference between E2T and
FCNN, E2T outperforms FCNN in most of the cases, implying the superiority of E2T
over ordinary supervised learning even in fine-tuning scenarios. In particular, E2T
scaled with no order-level differences, but maintained gains constantly for increasing
numbers of trained data. Furthermore, as before, comparisons were also made with
the baseline FCNNs trained on the entire dataset, including samples from the target
domain.

Notably, for example, the Cp prediction performance of E2T in polyhalo-olefins
(p05) and polydienes (p06) reached the baseline performance indicated by the red
dashed lines in the figure. For training the baseline model, 1,154 and 1,047 samples
were used for p05 and p06, respectively. In contrast, only 500 or fewer samples were
used to fine-tune the MNNs to achieve the same level of performance. For the other
polymer classes, according to their scaling behaviors, it is estimated that the baseline
performance will be exceeded by the one of E2T with considerably fewer samples, sug-
gesting that models extrapolatively trained by E2T can adapt early to inexperienced
domains.
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Fig. 6 Scaling behavior of the fine-tuned refractive index predictor with increasing target samples.
The results of E2T are depicted in blue, while FCNN is shown in orange. Each panel represents a
different polymer class. The x-axis indicates the number of samples from the target domain for fine-
tuning, while the y-axis represents RMSE with the standard deviation. The red dashed line denotes
the generalization performance of the model trained on the entirely sampled dataset, including the
target domain.

Similar experiments were conducted on the HOIP dataset, where MNNs pre-trained
with E2T on 1,248 or 1,228 source datasets were transferred to predict for the target
domains, namely HOIP-GeF and HOIP-PbI. Episodes for fine-tuning were generated
using samples from the source and target domains. In contrast, the pre-trained MPNN-
Linear model was fine-tuned solely using data from the target domain. The scaling
behaviors are illustrated in Fig. 7, highlighting that E2T outperforms the ordinary
supervised learning, thereby supporting the conclusions based on the experimental
results obtained using the RadonPy dataset.

Discussion

Predicting material properties beyond the range of data distribution is the ultimate
goal of materials science. This study has presented a machine learning methodology to
address this fundamental challenge. Previous approaches have relied on incorporating
physical prior knowledge into models as descriptors or by adding known theories or
empirical rules to model architectures through methods like physics-informed machine
learning, aiming to extract extrapolative predictability. In contrast, we set out to
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Fig. 7 Scaling behavior of bandgap prediction loss as the number of target samples increases. The
left and right panels represent the results for HOIP-GeF and HOIP-PbI, respectively. The results of
E2T and MPNN-Linear are distinguished by blue and orange colors, respectively. The x-axis denotes
the number of target samples used for fine-tuning, while the y-axis denotes the RMSE of the bandgap
predictions along with the standard deviation.

achieve extrapolation capability through fully inductive reasoning without any phys-
ical insights. Specifically, we focused on the MNN architecture proposed in few-shot
learning and used it as a meta-learner to solve extrapolative prediction tasks. It was
demonstrated that the meta-learner could indeed acquire outstanding out-of-domain
generalization capability through experiencing numerous extrapolative tasks generated
by the E2T algorithm. In this study, while the generalization performance of the meta-
learner did not reach the achievable limit of an oracle model learned from all datasets
including the target extrapolation domain, the significance of the improvement in
extrapolation performance compared to the baseline was substantial in most cases.
Furthermore, it was experimentally confirmed that meta-learners trained with extrap-
olative training could quickly transfer to unexplored domains with a small amount
of additional data, suggesting the early adaptation capability of learners trained to
tackle challenging problems.

Our study is still in the first step, and several technical challenges and research
questions remain to be addressed. Computing MNNs requires keeping past training
data in memory as the support set, which has its limitations in terms of the data
volume that can be retained. Additionally, as the data volume increases, the com-
putational load of the kernel ridge regression header also increases. The retention of
data in memory also raises privacy concerns. Leveraging other methodologies of meta-
learning such as MAML or its derivatives, could serve as a solution to these issues.
When designing the method of generating episode sets, there are various hyperparam-
eters to consider. In particular, the mixing ratio of interpolative and extrapolative
episodes in the episode set is expected to impact generalization performance. For
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instance, a learner trained heavily on extrapolative episodes may not predict inter-
polative tasks appropriately. Generally, experiencing tasks of varying difficulty levels
evenly is considered an appropriate learning method. Furthermore, it is also intriguing
to investigate whether the observed early adaptability of meta-learners to new tasks
holds universally.

