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Abstract

This study examines the effects of de-globalization trends on international trade networks and

their role in improving forecasts for economic growth. Using section-level trade data from nearly 200

countries from 2010 to 2022, we identify significant shifts in the network topology driven by rising

trade policy uncertainty. Our analysis highlights key global players through centrality rankings,

with the United States, China, and Germany maintaining consistent dominance. Using a horse race

of supervised regressors, we find that network topology descriptors evaluated from section-specific

trade networks substantially enhance the quality of a country’s GDP growth forecast. We also find

that non-linear models, such as Random Forest, XGBoost, and LightGBM, outperform traditional

linear models used in the economics literature. Using SHAP values to interpret these non-linear

model’s predictions, we find that about half of most important features originate from the network

descriptors, underscoring their vital role in refining forecasts. Moreover, this study emphasizes the

significance of recent economic performance, population growth, and the primary sector’s influence

in shaping economic growth predictions, offering novel insights into the intricacies of economic

growth forecasting.
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I. INTRODUCTION

In the evolving landscape of global economics, accurate forecasting of economic growth

emerges as a cornerstone for crucial tasks, such as policymaking and investment deci-

sions [19]. Traditional models for predicting GDP growth heavily rely on traditional eco-

nomic indicators and standard linear econometric techniques [17]. However, the increasing

complexity of global trade and economic interdependence calls for a more nuanced approach

to forecasting. Recent advances in machine learning offer promising avenues for enhanc-

ing the performance and reliability of economic forecasts by processing large datasets and

identifying complex, non-linear relationships [36]. This study stands at two main strains of

literature: analyzing international trade networks and applying machine learning models in

economic forecasting. Specifically, it innovates by utilizing topological measures of interna-

tional trade networks as features in machine learning models to forecast GDP growth and

showing that they substantially enhance a country’s GDP growth prediction.

The significance of our work lies in its potential to provide a more comprehensive under-

standing of the factors driving economic growth predictions. This is particularly relevant in

a world where economic landscapes are rapidly changing, and traditional forecasting models

often fail to capture the dynamism of global interactions shaped by economic flow between

countries as world trade. By integrating international trade network topologies into the ma-

chine learning framework, this study opens new pathways for research and offers practical

insights for economists, policymakers, and investors seeking to navigate the complexities of

the global market.

A substantial corpus of research leverages complex network theory to shed light on many

topics in economics and finance [37]. The first part of our work deals with constructing

trade networks and extracting topological measures. Multiple approaches to modeling the

International Trade Network (ITN) are documented, such as binary and weighted configura-

tions or directed and undirected networks [2, 22]. Additionally, these models vary in terms

of granularity, ranging from aggregated overviews to detailed breakdowns by very specific

commodity types. Our research focus on the domain of commodity-specific trade networks,

aligning with notable studies that explore various dimensions of the ITN through the lens

of particular commodities [43].

Our contribution to this literature has two principal dimensions. Firstly, we endeavor to
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explore commodity-specific trade networks through a section-level categorization as delin-

eated by the Harmonized System (HS) code framework. This approach enables us to discern

nuances in the topological analysis that are particular to this level of granularity, nuances

that are frequently overlooked in current literature [44]. Secondly, we concentrate on the

temporal evolution of the topological properties of the most significant commodity-specific

networks from 2010 to 2022. This timeframe is especially pertinent for investigating trends

of de-globalization, which have been intensified by critical global events such as the COVID-

19 pandemic and the geopolitical tensions following Russia’s invasion of Ukraine. Through

this perspective, our analysis aims to elucidate the complexities of how commodity trade

networks have adapted during these tumultuous periods, identifying which countries have

either derived benefit from or been adversely affected.

In our analysis of the temporal dynamics of assortativity and network density, we observe

a critical juncture between 2016 and 2018 that marks a reversal of previously noted trends,

leading to significant topological transformations within the main section-level trade net-

works. This period coincides with a marked increase in trade policy uncertainty, underscor-

ing the profound impact that trends towards de-globalization exerted during this timeframe.

Furthermore, we develop centrality rankings for the main commodity trade networks for the

years 2010 and 2022, enabling the identification of key global actors and notable shifts in

their influence over this period. Our findings affirm the United States’ continued dominance

as a leading entity across four of the five principal commodity trade networks in 2022. Sim-

ilarly, China and Germany have sustained high performance, consistently appearing in the

top three or five rankings. This research documents various nations’ ascension and decline

in these rankings. Notably, Thailand’s presence diminished significantly, falling from being

in the top fifteen in 2010 to its absence in 2022 across the five main trade networks. In

contrast, India showcases a remarkable trajectory, not featured in any of the top fifteen

rankings in 2010, yet in 2022, it emerged in all, including three instances within the top five.

The second segment of our study engages with the literature that applies machine learning

techniques to forecast economic growth. An expanding collection of research highlights that

machine learning methods can surpass traditional econometric models in predicting GDP

growth [11, 24, 52, 61]. While these studies incorporate a diverse array of predictors, to

our knowledge, they still need to harness network topology metrics from international trade

networks as predictive features [45]. We argue that the integration of topological metrics into
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machine learning models can markedly enhance the precision of economic growth forecasts.

Trade network-based descriptors are pivotal for two reasons. First, a country’s trade network

position reflects its global significance and product/service exchange flexibility. Second,

economic trends in neighboring countries can indicate a nation’s own economic prospects,

such as GDP growth challenges highlighted by reduced transactions with a neighbor. Thus,

incorporating trade network measures enriches predictive models with a comprehensive view

of global economic interactions, enabling us to identify patterns and trends that traditional

economic indicators may overlook.

Our study contributes by assessing the importance of network measures from commodity-

specific trade networks on the performance of machine learning’s economic growth forecast.

A distinctive feature of the literature is that it generally focuses on one or a moderate amount

of countries. In this sense, we contribute by employing a ”horse race” of machine learning

models to find which performs best in forecasting economic growth for a comprehensive set of

more than 200 countries.[46] Accurate economic growth forecasts are essential as they guide

strategic decisions and policy development globally. By enabling policymakers to preempt

economic instabilities, these forecasts contribute to a more stable economic climate. For

businesses and investors, such insights are crucial for navigating market uncertainties and

seizing growth opportunities. Additionally, in a closely interconnected global economy, the

accuracy of these predictions is vital for international coordination in addressing economic

challenges like trade imbalances and inflation. Thus, precise forecasts play a pivotal role in

both national and global economic stability and collaboration.

In establishing a foundation for our analytical framework, we employ the performance of

the linear regression model as a baseline. This technique, notable for its simplicity in imple-

mentation and clarity in model interpretation, is a benchmark against which the efficacy of

more advanced algorithms can be measured. By doing so, we facilitate an examination of the

trade-offs inherent between model complexity and performance enhancement. To surpass

the established baseline, we introduce a suite of sophisticated models into our study, includ-

ing the Support Vector Machine, Light Gradient Boosting Machine, k-nearest Neighbor,

Random Forest, and XGBoost.

Given that these advanced methodologies may compromise the interpretability afforded

by linear regression, we employ the SHAP value analysis—a tool derived from the concept of

Shapley value borrowed from game theory. This analytical tool enables us to restore a level
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of interpretability to these more complex and performant models. Through this approach,

our contribution to the literature extends beyond merely identifying the superior predictive

models. We provide a detailed exploration of the specific features that exert the most

significant influence on economic growth forecasts and elucidate the mechanisms through

which they operate. Consequently, our work enriches the literature with a comparative

analysis of model performance and a deeper insight into the dynamics that drive economic

growth predictions.

In our empirical evaluation, we deploy four distinct error metrics to ascertain the average

error values, thereby gauging the performance of models. Our findings delineate that the

Random Forest, XGBoost, and k-NN models, in respective order, emerge as the superior

performers, showcasing substantial enhancements over the baseline model. These outcomes

suggest that the aforementioned models possess an inherent capacity to navigate the com-

plexities and non-linearities within the dataset, a task at which a simplistic linear regression

model proves inadequate.

Further examining feature importance within the three most efficacious models yields

noteworthy insights. Primarily, we observe that nearly half of the top fifteen most influential

features for the Random Forest model—the most effective one—are network measures. This

underscores the pivotal role of commodity trade network topologies in refining economic

growth forecasts. Particularly, the density of the Mineral trade network stands out as a

critical feature, ranking as the second most significant for both Random Forest and XGBoost

models and as the foremost for the LightGBM.

