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Abstract
State-space models (SSMs) have emerged as a po-
tential alternative architecture for building large
language models (LLMs) compared to the previ-
ously ubiquitous transformer architecture. One
theoretical weakness of transformers is that they
cannot express certain kinds of sequential com-
putation and state tracking (Merrill & Sabharwal,
2023a), which SSMs are explicitly designed to
address via their close architectural similarity to
recurrent neural networks (RNNs). But do SSMs
truly have an advantage (over transformers) in
expressive power for state tracking? Surprisingly,
the answer is no. Our analysis reveals that the ex-
pressive power of SSMs is limited very similarly
to transformers: SSMs cannot express computa-
tion outside the complexity class TC0. In partic-
ular, this means they cannot solve simple state-
tracking problems like permutation composition.
It follows that SSMs are provably unable to ac-
curately track chess moves with certain notation,
evaluate code, or track entities in a long narra-
tive. To supplement our formal analysis, we report
experiments showing that Mamba-style SSMs in-
deed struggle with state tracking. Thus, despite its
recurrent formulation, the “state” in an SSM is an
illusion: SSMs have similar expressiveness limi-
tations to non-recurrent models like transformers,
which may fundamentally limit their ability to
solve real-world state-tracking problems.

1. Introduction
Recent theoretical work (Merrill & Sabharwal, 2023a) has
shown that models built upon the transformer architecture
are incapable of expressing inherently sequential computa-
tion. These results reveal a surprising limitation of trans-
formers: they cannot express simple kinds of state tracking
problems, such as composing sequences of permutations,
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Alice, Bob, Carl, Dan, and Emma each have a coin. All
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Figure 1: We prove that SSMs, like transformers, cannot
solve inherently sequential problems like permutation com-
position (S5), which lies at the heart of state-tracking prob-
lems like tracking chess moves in source-target notation
(see Section 3.2), evaluating Python code, or entity tracking.
Thus, SSMs cannot, in general, solve these problems either.

which even simple recurrent neural networks (RNNs) can
naturally express. In a different line of work, state space
model (SSM) architectures (Gu et al., 2021; 2022a; Fu et al.,
2023; Gu & Dao, 2023; Wang et al., 2024) have been in-
troduced as an alternative to transformers, with the goal
of achieving similar expressive power to RNNs for han-
dling problems that are naturally stateful and sequential
(Gu et al., 2021; 2022b). But does the seemingly state-
ful design of SSMs truly enable them to solve sequential
and state-tracking problems that transformers cannot? If
so, this would be a promising property of SSMs because
state tracking is at the heart of large language model (LLM)
capabilities such as tracking entities in a narrative (Heim,
1983; Kim & Schuster, 2023), playing chess under certain
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Figure 2: Complexity hierarchy within NC1. Transformers
can only recognize languages within TC0 (Merrill & Sabhar-
wal, 2023a), and we show the same for SSMs (Theorems 4.1
and 4.2). Thus, both architectures cannot express the “hard
state tracking” captured by NC1-complete problems like S5,
which can be straightforwardly expressed by RNNs. The
figure assumes the widely held conjecture TC0 ̸= NC1.

notation1, or evaluating code. This would motivate further
research into SSM architectures and their deployment as the
next generation of LLMs.

In this work, we show that the apparent stateful design of
SSMs is an illusion as far as their expressive power is con-
cerned. In contrast to the suggestion by Gu et al. (2021;
2022b) (and, perhaps, a broader belief in the community)
that SSMs have expressive power for state tracking similar
to RNNs, we prove theoretically that linear and Mamba-
style SSMs, like transformers, cannot express inherently
sequential problems, including state-tracking problems like
composing permutations that RNNs can easily express. Fur-
ther, our experiments confirm our formal predictions: both
transformers and these SSMs cannot learn to compose per-
mutations with a fixed number of layers, whereas RNNs can
compose permutations with just a single layer. Our results
imply that arguments that SSMs have an advantage over
transformers due to being “more recurrent” or capable of
tracking state are misguided. In fact, the SSM architectures
we consider are just as theoretically unequipped for state
tracking and recurrent computation as transformers are.

