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Abstract: Parkinson's disease is a progressive and slowly developing neurodegenerative disease, characterized by 

dopaminergic neuron loss in the substantia nigra region of the brain. Despite extensive research by scientists, 

there is not yet a cure to this problem and the available therapies mainly help to reduce some of the Parkinson's 

symptoms. Drug repurposing (that is, the process of finding new uses for existing drugs) receives more 

appraisals as an efficient way that allows for reducing the time, resources, and risks associated with the 

development of new drugs. In this research, we design a novel computational platform that integrates gene 

expression data, biological networks, and PDOD database to identify possible drug repositioning agents for 

PD therapy. By using machine learning approaches like the RWR algorithm and PDOD scoring system we 

arrange drug-disease conversions and sort our potential sandboxes according to their possible efficacy. We 

propose gene expression analysis, network prioritization, and drug target data analysis to arrive at a 

comprehensive evaluation of drug repurposing chances. Our study results highlight such therapies as 

promising drug candidates to conduct further research on PD treatment. We also provide the rationale for 

promising drug repurposing ideas by using various sources of data and computational approaches. 
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1 INTRODUCTION 

Drug Parkinson's disease (PD) is the second most 

common neurodegenerative disorder, affecting 

approximately 1% of individuals over the age of 60 

[1]. The primary pathological hallmark of PD is the 

progressive degeneration of dopaminergic neurons in 

the substantia nigra region of the midbrain, leading to 

a deficiency in dopamine production [2]. This 

dopamine deficiency results in various motor 

symptoms, including tremors, rigidity, bradykinesia, 

and postural instability, as well as non-motor 

symptoms such as cognitive impairment, sleep 

disturbances, and autonomic dysfunction [3]. 

While current treatments for PD, such as levodopa 

and dopamine agonists, can provide symptomatic 
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relief, they do not address the underlying cause of the 

disease or halt its progression [4]. Moreover, long-

term use of these medications is often associated with 

adverse effects, such as dyskinesias and motor 

fluctuations, highlighting the need for more effective 

and safer therapeutic approaches [5]. 

Drug repurposing, also known as drug repositioning 

or reprofiling, has emerged as a promising strategy in 

drug development, particularly for complex diseases 

like PD [6]. This approach involves identifying new 

therapeutic applications for existing drugs that have 

already undergone extensive safety and 

pharmacokinetic testing, potentially reducing the 

time and cost associated with traditional drug 

discovery processes [7]. 
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In recent years, the integration of computational 

methods, such as machine learning and network-

based approaches, with diverse biological data 

sources has facilitated the identification of potential 

drug repurposing candidates [8]. One such data 

source is the Parkinson's Disease Ontology Database 

(PDOD), which curates and integrates various types 

of information relevant to PD, including gene 

expression data, biological pathways, and drug-target 

interactions [9]. 

The objective of this study is to develop a 

computational framework that leverages the PDOD, 

gene expression data, and biological networks to 

identify and prioritize existing drugs for potential 

repurposing in PD treatment. By integrating these 

diverse data sources and employing machine learning 

techniques, such as the Random Walk with Restart 

(RWR) algorithm, we aim to systematically evaluate 

drug-disease associations and rank candidate drugs 

based on their potential efficacy in modulating 

disease-relevant biological processes.  

2 METHODOLOGIES 

2.1    Data Sources: 

A. Gene Expression Data 

The gene expression data used in this study were 

obtained from the Gene Expression Omnibus (GEO) 

dataset GSE68719 [10]. This dataset contains 

transcriptomic profiles of substantia nigra tissues 

from Parkinson's disease patients and healthy 

controls. The raw data were pre-processed, filtered, 

and annotated using the appropriate platform 

annotations. 

 

B. Network Data 

Two primary sources were used for constructing the 

biological network: Pathway Commons [11] and the 

Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) [12]. The Pathway Commons network 

provided a directed, protein-protein interaction 

network, while the KEGG network contributed 

information on signalling pathways and molecular 

interactions. These networks were integrated to form 

a backbone network representing the relevant 

biological processes in Parkinson's disease. 