Additionally, our analysis brings to light the autoregressive nature of economic growth,

where the immediacy and recency of GDP growth figures are fundamentally pivotal in fore-

casting economic performance. This observation lends credence to the concept of ”economic

inertia,” wherein past performance exerts a lingering influence on future outcomes. More-

over, we identify the significance of the modularity of the Machine & Electrical trade network,

population growth, and relevance of the primary sector as key predictors of economic growth.

These elements consistently feature among the top fifteen most relevant features across all

three top-performing models, reinforcing their importance in the predictive modeling of

economic performance.

To further elucidate interpretability insights, we conduct a comprehensive feature in-

terpretability analysis on the most effective model, the Random Forest. In accomplishing
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this task, we utilize a suite of Shapley value dependence plots, which furnish a detailed

perspective on how fluctuations in feature values impact economic growth forecasts. One

particularly intriguing pattern emerges from analyzing the Mineral trade network’s density.

We observe moderate escalations in this network measure are associated with neutral or

beneficial effects on economic growth predictions. However, once a critical threshold is ex-

ceeded, any additional increase in network density is linked to a decline in future economic

prospects. This discovery suggests an optimal range within which enhancements to network

density can positively influence future economic growth, marking a critical insight into the

nuanced interplay between trade network characteristics and economic forecasting.

Our research elucidates several policy implications of paramount importance. Firstly, the

significant topological transformations we document within global trade networks highlight

their vulnerability to de-globalization trends. This observation necessitates a strategic re-

assessment by policymakers of economic policies heavily reliant on globalization mechanisms.

In tandem, international collaboration must be fortified by a commitment to transparency in

the formulation and implementation of policies. Such an approach is essential in mitigating

uncertainty and cultivating a stable milieu for international trade.

Furthermore, our analysis of centrality rankings unveils an evolving paradigm within the

domain of international trade. This evolving landscape necessitates a proactive and vision-

ary approach to policy formulation. The sustained dominance of established economies,

juxtaposed with the meteoric rise of emerging markets like India, signals dynamic shifts

propelled by technological advancements and geopolitical developments.

Moreover, the outcomes of our comparative analysis of forecasting models reveal the

intricate and non-linear nature of economic growth predictors. This complexity underlines

policymakers’ need to employ more sophisticated analytical frameworks in their forecasting

endeavors. Importantly, integrating network measures into forecasting models emerges as a

powerful strategy to amplify the accuracy of economic growth predictions. Such enhanced

predictive capability is invaluable, furnishing policymakers with the insights to craft more

informed and efficacious policy measures.
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II. NETWORK ANALYSIS OF SECTION-LEVEL INTERNATIONAL TRADE

NETWORKS

Our network analysis framework is structured into three subsections. Initially, Subsec-

tion IIA furnishes a data description and details the database utilized to construct section-

level trade networks. Subsequently, Subsection II B delineates the network measures em-

ployed to examine the topological properties of commodity-specific trade networks. Finally,

in Subsection IIC, we explore the temporal dynamics of five fundamental network measures

spanning 2010 to 2022. This section also analyzes shifts in centrality rankings, offering

insights into the evolving structure and influence dynamics within these networks over time.

A. Data description

Our research enhances the understanding of global trade by constructing networks derived

from detailed trade data. Utilizing the Comtrade database provided by the United Nations

Statistics Division, we analyze bilateral merchandise trade information for 261 countries,

dependent territories, and special areas of geographical interest.[47] This database organizes

trade data according to the Harmonized System (HS) classification.[48] Our approach in-

volves extracting data at the chapter level and then aggregating this information into section

level, providing the most general categorization. Given the extensive nature of the official

names for these sections, we use shortened names to improve both brevity and clarity in

our presentation. Table I lists the code and associated abbreviated name for the ten most

significant sections in terms of trade flow value from 2010 to 2022. The top five sections

during this period accounted for approximately 60.7% of the global trade flow value.

Our data has a monthly frequency, which is subsequently consolidated to accommodate

analyses on both quarterly and annual scales, contingent upon the specific context of the

study. Transactions classified as re-importations and re-exportations are excluded to con-

centrate on standard trade activities. The Comtrade database records each trade occurrence

from the perspectives of both participating entities (the importer and the exporter), thereby

introducing a potential mismatch in the transacted volume between each pair of reporting

entities. To mitigate the inconsistencies arising from this dual reporting, this study adopts

a methodology where the data reported by the nation exhibiting a superior aggregate trade
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value within the network is prioritized. This approach is grounded in the hypothesis that

data furnished by nations with larger trade values tend to be more accurate, particularly

when trade involves nations with significantly disparate economic sizes.

TABLE I. The Top 10 most relevant com-

modity sections from 2010 to 2022.

Code Abbreviated name Relevance
16 Mechanical & Electrical 24.3%
5 Mineral 15.1%
17 Transport 10.5%
6 Chemical 10.0%
15 Base Metals 7.2%
7 Plastics & Rubber 4.6%
11 Textile 4.2%
14 Precious Metals 3.9%
18 Instruments 3.6%
4 Beverages & Tobacco 3.4%

1 In this table, ”Code” corresponds to the iden-

tifier assigned to each commodity section ac-

cording to the Harmonized System (HS) clas-

sification. ”Abbreviated name” denotes the

concise name we have devised to represent

the official title of the section as defined by

the HS classification. ”Relevance” represents

the section’s trade value as a percentage of

the total merchandise trade value from 2010

to 2022.

B. Relevant background: network measurements from the complex networks lit-

erature

In the commodity-specific trade networks we construct, nodes represent individual coun-

tries, while edges denote bilateral trade flows of a particular commodity section. The edge

is directed and goes from the exporting (or ”origin”) country to the importing (or ”desti-

nation”) country. The weight of each edge signifies the monetary value of the respective

bilateral trade flow. A comprehensive array of metrics for describing network topology is

available in existing literature. For our analytical purposes, we adopt a set of network metrics

as delineated by [58], encompassing a diverse range of fundamental measures that encapsu-

late local, intermediate, and global network attributes. This strategic selection enables us
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to elucidate the multifaceted topological characteristics of each section-level international

trade network, ranging from the nuanced intricacies of individual trade connections to the

overarching structure of global trade within the specific commodity category.

• Strength (strictly local): defined by the aggregate weight of edges connected to a node,

node strength in directed graphs splits into in-strength and out-strength. In-strength

calculates the total weight of incoming edges to a node, analogous to a country’s total

import value within a specific trade section. Conversely, out-strength tallies the weight

of outgoing edges, akin to a country’s total export value.

• PageRank (mixed): by leveraging the PageRank algorithm, we determine the relative

importance or centrality of countries within the trade network. A country’s central-

ity reflects not just its direct trade connections but also the significance of its trad-

ing partners. The methodology for our PageRank calculation emphasizes incoming

edges—interpreted, within the framework of our analysis, as import flows. Conse-

quently, our centrality measure is designed to recognize a country’s influence within

the network based on import performance.

• Clustering coefficient or Transitivity (mixed): this metric evaluates the degree to which

nodes in the network cluster together, calculated by the ratio of actual triangles to

potential triangles among nodes. High clustering coefficients (close to 1) indicate a

high level of local clustering, while low values (close to 0) suggest a more dispersed

trade network.

• Density (global): provides a snapshot of the fulfillment of the network’s connectivity

potential, measured by the ratio of actual to possible connections. A higher propor-

tion of potential trade links are realized in dense trade networks, indicating a closely

interconnected global trade fabric.

• Assortativity (global): evaluates the degree to which edges in the network join nodes

sharing analogous attributes. We employ the assortativity degree coefficient, which
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measures the frequency of connections between nodes with similar degrees. A value

close to 1 indicates an assortative network, suggesting that many trade connections

occur between countries with similar numbers of trading partners, whether they are

many or few. On the other hand, a value close to -1 points to a disassortative network.

This reflects a pattern where trade connections frequently exist between countries with

disparate numbers of trading partners—one with a high number of partners and the

other with a low number. This approach clarifies the nature of connectivity within

the international trade network, revealing the tendencies for countries to trade with

partners of similar or dissimilar connectivity levels.