We first establish the theoretical weakness of linear SSMs
and near generalizations by proving they are in the complex-
ity class L-uniform TC0, which has been previously shown
for transformers (Merrill & Sabharwal, 2023a). This implies
these SSMs cannot solve inherently sequential problems
(formally, problems that are NC1-hard), including state-
tracking problems like permutation composition (Liu et al.,
2023). Permutation composition is a fundamental problem
at the heart of many real-world state-tracking problems such
as playing chess, evaluating code, or tracking entities in a
narrative (Figure 1), implying solutions to these problems,
too, cannot be expressed by SSMs, at least in the worst case.

At first glance, our results may appear to contradict Gu et al.
(2021)’s claim that linear SSMs can simulate general recur-

1The hardness of chess state tracking holds with (source, target)
notation, but standard notation may make state tracking easier.

rent models, which can express permutation composition.
But the contradiction is resolved by a difference in assump-
tions: Gu et al. (2021) relied on infinite depth (number of
layers) to show that SSMs could simulate RNNs. We, on
the other hand, analyze the realistic setting with a bounded
number of layers, under which we find that SSMs cannot
simulate the recurrent state of an RNN and, in fact, suffer
from similar limitations as transformers for state tracking.

Our empirical investigation shows that, in practice, both
SSMs with the Mamba architecture (Gu & Dao, 2023) and
transformers do not learn to solve the permutation composi-
tion state-tracking problem with a fixed number of layers,
while simple RNNs can do so with just one layer. This
provides empirical support for our theoretical separation
in expressive power for state tracking between SSMs and
true recurrent models. We also find that both transformers
and SSMs struggle compared to RNNs on state-tracking
problems less complex than permutation composition where
it is not known whether they can express a solution. Thus,
in practice, SSMs may struggle not just on the hardest state-
tracking problems like permutation composition but also on
easier variants.

Finally, we propose two minimal extensions of linear SSMs
that increase their expressive power for state tracking, allow-
ing them to solve permutation composition. These exten-
sions, however, may come with a cost: they may negatively
impact parallelism as well as learning dynamics. We view
it as an interesting open question whether it is possible to
develop SSM-like models with greater expressivity for state
tracking that also have strong parallelizability and learning
dynamics, or whether these different goals are fundamen-
tally at odds, as Merrill & Sabharwal (2023a) suggest.

2. Background
We first present the SSM architectures we will analyze (Sec-
tion 2.1). Our analysis of the state tracking capabilities of
SSMs borrows deeply from the circuit complexity and al-
gebraic formal language theory literature. We thus review
how circuit complexity can be used to analyze the power of
neural networks (Section 2.3) and how state-tracking prob-
lems can be captured algebraically and analyzed within the
circuit complexity framework (Section 3.1).

2.1. Architecture of State-Space Models

SSMs are a neural network architecture for processing se-
quences similar in design to RNNs or linear dynamical
systems. SSMs have been suggested to have two potential
advantages compared to transformers owing to their recur-
rent formulation: faster inference and, possibly, the ability
to better express inherently sequential or stateful problems
(Gu et al., 2021; 2022b). Several architectural variants of
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SSMs have been proposed, including S4 (Gu et al., 2022a)
and Mamba (Gu & Dao, 2023). Recently, SSMs have been
shown to achieve strong empirical performance compared to
transformers in certain settings, particularly those involving
a long context (Gu & Dao, 2023; Wang et al., 2024).

SSMs consist of state-space layers, which can be thought
of as simplified RNN layers. We consider two variants of
the state-space layer: the linear SSM layer (of which S4 is
a special case; Gu et al., 2022a) and the extended S6 layer
used by Mamba (Gu & Dao, 2023).

Definition 2.1 (Linear SSM layer; e.g. S4). Given a se-
quence of embeddings or previous states x1, . . . , xn ∈ Rm,
the recurrent form of a linear SSM layer defines a new se-
quence of states h1, . . . , hn ∈ Rd using learned parameter
matrices A ∈ Rd×d and B ∈ Rd×m. For each 1 ≤ i ≤ n,

hi = Ahi−1 +Bxi. (1)

The convolutional form of the linear SSM layer defines the
same2 h1, . . . , hn but is unrolled as a summation of terms:

hi =

i∑
j=1

Ai−jBxj . (2)

The layer outputs yi = Chi +Dxi where C ∈ Rd×m and
D ∈ Rm×m.

S4 chooses a specific parameterization of a linear layer. A
full S4 model is a cascade of such layers and feedforward
layers, analogous to how transformers alternate multihead-
self-attention layers with feedforward layers.

