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Spin qubits in silicon are strong contenders for realizing a practical quantum computer [1–4].
This technology has made remarkable progress in recent years with the demonstration of single
and two-qubit gates with fidelities above the fault-tolerant threshold [5–13] and entanglement of
up to three qubits [8, 14–16]. However, maintaining high fidelity operations while executing multi-
qubit algorithms has remained elusive and only achieved for two spin qubits to date [5, 6] due to
the small qubit size, which makes it difficult to control individual qubits without creating errors on
neighbouring qubits [3–5]. Here, we use a four-qubit silicon processor with every operation above the
fault tolerant limit and demonstrate Grover’s search algorithm with a ∼95% probability of finding
the marked state, one of the most successful implementations of this algorithm in any qubit platform
to date. Our four-qubit processor is made of three phosphorus atoms and one electron spin precision-
patterned into 1.5 nm2 isotopically pure silicon. The strong resulting confinement potential, without
additional confinement gates that can increase cross-talk, leverages the benefits of having both
electron and phosphorus nuclear spins. Significantly, the all-to-all connectivity of the nuclear spins
provided by the hyperfine interaction not only allows for efficient multi-qubit operations in which
a single gate operation on the electron spin can entangle multiple nuclear spins, but also provides
individual qubit addressability, in which the frequency of each nuclear spin qubit is easily separated.
Together with the long coherence times of the phosphorus nuclear and electron spins, this results in
all four single qubit fidelities above 99.9% and controlled-Z gates between all pairs of nuclear spins
above 99% fidelity. The high control fidelities, combined with >99% fidelity non-demolition readout
of all nuclear spins, allows for the creation of a three-qubit Greenberger–Horne–Zeilinger (GHZ)
state with 96.2% fidelity, the highest reported for semiconductor spin qubits so far. Neighbouring
nuclear spin registers can additionally be coupled via electron-electron exchange [17, 18], which when
combined with this result establishes a path for making larger fault-tolerant quantum processors.

Spin qubits in silicon hold great promise for the
realization of large-scale quantum computers due to
their long coherence times, compatibility with ad-
vanced manufacturing technology and the possibility
to operate at elevated (∼1K) temperatures [1–4].
However, correcting for unavoidable errors requires
large numbers of qubits with sufficient quality. The
well-known surface code [19, 20] demands that the
fidelity of every qubit operation within these multi-qubit
processors (initialization, readout, and single- and
two-qubit control) is above a threshold of approximately
99%. While high-fidelity initialization, readout, and
single- and two-qubit gates have been demonstrated in
gate-defined quantum dots [5–7, 9–13], combining all
of these operations within a single multi-qubit device
remains challenging. In particular, the small size of
spin qubits makes it difficult to achieve good connec-
tivity and to avoid creating errors on neighbouring
qubits [3–5]. Reports on the successful implementation
of multi-qubit algorithms therefore remain scarce (see
Table I). First results on two-qubit algorithms [21, 22]
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have recently been followed by the implementation of
quantum algorithms in two-qubit processors with single-
and two-qubit gate fidelities above 99% [5, 6]. Whilst
coherent operations have been demonstrated in larger
processors (3-6 qubits) [14, 16, 23], only a three-qubit
phase-flip quantum error correction (QEC) code has
been executed for devices in which just single-qubit
gate fidelities were reported above the fault-tolerant
threshold [15, 24].

Phosphorus (31P) atom qubits in silicon (Si) have
demonstrated high fidelity single and two-qubit gate op-
erations with the recent demonstration of entanglement
between two nuclear spins and one electron spin [8, 25].
Atom qubits in silicon also have a number of unique
and beneficial properties that can help overcome the
challenges of implementing multi-qubit algorithms. The
strong natural confinement of atom-based processors
allows for the exploitation of the hyperfine interaction
between the phosphorus nuclear spins and the bound
electron spin. This allows individual qubit address-
ability [8, 26], while also providing all-to-all qubit
connectivity. The latter can be harnessed to implement
efficient multi-qubit gates, whereby a single gate on
the electron spin can entangle multiple nuclear spins.
This not only reduces the number of operations needed
to execute quantum algorithms, but the absence of
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TABLE I. Comparison of state-of-the-art semiconductor spin qubit quantum processors using gate-defined
quantum dots in Si/SiGe and in Ge/SiGe and using multi-nuclear Si:P spin registers. We only include processors
that have demonstrated an algorithm or QEC (for two-qubit processors we only include those with single and two-qubit gate
fidelities above 99%). Furthermore, we include the processor with the largest number of coherently controlled qubits using
gate-defined quantum dots in Si and using Si:P spin registers. “SPAM” stands for “state preparation and measurement”, “VQE”
for “variational quantum eigensolver”, and “DJ” for “Deutsch-Jozsa”.