• Reciprocity (global): calculates the extent of mutual exchanges within the network

based on the proportion of reciprocated connections relative to the total number of

connections. A high reciprocity level, approaching 1, indicates that most trade part-

nerships involve mutual exchanges. Conversely, a low reciprocity level, nearing 0,

suggests that the bulk of trade flows occurs in one direction between trade partners.

• Modularity (global): explores how the network is segmented into distinct communities

or modules, characterized by dense connections within each community and fewer

connections between different communities. High modularity values, approaching 1,

signal that connections within communities significantly outnumber those between

communities. Conversely, values near 0 indicate a balance between connections within

communities and those bridging different communities. This evaluation highlights the

network’s structure, identifying whether it is more segregated into tightly-knit groups

or integrated, with fluid interactions across different groups.

By applying these network measures, we aim to unravel the complex interdependencies

and structural patterns characterizing section-level international trade networks, offering

novel insights into the global trade landscape.
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C. Topological analysis of section-level international trade networks

In this subsection, we provide a topological examination of section-level international

trade networks, focusing on the period from 2010 to 2022. This interval is convenient for

understanding the dynamics of globalization, as it marks the emergence of signs pointing

to a deglobalization process. During this period, several pivotal events exerted a profound

impact on global trade dynamics, including Brexit, the China-USA trade war, the COVID-19

pandemic, and Russia’s invasion of Ukraine. Given the expansive scope of this analysis, our

investigation is streamlined to concentrate on the five most significant commodity sections

of this period. Collectively, these sections account for approximately 60% of the monetary

trade value within the specified timeframe, thereby providing a comprehensive overview of

the critical trends and shifts in international trade patterns during a period marked by

considerable geopolitical and economic upheavals.

Figure 1 depicts the evolution of five fundamental network measures for the most traded

commodity sections from 2010 to 2022. Initially, we examine the network density measure.

Among the sections analyzed, Mechanical & Electrical exhibits the highest average network

density value of 0.314, indicating that, on average, 31.4% of the potential trade connections

between countries are realized within this section. Conversely, the Mineral section presents

the lowest average density value, 0.179, which corresponds to merely 57% of the value ob-

served for the Mechanical & Electrical section. The average density values for the remaining

sections are as follows: Chemical (0.261), Base Metals (0.256), and Transport (0.219). A

noteworthy observation is the bifurcation in trends during the analyzed period; from 2010

to 2017, an increase in density values suggests enhanced interconnectedness among trading

partners. However, post-2017, a trend toward stagnation or decline is observed. Notably,

the Mechanical & Electrical section demonstrates stability in its density value throughout

the period, whereas the Base Metals, Transport, and Mineral sections exhibit a clear down-

ward trajectory. The onset of the COVID-19 pandemic in early 2020 prompted a sharp

decline in the density values of the Transport and Chemical sections, while the Mechanical

& Electrical section experienced a less pronounced impact, highlighting the heterogeneous

effects of the pandemic on trade network interconnectedness.

Turning our attention to the assortativity network measure, all sections reveal predom-

inantly negative assortativity values, suggesting prevalent trade interactions between het-
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FIG. 1. This figure presents an analytical overview through five distinct plots, illustrating the

evolution of key topological metrics within international trade networks from 2010 to 2022. Each

plot tracks the temporal progression of a particular network measure for each of the five main

section-level trade networks under scrutiny. The analysis employs a quarterly temporal resolution.
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erogeneous countries (i.e., nations with a disparate number of partners). The Mechanical

& Electrical section stands out with the most negative average value of -0.432, while the

Mineral section records the least negative average assortativity value of -0.343. The assorta-

tivity values for the other sections are as follows: Base Metals (-0.405), Transport (-0.379),

and Chemical (-0.369). Temporal analysis of these values reveals two distinct phases. Until

mid-2014, a shift towards less negative assortativity values indicates a trend towards more

homogeneous commercial relationships. Contrarily, after 2017, this trend reversed, with

assortativity values becoming more negative, culminating in 2022 with lower values than

those recorded in 2010 for all sections, excluding Mechanical & Electrical. This recent trend

underscores the disassortative nature of these trade networks.

The analysis of the temporal evolution of assortativity and network density suggests that

a pivotal shift occurred during 2016-2018, reversing earlier observed trends and inducing

profound topological alterations within the main section-level trade networks. This period

aligns with a significant surge in the Trade Policy Uncertainty Index [7] [49]. Such dramatic

rises in trade uncertainty underscore the detrimental impacts of critical geopolitical and

economic events on global trade within the last decade. This correlation between the surge

in trade policy uncertainty and our findings suggests that heightened trade policy uncer-

tainty correlated with lower network connectivity and prompted more peripheral countries

to re-establish connections with central trade hubs. The economic rationale behind this

observed trend is attributed to an increased risk aversion amid rising economic uncertainty.

In the period preceding 2016-2018, characterized by relatively low trade policy uncertainty,

countries were more inclined to engage in international trade, actively seeking new part-

nerships, often with peripheral nations within the trade network. This era witnessed an

increase in assortativity, with peripheral countries predominantly engaging in transactions

with similarly positioned entities, i.e., other peripheral countries.

However, the landscape shifted dramatically after 2018 amidst the mounting trade un-

certainty and heightened risk aversion. Trade patterns began to coalesce around more

established, central countries within the network, denoting a strategic pivot in economic

interactions. Peripheral nations, in response, scaled back their trade transactions with sim-

ilarly peripheral counterparts, opting instead to prioritize transactions with more central

entities, perceived as safer counterparts. This strategic realignment precipitated a decline

in assortativity, marking a transformative phase in the connectivity patterns of the main
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section-level trade network.

Continuing our topological examination, we analyze the dynamics of reciprocity and clus-

tering patterns across the primary commodity trade networks. Regarding reciprocity, all

sections consistently exhibit average values above 0.500 throughout the analysis period, un-

derscoring a prevalent trend of reciprocal trade relations among countries. The Mechanical

& Electrical section stands out with the highest average reciprocity, achieving 0.688, while

the Transport section presents the lowest, at 0.565. The average reciprocity for the remain-

ing sections is as follows: Base Metals (0.646), Chemical (0.617), and Mineral (0.592). A

temporal analysis reveals distinct trends: the Mechanical & Electrical section shows a unique

and consistent increase in reciprocity throughout the period. The Base Metals and Chemical

sections display relatively stable values up to 2015, followed by a noticeable rise. The Min-

eral and Transport sections initially exhibit a decline, yet from 2016, Transport experienced

a resurgence in reciprocity, with Mineral showing recovery only from 2020 onwards. Inter-

estingly, the Chemical and Mineral sections, which had similar reciprocity levels in 2010,

diverged post-2014, with the Chemical’s increased reciprocity aligning it more closely with

Base Metals. By the end of the analysis period, all sections show a trend towards higher

reciprocity, indicating a strengthening of reciprocal trade relations over time.

Concerning local clustering behavior, we note that each section maintains an average

transitivity value above 0.540, indicating significant local clustering. The Mechanical &

Electrical section has the highest average transitivity at 0.624, with Mineral recording the

lowest at 0.543. The figures for the other sections are Chemical (0.616), Base Metals (0.600),

and Transport (0.569). Temporal dynamics of this metric unveil varying patterns: all sec-

tions witness an increase in local clustering up to mid-2014. From 2014 to 2019, transitivity

stabilizes, halting the previous upward trend. The onset of the COVID-19 pandemic leads

to a notable drop in clustering, especially within the Transport and Mechanical & Electrical

sections. After 2019, a general decline in clustering was observed, except for the Mineral

section, which showed resilience by maintaining its pre-pandemic transitivity values. Addi-

tionally, the period under analysis sees the Chemical section’s transitivity converging with

that of the Mechanical & Electrical, with the first ultimately exhibiting the highest transi-

tivity by 2022.

We assess modularity patterns to conclude the first part of our topological analysis.

Across all sections, average modularity values remain exceedingly low, approaching zero,
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throughout the studied period. Considering the significant local clustering identified earlier,

these minimal modularity values highlight a key aspect of the networks’ structure. Despite

a tendency for countries’ trade partners to form interconnected clusters, these section-level

trade networks lack a modular organization, suggesting the absence of distinct segregation

in trade interactions among specific groups. This finding suggests the existence of many

countries serving as bridges connecting peripheral countries.