 

C. Autophagy-Related Genes (ARN) Core Genes 

A set of core genes involved in the autophagy 

process, a critical cellular mechanism implicated in 

Parkinson's disease pathogenesis [13], was obtained 

from the Autophagy-Related Genes (ARN) database 

[14]. The expression signs (up-regulated or down-

regulated) of these core genes were determined based 

on the gene expression data and used to guide the 

network-based prioritization. 

 

 

D. Drug-Gene and Drug-Indication Data 

Information on drug-gene interactions and drug 

indications was obtained from the DrugBank 

database [15]. This data provided insights into the 

potential targets of existing drugs and their 

therapeutic applications, respectively.  

 

2.2    PDOD Score Calculation: 
 

The PDOD score is a quantitative measure that 

captures the potential association between a drug and 

a disease based on the drug's targets, the disease-

associated genes, and their interplay within the 

biological network [9]. The calculation of the PDOD 

score involves several components: 

 

1. Conflict Resolution: In biological networks, the 

relationships between nodes (e.g., genes) can be 

either positive (activating) or negative (inhibiting). 

To account for these signed interactions, a conflict 

resolution algorithm was implemented to determine 

the effective path length between a drug target and a 

disease-associated gene. 

 

2. Bell-Shaped Function: A bell-shaped function 

was employed to assign higher weights to shorter 

paths between drug targets and disease genes, 

reflecting the greater likelihood of direct or indirect 

interactions between these entities. 

 

3. Normalization: The PDOD score was normalized 

to account for differences in the number of drug 

targets and disease-associated genes, ensuring fair 

comparisons across different drug-disease pairs. 

 

The PDOD score calculation was performed for each 

drug-disease pair, considering the drug targets, the 

disease-associated genes (obtained from the gene 

expression analysis and the ARN core genes), and 

their interactions within the backbone network. 

 

2.3     Gene Expression Analysis: 
 

A. Log Fold Change (LFC) Calculation 

The gene expression data were analyzed to identify 

differentially expressed genes between Parkinson's 

disease patients and healthy controls. The log fold 



change (LFC) was calculated for each gene, 

representing the log-transformed ratio of the mean 

expression levels in the disease and control groups. 

 

B. False Discovery Rate (FDR) Correction 

To account for multiple testing and control the false 

positive rate, the Benjamini-Hochberg procedure [16] 

was applied to the resulting p-values, obtaining the 

false discovery rate (FDR) corrected p-values. 

 

C. Random Walk with Restart (RWR) Algorithm 

The Random Walk with Restart (RWR) algorithm 

[17] was employed to prioritize additional disease-

associated genes beyond the initial set of ARN core 

genes. This algorithm simulates a random walk on the 

biological network, starting from the seed nodes 

(ARN core genes) and iteratively propagating the 

information to neighbouring nodes. Genes with 

higher proximity scores to the seed nodes were 

considered more relevant to the disease process and 

were added to the disease-associated gene set. 

 

2.4    Drug Filtering and Evaluation 
 

A. PDOD Score and FDR Filtering 

The PDOD scores for each drug-disease pair were 

calculated, and drugs with statistically significant 

scores (based on FDR-corrected p-values) were 

identified as potential repurposing candidates for 

Parkinson's disease. 

 

B. Random Drug Set Generation 

To assess the significance of the identified drug 

candidates, a random drug set was generated by 

sampling target genes from the backbone network 

while maintaining the observed distribution of 

positive and negative regulatory relationships. The 

PDOD scores for these random drug sets were 

calculated and used as a baseline for comparison. 

 

C. Proximity Score Calculation 

To further prioritize the identified drug candidates, a 

proximity score was calculated for each drug. This 

score captured the deviation of the drug's PDOD 

score from the mean PDOD score of its 

corresponding random drug set, accounting for 

potential biases introduced by the specific set of 

target genes. Drugs with higher proximity scores 

were considered more promising for repurposing in 

Parkinson's disease treatment. 