The S6 layer used by Mamba (Gu & Dao, 2023) general-
izes a linear SSM layer by adding a selection mechanism
inspired by the dynamic gating in LSTMs (Hochreiter &
Schmidhuber, 1997) and GRUs (Cho et al., 2014).

Definition 2.2 (S6 layer). An S6 layer is parameterized
by a diagonal matrix A ∈ Rd×d, a vector δ ∈ Rd, and
affine projections sδ : Rm → Rd, sB : Rm → Rd, and
sC : Rd → Rm. Let τ be softplus. The S6 layer is:

hi = exp(δiA)hi−1 +Bixi, (3)
where δi = τ(δ + sδ(x)) and

Bi = sB(x).

This implies the convolutional form:

hi =

i∑
j=1

 i∏
k=j+1

exp(δkA)

Bjxj . (4)

2The two forms express the same function over R or any other
distributive datatype. Over floating points (Appendix A), they are
not guaranteed to be the same, but we must assume the error is
negligible for them to be well-defined and usable in practice.

Finally, to compute yi, C is made input dependent Ci and
computed via a projection in the same manner as Bi. The
layer output is then yi = Cihi + xi.

In practice, a crucial detail for training SSMs is the initializa-
tion of the weight matrices. Our main results (Theorems 4.1
and 4.2) will apply for any linear SSM (including S4) as
well as S6, independent of the specific values of its weights.
In contrast to S4 and S6, H3 (Fu et al., 2023) is not a true
SSM because the context is not represented by a single vec-
tor. Rather, its architecture resembles a transformer with
SSM components. Analyzing H3 is beyond our focus, but
we believe our ideas could be extended to H3 in future work.

2.2. Numeric Datatype

Circuit-complexity analysis of neural networks depends to
some degree on low-level details about arithmetic and the
underlying datatype D used in the network’s computation
graph. We can think of D as parameterized by the number
of bits available to represent a number in D. For instance,
non-negative integers in [0, 2p] use p bits, signed integers in
[−2p, 2p] use p+ 1 bits, FP16 uses 16 bits, etc.

Our main results (Theorems 4.1 and 4.2) will go through
for any datatype D for which the following 3 operations are
efficiently parallel-computable, i.e., are in the complexity
class L-uniform TC0 (to be defined shortly in Section 2.3):

1. Iterated addition, i.e., summing n numbers in D
2. Iterated product, i.e., multiplying n numbers in D
3. Matrix powering, i.e., computing the n-th power of a

fixed-size k × k matrix over D

When D is any finite-precision datatype, i.e., has a fixed
number of bits available (e.g., 16 or 64), then these oper-
ations are easily seen to be in L-uniform TC0. As Mer-
rill & Sabharwal (2023b) argue, however, finite-precision
datatypes severely limit the expressivity of neural architec-
tures from a formal perspective (e.g., finite-precision trans-
formers cannot represent uniform attention), motivating the
use of parameterized datatypes that can (approximately)
represent any number with a sufficiently large parameter.
Interestingly, when D is the datatype of n-bit integers, all
of the above operations are known to be in L-uniform TC0

(Hesse, 2001; Mereghetti & Palano, 2000). Realistically,
however, neural model implementations use floating point
numbers with much fewer than n bits.

Concretely, we imagine working with the log-precision
floating point model used by Merrill & Sabharwal (2023b)
to analyze transformers, which we will show satisfy all these
properties. For some fixed constant c ∈ Z+, a c log n pre-
cision float is a tuple ⟨m, e⟩ where m, e are signed integers
together taking c log n bits. Using |x| to mean the number
of bits used to represent integer x, this float represents the
value m · 2e−|m|+1.

3
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Unlike for integers, arithmetic operations over log-precision
floats are not closed. That is, the product ϕ1 × ϕ2 of two
p-precision floats is a well-defined number but may not be
exactly representable as a p-precision float. It is thus nec-
essary to define approximate versions of these operations
when formalizing log-precision floating-point arithmetic.
To this end, Merrill & Sabharwal (2023a) define a natural
notion of approximate iterated addition over log-precision
floats and show that it is computable in L-uniform TC0.
Following Merrill & Sabharwal (2023a)’s definition of it-
erated addition for floats, we define iterated multiplication
and matrix powering over any datatype D as the result of
treating the numbers as reals, performing exact arithmetic,
and casting the exact output ϕ back to D, denoted castD(ϕ).