In the second part of our topological analysis, we explore shifts in ranking centrality within

the primary section-level trade networks from 2010 to 2022. As detailed in Table X, our

focus centers on the Mechanical & Electrical, Chemical, and Mineral sections. Commencing

with the Mechanical & Electrical sector, we observe that the United States maintains its

position as the most central nation throughout the period under review. China and Germany

consistently rank within the top three, with Germany advancing to second place by 2022.

Notably, Great Britain, Singapore, and Japan experienced a decline in their rankings, with

Great Britain falling from fifth to tenth, Singapore from ninth to twelfth, and Japan from

twelfth to fifteenth. Conversely, Mexico demonstrates significant progress, moving from

seventh to fourth position. The dynamics of entry and exit from the Top 15 list highlight

substantial shifts, with Thailand disappearing from the 2022 rankings after being fourth

in 2010, and Russia, Malaysia, and Spain also absent in the later rankings. Conversely,

Hong Kong, India, the Republic of Korea, and the United Arab Emirates emerged in the

2022 rankings, with Hong Kong and India notably securing seventh and ninth positions,

respectively.

In the Chemical sector, the United States leads, followed by China and Germany, mir-

roring the outcomes observed in the Mechanical & Electrical section. This period witnessed

an increased prominence of the United States and China, with a noticeable gap emerging

between them and the other nations ranked from third to fifteenth in 2022. The upward

mobility of the Netherlands, Belgium, Canada, Brazil, India, and the Republic of Korea

is remarkable, with India’s rise from fourteenth to fourth and Brazil’s from thirteenth to

seventh being particularly noteworthy. Thailand’s absence in the 2022 rankings, after being

fifth in 2010, marks a notable decline. Additionally, the rankings reflect a downturn for

France, Great Britain, Japan, Italy, and Spain, with the significant repositioning of Great

Britain from sixth to tenth and Japan from seventh to eleventh.

For the Mineral section, China’s dominance is unmistakable. The United States places
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second, even though its relative centrality to China decreased significantly from 80% in 2010

to 45% in 2022. This underscores China’s consolidating dominance. Australia, the Republic

of Korea, France, and the Netherlands see noteworthy advancements in the 2022 rankings,

with the Republic of Korea’s ascent from eleventh to seventh, highlighting its increased

centrality. Conversely, Belgium, Hong Kong, Italy, Japan, and Singapore register declines,

with Hong Kong’s fall to fourteenth and Belgium’s to fifteenth marking significant shifts.

The rankings note the departure of only two countries, Thailand and Canada, from the Top

15 in 2010 and the entry of India and Malaysia in 2022, with India’s placement at fourth

being particularly impressive.

The second part of our topological analysis looks into shifts in ranking centrality within

the main section-level trade networks between 2010 and 2022. Table II reports centrality

rankings for the following sections: Mechanical & Electrical, Chemical, and Mineral. Re-

garding the Mechanical & Electrical section, the United States is the most central country

for both years under review. Following closely, China and Germany constitute the Top

3, with Germany ascending to the second position by 2022. We highlight the fall in the

rank position of the following three countries: Great Britain descends from the fifth to the

tenth position, Singapore from the ninth to the twelfth, and Japan from the twelfth to the

fifteenth. Conversely, Mexico exhibits an upward trajectory, advancing from the seventh

to the fourth position. Additionally, entry and exit dynamics from the Top 15 list reveal

notable shifts. Thailand, previously ranked fourth in 2010, vanishes from the 2022 ranking.

Similarly, Russia, Malaysia, and Spain, present in the 2010 rankings, are absent in 2022.

Four nations — Hong Kong, India, the Republic of Korea, and the United Arab Emirates

— were not listed in 2010 and appeared in the 2022 ranking. Among these, Hong Kong and

India are particularly prominent, securing the seventh and ninth positions, respectively.

In examining the Chemical section, the United States emerges as the most dominant

entity, with China and Germany trailing closely behind. This analysis reveals a growing in-

fluence of the United States and China over the observed period, as indicated by the relative

decline in the centrality metrics of other nations. Particularly noteworthy is the ascension

through the ranks of the Netherlands, Belgium, Canada, Brazil, India, and the Republic of

Korea, with India’s rise to the fourth position by 2022 being especially remarkable. On the

contrary, there is a noticeable descent in the standings of France, Great Britain, Japan, Italy,

and Spain. Despite these shifts, the overall makeup of the Top 15 has shown remarkable

16



consistency, except for Thailand’s departure, which paved the way for Mexico’s entry.

The centrality rankings for the Mineral section underscore China’s ascendance as the

preeminent nation within this network. Notably, the United States retained its second-place

standing; however, its proximity to China’s centrality value in 2010—amounting to 80%

of the leader’s score—dwindled by 2022, falling to 45%. This significant reduction accen-

tuates the solidification of China’s network influence. We draw attention to the upward

trajectory of Australia, the Republic of Korea, France, and the Netherlands in the 2022

rankings. The Republic of Korea, in particular, merits acknowledgment for its climb from

the eleventh to the seventh position, indicating a notable increase in its centrality within

the network. Conversely, the ranking declined for Belgium, Hong Kong, Italy, Japan, and

Singapore. Specifically, Hong Kong’s descent from the eighth to the fourteenth position and

Belgium’s fall from the tenth to the fifteenth position are highlighted as significant shifts.

Regarding ranking composition changes, we point out the exit of only two countries, Thai-

land and Canada, which were positioned towards the lower end of the Top 15 in 2010. The

entry of India and Malaysia into the rankings is noteworthy, particularly India’s impressive

positioning at fourth place in 2022.

Table III displays centrality rankings for the Transport and Base Metals sections. In

Transport, Thailand’s prominent role in 2010 diminished completely by 2022. The United

States, ascending from second place in 2010, secured the leading position by 2022. This

advancement positions the United States at the pinnacle of the section, followed closely by

Germany and France, who climb to the second and third positions, respectively, thereby

delineating the top echelon in 2022. Great Britain, Canada, and China improved their

positioning in 2022, with China showing the most substantial climb from the eleventh to

the sixth position, highlighting its growing influence in the Transport section. Conversely,

Australia and Spain experienced a decline, with Australia dropping from the fifth to the

fifteenth position. Composition shifts in the Top 15 of the Transport section is marked by

the exit of five countries: Thailand, Russia, Saudi Arabia, Japan, Indonesia, and Brazil,

introducing new participants such as Belgium, the United Arab Emirates, Poland, Mexico,

and the Netherlands, thus reflecting the evolving landscape of this network.

In the Base Metals section, the United States maintains and amplifies its leadership,

underlining a consolidation of influence as centrality values for the remainder of the Top 15

experience a noticeable decline in 2022. China and Germany remain steadfast, mirroring the
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TABLE II. Top 10 centrality rankings for the following sections: Mechan-

ical & Electrical, Chemical, and Mineral. The rankings are delineated in

two separate panels, with the left panel showcasing the data for 2010 and

the right panel for 2022.

2010 2022
Rank Centrality Country Rank Centrality Country

Mechanical & Electrical
1 100% United States 1 100% United States
2 57% China 2 46% Germany
3 53% Germany 3 45% China
4 50% Thailand 4 30% Mexico
5 37% Great Britain 5 25% France
6 33% France 6 25% Canada
7 30% Mexico 7 24% Hong Kong
8 28% Netherlands 8 22% Netherlands
9 27% Singapore 9 21% India
10 26% Canada 10 20% Great Britain

Chemical
1 100% United States 1 100% United States
2 64% China 2 65% China
3 59% Germany 3 53% Germany
4 43% France 4 31% India
5 35% Thailand 5 30% France
6 33% Great Britain 6 30% Netherlands
7 32% Japan 7 27% Brazil
8 32% Netherlands 8 25% Belgium
9 31% Belgium 9 25% Canada
10 27% Canada 10 24% Great Britain

Mineral
1 100% China 1 100% China
2 80% United States 2 45% United States
3 53% Singapore 3 40% Netherlands
4 50% Japan 4 37% India
5 37% Germany 5 37% Germany
6 35% Netherlands 6 34% Singapore
7 29% Italy 7 34% Republic of Korea
8 28% Hong Kong 8 33% France
9 27% France 9 33% Japan
10 22% Belgium 10 31% Italy

Notes: In our analysis, we have normalized the centrality values to facilitate

a comparative understanding of each country’s relative centrality within the

specific section-level trade network. This normalization process adjusts the

centrality scores, ensuring they are expressed in relation to the most central

nation within each respective network.
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top-tier dynamics observed in the Mechanical & Electrical and Chemical sections. The tra-

jectory for five countries—Italy, France, Japan, Great Britain, and the Netherlands—points

downwards. However, Japan presents an anomaly, shifting from sixth place in 2010 to fifth

in 2022, indicating a nuanced change in its network centrality. Conversely, Canada, Turkey,

Mexico, and the Republic of Korea ascend within the rankings, with Mexico’s commendable

leap from twelfth to fourth position emphasizing its enhanced role in the network. The

period under review witnesses the departure of Thailand and Belgium from the rankings,

making room for India and Poland’s entry. India, in particular, garners attention by securing

the fifth position, showcasing its significant ascendancy within the Base Metals sector.