Reference Xue [5] Noiri [6] Takeda [15] Philips [16]

Hendrickx
[23]

Van Riggelen
[24]

Madzik [8] This work

Year 2022 2022 2022 2022 2021/2022 2022 2024

Platform Si/SiGe Si/SiGe Si/SiGe Si/SiGe Ge/SiGe Si:P Si:P

Qubits 2 (electrons) 2 (electrons) 3 (electrons) 6 (electrons) 4 (holes) 3 (n-n-e) 4 (n-n-n-e)

SPAM
fidelity (%) - 74.25a - - - 98.95a (n) 99.42 to 99.57

(n)

Rabi
visibility (%) - - 70 to 85b 93.5 to 98c 60 to 75b - 92 to 99 (n)

Single-qubit
gate fidelity (%) 99.71 to 99.74 99.84 to 99.84 99.68 to 99.77 99.77 to 99.96 99.40 to 99.88 99.46 to 99.91

(n)
99.95 to 99.98

(n)

Two-qubit
gate fidelity (%) 99.65 99.51 - - - 99.37 (n-n) 99.32 to 99.65

(n-n)

Bell state
fidelity (%)

98.1d
(w/o SPAM)

96.5
(w/o SPAM) - 78.0 to 91.3 - 93.4 (n-n) 96.8 to 97.7

(n-n)

Three-qubit GHZ
state fidelity (%) N/A N/A 86.6

(w/o SPAM) 52.7 to 67.2 - 92.5e (n-n-e) 96.2 (n-n-n)

Demonstration of
algorithm or QEC

Two-qubit
VQE

algorithm

Two-qubit DJ
and Grover’s

algorithm

Three-qubit
phase-flip
QEC code

-
Three-qubit
phase-flip
QEC code

-
Three-qubit

Grover’s
algorithm

a Average two-qubit SPAM fidelity as stated in references [6, 8].
b Rabi visibility estimated from Extended Data Fig. 2b-d in [15] and Fig. 1f in [23].
c Values for operating individual qubits; when initializing other qubits in the device the Rabi visibilities decrease as stated in reference [16].
d From simulation (rather than measurement) as stated in reference [5].
e From return probability (rather than quantum state tomography) as stated in reference [8].

additional metal confinement gates serves to minimise
cross-talk. In addition, the nuclear spins have long
coherence times [27] and can be read out with high
fidelity via the process of quantum non-demolition
readout [28]. Scaling to higher qubit numbers and
scalable architectures requires precision control over the
placement of the phosphorus atom qubits, which can
be achieved by scanning tunnelling microscopy (STM)
lithography [29, 30].

Here we demonstrate full coherent control over a
precision-manufactured four-qubit processor in Si defined
by three phosphorus nuclear spin qubits and one elec-
tron spin qubit. We achieve single-qubit gate fideli-
ties for all four individual qubits of (99.94 ± 0.01)%,
(99.98 ± 0.01)%, (99.95 ± 0.01)% and (99.95 ± 0.01)%.
In addition, we demonstrate two-qubit controlled-Z (CZ)
gates between all pairs of nuclear spins with fidelities of
(99.65± 0.35)%, (99.49± 0.39)% and (99.32± 0.22)%, as
well as readout of all nuclear spin qubits with a fidelity

above 99%. We exploit these high-fidelity (>99%) opera-
tions and the all-to-all qubit connectivity in the processor
to produce Bell states and a three-qubit Greenberger-
Horne-Zeilinger (GHZ) state with fidelities above 96%.
Finally, we benchmark our four-qubit processor by exe-
cuting a Grover’s search algorithm on the three nuclear
spin qubits with a (94.57± 2.63)% average success prob-
ability of finding the marked state compared with the
theoretical maximum. This constitutes one of the most
successful implementations of this algorithm in any qubit
platform to date.

SINGLE-QUBIT OPERATIONS

The multi-qubit processor is formed by patterning
three 31P atoms into isotopically purified 28Si with
atomic precision using STM hydrogen lithography [30].
Highly phosphorus doped silicon in-plane gates allow
control of the electrostatic environment of the P atoms



iii

a

n1 n3n2e

SET
In-plane gates

Antenna

Bac-�eld

Sp
in

-u
p 

fr
ac

tio
n

b

0.2

0.4

38.980 38.986 39.048 39.054 39.08939.083 39.151 39.157

Fl
ip

 p
ro

ba
bi

lit
y

0.0

1.0

27.182 20.939 58.003 9.824 75.594 27.337
Frequency (GHz) Frequency (MHz)

c

d
Re

co
ve

ry
  c

ha
nc

e

0.6

1 MHz 100 kHz

eElectron spin n1Nuclear spin n2Nuclear spin n3Nuclear spin

 = (99.94 ± 0.01)%F 
0  = (99.98 ± 0.01)%F 

1  = (99.95 ± 0.01)%F 
2  = (99.95 ± 0.01)%F 

3 

1.0 1.0 1.0

0.5 0.5 0.5

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000
Number of Cli�ord gates

0.5

Iac

FIG. 1. Single-qubit operations in the four-qubit processor. a Schematic illustration of the device consisting of in-
plane gates (red), a single electron transistor (SET) charge sensor (yellow) and an antenna (light grey wire) in the top panel.
The bottom panel shows an artistic impression of the three phosphorus atoms (blue, green, red) incorporated into the silicon
crystal. The attracted electron wavefunction is depicted in yellow. The three nuclear spins and the electron spin define the
four-qubit quantum processor. b Measured electron spin resonance spectrum displaying 8 resonance frequencies (bottom panel),
each corresponding to a different nuclear spin configuration (see energy level diagram in the top panel). c Measured nuclear
magnetic resonance spectrum (bottom panel) showing all 6 electron spin state-controlled peaks (see energy level diagram in the
top panel). d Randomized benchmarking decay curves for all four qubits, annotated with the corresponding average physical
gate fidelity calculated from the measured Clifford fidelity. All single-qubit control fidelities surpass 99.9% fidelity.

