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The Hubbard model at temperature above the Néel transition, despite of being a paramagnet,
can exhibit rich physics due to the interplay of Fermi surface, on-site interaction U and thermal
fluctuations. Nevertheless, the understanding of the crossover physics remains only at a qualita-
tive level, because of the intrinsically smooth behavior. Employing an improved variant of the
numerically exact auxiliary-field quantum Monte Carlo algorithm equipped with numerical analytic
continuation, we obtain a broad variety of static and dynamical properties of the three-dimensional
Hubbard model at half filling, quantitatively determine the crossover boundaries, and observe that
the metal-insulator crossover state, in which antiferromagnetic spin correlations appear strongest,
exists over an extended regime in between the metallic state for small U and the Mott insulator
for large U . In particular, the Widom line, corresponding to the most rapid suppression of double
occupancy as U increases, is found to fully reside in the metallic Fermi liquid regime, in contrast to
the conventional intuition that it is a representative feature for entering the Mott insulator. Beside
providing a reliable methology for numerical study of crossover physics, our work can also serve as
a timely and important guideline for the most recent optical lattice experiments.

The Mott metal-insulator transition (MIT) [1, 2] has
been a long-standing topic since the early days of con-
densed matter physics. It has been experimentally ob-
served in variously realistic metarials, ranging from the
typical representative of transition metal oxides [3–6] to
the latest hotspot of twisted 2D moiré systems [7–9].
While the Mott transition is mostly found to be first
order [4, 10, 11], recent studies show that it can also
be continuous [12–14]. The modern view of this phe-
nomenon follows the original ideas of Mott [15, 16] and
Hubbard [17] that the Coulomb interaction between elec-
trons plays a central role as splitting the conduction band
and thus opening a charge gap. However, the complete
understanding and characterization of Mott transition
still remain as a big challenge, especially in the aspect
of connecting the experimental observations with Hub-
bard models [18–20].

A great achievement for this problem came from the
insight of dynamical mean-filed theory (DMFT) calcu-
lations in 1990s [2, 10]. In infinite dimensions (d →
∞) where the method becomes exact, the first-order
MIT with a critical end point at finite temperature was
successfully recovered in single-band repulsive Hubbard
model [21–24]. Since then, DMFT has served as the lead-
ing method and sometimes the only available techique to
study the Mott MIT transitions in various Hubbard mod-
els [11, 25–28]. However, turning to the physically rele-
vant two and three dimensions, whether the Mott transi-
tion exists in the paramagnetic (PM) phase of Hubbard
model is still controversial due to the uncontrolled ap-
proximation in DMFT calculations and the competition
of possible magnetic ordering in the model. Inherited

from the d → ∞ limit, DMFT still obtains first-order
Mott transition for lower dimensional Hubbard mod-
els [29–35] even at half filling without frustration [30, 32]
for which the system hosts the long-range antiferromag-
netic (AFM) order for arbitrary on-site repulsion in the
ground state. Thus, more accurate and even unbiased
simulation of Hubbard model is crucial for studying the
Mott physics and clarifying the above problem.

One closely related example is the recent study of two-
dimensional (2D) repulsive Hubbard model at half fill-
ing on square lattice with diagrammatic quantum Monte
Carlo (QMC) method [36, 37], which precludes the exis-
tence of Mott transition. Instead, a crossover from Fermi
liquid to insulating behavior at finite temperatures was
identified from the results of self-energy [36], spin and
charge correlations [37]. Comparing to the 2D case, the
three-dimensional (3D) Hubbard model at half filling can
develop a low-temperature AFM ordered phase for all in-
teraction strengths [38–42], which also prohibits the Mott
transition at low temperatures. Besides, the metallic and
Mott insulating states still exist approaching the weak
and strong interaction limits, and their connection in the
interaction strength axis remains unexplored in 3D case.
As a result, a carefull study for the metal-to-insulator
process with its thorough characterization in the normal
phase of 3D half-filled Hubbard model is demanded to
unveil the correlation-driven mechanism.