III. TRADE NETWORK MEASURES AS PREDICTORS: A MACHINE LEARN-

ING APPROACH TO GDP GROWTH FORECASTING

In this section, we explore the utilization of machine learning models for forecasting

country-specific Gross Domestic Product (GDP) growth. Our analysis builds upon tradi-

tional methods that predict GDP growth using country-specific variables by introducing net-

work descriptors extracted from section-specific trade networks. We believe network-based

descriptors can offer predictive power for two main reasons. Firstly, a country’s position in

the trade network may convey information on its importance to other peers and its ability

to access and substitute products and services across its counterparts. Secondly, economic

conditions in a country’s neighbors may provide insights into its own economic variables.

For instance, if a neighbor transacts less than historically with a specific country, this be-

havior may signal potential GDP growth challenges for that country in the upcoming years.

Both features can potentially affect a country’s GDP growth. Therefore, we include network

measures to introduce a novel dimension to the analysis, shedding light on the impact of the

topological properties of international trade networks on economic forecasting.

The pursuit of accurate economic growth forecasting is an endeavor that profoundly

influences strategic decision-making and policy formulation across the globe. It equips poli-

cymakers with the tools to design proactive measures to smooth out economic fluctuations,

fostering a more stable economic environment. For businesses and investors, the insights

gleaned from these forecasts anchor expectations and provide foresight that helps navigate

market uncertainties and leverage opportunities for growth and expansion. Moreover, the
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TABLE III. In this table, we present the Top 15 centrality rankings for the following

sections: Transport and Base Metals. The rankings are delineated in two separate

panels, with the left panel showcasing the data for 2010 and the right panel for

2022.

2010 2022
Rank Centrality Country Rank Centrality Country

Transport
1 100% Thailand 1 100% United States
2 48% United States 2 64% Germany
3 46% Germany 3 39% France
4 31% France 4 32% Great Britain
5 25% Australia 5 32% Canada
6 24% Great Britain 6 24% China
7 17% Canada 7 24% India
8 17% Spain 8 23% Netherlands
9 16% Italy 9 20% Italy
10 15% Russia 10 20% Mexico
11 15% China 11 18% Spain
12 14% Saudi Arabia 12 17% Poland
13 13% Japan 13 17% United Arabe Emirates
14 13% Indonesia 14 16% Belgium
15 12% Brazil 15 15% Australia

Base Metals
1 100% United States 1 100% United States
2 85% China 2 57% Germany
3 75% Germany 3 55% China
4 42% Italy 4 34% Mexico
5 39% France 5 32% India
6 37% Japan 6 32% Canada
7 37% Canada 7 31% Italy
8 32% Netherlands 8 26% France
9 32% Thailand 9 22% Turkey
10 31% Great Britain 10 22% Republic of Korea
11 29% Turkey 11 20% Netherlands
12 28% Mexico 12 20% Great Britain
13 28% Republic of Korea 13 18% Poland
14 26% Spain 14 17% Spain
15 23% Belgium 15 17% Japan

Notes: In our analysis, we have normalized the centrality values to facilitate a compar-

ative understanding of each country’s relative centrality within the specific section-level

trade network. This normalization process adjusts the centrality scores, ensuring they

are expressed in relation to the most central nation within each respective network.
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importance of these forecasts extends beyond national borders. In an interconnected global

economy, the ripple effects of economic trends in one country can have far-reaching impacts.

Accurate forecasts enable countries to synchronize their economic policies and responses,

essential for managing global challenges such as trade deficits and inflationary pressures.

We use a horse race to select among a set of supervised learning regression techniques.

The suite of machine learning models applied includes the Light Gradient Boosting Machine

(LightGBM), Support Vector Machines (SVM), k-nearest neighbor (k-NN) algorithms, Ex-

treme Gradient Boosting (XGBoost), Linear Regression and its regularized variants, and

Random Forest. This diverse array of models facilitates a thorough analysis by capturing

the complex, both linear and non-linear, relationships between country-specific factors and

the structure of section-level trade networks.

In our model selection procedure, we use a cross-validation technique to search for each al-

gorithm’s most effective combination of hyperparameters, thereby optimizing predictive per-

formance and ensuring model generalization to unseen examples. Hyperparameters, which

are external configurations to the model that cannot be learned from the data, influence

the training process and the architecture of the machine learning model. We undertake the

hyperparameter tuning process by systematically navigating a predefined grid of hyperpa-

rameter values and evaluating model performance through adaptive resampling via futility

analysis [30]. We set the Root Mean Squared Error (RMSE) as our performance metric in

the model selection. The model (and corresponding optimal set of hyperparameters) that

minimizes the average RMSE across all models in the cross-validation procedure will be the

winner in the horse race.

A. Relevant background: supervised machine learning models

This section reviews the suite of supervised regressions that constitute the horse race of

algorithms.

1. Linear Regression

Linear Regression is a foundational statistical method employed for modeling the rela-

tionship between a dependent variable and one or more independent variables by optimizing
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the parameters of a linear equation best to fit the observed data [51, 63]. The core prin-

ciple of Linear Regression lies in minimizing the sum of the squared differences between

the observed outcomes in the dataset and the outcomes predicted by the linear approxima-

tion. Mathematically, this optimization problem can be expressed as minimizing the cost

function J(θ) = 1
2m

∑m
i=1

(
hθ(x

(i))− y(i)
)2
, where m denotes the number of observations,

hθ(x) represents the hypothesis function defined by hθ(x) = θTx, y(i) is the observed value,

and θ are the parameters to be optimized. The algorithm selects θ such that it minimizes

the cost function J discussed above. Since J is convex, the optimization process admits a

closed-form solution, often called the ordinary least squares method. The linear regression

has no hyperparameters.

2. Elastic Net (Linear Regression with regularization)

Regularized variants of Linear Regression, such as Ridge Regression (L2 regularization)

and Lasso Regression (L1 regularization), introduce a penalty term to the cost function

in the linear regression to prevent overfitting by constraining the magnitude of the model

coefficients. Elastic Net Regression combines the strengths of both L1 and L2 regularization

methods [65]. This approach is particularly effective in scenarios where multiple features are

correlated and aims to balance the complexity of the model with its performance, thereby

mitigating the issue of model overfitting. The cost function for Elastic Net Regression is

formulated by incorporating both L1 and L2 penalty terms, optimizing the equation J(θ) =

1
2m

∑m
i=1(hθ(x

(i))− y(i))2 + λ1

∑n
j=1 |θj|+ λ2

∑n
j=1 θ

2
j , where λ1 and λ2 are the regularization

parameters for the L1 and L2 penalties, respectively. This dual regularization approach

allows Elastic Net to inherit the feature selection property of Lasso while also retaining the

regularization benefits of Ridge, making it a versatile tool for regression analysis involving

high-dimensional datasets. The hyperparameters we tune in the model selection are both

λ1 and λ2.