In Appendix A, we extend the arguments of Hesse (2001)
and Mereghetti & Palano (2000) for integers to show that it-
erated product and matrix powering over log-precision floats
are also computable in L-uniform TC0 (cf. Lemmas 2.3
and 2.4 in Appendix A).

Lemma 2.3 (Iterated float product). Let ϕ1, . . . , ϕz be
c log n precision floats and z ≤ n. Then the iterated float
product

⊗z
i=1 ϕi can be computed in L-uniform TC0.

Lemma 2.4 (Float matrix power). Let k, c ∈ Z+ be fixed
constants. Let M be a k × k matrix over c log n precision
floats. Let z ≤ n, z ∈ Z+. Then float matrix power Mz can
be computed in L-uniform TC0.

Combined with the result for iterated addition from Merrill
& Sabharwal (2023a), this establishes that the three needed
properties are met for log-precision floats.

2.3. Limits of Transformers via Circuit Complexity

A line of recent work has used circuit complexity and logic
formalisms to identify the expressiveness limitations of
transformers on reasoning problems (Angluin et al., 2023;
Merrill & Sabharwal, 2023a; Liu et al., 2023; Chiang et al.,
2023; Merrill & Sabharwal, 2023b; Hao et al., 2022); see
Strobl et al., 2023 for a survey. In particular, Merrill &
Sabharwal (2023a) showed that transformers can only solve
problems in the complexity class TC0, which is defined as
the set of problems that can be recognized by constant-depth,
polynomial-size threshold circuit families. Such circuits, in
addition to having standard AND, OR, and NOT gates (of
arbitrary fan-in), can also use threshold gates that output
1 iff at least k of the inputs are 1, where k is a parameter
of the gate. Informally, TC0 can be thought of as the class
of problems that can be solved with extremely parallelized
(constant-depth) computation.3

3We use TC0 to mean L-uniform TC0, meaning the circuit
family is constructible by a Turing machine that runs in space log-
arithmic in the size of the input (cf. Merrill & Sabharwal, 2023a;
Strobl et al., 2023). We believe our results could be extended

Problems outside TC0, corresponding to problems that are
inherently sequential and thus cannot be parallelized, cannot
be solved by transformers. No problems in polynomial time
are known unconditionally to be outside TC0, but unless the
widely held conjecture that TC0 ̸= NC1 is false, many sim-
ple NC1-hard problems are outside TC0. In particular, this
includes simulating finite automata (NC1-complete), evalu-
ating boolean formulas (NC1-complete), determining graph
connectivity (L-complete), and solving linear equations (P-
complete). These problems have already been shown to be
inexpressible by transformers (Merrill & Sabharwal, 2023a).
By showing that SSMs can be simulated in TC0, we will
establish that they also cannot be solved by SSMs.

3. State Tracking
Informally, a state-tracking problem is a problem where
the text specifies some sequence of updates to the state of
the world, and the goal of the problem is to say what the
resulting world state is after the updates have been applied
in sequence. This circuit complexity view on the power of
neural networks can be combined with other insights from
algebraic formal language theory to analyze the kinds of
state tracking that SSMs can express. In particular, this the-
ory comprehensively shows us which kinds of state-tracking
problems are (likely) not in TC0. This will, in turn, allow
us to find examples of hard state tracking that models like
SSMs will not be able to solve.

3.1. State Tracking as a Monoid Word Problem

From the perspective of algebraic formal language theory,
state tracking over a finite world can be captured as a word
problem on a finite monoid (Liu et al., 2023).4 Different up-
dates to the world become different elements in the monoid,
and resolving the final world state after all the updates have
been applied is equivalent to computing the product of a
sequence of elements (also called a “word”).

Definition 3.1 (Word Problem). Let M be a finite set, and
(M, ·) a finite monoid (i.e., M with identity and associa-
tive multiplication). The word problem for M is to re-
duce sequences in M∗ under multiplication; that is, send
m0m1 · · ·mk to m0 ·m1 · . . . ·mk ∈M . Solving the word
problem requires reducing sequences of arbitrary length.