In this work, we address the above issues by system-
atically exploring the Mott physics above the AFM Néel
transition in half-filled 3D Hubbard model with auxiliary-
field quantum Monte Carlo (AFQMC) method. In a nu-
merically unbiased manner, we provide a multimessen-
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FIG. 1. Phase diagram of half-filled 3D Hubbard model from our AFQMC calculations. Red circles show Néel transition
temperatures TN , and the solid red line connecting them is a interpolation encoding the result of Heisenberg limit [43] TN =
3.78t2/U (dashed red line). Above TN , Fermi Liquid and Mott Insulator exist in the weakly and strongly interacting regimes
respectively, and in between the Bad Metal emerges as the metal-insulator crossover. The onsets of Bad Metal and Mott
Insulator as UBM and UMI are shown by green squares and brown triangles. Crossing UBM and UMI, the smooth crossover
without any singularity is observed in all physical observables. The peak locations of AFM structure factor (as US) are plotted
as blue hexagons, which reside almost in the center of Bad Metal indicating strong AFM spin correlation. The black pentagons
represents the “Widom line” (as UW) as the peak location of −∂D/∂U with D as the double occupancy.

ger study for the evolution of the system along with in-
creasing interaction strength, incorporating the results
of single-particle spectral function, quasiparticle weight,
spin correlations, entropy and double occupancy. We
elucidate that, instead of the celebrated Mott transi-
tion, an extended metal-insulator crossover regime dis-
playing strong AFM spin correlation emerges. Moreover,
we find that the double occupancy fails to characterize
this crossover.

We study the half-filled 3D Hubbard model on simple
cubic lattice with the Hamiltonian as

Ĥ = −t
∑
⟨ij⟩σ

(c+iσcjσ + h.c.) + U
∑
i

(
n̂i↑n̂i↓ −

n̂i↑ + n̂i↓

2

)
,

where n̂iσ = c+iσciσ is the density operator with σ (=↑
or ↓) denoting spin. We set the nearest-neighbor (NN)
hopping t as the energy unit, and focus on repulsive in-
teraction U > 0. This model has Néel AFM ordered
ground state [38], and at finite temperature it exhibits
continuous AFM-PM phase transition which belongs to
the 3D Heisenberg university class [44]. We then ap-
ply the finite-temperature AFQMC algorithm [45–50] en-
coding the most recent developments [51] to study the
interaction-driven Mott physics in this model, which is
sign problem free due to the particle-hole symmetry.
We perform numerical simulations for periodic supercells
with Ns = L3 (and L as the linear system size) lattice
sites. Our calculations reach L = 20 for static observ-
ables and L = 12 for dynamic properties [51].
We first focus on the phase diagram of half-filled 3D

Hubbard model from our AFQMC simulations as pre-
sented in Fig. 1. The highest temperature in our sim-

ulations is T/t = 0.7, much lower than the Fermi tem-
perature TF /t = 6 of the system. As mentioned above,
the Néel AFM phase occupies the low temperature region
for all interactions. With significant improvements in the
precision control and dealing with the finite-size effect in
AFQMC calculations, we obtain the most accurate re-
sults of the Néel transition temperatures to date for rep-
resentative interaction strengths [51], via the standard
finite-size scaling of AFM structure factor results up to
L = 20 using the known critical exponents. Our results
illustrate the highest transition temperature TN∼0.33t
achieved around U = 8t. These are quantitatively com-
parable to the results in previously unbiased calcula-
tions [39, 41].