(highlighted in red in the schematic illustration of the
device in the top panel of Fig. 1a). An electron can be
loaded onto the P atoms from a nearby, tunnel-coupled
single-electron transistor (SET, yellow) that also serves
as a charge sensor. To control the nuclear spins (basis
states |⇓⟩,|⇑⟩) and the electron spin (basis states |↓⟩,|↑⟩),
a broadband antenna (grey) is placed on top of the
device, delivering the radio-frequency and microwave
signals for nuclear magnetic resonance (NMR) and
for electron spin resonance (ESR), respectively. An
artistic impression of the four-qubit processor is shown
in the bottom panel of Fig. 1a, where the electron wave
function (yellow) spreads over the three P atoms (blue,
green and red) that are embedded in the silicon crystal.
In the following we use label 0 for the electron spin qubit
and labels 1, 2 and 3 for the nuclear spin qubits (blue,
green and red, respectively).

Electron spin initialization and readout is performed
via a ramped technique [31] at a dilution refrigerator
base temperature of 15mK, with an applied magnetic
field of 1.45T. Quantum non-demolition readout of
the nuclear spins is achieved with fidelities above 99%
after post-selection as shown in Supplementary section I
with nuclear spin initialization shown in Supplementary
section II.

When an electron is loaded onto the multi-nuclear
spin register, the electron spin interacts with all the
nuclear spins through the contact hyperfine interaction,
causing the ESR frequency to depend on the state of
each of the nuclear spins. Figure 1b (bottom) shows
an ESR spectrum with 8 resonance peaks, where each
peak corresponds to a different configuration of the
nuclear spins (see energy level diagram in the top panel).
From the ESR peak separations we find hyperfine
interaction strengths of A1 = 6MHz, A2 = 68MHz
and A3 = 103MHz. The presence of the hyperfine
interaction also allows each nuclear spin to be addressed
separately, with the NMR frequency depending on the
targeted nuclear spin and the state of the electron spin.
An NMR spectrum displaying all 6 expected peaks is
shown in the bottom panel of Fig. 1c (see energy level
diagram in the top panel).

Having established full individual addressability of the
electron spin and the three nuclear spins, we measure
the dephasing time of each qubit using a Ramsey
experiment. We find T ∗

2 = 28.1µs for the electron
spin and 1.26ms, 0.49ms, 0.60ms for nuclear spins 1,
2 and 3, respectively (see Supplementary section III).
To measure the dephasing time of the electron spin, we
initialize all nuclear spins into the |⇓⇓⇓⟩ state before
applying the ESR pulses conditional on that nuclear spin
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FIG. 2. Bell state tomography and two-qubit randomized benchmarking. a Circuit diagram used to construct the
Bell states for nuclear spin 1 and 2. The table shows the input states corresponding to the final Bell state. b-d Fidelities for all
Bell states (top) and reconstructed density matrices for |Φ+⟩ (bottom) obtained from full-basis quantum state tomography, for
all pairs of nuclear spins. The left column corresponds to nuclear spin 1 and 2, the middle column to nuclear spin 1 and 3, and
the right column to nuclear spin 2 and 3 (see schematics). e-g Two-qubit randomized benchmarking (orange) and two-qubit
interleaved randomized benchmarking (purple), for all pairs of nuclear spins, corresponding to the same pairs of spins studied
in b-d. The physical CZ gate fidelites (F 12

CZ, F 13
CZ and F 23

CZ) are calculated from the non-interleaved reference Clifford fidelities
(F 12

C,ref , F
13
C,ref and F 23

C,ref) and the interleaved Clifford fidelities (obtained from the fits to the purple data points). The physical
CZ gate fidelities for all pairs of nuclear spins are above the fault-tolerant threshold.

configuration (for all other nuclear spin configurations
we find similar T ∗

2 values, see Supplementary section III).

Next, we characterize the control fidelity of all single-
qubit operations by means of randomized benchmark-
ing (RB). We achieve physical gate fidelities, F i, above
99.9% for all four qubits (i = 0, 1, 2, 3) as displayed in
Fig. 1d. Randomized benchmarking for the electron spin
is performed with the nuclear spins initialized into the
|⇓⇓⇓⟩ state (all other nuclear spin configurations also

yield fidelities above 99.9%, see Supplementary section
IV), whilst RB for the nuclear spins is performed with
the electron spin initialized into the |↓⟩ state. With high-
fidelity nuclear spin readout and all single-qubit gate fi-
delities surpassing the fault tolerant threshold, we pro-
ceed to create entanglement between the nuclear spins.
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GHZ = (96.2 ± 0.5)%) as obtained from full-basis
quantum state tomography (QST).