3. Support Vector Machine

Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel is a non-linear

method [13]. Unlike Linear Regression, which minimizes the discrepancies between observed
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and predicted values within a linear context, SVM with RBF kernel models complex, non-

linear relationships in regression tasks. The SVM algorithm seeks to find the optimal hyper-

plane in a high-dimensional space that maximizes the margin (distance) of the hyperplane

to the nearest points of each class, called support vectors. The RBF kernel is instrumen-

tal in transforming the input data into a higher-dimensional space, where linear regression

becomes possible, thereby effectively handling non-linear data structures. The optimiza-

tion function critical to SVM with RBF kernel for regression is formulated as minimizing

J(θ) = 1
2
||θ||2 +C

∑m
i=1

(
max(0, |y(i) − (θTϕ(x(i)) + b)| − ϵ)

)2
, where C is the regularization

parameter, ϕ(x(i)) represents the high-dimensional space mapped by the RBF kernel, b is

the bias, and ϵ denotes a margin of tolerance within which no penalty is given to errors.

The parameter γ in the RBF kernel function, defined as γ = 1
2σ2 , plays a critical role in

determining the decision boundary’s flexibility. This optimization ensures that the model

balances the complexity and the fitting accuracy, making SVM with RBF kernel a powerful

tool for tackling non-linear regression challenges. The hyperparameters we tune in the model

selection are C and γ.

4. k-Nearest Neighbor

The k-Nearest Neighbor (k-NN) algorithm stands out in the machine learning landscape

for its simplicity and non-parametric nature, contrasting sharply with the complexity of SVM

with RBF kernel and the linearity of Linear Regression [14]. k-NN operates on the principle

of feature similarity, predicting the outcome for a new instance based on the majority vote

or average of its k closest neighbors in the feature space. This straightforward approach

eliminates the need for parameter estimation, presenting an advantage in terms of simplicity

and interpretability. Additionally, the performance heavily depends on the choice of k and

the distance metric, which can significantly affect its accuracy. Unlike previous models,

k-NN does not optimize a specific function for learning; instead, it directly uses the training

data for prediction, minimizing an implicit cost function related to the distance between the

query instance and its nearest neighbors, thereby determining the best fit for prediction.

Despite its simplicity, k-NN’s effectiveness is contingent upon a careful balance between the

choice of k and the distance metric, ensuring adequate performance while highlighting its

intuitive approach to machine learning prediction outcomes. The hyperparameter we tune
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in the model selection is k.

5. Random Forest

The Random Forest algorithm is a prominent ensemble learning method designed to refine

regression analyses through the collective predictions of multiple decision trees [5]. This

ensemble technique aims to elevate the robustness and accuracy of the model by merging the

outputs from a variety of base learners, effectively mitigating the risk of overfitting common

in more complex models. Specifically, Random Forest improves model generalization by

averaging the individual predictions (ŷn) from each of the N decision trees, making the

ensemble’s final prediction more reliable across diverse datasets. For a Random Forest

composed of N trees, the prediction ŷ for any given input is calculated by averaging the

outputs of all trees, represented as ŷ = 1
N

∑N
n=1 ŷn. The hyperparameters that we tune in

the model selection are the number of trees (N), the maximum depth of each tree (D), and

the number of features considered for splitting at each node (F ).

6. XGBoost

XGBoost, an abbreviation for eXtreme Gradient Boosting, represents a sophisticated

evolution of gradient boosting frameworks, acclaimed for its efficiency, versatility, and pro-

ficiency in processing large datasets [9]. Unlike Random Forest, which generates inde-

pendent trees in a parallel fashion, XGBoost constructs each tree sequentially. XGBoost

distinguishes itself by adeptly managing linear and nonlinear datasets and incorporating

regularization directly into its optimization process to mitigate overfitting. This regular-

ization introduces penalties on the model’s complexity, thereby balancing the reduction

of prediction errors with the control of model complexity. The objective function opti-

mized by XGBoost in regression tasks incorporates a regularized component, defined as

J(θ) =
∑m

i=1 l(y
(i), ŷ(i)) +

∑
k Ω(fk), where l signifies the loss function that measures the

discrepancy between actual values y(i) and predictions ŷ(i), and Ω denotes the regularization

term affecting the complexity of the model’s trees. The hyperparameters that we tune in

the model selection are the learning rate (η), the maximum depth of the trees (D) and the

regularization parameters (λ for L2 regularization, α for L1 regularization).
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7. Light Gradient Boosting Machine

Light Gradient Boosting Machine (LightGBM), an advanced gradient boosting frame-

work, excels in predictive modeling by optimizing a loss function L =
∑n

i=1 l(yi, ŷi), method-

ically incorporating weak learners in successive iterations through the formula Fk+1(x) =

Fk(x) + α · h(x) [29]. It sets itself apart with unique features like Gradient-based One-

Side Sampling (GOSS) [50] and Exclusive Feature Bundling (EFB) [38], which substantially

boost its computational efficiency. Directly comparing LightGBM to its counterpart, XG-

Boost, reveals LightGBM’s advantage in terms of reduced memory usage and faster exe-

cution times thanks to these innovations while maintaining comparable levels of predictive

accuracy. The approach to building trees sets LightGBM apart from XGBoost and other

prevalent algorithms. Where many algorithms expand trees in a sequential, level-wise man-

ner, LightGBM adopts a strategy focused on expanding trees by leaves, specifically targeting

the leaf that is anticipated to result in the largest decrease in loss. In addition, while XG-

Boost and numerous other algorithms utilize a sorted-based method for learning decision

trees—seeking the best division points among ordered attribute values—LightGBM employs

a unique, histogram-based method. This model captures complex, non-linear relationships

without requiring extensive feature engineering. This capability is fine-tuned through the

adjustment of key hyperparameters such as the number of leaves (L), learning rate (η), and

maximum depth of trees (D). These parameters play a crucial role in the model’s perfor-

mance, as encapsulated in the equation Fk+1(x) = Fk(x) + η · hk(x, L,D), highlighting the

sensitivity of LightGBM’s output to these hyperparameters.

B. Relevant background: the interpretable machine learning through Shapley

values

We evaluate the contributory significance of each feature within our predictive models

by employing SHAP (SHapley Additive exPlanations) values [34]. This tool is crucial for

enhancing interpretability in machine learning models by extending the concept of Shapley

values from cooperative game theory. Shapley values offer a systematic means to assess each

feature’s individual contribution towards a model’s overall predictive accuracy. The alloca-

tion of contributions is determined through the examination of all possible permutations of
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features based on the Shapley value formula:

ϕi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) (1)

where ϕi(v) represents the SHAP value for feature i, N is the set of all features, n is the total

number of features, S is a subset of features excluding i, and v(S) is the prediction function

for subset S. This equation encapsulates the essence of SHAP values by quantifying the

marginal contribution of feature i when added to a subset of features S.

The principle of marginal contribution, pivotal to SHAP values, evaluates the additional

impact of including a specific feature in a subset of features on the predictive outcome. SHAP

values are calculated for each feature across all possible combinations, yielding a detailed

portrayal of feature importance that is model-agnostic. This enables the interpretation of

complex models by revealing the impact of each feature on the prediction for each instance

in the dataset [39]

C. Pre-processing steps

In our research, we execute several pre-processing steps on our dataset before applying

machine learning models to ensure the integrity and quality of our analysis. Initially, we

transform all nominal predictor variables into factor variables. Further refining our dataset,

we filter out features exhibiting a correlation higher than 0.9 to mitigate the effects of

multicollinearity, ensuring that highly correlated predictors do not skew our model’s per-

formance. Additionally, we eliminate features with near-zero variance, specifically those

with a dominant category not sufficiently balanced by other categories, as identified by a

frequency cut-off of 100. This step is essential for removing variables unlikely to contribute

significantly to the model’s predictive accuracy.

We employ the k-NN imputation method to address missing values, leveraging the algo-

rithm to estimate and replace missing data with the most plausible values based on similar

observations. We also normalize all numeric predictors, excluding the ”year” variable, to

prevent variables with larger scales from overpowering those with smaller scales, ensuring

each contributes equally to the model’s efficacy. In the subsequent stage of our data prepa-

ration, we convert nominal predictors previously transformed into multiple dummy (binary)
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variables, each representing a category of the nominal predictor.

D. Results and discussion

1. Data description

We utilize machine learning methodologies to forecast economic growth, designating an-

nual GDP growth as our target variable. This data is acquired from the World Bank’s Open

Data platform. We incorporate two distinct sets of feature variables into our analysis to

achieve our objective of predicting economic growth. We note that all data employed in this

analysis refers to annual values.