The contents in the normal phase above the Néel tran-
sition in the phase diagram summarize our main results
in this work. In the weakly interacting regime, the cor-
related Fermi Liquid state appears as an adiabatical evo-
lution from U = 0 case, and its fingerprint signature is
the coherence peak in local single-particle spectral func-
tion Aloc(ω) at Fermi energy. Approaching the strong
interaction limit, the system should be a Mott Insula-
tor exihiting a fermionic gap as Aloc(ω ∼ 0) = 0, which
survives as loog as the temperature energy scale ∼kBT is
smaller than the T = 0 gap of the system. Between these
two limits, our numerical results clearly reveal an inter-
mediate regime for which the spectra Aloc(ω) shows a dip
around Fermi energy. We adopt the term Bad Metal [52]
for this metal-insulator crossover regime. With increas-
ing U/t, our results of physical observables only show
smooth crossover without any singularity, suggesting the
absence of phase transition. The three regimes with their
Aloc(ω) features (as insets) and the boundaries defined
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FIG. 2. Local single-particle spectral function Aloc(ω) cross-
ing the onset of bad metal (UBM) for (a) T/t = 0.36 and
(b) T/t = 0.50. Panel (c) and (d) plots thermal entropy
per site S/Ns and AFM structure factor Szz

AFM for four tem-
peratures, respectively. For T/t = 0.50, 0.60, 0.70, the S/Ns

results are shifted by −0.12,−0.19,−0.24, and Szz
AFM data are

scaled by a factor ×5,×6,×6, to fit into the plots. The uncer-
tainty of S/Ns is indicated by the thickness of the lines. For
T/t = 0.36, the result of UBM determined from Aloc(ω) in (a)
as the green shading and the peak location range of Szz

AFM as
the blue shading are shown in (b) and (c).

as the onsets of Bad Metal (as UBM) and Mott Insulator
(as UMI) from our simulations are shown in Fig. 1. Addi-
tional results of peak locations of AFM structure factor
as US and the Widom line as UW versus U/t are also
included in the plot. The former resides in the center
of Bad Metal regime meaning that this crossover region
has strong AFM spin correlation. The latter steps into
the Fermi Liquid regime indicating that the double oc-
cupancy has little connection with the metal-insulator
crossover in this system at T/t ≥ 0.35. In the following,
we present detailed results related to the phase diagram.

We first probe the onset of Bad Metal UBM via the
local spectral function Aloc(ω), which is obtained from
the dynamic single-particle Green’s function Gloc(τ) =
(2Ns)

−1
∑

iσ⟨ciσ(τ)c+iσ⟩ using the stochastic analytic con-
tinuation (SAC) method [53, 54]. The Aloc(ω) results
for T/t = 0.36 and T/t = 0.50 are plotted in Fig. 2(a)
and (b) [Note that Aloc(ω) is symmetric about ω = 0
at half filling]. For increasing U/t, we see that Aloc(ω)
around ω = 0 is gradually suppressed and it smoothly
evolves from the coherence peak structure to the shape
of two broaden peaks at finite ω indicating the formation
of upper and lower Hubbard bands. This dip signature
emerges due to the lack of low-energy fermionic excita-
tions, and thus marks the entrance into the Bad Metal
regime. We determine UBM as the interaction strength
where the coherence peak of Aloc(ω) at ω = 0 disap-

pears. Its error bar is estimated We further obtain Udrop

where Aloc(ω = 0) drops by 10% of the value at the
left or right fringe, and then take (Udrop − UBM) as the
error bar of UBM to include the possible uncertainty in
SAC calculations. Such procedure acquires the results
UBM = 6.21(27) for T/t = 0.36 and UBM = 7.11(29) for
T/t = 0.50.

Besides the dip of Aloc(ω), the system also shows in-
triguing behaviors regarding the spin fluctuation when
crossing UBM and entering the Bad Metal regime. We
quantify this property via the AFM structure factor de-
fined as Szz

AFM = N−1
s

∑
ij(−1)i+j⟨ŝzi ŝzj ⟩, and present its

results versus U/t for fixed temperatures in Fig. 2(c).
We observe that Szz

AFM increases rapidly around UBM,
reach the maximum, and then drops towards the strong
interaction limit. The peak and the successive decrease
of Szz

AFM with increasing U/t can be understood from
the reducing coupling constant J = 4t2/U of the effec-
tive Heisenberg model description of the Hubbard model.
We obtain the peak location of Szz

AFM as US, and see that
it almost follows the center of the Bad Metal regime as
shwon in Fig. 1. Similar results can be obtained for the
NN spin-spin correlation and spin correlation length with
comparable values of US [51]. These together manifest
the strong AFM spin correlation as an alternative char-
acterization of the Bad Metal in the normal phase.