Methods

Polymer property prediction

Data

In the polymer property prediction experiments, 69,480 samples of Cp and 68,700
samples of refractive index were used for amorphous homopolymers. The data were
generated using RadonPy [33], which is a software for calculating various physical
properties of polymers using all-atom molecular dynamics simulations. This dataset
includes 1,078 samples already available in open source and newly generated by the
RadonPy consortium. Approximately 70,000 hypothetical polymers were generated
using an N-gram-based polymer structure generator [44] and classified into 20 polymer
classes based on the rule by PolyInfo [45]. The list of the 20 polymer classes with their
data size is shown in Table S1.

Descriptor

The count-based Morgan fingerprint [35], a type of extended connectivity fingerprints
(ECFP) [36], was utilized as a descriptor of the repeating unit of homopolymer. The
descriptor calculation was performed using RDKit [46], with the selected parameters
being a radius of 3 and a bit length of 2,048.

Training of MNNs by E2T

The attention-based model resembling a kernel ridge regressor of Eq. 2 was imple-
mented in PyTorch [47]. The three-layer fully connected neural network with ReLU
activation was used as an embedding function ϕ from the 2,048-dimensional descrip-
tor to the 16-dimensional latent space. The layer structure of ϕ was configured with
neurons of 2048, 128, 128, and 16, respectively, and the last 16-dimensional vector was
normalized using layer normalization [48]. As for the ridge regressor head, a smoothing
parameter was set at λ = 0.1.

The data from 19 polymer classes out of 20 were used for training and testing to
evaluate the out-of-domain prediction performance. To investigate the influence of the
training data size on the generalization performances, the size of training samples was
varied as |D| ∈ {950, 1900, 3800, 9500, 19000, 38000}. The training set was generated
from 19 polymer classes so that the number of samples from each class becomes the
same. Each training set was further split into training Dtrain and validation Dval with
the proportions of 80% and 20%, respectively. In each step of E2T, a training instance
on (x, y) was sampled from a randomly selected polymer class, while the support set
S of the size m = 30 was sampled entirely from the 19 polymer classes including
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interpolative and extrapolative episodes. The prediction performance was monitored
by loss

1

|Dval|
∑

(x,y)∈Dval

(
y − fϕ(x,Dtrain)

)2
The training was halted when observing no improvement over 90,000 episodes. The
training was performed with a dropout rate [49] of 0.2 and a constant learning rate of
2× 10−4 with the Adam optimizer [50]. The trained model was evaluated on the data
from the remaining polymer class. These experiments were repeated 10 times for each
condition with different random seeds.

Training of fully connected networks by ordinary supervised
learning

The four-layer fully connected neural networks configured with 2048, 128, 128, 16, and
1 neurons were implemented in PyTorch. ReLU was used for the activation function,
and layer normalization was applied to the 16-dimensional hidden representation. Data
from 19 out of 20 polymer classes were used for training and the remaining class
was used to evaluate the performance of out-of-domain prediction. To investigate the
influence of the size of the training dataset on the performance, different sizes of dataset
|D| ∈ {950, 1900, 3800, 9500, 19000, 38000} were sampled from the dataset in the 19
classes so that the number of samples from each polymer class is equal. 20% of the
training set was used for the validation set. The training was performed with a dropout
rate of 0.2, a batch size of 256, and a constant learning rate of 2 × 10−4 using the
Adam optimizer. The training was terminated when no improvement was observed for
50 epochs. The trained model was evaluated on the data from the remaining polymer
class. The experiment was repeated 10 times for each condition with different random
seeds.