TWO- AND THREE-QUBIT ENTANGLEMENT

To entangle two of the nuclear spins, we exploit the
hyperfine interaction between the electron spin and
each of the nuclear spins. Here, simply by enacting
a 2π-rotation of the electron spin conditional on the
configuration of the nuclear spins, we implement a
geometric CZ gate between the nuclear spins [8, 32].
To illustrate this, starting with the control nuclear spin
in state |⇓⟩, the target nuclear spin in (|⇓⟩ + |⇑⟩)/

√
2

and the third nuclear spin in |⇓⟩, an ESR 2π-pulse
conditional on |⇓⇓⇓⟩ flips the target nuclear spin by
180◦ around the z-axis of its Bloch sphere. If, on the
other hand, the control state was in state |⇑⟩, the same
ESR pulse would not affect the target nuclear spin. To
implement this gate irrespective of the state of the third
nuclear spin, an additional ESR 2π-pulse conditional
on |⇓⇓⇑⟩ can be applied, creating a two-qubit CZ gate.
Inserting the two ESR pulses in between a −π/2 rotation
and a π/2 rotation of the target nuclear spin, results in
a nuclear controlled-NOT (CNOT) gate.

We use this gate to create all of the four Bell states,
|Φ±⟩ = (|⇓⇓⟩ ± |⇑⇑⟩)/

√
2, |Ψ±⟩ = (|⇓⇑⟩ ± |⇑⇓⟩)/

√
2,

for each pair of nuclear spins (see Fig. 2a for the circuit
diagram for nuclear spins 1 and 2). At the end of
each measurement we perform full-basis quantum state

tomography (QST) to reconstruct the density matrix,
ρij , and obtain the corresponding Bell state fidelity
from F ij

BS = ⟨ψ|ρij |ψ⟩, where ψ is the target Bell state
and i, j = 1, 2, 3 label the nuclear spins (Supplementary
section V). Figure 2b-d shows the reconstructed density
matrices for |Φ+⟩ for each pair of nuclear spins, with
the Bell state fidelities listed in the tables above with
state preparation and measurement (SPAM) errors
included. The density matrices for |Φ−⟩ and |Ψ±⟩ are
shown in the Supplementary section VI. We achieve
average Bell state fidelities of F 12

BS = (97.5 ± 0.3)%,
F 13
BS = (97.7 ± 0.4)%, and F 23

BS = (96.8 ± 0.4)% for the
three pairs of nuclear spins, among the highest fidelities
that have been reported for spin qubits in Si [7, 33].

Bell state fidelities are affected by SPAM errors,
single- and two-qubit gate errors, and errors that occur
when qubits idle. To independently quantify the fidelity
of the CZ gate, we perform two-qubit RB and two-qubit
interleaved RB with the CZ gate as the interleaved gate
(Supplementary section VII). As shown in Fig. 2e-g,
we find CZ gate fidelities of F 12

CZ = (99.65 ± 0.35)%,
F 13
CZ = (99.49 ± 0.39)% and F 23

CZ = (99.32 ± 0.22)% for
the three pairs of nuclear spins. Two-qubit gate fidelities
above the fault-tolerant threshold remain scarce in Si
spin qubits and have only recently been reported [5–10].

As a final demonstration of our ability to create entan-
gled states, we entangle all three nuclear spins to create a
GHZ state using the circuit in Fig. 3a. The reconstructed
density matrix obtained from full-basis QST is shown in
Fig. 3b. We achieve a fidelity of F 123

GHZ = (96.2 ± 0.5)%
(including SPAM errors), the highest GHZ state fidelity
reported for semiconductor spin qubits to-date (see Ta-
ble I).

GROVER’S SEARCH ALGORITHM

Finally, we benchmark our 4-qubit quantum pro-
cessor by executing the well-known Grover’s search
algorithm [34], using the corresponding circuit shown in
Fig. 4a. In general, this algorithm finds a specific bit
string, xm, in the domain x of a function f , where f
is defined such that it gives f(xm) = 1 and f(xi) = 0
for all other xi ̸= xm. In our case, the domain consists
of the eight binary values {000, 001, . . . , 111}, which
correspond to the eight possible nuclear spin states
{|⇓⇓⇓⟩ , |⇓⇓⇑⟩ , . . . , |⇑⇑⇑⟩}. Grover’s algorithm works by
accessing f with a unitary operator (called oracle), Uxm

,
which performs the action Uxm

|x⟩ = (−1)f(x) |x⟩. That
is, the searched-for state (xm) is marked with a negative
phase, while all other states are left unchanged. Taking
advantage of the all-to-all connectivity in our processor,
this oracle operation can be performed on the three
nuclear spins by applying a single 2π-rotation of the
electron spin at the ESR frequency corresponding to xm
(highlighted in red in the circuit diagram in Fig. 4a). To
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FIG. 4. Three-qubit Grover’s algorithm. a Circuit diagram implementing Grover’s algorithm on three nuclear spins.
The oracle is highlighted in red (here marking the |⇓⇓⇓⟩ state) and the Grover diffusion operator is highlighted in blue. b
Measurement result when using |⇓⇓⇓⟩ as the marked state and performing r = 2 Grover iterations. c Measurement result when
marking the states |⇓⇓⇑⟩ and |⇑⇑⇓⟩, and performing r = 1 Grover iteration.

find the marked state with high probability, the Grover
iteration consisting of the oracle and the Grover diffusion
operator (highlighted in blue in the circuit diagram)
must be applied multiple times. For n = 3 qubits, the
optimal number of repetitions is r = 2, which can be
found using r = argmaxr sin

2
[
(2r + 1) arcsin (2−n)

]
,

where argmax takes the earliest local maximum [35].