We further find that the thermal entropy S can re-
produce the above results of UBM, and it can serve as
a bridge to connect the behaviors of Aloc(ω) and Szz

AFM

in the crossover regime. Here we have developed a fully
new scheme to calculate S along the U/t axis for fixed
temperature via the double occupancy [51]. In Fig. 2(d),
we show the entropy per site S/Ns for the same fixed
temperatures as Fig. 2(c). With increasing U/t, the en-
tropy first increases and reaches a maximum. We ver-
ify that the peak location is well consistent with UBM

for all the temperatures. This reason for this coinci-
dence is that, in correlated Fermi liquid, the entropy
is proportional to the effective mass of fermions which
generally grows with increasing interaction. Thus, the
peak of entropy can be taken as the termination of the
Fermi Liquid regime and the entrance into the crossover.
For U > UBM, the entropy decreases and develops local
minimum. We find that the location of this minimum
is well consistent with US (peak location of Szz

AFM) for
T/t ≤ 0.50 while it is larger than US for higher temper-
atures. This could explained by decomposing contribu-
tions to the entropy into charge and spin channels, i.e.,
S = Sc + Ss. For charge channel, Sc should track the
result of Aloc(ω = 0), while Ss from spin channel be-
haves oppositely with Szz

AFM. Thus, once entering Bad
Metal regime, Sc should monotonically decrease while Ss

first decreases to a local minimum and then increases
again and finally saturates to ln 2 reaching U = ∞ limit.
This also highlights the peak location of entropy as the
onset of Bad Metal regime. Moreover, for T/t ≤ 0.50,
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FIG. 3. Determination of the onset of Mott insulator (UMI).
The main plot shows the quasiparticle weight ZkF versus U/t
for T/t = 0.36, 0.50, 0.60. Linear fittings (gray dashed lines)
are performed for the QMC data in the middle range, and
the intercepts of U/t corresponding to extrapolated ZkF =
0 are taken as the center values of UMI. The local single-
particle spectral function Aloc(ω) for T/t = 0.36 and 0.50
plotted in the insets confirm that UMI obtained from ZkF

indeed corresponds to the entrance into Mott insulator with
Aloc(ω = 0) ∼ 0.

Aloc(ω = 0) at U = US is pretty small, indicating van-
ishing Sc. As a result, the local minimum of the entropy
is dominated by Ss, and thus its location conforms with
US. However, for higher temperatures, the contribution
of Sc becomes more significant due to more charge ex-
citations. This together with the valley structure of Ss

shift the local mininum of total entropy to a larger value
of U comparing to US, as the results shown in Fig. 2(d)
for T/t = 0.60 and 0.70.

We then turn to onset of Mott Insulator UMI in the
phase diagram. To avoid the ambiguity of Aloc(ω = 0) =
0, we first determine UMI from the quasiparticle weight at
the Fermi surface as Z ≈ [1− ImΣσ(kF , iω0)/ω0]

−1, and
then take the results of Aloc(ω = 0) as supplementary
tool to estimate the uncertainty. And we compute the
self energy Σσ(kF , iω0) with kF as Fermi wave vector
and ω0 = π/β via the Dyson Equation. We have per-
formed additional average of Z results at all kF points
since we find that the half-filled 3D Hubbard model is
highly isotropic at the Fermi surface for various prop-
erties. The number (1 − Z) measures the interaction
induced transfer of spectral weight around ω = 0 to the
incoherent Hubbard bands. Thus the exact Z = 0, which
only exist at T = 0 for finite U , marks the Mott insulator
phase. The results of Z versus U/t for T/t = 0.36, 0.50
and 0.60 are shown the main plot of Fig. 3. With in-
creasing U/t, the quantity decreases from unity in the
noninteracting limit to a small residual value rounded off
by the finite temperature. We take UMI as the inter-
action strength where a linear extrapolation of Z with
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FIG. 4. Double occupancy D and its first-order derivative
−∂D/∂U versus U/t for four temperatures. The inset in (a)
shows the relative D differences with that of T/t = 0.70. In
(b), the peak location of −∂D/∂U is taken as UW of the
Widom line for T/t = 0.36, 0.50 and 0.60, while there is no
peak for T/t = 0.70. Note that the −∂D/∂U results in (b)
are directly computed from AFQMC simulations instead of
the numerical derivative.