The initial set pertains to the fundamental characteristics of countries, which can further

be categorized into relevant subsets. The sources of data for this analysis encompass the

United Nations Conference on Trade and Development and the World Bank’s Open Data

platform:

• Main economic indicators: GDP per capita (PPP); GDP (US$); GDP deflator (%);

Gross capital formation to labor force; Unemployment rate (%); Labour force par-

ticipation rate (%); Agriculture, forestry and fishing (% of GDP); Manufacturing (%

of GDP); Services (% of GDP); Carbon dioxide emissions per capita (tonnes); and

Material footprint per capita (tonnes).

• Economic openness: stimulates growth by fostering competition and efficiency, leading

to technological advancements and productivity gains. It expands access to global

markets, enhancing export opportunities and enabling firms to achieve economies of

scale. Furthermore, it attracts foreign investment and facilitates knowledge transfer,

contributing significantly to a country’s economic development [28]. We select the

following variables: Trade (% of GDP); Net trade in goods (US$); Current account

balance (% of GDP); PPP conversion factor; Net inflows of foreign direct investment

(% of GDP); and Inward foreign direct investment stock.

• Institutional quality: Governmental institutions lay the foundation for a country’s eco-

nomic activities. Effective institutions foster an environment conducive to economic
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engagement, innovation, growth, and development [6]. We employ measures of: Regu-

latory quality; Rule of law; Government effectiveness; Control of corruption; and Voice

and Accountability.

• Infrastructure: is a critical determinant of economic growth, acting as a catalyst for

improving efficiency, productivity, and connectivity [20]. To account for the infras-

tructure quality, we employ: Fixed broadband subscriptions (per 100 people); Access

to basic sanitation (% population); and Urban population (% population).

• Human development: Education significantly boosts economic growth by enhancing

workforce productivity and fostering innovation, which leads to increased efficiency

and groundbreaking advancements [4]. Health is a crucial driver of economic growth,

primarily by enhancing labor productivity and reducing healthcare costs, thereby in-

creasing economic efficiency and output [25]. We employ the following measures: Mean

years of Schooling; Human development index; Human inequality; Life expectancy at

birth; Refugee population; and Population growth (%).

The second set of feature variables we introduce comprises network measures extracted

from section-level international trade networks outlined in Section II. These metrics are con-

sidered across various sections of trade, namely Mechanical & Electrical, Mineral, Transport,

Chemical, and Base Metals. For an in-depth exploration of the data utilized to construct

these networks and the derivation of their metrics, readers are directed to Subsection II B.

2. Predictive accuracy

We run the horse race of supervised algorithms discussed before. We use the RMSE as the

criterion to select the best model. However, we also report other metrics to show that the

selected algorithm is robust when we compare other performance metrics: Huber Loss, Mean

Absolute Error (MAE), Root Mean Square Error (RMSE), and Symmetric Mean Absolute

Percentage Error (SMAPE) [40]. Achieving lower values across these metrics signifies supe-

rior predictive accuracy, which indicates that the model’s forecasts are consistently closer to

the actual observed values.
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In Figure 2, we detail the average error values and their corresponding 95% confidence

intervals across the four error metrics, evaluated for the seven machine learning models

included in our study over each of the out-of-sample remaining fold in the cros-validation

procedure. The analysis elucidates a clear hierarchical structure in model performance, with

the Random Forest model leading and closely followed by XGBoost and LightGBM [41].

Subsequent positions are occupied by k-NN, regularized Linear Regression, SVM with RBF

Kernel, and, finally, Linear Regression. Generally, this ranking is maintained across the

performance metrics. In our next section, we attempt to interpret the model’s predictions

using the best-performing models in the horse race.

FIG. 2. This figure illustrates the estimated error values and their associated confidence intervals

for the four error metrics—Huber Loss, Mean Absolute Error (MAE), Root Mean Square Error

(RMSE), and Symmetric Mean Absolute Percentage Error (SMAPE)—evaluated across the seven

machine learning algorithms examined in our study.

3. Feature importance

Figure 3 displays the average SHAP values in the module for the Top 15 most influential

features as identified across the three highest-performing models in our analysis. Notably,

current GDP growth emerges as the paramount feature in both the Random Forest and

XGBoost models, whereas it ranks second in the LightGBM model. A particularly striking

29



observation is the pronounced dominance of this feature in the Random Forest model, where

its SHAP value is approximately twice as large as that of the second-ranking feature. The

density of the Mineral trade network is the second most critical feature for the Random

Forest and XGBoost models, surpassing current GDP growth in the LightGBM model.

Temporal dynamics rank as the third most significant feature for both the XGBoost and

LightGBM models and fourth for the Random Forest model. The two-period lagged GDP

growth rate secures the fourth position in the XGBoost and LightGBM models, while it

climbs to the third spot in the Random Forest model.

This initial analysis yields several insightful observations. Primarily, these four variables

collectively form a core group that exhibits considerably large SHAP values relative to

other features, highlighting their pivotal role in forecasting economic growth. Secondly, the

significant positioning of both current and two-period lagged GDP growth rates suggests

an ”economic inertia” effect, indicating that present and recent economic performances

have implications for future growth trajectories. Thirdly, the connectivity of trade networks

plays a critical role in economic growth predictions, with particular emphasis on the Mineral

section.

A notable discovery is the substantial representation of network metrics among the Top 15

features within the Random Forest model, the most effective model of our work. Remarkably,

more than half of these leading features pertain to network metrics, with eight out of fifteen.

Specifically, the metrics of density and reciprocity are especially prominent, constituting

seven out of these eight network metrics. Furthermore, we observe that each of the five

commodity sections covered in our study features at least one network metric among the

top-ranking features, suggesting their overall significance in economic growth forecasts. This

prevalence starkly contrasts with the findings from the other two models, where network

metrics are considerably less represented, making up only three out of the Top 15 features.

Moreover, our research consistently highlights the importance of three variables across

all three models: the modularity of the Mechanical & Electrical trade network, population

growth, and the value added by agriculture, forestry, and fishing to GDP. This consistency

across varied models underscores the significance of network connectivity, population dy-

namics, and the contributions of primary sector activities to predicting economic growth.
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FIG. 3. This figure illustrates the average SHAP values for the Top 15 most influential features as

determined for the XGBoost, LightGBM, and Random Forest models. The visualization provides a

comparative analysis across the three models, highlighting how each model values different features

in terms of their predictive power.
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4. In-depth analysis of the Random Forest model

Our analysis shows that the Random Forest model is superior in predictive accuracy.

Consequently, we select this model for an in-depth examination with regard to feature inter-

pretability using Shapley values. We develop a beeswarm dependence plot to illustrate the

Top 20 features, identified by the highest mean absolute SHAP values. The vertical axis of

the plot orders features by their significance in the model, while the horizontal axis displays

standardized SHAP values. Each dot in the plot symbolizes the marginal contribution of

a specific attribute for an individual observation, enabling the examination of SHAP value

distributions through denser (indicating a higher concentration of observations) and sparser

areas (indicating a lower concentration). Positive SHAP values indicate a positive contribu-

tion (increases) to the GDP growth in the following year, whereas negative values indicate

a negative contribution (decreases) of the feature to the GDP growth in the following year.

The coloration of dots indicates the attribute’s value: lighter (darker) colors represent higher

(lower) values for the attribute.

Our scrutiny begins with the most relevant feature: the current GDP growth. Obser-

vations with lower values of this feature have negative SHAP values, while higher values

align with positive ones. This suggests that reduced current GDP growth rates portend a

lower GDP growth next year and vice versa. This pattern is consistent with examining the

two-period lagged GDP growth, reinforcing the ”economic inertia” concept. This concurs

with economic literature, which posits that economic growth exhibits an ”autoregressive

component”. This rationalizes the widespread use in the literature of autoregressive models

as a baseline for comparison with more complex models [8].