Example 3.2. Consider the monoid {0, 1} where · is addi-
tion modulo 2. The word problem involves computing the
parity of a string, e.g., 0011 7→ 0. From a state-tracking
perspective, this monoid captures a world with a single light

from L-uniform TC0 to DLOGTIME-uniform TC0 using tech-
niques similar to Merrill & Sabharwal (2023b) for composing TC0

circuits in a way that preserves DLOGTIME uniformity.
4We consider only finite monoids for simplicity, but, in princi-

ple, it would be possible to extend this approach to infinite (e.g.,
finitely generated) monoids as well.
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switch. The identity 0 corresponds to no action whereas 1
is an update that flips the switch.

Modeling state tracking with word problems lets us draw
connections between circuit complexity and abstract alge-
bra to understand which word problems are “hard” to solve.
Krohn & Rhodes (1965) established that not all word prob-
lems are created equal: some, like Example 3.2, are in TC0,
while others are NC1-complete, requiring recurrent process-
ing to solve (Immerman & Landau, 1989; Barrington, 1989).
Because we will show SSMs can be simulated in TC0, it
follows that NC1-complete state-tracking problems cannot
be solved by SSMs (cf. Figure 2).

Whether or not a word problem is NC1-complete depends
on the algebraic structure of the underlying monoid.5 Bar-
rington (1989) showed that the word problem of every finite
non-solvable6 group is NC1-complete. That non-solvable
groups have NC1-complete word problems is notable be-
cause of the ubiquity with which non-solvable groups show
up in tasks involving state tracking. The canonical example
of an NC1-complete word problem is that of S5, the sym-
metric group on five elements that encodes the permutations
over five objects. As an immediate instantiation of this,
consider a document describing arbitrarily many sequences
of transpositions: “swap ball 1 and 3, swap ball 3 and 5,
swap ball 4 and 2, ...”7. Being able to answer the ques-
tion “where does ball 5 end up?” requires solving the S5

word problem. Beyond permutations, Figure 1 shows how
many natural state-tracking problems like tracking chess
moves, evaluating code, or tracking entities also encode the
structure of S5, meaning these state-tracking problems also
cannot be expressed by a model in TC0. Rather, in order to
solve these problems, the depth of the model would have to
be expanded to accommodate longer inputs.

Although the S5 word problem is canonical, in this paper we
will consider the word problem on a closely related group
A5: the alternating group on five elements. We do this for
simplicity: A5 is a subgroup of S5 containing only even
permutations, and is the smallest non-solvable subgroup.
We will compare the word problem on A5 to two other
baseline groups: A4×Z5, a non-abelian but solvable group;
and Z60, an abelian group encoding mod-60 addition. We
choose these groups as points of comparison because they
all have 60 distinct elements, meaning that the difficulty
in learning their word problems will come only from the
complexity of learning the group multiplication operation.

5We focus on word problems on groups, which are monoids
with inverses.

6Formally, a group G is solvable exactly when there is a series
of subgroups 1 = G0 < G1 < · · · < Gk = G such that Gi−1 is
normal in Gi and Gi/Gi−1 is abelian.

7Without less of generality, any permutation can be factored
into a sequence of transpositions, or swaps. This means the trans-
positions over five elements are a generator for S5.

3.2. Encoding S5 in Chess State Tracking

Figure 1 already gives some intuition into how state-tracking
problems encode S5. Out of these examples, the most intri-
cated case is chess. We now give a proper reduction from
S5 to tracking chess moves, showing formally that not just
S5, but chess state tracking as well, is NC1-complete.

We define the chess state-tracking problem as follows:

• Input: The state of a chessboard as well as a se-
quence of chess moves, where each move is specified
as a tuple (source square, target square). Note that
this differs from the standard notation that represents a
move as a piece along with target square and potential
disambiguating information.

• Output: The resulting board state after starting in the
initial board state and applying the sequence of moves
one after another, ignoring draws. If any move is illegal
given its intermediate board state, we enter a special
null board state.

We show that S5 can be reduced to chess state tracking,
establishing the NC1-completeness of chess state tracking.
In other words, we can map any S5 sequence to a sequence
of chess moves and read off the answer to the S5 instance
from the final chessboard state.

Proposition 3.3. S5 can be reduced to chess state tracking
via NC0 reductions.