Generalization performance of domain-inclusive learning

Four-layer neural networks were implemented to evaluate the generalization perfor-
mances of domain-inclusive learning using data from the entire chemical space. The
overall data including 20 polymer classes was split into training, validation, and test
sets with the proportion 64%, 16%, and 20% respectively. Using the training and
validation sets, the network was trained using the same procedure as the training of
the fully connected models in the out-of-domain task. The trained model was evalu-
ated on data from the test set for each polymer class. The experiment was repeated 5
times with different data splits.
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Bandgap prediction of perovskite compounds

Data

The hybrid organic–inorganic perovskites (HOIP) dataset was used in this experiment
[37]. This dataset contains 1,345 perovskite compounds with their properties, includ-
ing bandgap, dielectric constant, and relative energies, calculated by density functional
theory. Each compound consists of an organic cation, an inorganic cation, and an inor-
ganic anion. The inorganic elements consist of Ge, Sn, and Pb cations and F, Cl, Br,
and I anions. In this experiment, as in prior works [38, 39], we evaluated generalization
performances in two different tasks: (1) bandgap prediction of perovskite compounds
containing Ge and F, and (2) prediction of perovskite compounds containing Pb and
I. The former and latter sets exhibit extremely higher or lower bandgaps.

Embedding function of crystal structures

The message passing neural network (MPNN) [40] was employed as an encoder of
crystal structures for all models. The MPNN architecture was designed similarly to
that in the work by Na and Park [38]. The embedding size was set to 32, and detailed
settings can be found in their GitHub repository https://github.com/ngs00/ane.

Training of MNNs by E2T

The attention with kernel ridge regressor of Eq. 2 was implemented in PyTorch. In the
HOIP experiment, MPNN was employed as an embedding function ϕ that transforms
an input crystal structure to the 32-dimensional latent vector. The embedding vari-
able was normalized by performing layer normalization. A smoothing parameter of the
ridge regressor head was set at λ = 10. We classified the HOIPs dataset into twelve
categories (or domains) based on the combination of four inorganic anions and three
cations. The data from eleven out of the twelve categories were used for the training
dataset D. To monitor the model performance, 10% of D was allocated for validation.
In each step of E2T, a training instance at (x, y) was sampled from a randomly selected
combination from the eleven anion–cation combinations, while the support set S with
the size of m = 50 was sampled from the remaining ten combinations of anion and
cation, resulting in the inclusion of only extrapolative episodes. The prediction per-
formance was monitored using a validation set, and the training was stopped when no
improvement was observed after 150,000 episodes. The training was performed with a
constant learning rate of 5 × 10−4 with the Adam optimizer. The trained model was
evaluated on the data from a remaining anion–cation combination, i.e., HOIP-GeF or
HOIP-PbI. The experiment was repeated 30 times for each condition with different
random seeds.

ANE-MPNN

The automated nonlinearity encoder (ANE) [38] is the state-of-the-art method for
extrapolation tasks to our best knowledge, as verified on HOIP dataset in the previous
work. The training of the ANE method involves two stages: (1) pre-training through
metric learning to obtain a feature embedding and (2) supervised learning for training
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the header network that maps the embedded input to its output. The previous work
demonstrated that ANE with the MPNN encoder (ANE-MPNN) outperforms several
other models. We trained ANE-MPNN based on the settings described in the original
paper and the distributed code. Specifically, the MPNN encoder was trained with a
learning rate of 1×10−3 and a batch size of 32. The header network, consisting of four
layers of the size 32, 356, 128, and 1, was trained with a learning rate of 5× 10−4, an
ℓ2 regularization coefficient of 1× 10−6, and a batch size of 64. We trained the models
for 500 epochs without early stopping. The experiment was conducted 30 times with
different random seeds.

Baseline: MPNN-Linear and MPNN-FCNN

As a baseline for conventional feed-forward supervised learning, we trained two mod-
els consisting of an MPNN encoder and an FCNN/Linear header. The first model,
serving as a counterpart to E2T, used a single linear layer as a header and is referred
to as MPNN-Linear. The other model, MPNN-FCNN, utilized an FCNN header with
the same architecture as ANE-MPNN. Layer normalization was applied to the embed-
ding vector produced by the MPNN in both models. The data excluding compounds
containing both Ge and F, or both Pb and I were used for the training dataset. To
monitor the change in generalization performance during training, 10% of the training
dataset was allocated for validation. The training was performed with a batch size of
128, and a constant learning rate of 5× 10−4 using the Adam optimizer The training
was terminated upon observing no improvement for 300 epochs. The experiment was
conducted 30 times with different random seeds.