In Fig. 4b we demonstrate the final measurement out-
come of Grover’s algorithm executed on the three nuclear
spins when using |⇓⇓⇓⟩ as the marked state. The algo-
rithm finds this state with a probability of 93.46%, which
corresponds to 98.87% of the ideal theoretical probability
(94.53%) of finding the marked state with r = 2 Grover
iterations. We also run the algorithm for all other marked
states (Supplementary section VIII) and find an aver-
age probability of (89.40± 2.49)% of finding the marked
state, which corresponds to (94.57 ± 2.63)% of the the-
oretical value. In addition, we show that the algorithm
can be run with two marked states using r = 1, which
we would expect theoretically to achieve a success proba-
bility of 100%. Here, we achieve a probability of 96.36%
to find the two marked states (see Fig. 4c). These re-
sults represent one of the most successful implementa-
tions of Grover’s algorithm among any qubit platform
to-date (see Supplementary section IX).

OUTLOOK

In summary, we have shown full coherent control
in a four-qubit silicon processor consisting of three

nuclear spins and one electron spin. The all-to-all qubit
connectivity along with the long coherence times of the
spin qubits allowed us to obtain fidelities above the
fault-tolerant threshold for every qubit operation within
this processor, and to successfully execute a three-qubit
Grover’s search algorithm with high accuracy.

While in this work we used the electron spin to
provide connectivity and to efficiently implement multi-
qubit gates, it can also be used to couple neighbouring
nuclear spin registers via the electron-electron exchange
interaction. Exciting progress has been made in this di-
rection [36–38] and we anticipate the advent of quantum
processors consisting of multiple connected registers in
the near future.

Acknowledgements: The research outlined in this
paper was conducted and supported by Silicon Quantum
Computing Pty Ltd [ACN 619 102 608].

Contributions: S. H. M., J. R. and Y. C. fabricated
the device under the supervision of J. G. K.; I. T., D. P.
and C. M. M. measured the device under the supervision
of S. K. G. and L. K.; I. T., D. P., C. M. M. and
M. B. D. analyzed the data; H. E., H. G, B. V., M. T. J.
and L. F. P. contributed to optimizing fabrication,
measurements or the experimental setup; C. D. H.
and C. R. M. assisted with the algorithm design; The
manuscript was written by C. M. M., I. T., L. K, S. K. G
and M. Y. S. with input from all authors; M. Y. S.
supervised the overall project.



vii

SUPPLEMENTARY INFORMATION

I. NUCLEAR SPIN NON-DEMOLITION READOUT

The nuclear spins are read out via the electron spin (a detailed description of electron spin readout is provided
in [30]). This nuclear spin measurement is quantum non-demolition, i.e. the nuclear spin remains in the projected
measured state after the measurement operation. For every nuclear spin we perform N readout shots, each shot
consisting of the following operations (see Fig. S5a): initialization of the electron spin into the |↓⟩ state, adiabatic
inversion of the electron spin conditional on the nuclear spin being in the |⇓⟩ state, electron spin readout, initialization
of the electron spin into the |↓⟩ state, adiabatic inversion of the electron spin conditional on the nuclear spin being
in the |⇑⟩ state, and finally electron spin readout. From this sequence of measurements, we obtain the fraction of
shots detecting nuclear spin down (f⇓ = N⇓/N) and nuclear spin up (f⇑ = N⇑/N), where N⇓/⇑ is the number of
electron spin up events detected for the specific nuclear spin state. If the value of ∆f = f⇑ − f⇓ is positive we
assign a nuclear state |⇑⟩, and for ∆f ≤ 0 we assign a nuclear state |⇓⟩. For repeated measurements (each consisting
of N readout shots), we can form a histogram of the observed values of ∆f . Examples of this are shown in Fig.
S5c-e, where we observe two well separated Gaussian peaks corresponding to the nuclear spin state |⇑⟩ and |⇓⟩. To
maximize the readout fidelity for every nuclear spin for the tomography and Grover’s algorithm data obtained in
this work, we optimize the number of readout shots and postselect the observed nuclear readouts, keeping only those
readouts where |∆f | lies above a defined “certainty threshold” (fth). This certainty threshold is designed to remove
measurements where the nuclear spin flipped during the nuclear non-demolition readout.