Proof. The idea, as illustrated in Figure 1, is to map each
S5 element to a sequence of chess moves that permutes five
pieces on the chessboard. Then, the final chessboard state
will allow us to determine the composition of the permuta-
tion sequence. We defer a detailed proof to Appendix B.

Since S5 is NC1-complete under AC0 reductions:

Corollary 3.4. The chess state-tracking problem is NC1-
complete under AC0 reductions.

Similar reductions can be constructed for evaluating Python
or tracking entities in a dialog, as suggested in Figure 1.
For another example of a similar reduction used to prove
NC1-completeness, we refer the reader to Theorem 3.2 of
Feng et al. (2023).

4. SSMs Can be Simulated in TC0

In this section, we show that the convolutional form of an
SSM can be simulated in TC0. Assuming the convolutional
form of the model computes the same function as the recur-
rent form, this implies that SSMs, in whatever parameteri-
zation, cannot solve inherently sequential problems, despite
their appearance of recurrence and statefulness. We first
show containment in TC0 for the simple non-gated variant

5
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of generalized S4 models (Theorem 4.1), and then show that
the proof goes through for generalized S6 models as well
(Theorem 4.2). The main idea in both proofs is that matrix
powering can be computed in TC0 (Mereghetti & Palano,
2000), and computing the convolutional form of an SSM
can essentially be reduced to matrix powering.

4.1. Simulating Linear SSMs with a TC0 Circuit Family

Theorem 4.1. For any log-precision SSM M with the S4
architecture, there exists an L-uniform TC0 circuit family
that computes the same function as M ’s convolutional form.

Proof. It suffices to construct an L-uniform TC0 circuit
family to simulate a single layer. Then, the full SSM can be
simulate by generating this circuit multiple times, routing
the output bits from one layer as the inputs to the next. This
can be done with log-space overhead by simply storing a
counter that tracks the index of the current input gates.

Recall that the S4 convolutional form Eqn. (2) is hi =∑i
j=1A

i−jBxj . Crucially, we use the fact that matrix pow-
ering over floats is in L-uniform TC0 (Lemma 2.4, extending
Mereghetti & Palano, 2000) to print, for each i, j, a TC0

circuit family that computes πij ≜ Ai−j . Next, we use the
fact that fixed-arity arithmetic over floats is in L-uniform
TC0 to print, for each i, j, a circuit that computes

τij ≜ πijBxj = Ai−jBxj .

Since iterated addition over floats is in L-uniform TC0 (Mer-
rill & Sabharwal, 2023a, extending Hesse, 2001; Chiu et al.,
2001 for integers), we can compute hi ≜

∑i
j=1 τij . Finally,

we compute yi from xi and hi in TC0 via simple arithmetic
operations, completing the proof.

4.2. Simulating S6 with a TC0 Circuit Family

Theorem 4.2. For any log-precision SSM M with the S6
architecture, there exists an L-uniform TC0 circuit family
that computes the same function as M ’s convolutional form.

Proof. The convolutional form of the S6 layer is given in
Eqn. (4). For each i we print an L-uniform TC0 circuit com-
puting δi, Bi and Ci. Since A is diagonal, iterated matrix
multiplication is reducible to iterated scalar multiplication,
which is in L-uniform TC0 (Lemma 2.4). so we can compute
the following in TC0:

πij ≜
i∏

k=j+1

exp(δkA).

We then conclude analogously to Theorem 4.1, first com-
puting τij from πij and Bi, then computing hi =

∑i
j=1 τij ,

and finally computing yi from xi, hi, and Ci in TC0.

4.3. Discussion

Theorems 4.1 and 4.2 establish that SSMs, like transform-
ers, can only express solutions to problems in the class
TC0. This means that SSMs cannot solve NC1-hard prob-
lems like evaluating boolean formulas or graph connectivity.
In particular, it shows that they are limited as far as their
state tracking capabilities as they are unable to compose
permutations (solve the S5 word problem):
Corollary 4.3. Assuming TC0 ̸= NC1, no log-precision
SSM with the S4 or S6 architecture can solve the word
problem for S5 or any other NC1-hard problem.