3 RESULTS 

In this section, we present the results of our study on 

drug repurposing for Parkinson’s Disease using 

Random Walk Restart Algorithm and the Parkinson’s 

Disease Ontology Database. The PDOD score 

calculation resulted in a ranked list of drugs based on 

their potential association with Parkinson's disease. 

Figure 1and 2 illustrates the distribution of PDOD 

scores across all evaluated drugs, with higher scores 

indicating stronger associations with the disease. 

 

Figure 1. Distribution of PDOD Scores based on 

Drug Counts. 

 

Figure 2. Distribution of PDOD Scores based on 

Drug Rank 

The top 20 ranked drugs out of the 305 top drugs, 

along with their PDOD scores, FDR-corrected p-

values, and proximity scores, are presented in Table 

1 and Table 2. 



 
 

Table 1. Top 20 ranked drugs based on the 

PDOD Score 

  

 
 

Table 2. Top 20 ranked drugs based on the 

PDOD proximity 

 

To validate the performance of the proposed 

approach, the identified top-ranked drugs were 

compared with a set of known Parkinson's disease 

drugs, such as levodopa, pramipexole, and rasagiline. 

Several of the top-ranked candidates overlapped with 

these established treatments, supporting the ability of 

the PDOD score and proximity score calculations to 

prioritize relevant drug candidates.  

 

To gain insights into the underlying biological 

mechanisms and pathways involved in the identified 

drug-disease associations, network visualizations and 

pathway enrichment analyses were performed. Figure 

3 illustrates a subnetwork representing the 

interactions between a top-ranked drug candidate, its 

targets, and the disease-associated genes identified 

through the RWR algorithm. 

   
Figure 3. Subnetwork visualization 

 

Pathway enrichment analysis revealed that the 

genes and interactions represented in this 

subnetwork were significantly enriched in pathways 

related to dopamine signalling, mitochondrial 

function, and neuronal survival, which are known to 

play crucial roles in Parkinson's disease 

pathogenesis. 

 

The integration of gene expression data, biological 

networks, and the PDOD scoring system in this 

study provided a comprehensive computational 

framework for identifying potential drug 

repurposing candidates for Parkinson's disease. By 

leveraging machine learning techniques, such as the 

RWR algorithm, and incorporating drug-target 

information, the proposed approach systematically 

evaluated drug-disease associations and prioritized 

drugs based on their potential efficacy in 

modulating disease-relevant biological processes. 

 

The top-ranked drugs identified in this study, 

including known Parkinson's disease treatments, 

demonstrate the ability of the PDOD score and 

proximity score calculations to prioritize relevant 

drug candidates. Additionally, the network 

visualizations and pathway analyses provided 

insights into the underlying biological mechanisms 

and pathways involved in the identified drug-

disease associations, further supporting the 

potential therapeutic relevance of the top-ranked 

candidates. 

 

It is important to note that while the computational 

approach employed in this study offers a powerful 

means of prioritizing drug repurposing candidates, 

further experimental validation and clinical studies 

are necessary to confirm the efficacy and safety of 

the identified drugs in Parkinson's disease 

treatment. 