Generalization performance of domain-inclusive learning

An architecture similar to the MPNN-Linear models was implemented to evaluate the
prediction performance of domain-inclusive learning. The overall dataset was split into
72:8:20 for training, validation, and testing. Using the training and validation sets, the
model was trained by performing the same procedure as the out-of-domain prediction
tasks. The trained model was evaluated on the HOIP-GeF or HOIP-PbI compounds
with unseen chemical elements. The experiment was conducted 30 times with different
data split patterns.

Sensitivity analysis of hyperparameters in E2T

The extrapolative performance was evaluated by varying three hyperparameters: λ,
|Strain|, and |Sinfer|. The model was trained 30 times with different random seeds for
each pair of λ ∈ {10, 100, 1000} and |Strain| ∈ {10, 20, 50, 100, 500}. The extrapolative
prediction of each trained model was performed with different sizes of inference support
set |Sinfer| ∈ {10, 20, 50, 100, 500, 1248} or {10, 20, 50, 100, 500, 1228} for HOIP-GeF
and HOIP-PbI, respectively. The support |Sinfer| was sampled 10 times independently.
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Fine-tuning experiments

Polymer property prediction

An MNN trained by E2T with a source data size of 38,000 was fine-tuned with data
including samples in the target domain. Half of the target data was reserved for the
performance evaluation, while 20 to 500 samples of the remaining data –specifically
20, 50, 100, 200, and 500 samples– were used for fine-tuning. Episodes (xi, yi,Si) were
sampled from the source and target datasets to modify the pre-trained embedding
function ϕ. To monitor the model performance during the fine-tuning, 20 % of the
target dataset was allocated for validation and the training was stopped on observing
no improvement over 60,000 episodes. The learning rate was set at 10−5. The size of
the training support set was fixed at m = 20. The experiment was conducted across
all combinations of five different source models independently pre-trained on D with
d = 38, 000 and nine different data splits, resulting in 45 runs for each polymer class
and fine-tuning data size.

As a baseline in the comparative study, a fully connected neural network trained
by ordinary supervised learning with a source data size of 38,000 was fine-tuned using
data from the target domain. Half of the target dataset was set aside for evaluation,
with sample sizes ranging from 20 to 500 from the remaining data used for fine-tuning.
20% of the fine-tuning data was allocated for validation, and the training was stopped
on observing no improvement over 50 epochs. The learning rate was set at 10−5. The
batch size was set to one for fine-tuning with training data sized at 20 and 50 samples,
while a batch size of 32 was used for the larger fine-tuning datasets. The experiment
was executed across five independently obtained models and nine different data splits,
resulting in 45 runs for each polymer class and dataset size.

Bandgap prediction of perovskite compounds

An MNN trained by E2T with a source data size of 1,248 or 1,228 was fine-tuned using
data including data from the target domain. Half of the target dataset was reserved
for performance evaluation, while 10 to 40 samples from the remaining data were used
for fine-tuning. Episodes (xi, yi,Si) were sampled from the source and target datasets
to refine the embedding function ϕ. The model was trained over 3,000 episodes with a
learning rate of 10−5. Early stopping was not applied for this experiment because the
target data size was small. The size of the training support set was fixed at m = 10.
The experiment was conducted for each combination of 10 independently obtained
models and four different data splits, resulting in a total of 40 runs for each data size.

A model of MPNN-Linear pre-trained by ordinary supervised learning with a
source data size of 1,248 or 1,228 was fine-tuned using data from the target domain.
Half of the target dataset was set aside for performance evaluation, and a subset of 10
to 40 samples from the remaining data was used for fine-tuning. The models under-
went fine-tuning over 300 epochs, with a learning rate of 10−5 and a batch size of 10.
The experiment was executed across 10 different models and four different data splits.
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