In contrast, RNNs can easily express S5 via standard con-
structions that encode finite-state transitions into an RNN
(Minsky, 1954; Merrill, 2019). This shows that SSMs can-
not express some kinds of state tracking and recurrence that
RNNs can. This tempers the claim from Gu et al. (2021,
Lemma 3.2) that SSMs have the expressive power to sim-
ulate RNNs, which relied on the assumption that SSMs
can have infinite depth. In a more realistic setting with
a bounded number of layers, our results show SSMs can-
not express many state-tracking problems, including those
which can be solved by fixed-depth RNNs.

5. Extending the Expressive Power of SSMs
We have shown that S4 and S6, despite their seemingly
“stateful” design, cannot express problems outside TC0,
which includes state tracking like S5. We show how SSMs
can be extended to close the gap in expressive power with
RNNs, allowing them to express S5. Two simple extensions
can bring about this increase in expressive power: adding a
nonlinearity to make the SSM more like an RNN or allow-
ing the A matrix to be input-dependent to make the SSM
more like a weighted finite automaton (WFA; Mohri, 2009).

5.1. Via Nonlinearities

Concretely, an RNN-SSM layer with a step activation func-
tion can be defined as follows:

hi = sgn (Ahi−1 +Bxi) . (5)

After this change, the SSM no longer has a straightforward
convolutional form. However, its recurrent form is effec-
tively an RNN, and can therefore solve S5:
Theorem 5.1. For any regular language L (including the
word problem for S5), there exists a one-layer log-precision
RNN-SSM that recognizes L.

Proof. The standard constructions for simulating automata
with RNNs (cf. Minsky, 1954; Merrill, 2019) apply.

Note that adding nonlinearities to the output of an SSM
layer (as in Mamba) is not the same thing as an RNN-SSM.

6
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Rather, an RNN-SSM has nonlinearities applied after each
recurrent update to the state.

5.2. Via Input-Dependent Transition Matrices

Another completely different way to get greater expressive
power is to let A matrix to be input-dependent. To illus-
tate this, we define and analyze the WFA-SSM layer. Let
A(xi) = I + sA(xi). The recurrent form becomes:

hi = A(xi)hi−1 +Bxi. (6)

This means the convolutional form computes an iterated
product of a sequence of matrices rather than powering a
matrix as for S4 and S6 (cf. Section 2.1):

hi =

i∑
j=1

 i∏
k=j+1

A(xk)

Bxj . (7)

Unlike matrix powers, iterated matrix products cannot, in
general, be computed in TC0 (Mereghetti & Palano, 2000).
This means that the argument from Theorem 4.1 will not go
through for WFA-SSMs. In fact, we can show that WFA-
SSMs gains expressive power beyond TC0:

Theorem 5.2. For any regular language L over vocabulary
Σ (including the word problem for S5), there exists a one-
layer log-precision WFA-SSM that recognizes $L, where
$ ̸∈ Σ is a special beginning-of-string symbol.

Proof. It suffices to show that an WFA-SSM can simulate a
deterministic finite automaton (DFA). We do this via a transi-
tion monoid construction. For any w ∈ Σ∗, let δw : Q→ Q
be the function mapping a state to its eventual destination
state after w is read from that state. For any DFA, this set
of functions forms a finite monoid (the transition monoid)
under composition, following from the Myhill-Nerode theo-
rem (Hopcroft et al., 2001). Further, each monoid element
δw can be represented as a boolean transition matrix, making
matrix multiplication isomorphic to monoid composition.

Computing the transition monoid of a DFA allows recogniz-
ing valid words: compute the monoid element for a word
by multiplying the elements for its tokens and then check
whether the initial state maps to an accepting state. In fact, a
standard way to solve monoid word problems (e.g., for S5)
with a DFA is simply to construct a DFA whose transition
monoid is the monoid of interest.

Fix a DFA and its transition monoid δ. To complete the
proof, we show that there exists an SSM that, for allw ∈ Σ∗,
computes δw given input x = $w. We view indices in hi
as states and define B$ as 1 at each accepting state, and 0
elsewhere. For all other σ, we let Bσ = 0⃗. This reduces the

convolutional form of hi to have a single term:

hi =

i∏
k=2

A(xk).

Now, let A(σ) = δσ for σ ∈ Σ. It follows that

hi =

i∏
k=2

A(xk) =

i∏
k=2

δxk
.

Since x = $w, we conclude that h|x| is δw.