To find the optimal number of readout shots for each nuclear spin (N1,N2,N3), we model the nuclear spin
readout histograms using a Markov chain model. This model contains three parameters, the probability of correctly
observing an electron blip when driving the peaks corresponding to the nuclear spin’s true state (pcorr), the
probability of incorrectly observing an electron blip when driving the peaks corresponding to the opposite of the
nuclear spin’s true state (perr), and the probability of the nuclear spin flipping during the shot (pflip). We find
these parameters by fitting the model to experimental readout histograms. The histograms along with the fits and
the extracted parameters are shown in Fig. S5c-e. The non-zero counts between the peaks correspond to nuclear
spin flips during the nuclear spin readout. After obtaining pcorr, perr and pflip, we vary the number of readout
shots for each nuclear spin from 1-50, and calculate the individual nuclear spin readout fidelities (F1,F2,F3) from
the modelled readout histograms. To obtain the optimal number of shots that maximizes the combined nuclear
spin readout fidelity (FN=F1F2F3), we first note that due to the extremely low probability of nuclear spin 3
flipping during a shot (pflip,3 ≈ 0.01 %), the readout fidelity for nuclear spin 3 saturates after ∼ 19 shots. We
therefore set N3 = 19. We find that the highest modelled fidelity FN = 97.90% occurs at (N1,N2,N3)=(19,13,19),
and using these values as a guide, we find experimentally that the highest fidelity occurs in a similar parameter
regime: (N1,N2,N3)=(24,18,24). We use these values for all measurements that are sensitive to the readout fidelity
(QST of the Bell states and of the GHZ state, as well as Grover’s algorithm). When measuring all spins at the
end of a circuit, the spins are measured in the order (spin 2, spin 3, spin 1), so that spins with higher error
are measured first before large errors can accumulate and therefore reduce measurement fidelity. Similarly, when
measuring all spins at the start of a circuit (for example to verify that initialisation was successful), spins are
measured in the order (spin 1, spin 3, spin 2) to ensure the verification of spins with highest error occurs as close
to the start of the circuit as possible, minimising the time for large errors to occur between verification and the circuit.

To measure the readout fidelity for a given N1, N2 and N3, we perform an experiment where we read out all
three nuclear spins, wait for 100µs, and then read out all three nuclear spins again (see Fig. S5b). This sequence
is repeated 100,000 times. We define the readout fidelity as the proportion of repetitions where the first and second
readout yield the same nuclear spin configuration in relation to the total number of repetitions. In Fig. S5f we
show the individual and combined nuclear spin readout fidelities as a function of the relative certainty threshold
for (N1,N2,N3)=(24,18,24). Certainty thresholds for individual spins are scaled by factors of (12 , 1,

2
3 ) respectively,

postselecting spin 2 more strictly than the others because of its higher error. Throughout this work we use fth = 0.24
for spin 2 (and relative scaled values for other nuclei), retaining ∼ 33% of readout measurements with readout fidelities
of 99.46%, 99.42%, and 99.57%.
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FIG. S5. Optimization of nuclear spin non-demolition readout. a Circuit used to perform a single shot of readout of
one of the nuclear spins, with x = 1, 2, 3 being the label for the nuclear spin that is read out. b Circuit used to measure the
readout fidelity of the nuclear spins. This circuit is repeated 100,000 times to obtain the readout fidelities. c-d Histograms
of ∆f for 10,000 repeated readout measurements for all three individual nuclear spins. Each measurement involves taking
N = 200 shots of the corresponding nuclear spin. Included are fits from a Markov chain model (red lines) to extract pcorr, perr,
and pflip. f Individual and combined nuclear spin readout fidelities (left axis) and number of measurements retained (right
axis) as a function of the certainty threshold for (N1,N2,N3)=(24,18,24). Note that different certainty thresholds are used for
each nuclear spin, with the threshold displayed on the x-axis being scaled by ( 1

2
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) for spins 1, 2 and 3 respectively.
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II. NUCLEAR SPIN INITIALIZATION

To initialize the nuclear spins into the desired state (e.g. |⇓⇓⇓⟩), we use a process called electron state transfer
(EST) consisting of a sequence of ESR and NMR pulses, previously demonstrated in nitrogen vacancies in diamond
[32]. EST is performed at the beginning of each circuit and therefore repeated for every circuit repetition.

EST initializes the nuclear spins sequentially. In order to initialize the first nuclear spin, we use the following
sequence: starting from an unknown nuclear spin state, we first initialize the electron spin into the down state. Then
we apply the four adiabatic ESR pulses that correspond to flipping the electron spin conditional on the first nuclear
spin being in the unwanted state. This is followed by an NMR π-rotation conditional on the electron spin being in
the up state. The combination of electron spin down initialization, the four ESR pulses and the NMR pulse flips the
first nuclear spin if it is in the unwanted state and leaves it untouched otherwise (since then the electron spin is not
flipped to the up state by the ESR pulses). We repeat this sequence for the other two nuclear spins, leading to a
fully initialized nuclear spin register. To verify that the nuclear spins are indeed in the correct state, we perform a
non-demolition readout of the nuclear spins.

Since a verification readout is performed to ensure that the nuclear spins are initialised correctly, after postselecting
on the verification readout the nuclear spin initialisation fidelities are the same as the nuclear spin readout fidelities.
As discussed in Supplementary section I, this means that postselected nuclear spin initialisation fidelities are above
99% for all nuclear spins.

III. DEPHASING TIME OF THE QUBITS
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FIG. S6. Rabi oscillations (top row) and Ramsey measurement (bottom row) for each qubit. The Rabi frequencies
and T ∗

2 times are indicated for each qubit. For the electron spin qubit, the nuclear spins were initialized into the |⇓⇓⇓⟩ state;
for the nuclear spin qubits, the electron spin was initialized into the |↓⟩ state.