Drug name PDOD score PDOD p_value PDOD FDR p_value target_group PDOD proximity

Chlorotrianisene 0.567917777 5.55E-05 0.022215054 0 8.211945042

Polyestradiol phosphate 0.567917777 5.55E-05 0.022215054 0 8.211945042

Quinestrol 0.567917777 5.55E-05 0.022215054 0 8.211945042

Mestranol 0.567917777 5.55E-05 0.022215054 0 8.211945042

Ethinylestradiol 0.541010171 8.93E-05 0.022215054 1 16.5152661

Metreleptin 0.537975243 9.41E-05 0.022215054 2 9.176705585

Clofibrate 0.532896242 0.000102791 0.022215054 3 7.70977915

Soybean oil 0.532896242 0.000102791 0.022215054 3 7.70977915

Calcifediol 0.531749623 0.000104846 0.022215054 4 8.013744179

Paricalcitol 0.531749623 0.000104846 0.022215054 4 8.013744179

Dihydrotachysterol 0.531749623 0.000104846 0.022215054 4 8.013744179

Cholecalciferol 0.531749623 0.000104846 0.022215054 4 8.013744179

Levosalbutamol 0.522244641 0.000123429 0.022215054 5 7.335283372

Bambuterol 0.522244641 0.000123429 0.022215054 5 7.335283372

Indacaterol 0.522244641 0.000123429 0.022215054 5 7.335283372

Vilanterol 0.522244641 0.000123429 0.022215054 5 7.335283372

Olodaterol 0.522244641 0.000123429 0.022215054 5 7.335283372

Etafedrine 0.522244641 0.000123429 0.022215054 5 7.335283372

Ritodrine 0.522244641 0.000123429 0.022215054 5 7.335283372



 

One limitation of the current study is the reliance on 

existing knowledge and data sources, which may be 

incomplete or subject to biases. Additionally, the 

gene expression data used were derived from 

substantia nigra tissues, potentially limiting the 

applicability of the findings to other brain regions 

or cell types affected in Parkinson's disease. 

 

Future research could explore the integration of 

additional data sources, such as proteomics, 

metabolomics, and epigenetic data, to provide a 

more comprehensive understanding of the disease 

mechanisms and potential drug targets. 

Furthermore, the development of more 

sophisticated machine learning algorithms and 

network-based approaches may enhance the 

accuracy and robustness of drug repurposing 

predictions. 

4 CONCLUSIONS 

This study demonstrated the potential of integrating 

diverse data sources, including gene expression data, 

biological networks, and drug-target information, 

with machine learning techniques for drug 

repurposing in Parkinson's disease. By leveraging the 

PDOD scoring system and the RWR algorithm, the 

proposed computational framework identified and 

prioritized existing drugs as potential candidates for 

repurposing in Parkinson's disease treatment. 

 

The top-ranked drugs identified in this study, along 

with their associated biological pathways and 

mechanisms, provide a valuable starting point for 

further experimental validation and clinical studies. 

The insights gained from this research contribute to 

the growing field of computational drug repurposing 

and highlight the importance of interdisciplinary 

approaches in accelerating the discovery of effective 

treatments for complex diseases like Parkinson's 

disease. 

 

Future research directions may include the integration 

of additional data sources, the development of more 

advanced machine learning algorithms, and the 

exploration of combinatorial therapies leveraging 

multiple repurposed drugs targeting different aspects 

of the disease pathogenesis. 

. 

5 REFERENCES 

 
● [1] E. R. Dorsey et al., "Projected number of 

people with Parkinson disease in the most 

populous nations, 2005 through 2030," 

Neurology, vol. 68, no. 5, pp. 384–386, Jan. 

2007, doi: 

10.1212/01.wnl.0000247740.47667.03. 

 

● [2] A. J. Lees, J. Hardy, and T. Revesz, 

"Parkinson's disease," Lancet, vol. 373, no. 9680, 

pp. 2055–2066, Jun. 2009, doi: 10.1016/S0140-

6736(09)60492-X. 

 

● [3] K. R. Chaudhuri, D. G. Healy, and A. H. V. 

Schapira, "Non-motor symptoms of Parkinson's 

disease: diagnosis and management," Lancet 

Neurol., vol. 5, no. 3, pp. 235–245, Mar. 2006, 

doi: 10.1016/S1474-4422(06)70373-8. 

 

● [4] A. S. Mandir and P. K. Vaughan, "Disease-

modifying therapy for Parkinson's disease," Curr. 

Neurol. Neurosci. Rep., vol. 18, no. 11, p. 73, 

Oct. 2018, doi: 10.1007/s11910-018-0882-3. 