The density of the Mineral trade network is the second most relevant attribute. The vari-

ability in this feature’s values is relatively low, as indicated by the dot coloration. Medium

values are associated with positive SHAP values, whereas higher values correspond to neg-

ative SHAP values, suggesting an intriguing pattern: moderate to high network density

values correlate with positive future economic growth, yet exceedingly high values forecast

negative economic outcomes, implying a threshold beyond which network density inversely

affects economic growth in the following year. This link between the Mineral trade network’s

metric and future economic performance may be attributed to the influence of commodity

prices—such as iron ore, oil, and coal—on business cycles [15]. Similar patterns are observed
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for the density measures of Chemical, Transport, and Base Metals trade networks.

A significant discovery relates to the feature associated with the primary sector. High

values of this feature have positive SHAP values, while lower values align with negative

SHAP values, indicating that an enhanced relevance of the primary sector within an econ-

omy forecasts positive economic growth in the following year and vice versa. This aligns

with literature stating the crucial role of agriculture in shaping aggregate business cycles

across countries [16] [42]. Additionally, the patterns associated with population growth are

noteworthy. Higher population growth values align with positive Shapley values, whereas

lower values predict negative economic growth in the following year. This outcome aligns

intuitively with conventional models of economic growth that posit the relevant role of pop-

ulation dynamics in driving economic performance [3].

We conclude our analysis by presenting in Figure 5 the SHAP value dependence plots for

five selected features of the Random Forest model. These plots augment the insights gained

from the beeswarm dependence plot analysis by offering a nuanced view of how variations

in feature values influence economic growth forecasts. On the horizontal axis, feature values

are standardized, providing a vivid visual representation of how deviations from the average

feature value—both positive and negative—affect predictions.

Commencing with the plot for current GDP growth, we observe that an increase of

1 standard deviation from the average current GDP growth induces a significant uptick

in SHAP value. Further increments of a similar magnitude yield only marginally higher

SHAP value, indicating a trend of diminishing marginal contributions to GDP growth in

the following year. In contrast, a decrease of 1 standard deviation from the mean value

leads to a decline in SHAP value, venturing into negative territory. Notably, SHAP values

demonstrate lesser sensitivity to decreases of 1 standard deviation than to increases of the

same magnitude relative to the mean value. Moreover, our analysis reveals a predominantly

linear decline in SHAP values as decreases extend to 3 standard deviations below the mean.

Shifting the focus to the network density of the Mineral trade network, we identify pat-

terns distinctly different from those associated with current GDP growth. Variations in

network density ranging from -2 to about -0.75 standard deviations from the average feature

value exert no influence on SHAP values. However, within the span of -0.75 to approxi-

mately 0.25 standard deviations from the mean, SHAP values trend positively. Elevating

network density beyond 0.4 standard deviations from the mean triggers a marked negative
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FIG. 4. This figure displays a beeswarm plot of the Top 20 features from the Random Forest

model, ranked by their mean SHAP values. Features are ordered vertically by importance, with

their standardized SHAP values plotted horizontally, showing the contribution to prediction. Dots

represent individual observations, with their distribution indicating the variability of SHAP values;

dense areas suggest higher concentration, while sparse areas indicate less. The color of the dots

reflects the feature values, elucidating the influence of high versus low feature values on economic

growth forecasts, with positive SHAP values signaling potential growth and negative values indi-

cating possible downturns.

trajectory, with SHAP values descending into increasingly negative realms. This pattern

underscores a complex relationship: while moderate increases in network density within

the mineral section are correlated with neutral or positive effects on economic growth in

the following year, surpassing a critical threshold links further increases in network density

with declining future economic prospects, suggesting an optimal range for network density

enhancements to positively influence future economic growth.

Subsequently, we explore an additional network metric: reciprocity of the Base Metals

section. Our analysis delineates three distinct intervals, each characterized by varying be-

haviors of SHAP values in response to changes in reciprocity. In the interval between -1 and

-0.25 standard deviations, the SHAP values manifest a positive trend, where increments in
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reciprocity correlate with higher SHAP values. Conversely, in the range from -0.25 to 2 stan-

dard deviations, an increase in reciprocity decreases SHAP values, which ultimately become

negative. Finally, within the interval spanning from -2 to -2.5 standard deviations, although

increases in reciprocity are associated with elevated SHAP values, these adjustments are

insufficient to revert them to positive figures. This observation underscores a notable result:

reciprocity values below the average are associated with positive GDP growth in the sub-

sequent year, whereas reciprocity levels above the average indicate negative GDP growth

forecasts.

In our evaluation of the value added by agriculture, forestry, and fishing activities to

GDP, positive deviations within the range of 0 to 1 standard deviation from the mean yield

positive and ascending SHAP values. Between 1 to 2 standard deviations, SHAP values level

off, signifying a stabilization in their predictive impact. Beyond two standard deviations,

we observe a gradual descent in SHAP values. Conversely, intervals between -1 and 0

standard deviations from the mean feature value show negative SHAP values, following an

approximately linear decline. These observations suggest that positive deviations from the

mean can enhance economic growth forecasts (up to two standard deviations), while negative

deviations are associated with diminished economic prospects.

Lastly, we analyze population growth, identifying a linear relationship in SHAP values

within the range of -1.5 to 2 standard deviations from the mean feature value. Values below

the mean correlate with negative SHAP values, and those above the mean with positive

SHAP values. We note an accelerated decline in SHAP value for feature values descending

beyond -1.5 standard deviations from the mean. This indicates that within the predominant

range of feature values, the relationship between population growth and economic growth

in the following year is approximately linear, except at significant negative deviations from

the mean, where the impact on economic growth forecasts intensifies.

IV. CONCLUSIONS

We reflect on our efforts to elucidate the intricate relationship between international trade

networks and machine learning techniques in forecasting economic growth. Our objective

was to transcend traditional forecasting methodologies by harnessing the predictive power

of network topological measures alongside advanced machine learning models. Central to

35



FIG. 5. This figure showcases the SHAP value dependence plots for five key features of the Random

Forest model. These plots elucidate the nuanced relationships between variations in feature values

and their impact on predictive outcomes. By standardizing feature values along the horizontal

axis, the plots effectively demonstrate how both positive and negative deviations from the mean

feature value contribute to changes in the model’s economic growth predictions.

36



our findings is recognizing the necessity for models that can unravel complex patterns and

non-linear relationships while integrating international trade networks as pivotal features to

refine economic growth forecasts.

Our detailed analysis began with constructing section-level international trade networks

and extracting topological measures, which unveiled significant transformations within these

networks amidst de-globalization trends. The pivotal period identified between 2016 and

2018, marked by a reversal of prior trends, highlighted the deep-seated impact of trade policy

uncertainties intensified by global events such as the USA-China trade war, the COVID-19

pandemic, and Russia’s invasion of Ukraine. The centrality rankings we developed ex-

posed shifting paradigms of influence within the international trade domain, emphasizing

the sustained dominance of certain nations and the notable rise of others, like India, in key

commodity-specific trade networks.

Moreover, our venture into machine learning for economic growth forecasting revealed the

superior performance of models such as Random Forest, XGBoost, and k-NN over traditional

linear regression models. This finding confirms the complex and non-linear patterns these

advanced models capture and highlights network measures’ critical role in boosting forecasts’

accuracy. In particular, the density of the Mineral trade network stood out as a pivotal

predictor, showcasing the nuanced interplay between trade network dynamics and economic

forecasting.

Our feature importance analysis highlighted the autoregressive nature of economic

growth, underscoring the imperative of grasping both past and present GDP dynamics

to predict future economic performance effectively. This insight is enriched further by iden-

tifying key growth predictors, such as the modularity of the Machine & Electrical trade

network, population growth, and the significance of the primary sector. The consistent

significance of these factors across the top-performing models underscores their essential

role in predicting future economic performance.

Delving into feature interpretability, particularly through the Random Forest model,

we uncovered the complex ways pivotal features influence economic forecasts. The use of

SHAP value dependence plots proved crucial in deciphering these patterns, for example,

demonstrating how variations in the Mineral trade network’s density correlate with GDP

growth predictions. Identifying an optimal network density range highlights the need for

nuanced policy and decision-making to leverage network topological analysis benefits while
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mitigating potential drawbacks.

Looking to the future, there is ample scope for expanding this research. Delving deeper

into the causal links between network topologies and economic outcomes, incorporating real-

time data, and exploring predictive models in light of sudden economic shocks or geopolitical

developments could offer critical insights for policymakers striving for resilience and adapt-

ability in an ever-changing and dynamic global landscape.
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