intermediate U/t reaches zero [25, 51]. We then obtain
the interaction strength UA where the spectra satisfies
Aloc(ω = 0) ≤ 0.002, and take |UA − UMI| as the un-
certainty of UMI. The corresponding results of Aloc(ω)
around UMI are shown in insets of Fig. 3. This generates
UMI = 9.62(38) for T/t = 0.36 and UMI = 11.03(47) for
T/t = 0.50. Combining all the results, the full curve of
UMI in Fig. 1 takes almost linear relation with temper-
ature as UMI ∝ T . This demonstrate the nature of the
finite-temperature Mott Insulator: the T = 0 gap of the
system which is proportional to U overtakes the temper-
ature energy scale in the strongly interacting regime.

The double occupancy D = N−1
s

∑
i⟨n̂i↑n̂i↓⟩ is usu-

ally applied as a tool to detect the Mott transition [24–
28, 55] in Hubbard models, based on its relation with
total energy Eg as D = ∂Eg/∂U at T = 0 and with
the free energy F as D = ∂F/∂U at finite tempera-
ture [51]. It typically exhibits discontinuity and inflection
point around the first-order and continuous Mott tran-
sition, respectively. In the system we study, the Mott
transition is replaced by the metal-insulator crossover,
and thus it represents a fully new situation. We present
the numerical results of D and ∂D/∂U versus U/t for
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fixed temperatures in Fig. 4. Note that we have devel-
oped a new method to directly compute the derivative
∂D/∂U in AFQMC simulations [51], which avoids the
numerical differentiation. We see that the double occu-
pancy simply decreases with increasing U/t, and its tem-
perature variation is quite small for 0.36 ≤ T/t ≤ 0.70
(see inset of Fig. 4(a) as the differences of D relative to
T/t = 0.70). Moreover, for T/t ≤ 0.60, the curve of
D has inflection point as signified by the broden peak
of ∂D/∂U results in Fig. 4(b), while such behaviors dis-
appear for T/t ≥ 0.70. Collecting the peak locations
of ∂D/∂U for different temperatures forms the Widom
line as the UW curve in Fig. 1, which fully resides in the
Fermi liquid regime and even moves towards smaller U for
T/t ≥ 0.36. These unbiased results show that the double
occupancy fails to capture the metal-insulator crossover
physics. Similar results were recently obtained for the
triangular lattice Hubbard model with dynamical clus-
ter approximation [35]. We have also calculated other
physical quantities including the compressibility, fidelity
susceptibility and Matsubara-frequency self-energy, and
also find that they share similar behavior as the double
occupancy regarding the crossover [51].

In summary, we have revealed that, in half-filled 3D
Hubbard model, a metal-insulator crossover exists be-
tween the Fermi liquid and Mott insulator in a consider-
able range of interaction strength, instead of the conven-
tional Mott transition. This crossover regime is accompa-
nied by strong AFM spin correlations. We find that the
metal-insulator crossover can be correctly characterized
by the local single-particle spectral function and ther-
mal entropy. The former losts coherence peak at Fermi
energy while the latter shows a local maximum when en-
tering the crossover regime. The results of entropy versus
interaction also show interesting behaviors regarding the
spin and charge fluctuations. The end of the crossover as
onset of the Mott insulator is determined from the quasi-
particle weight and the appearance of gap in spectra. We
have also found that some commonly used observables are
not able to characterize the metal-insulator crossover in
the model, especially the double occupancy. Our work
belongs to one of the only few unbiased studies for the
crossover physics, and can also provide timely and impor-
tant guidence for the optical lattice experiment that has
been most recently realized at a nearly uniform optical
lattice of large scale [56].
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