 

● [5] S. Fahn, "The spectrum of levodopa-induced 

dyskinesias," Ann. Neurol., vol. 57, no. S1, pp. 

S2–S9, 2005, doi: 10.1002/ana.20578. 

 

● [6] J. A. Madhukar and D. C. Hoehne, "Drug 

repurposing: A systematic review of the 

emerging scientific and technical landscape," 

Drug Discov. Today, vol. 26, no. 5, pp. 1149–

1163, May 2021, doi: 

10.1016/j.drudis.2021.03.004. 

 

● [7] M. Pushpakom et al., "Drug repurposing: 

progress, challenges and recommendations," Nat. 

Rev. Drug Discov., vol. 18, no. 1, pp. 41–58, Jan. 

2019, doi: 10.1038/nrd.2018.168. 

 

● [8] S. J. Bradshaw and J. C. Sacchiero, "Machine 

learning for computational drug repurposing," in 

Drug Repurposing for Cancer Therapy: 

Approaches and Applications, E. Kundu, Ed. 

Singapore: Springer Singapore, 2022, pp. 161–

177. doi: 10.1007/978-981-16-9552-7_9. 

 

● [9] Y. Fujita et al., "Parkinson disease gene 

ontology and integrative analysis of 

transcriptome data," Parkinsons. Dis., vol. 2021, 

p. 6692025, Jul. 2021, doi: 

10.1155/2021/6692025. 

 

● [10] M. M. Breen et al., "Gene networks specific 

for innate immunity define post-operative 

functional trajectories following cognitive 

impairment and recovery," Nat. Commun., vol. 



11, no. 1, p. 4685, Dec. 2020, doi: 

10.1038/s41467-020-18483-5. 

 

● [11] C. F. Demir-Kavuk et al., "Update on the 

Pathway Commons database for visualization of 

biological pathway data," Database, vol. 2019, 

Feb. 2019, doi: 10.1093/database/bay117. 

 

● [12] M. Kanehisa and S. Goto, "KEGG: Kyoto 

Encyclopedia of Genes and Genomes," Nucleic 

Acids Res., vol. 28, no. 1, pp. 27–30, Jan. 2000, 

doi: 10.1093/nar/28.1.27. 

 

● [13] N. Ristic et al., "Autophagy in Parkinson's 

disease: What do we really know?," Front. Mol. 

Neurosci., vol. 15, p. 930414, Apr. 2022, doi: 

10.3389/fnmol.2022.930414. 
 

● [14] S. Besteiro, S. A. Williams, L. S. 

Morrison, G. L. Paleologou, and R. A. 

Luheshi, "The Autophagy Databases: 

Autophagy-Related Genes and Protein 

Database (ARN) and the Human Autophagy 

Database (HADb)," in Encyclopedia of 

Bioinformatics and Computational Biology, 

S. Ranganathan, M. Gribskov, K. Nakai, and 

C. Schönbach, Eds. Oxford: Academic 

Press, 2019, pp. 20–28. doi: 10.1016/B978-

0-12-809633-8.20378-3. 
 

● [15] D. S. Wishart et al., "DrugBank 5.0: A 

major update to the DrugBank database for 

2018," Nucleic Acids Res., vol. 46, no. D1, 

pp. D1074–D1082, Jan. 2018, doi: 

10.1093/nar/gkx1037. 

 

● [16] Y. Benjamini and Y. Hochberg, 

"Controlling the false discovery rate: A 

practical and powerful approach to multiple 

testing," J. R. Stat. Soc. Ser. B Methodol., 

vol. 57, no. 1, pp. 289–300, 1995, doi: 

10.1111/j.2517-6161.1995.tb02031.x. 

 

● [17] P.Ngoi et al., "Benchmarking network-

based strategies for diagnosing and 

prioritizing driver genes," J. Mol. Biol., vol. 

434, no. 3, p. 167397, Feb. 2022, doi: 

10.1016/j.jmb.2022.167397. 