The dephasing times of the four qubits that we quote in the main text are extracted from Ramsey experiments.
For the electron spin qubit, we first initialize the nuclear spins into the |⇓⇓⇓⟩ state using EST, then we initialize
the electron spin into the |↓⟩ state, followed by an Rx(π/2) rotation, an identity gate with varied wait time, another
Rx(π/2) rotation, and finally readout of the electron spin (all gates are applied conditional on the nuclear spins being
in the |⇓⇓⇓⟩ state). For the nuclear spin qubits, we start by performing a non-demolition readout of the nuclear
spins to determine the initial nuclear spin state, followed by the initialization of the electron spin into the |↓⟩ state.
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We then perform the Ramsey sequence with NMR gates conditional on the electron spin being in the |↓⟩ state, and
a final non-demolition readout.

We fit the Ramsey measurements according to

A · sin (ωt+ ϕ) exp
(
− (t/T ∗

2 )
2
)
+B, (1)

where t is the wait time, and A,ω, ϕ and B are fitting parameters. Rabi measurements are fit according to

A · sin (ωt+ ϕ) +B, (2)

the same form as the Ramsey measurements, but without the decay. Figure S6 shows the Ramsey measurements and
the fits for the four qubits (bottom row) along with Rabi oscillations for each qubit (top row).

We also measured the Rabi frequency and the dephasing time for the electron spin with the nuclear spins initialized
into all other configurations, and the results are summarized in Table SII. Note that due to frequency-dependent atten-
uation in the cables within the dilution refrigerator, the drive amplitudes for each ESR peak have been adjusted to have
all ESR rabi frequencies in the proximity of 170 kHz, and that these settings are used throughout the rest of this work.

Nuclear spin state fRabi (kHz) T ∗
2 (µs)

|⇓⇓⇓⟩ 171.57 28.10
|⇓⇓⇑⟩ 170.67 31.43
|⇓⇑⇓⟩ 172.27 33.60
|⇓⇑⇑⟩ 172.01 30.79
|⇑⇓⇓⟩ 168.63 26.71
|⇑⇓⇑⟩ 171.04 38.26
|⇑⇑⇓⟩ 170.64 37.75
|⇑⇑⇑⟩ 171.29 26.73

TABLE SII. Rabi frequency and dephasing time for the electron spin qubit with the nuclear spins initialized
into the different configurations as depicted.

IV. SINGLE-QUBIT RANDOMIZED BENCHMARKING

To perform single-qubit randomized benchmarking for the electron spin qubit or the nuclear spin qubits, we first
initialize all spins. Afterwards we apply a specific number (N) of randomly chosen Clifford gates (each Clifford gate
consists of 1.875 physical gates on average), followed by a recovery gate to spin up in the first circuit repetition and
spin down in the second repetition, and a readout of the electron or nuclear spin. We then repeat this sequence for
varying N . Finally, the whole experiment is repeated a number of times (20 for the electron spin and 15 for the
nuclear spins), where in every repetition a new randomly chosen set of Clifford gates is applied for every N .

From this experiment we obtain two decay curves (after averaging over all random variations per N), one with
recovery to spin up (P u) and one with recovery to spin down (P d). We combine the two curves into a single one
according to

P = (P u + (1− P d))/2, (3)

which we fit with afN + 0.5, and obtain the Clifford gate fidelity from F i
C = 1 − (1 − f)/2, where i = 0, 1, 2, 3

labels the qubit [25]. We then calculate the physical gate fidelity from F i = 1− (1− F i
C)/1.875.

In Fig. 1d of the main text we show RB for the electron spin with the nuclear spins initialized into the |⇓⇓⇓⟩ state.
We also performed RB with the nuclear spins initialized into all other states (using EST as described in Supplemen-
tary section II), where we find Clifford gate fidelities above 99% for all nuclear spin configurations, as shown in Fig. S7.
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FIG. S7. Electron spin randomized benchmarking with the nuclear spins initialized into all possible configura-
tions.

V. QUANTUM STATE TOMOGRAPHY

To perform quantum state tomography (QST) on two or three nuclear spin qubits, we measure the qubits in all
possible two- or three-qubit Pauli-bases respectively, which we achieve by applying single-qubit NMR rotations prior
to the nuclear non-demolition readout. To measure a nuclear spin in the x-basis we perform a nuclear R−y(π/2)
rotation conditional on the electron spin being in the |↓⟩ state, to measure in the y-basis we apply a Rx(π/2) rotation
conditional on the electron spin being in the |↓⟩ state, and to measure in the z-basis we apply no rotation prior
to the non-demolition readout. We apply the rotations in the order (qubit 3, qubit 2, qubit 1), to minimise qubit
idle/dephasing time by performing slower rotations first, and perform non-demolition readout of the nuclear spins
in the order (qubit 2, qubit 3, qubit 1) so that nuclear spins with higher error are measured first before significant
errors can accumulate.

To obtain the density matrix from the tomography counts, we perform a constrained Gaussian linear least-squares
fit to the count data. The errorbars are obtained from Monte Carlo bootstrap re-sampling and represent 1σ from the
mean [21, 39].

VI. DENSITY MATRICES FOR ALL BELL STATES

In Fig. 2b-d of the main text we show the density matrix for one of the Bell states (Φ+), for all pairs of nuclear
spins. Figure S8 shows the density matrices for all Bell states (Φ+, Ψ+, Φ−, Ψ−), for all pairs of nuclear spins.

VII. TWO-QUBIT RANDOMIZED BENCHMARKING

To perform two-qubit RB we first initialize the nuclear spins into the |⇓⇓⇓⟩ state, followed by an initialization
of the electron spin into the |↓⟩ state. Then we apply a fixed number (N) of Clifford gates (each Clifford gate
consists on average of ∼ 5.03 single-qubit π/2 rotation gates and 1.5 two-qubit CZ gates) and a recovery gate
so that the total unitary is identity, returning the two nuclear spins to |⇓⟩. The decomposition of Cliffords into
native operations is optimised to firstly minimise the number of CZ gates applied, and secondarily to avoid applying
single-qubit gates to only one qubit for an extended period where possible (to avoid the other qubit dephasing). The
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FIG. S8. Density matrices for all Bell states, for all pairs of nuclear spins. The left column corresponds to nuclear
spin qubit 1 and 2, the middle column to qubit 1 and 3, and the right column to nuclear spin qubit 2 and 3.

sequence of N Clifford gates is followed by non-demolition readout of the nuclear spins. This sequence is repeated
for varying N . Afterwards we repeat the experiment with new randomly chosen Clifford gates for every N . After 5
of these repetitions we perform 5 repetitions where we interleave a two-qubit CZ gate between every Clifford gate
to perform interleaved two-qubit RB. Finally, we repeat the sequence of 5 non-interleaved and 5 interleaved repe-
titions 9 more times to arrive at a total of 50 non-interleaved and 50 interleaved final runs for each pair of nuclear spins.
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From this measurement we obtain two RB decay curves (after averaging over all random variations per N), a
non-interleaved (reference) curve and an interleaved curve. We fit both curves with afN + b and calculate the
corresponding Clifford fidelity from F ij

ref/int = 1 − 3(1 − fref/int)/4, where i, j ∈ [1, 2, 3] label the used nuclear spins.
From the decay rate ratio (d = fint/fref) we obtain the interleaved gate fidelity via F ij

CZ = 1− 3(1− d)/4 [40].

VIII. ADDITIONAL DATA FOR GROVER’S ALGORITHM
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FIG. S9. Grover’s algorithm executed with all possible marked states. For each measurement we indicate the
probability of finding the correct marked state normalized by the theoretical maximum probability of finding the marked state
with two Grover iterations (94.53%).

In Fig. 4b of the main text we show Grover’s algorithm executed with |⇓⇓⇓⟩ as the marked state. We also ran this
algorithm using all other possible states as the marked state, and the results are shown in Fig. S9. We achieve an
average probability of (89.40 ± 2.49)% of measuring the marked state, which corresponds to (94.57 ± 2.63)% of the
theoretical maximum value (94.53%).

IX. STATE-OF-THE-ART IMPLEMENTATIONS OF GROVER’S ALGORITHM

Table SIII summarizes the state-of-the-art experimental implementations of Grover’s algorithm reported to-date
in the literature across multiple qubit platforms. Grover’s algorithm has been demonstrated for up to 5 qubits.
However, demonstrations on 4- and 5-qubit systems are limited in success probability (< 50%) due to the long
circuit lengths required. Our implementation with the marked |⇓⇓⇓⟩ state resulted in a success probability of 93.46%
corresponding to 98.87% of the theoretical maximum, the highest reported to-date.
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Reference Year Platform Qubits Iterations Success prob. Theoretical max. Ratio

This paper (|⇓⇓⇓⟩ state)
This paper (average) 2024 Si:P qubits (SQC) 3

3
2
2

93.46%
89.40%

94.53%
94.53%

0.9887
0.9457

Hlembotskyi et al. [41] 2020 Ion trap qubits (Honeywell) 3 1 75.2% 78.1% 0.96
5 1 18.7% 25.8% 0.72

Mandviwalla et al. [42] 2018 Superconducting qubits (IBM)
2 1 80.9% 100% 0.81
3 2 59.7% 94.5% 0.63
4 3 6.6% 96.1% 0.07

Zhang et al. [43] 2022 Ion trap qubits (Honeywell) 5 2 49% 60.2% 0.81

Zhang et al. [44] 2021 Superconducting qubits (IBM)

3 1 55.9% 78.1% 0.72
3 2 63.8% 94.5% 0.68
4 1 18.1% 47.3% 0.38
4 2 19.5% 90.8% 0.21
5 1 2.6% 25.8 % 0.10

Adedoyin et al. [45] 2018 Superconducting qubits (IBM) 2 1 65% 100 % 0.65
Friggatt et al. [46] 2017 Ion trap qubits 3 1 38.9% 78.1% 0.49
Gwinner et al. [47] 2020 Superconducting qubits (IBM) 4 1 21.0% 47.3 % 0.44

Stromberg et al. [48] 2018 Superconducting qubits (IBM) 4 1 6.6% 47.3 % 0.14
Watson et al. [21] 2018 Si/SiGe spin qubits 2 1 - 100 % -

TABLE SIII. State-of-the-art experimental implementations of Grover’s algorithm in various qubit platforms.
The last column represents the ratio between the measured success probability and the theoretical maximum.
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