5.3. Discussion

Theorems 5.1 and 5.2 show that two minimal extensions of
the SSM enable expressive power outside TC0, allowing the
model to solve hard state-tracking problems:

Corollary 5.3. There exist a one-layer log-precision RNN-
SSM and WFA-SSM that express the word problem for S5

(with a beginning-of-string symbol), and these these SSMs
cannot be simulated in TC0.

But would these variants of SSMs be feasible to use in prac-
tice? Besides expressive power, there are two competing
practical concerns that might make these extensions prob-
lematic: parallelism and the impact on learning dynamics.

Parallelism. To be used effectively in an LLM, a model
architecture must be parallelizable on practical hardware.
Architectures in TC0 are parallelizable by design (Merrill
& Sabharwal, 2023a), but architectures in NC1 may still
be parallelizable to log depth even if they cannot be paral-
lelized to constant depth. For the WFA-SSM, the bottleneck
would be computing iterated matrix product with a log-
depth computation graph. Similarly, for the RNN-SSM,
the bottleneck would be computing the state updates with a
log-depth binary tree rather than left to right. If this could
be accomplished on practical hardware, these architectures
could be parallelizable enough to scale on modern hardware.

Learning Dynamics. Another potential concern for these
SSM variants compared to the original SSM is whether the
learning dynamics are as good. In particular, for the WFA-
SSM, an iterated product of matrices may lead to vanishing
gradient issues. However, this is already potentially an issue
for the S6 architecture, where the selective gating involves
computing an iterated product of scalars.

6. Can SSMs Learn Permutations in Practice?
Having established theoretical limitations of SSMs for state
tracking, we now empirically test how well SSMs can learn
such tasks, focusing on the word problem for A5. Since this
problem is NC1-complete and both transformers and SSMs

7
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Figure 3: Minimum number of layers required to attain > 90% validation accuracy on group multiplication problems by
sequence length and group. RNN and IDS4 models of constant depth can solve arbitrarily long sequences, while transformer,
S4, and Mamba models require depths monotonically increasing in sequence length.

can only express functions in TC0, to solve instances of this
problem these models should require a dynamic depth that
grows with the input length.

Setup. We model word problems (see Section 3.1) as a
token-tagging task. Models are given as input a sequence
of elements g0g1g2 · · · gn drawn from one of A5, A4 ×
Z5, or Z60, and for each step ti must predict the result of
multiplying the first i elements of the sequence together.
Modeling the problem as a tagging task rather than as a
sequence classification task provides the models with more
supervision during training, making it as easy as possible to
learn the correct function. We tokenize inputs such that each
element gets a unique token. We train models on sequences
of length n for successively larger values of n and report
full-sequence accuracy on a validation set.8 To validate the
predictions of SSMs and transformers being depth-bounded
for expressing the word problem for A5, we sweep over the
number of layers each S4, Mamba and transformer model
has, and compare these results to a single-layer simple RNN
and our proposed single-layer Input-Dependent S4 (IDS4)
architecture.

Results. Figure 3 shows that single-layer RNN and IDS4
models learn the word problem for arbitrarily long se-
quences from all three groups. In contrast, transformer,
S4, and Mamba models require depth monotonically in-
creasing in sequence length to attain good accuracy on a
validation set on non-commutative groups. We draw three
main conclusions from this:

1. Mamba and S4 show the same qualitative limitations

8We always include the full set of 3600 pairwise sequences
of length 2 in the training data, along with the training split of
length-n sequences.

as transformers on the inherently sequential task A5:
longer A5 sequences require deeper models. This is
consistent with both transformers, S4, and Mamba be-
ing in TC0. On the other hand, RNNs (which resemble
automata; Merrill, 2019) and IDS4 can solve NC1-
complete problems (McKenzie et al., 1991) including
the A5 word problem.

2. S4, Mamba, and transformers require greater depth
even A4 × Z5, which can be theoretically expressed
by TC0 circuits. Although transformer and Mamba
models of a given depth perform as good or better on
A4 × Z5 as they on A5, they still require increasingly
many layers to handle proportionally longer sequences.
There are two possible interpretations of this. First, it
could be that while these word problems are express-
ible in TC0, they cannot be expressed by S4, Mamba,
or transformers (which can each likely recognize only a
proper subset of TC0). On the other hand, it is possible
that these word problems are expressible by transform-
ers, S4, and Mamba but that effectively learning a
constant-depth solution is difficult.

3. Despite this limitation, S4 and Mamba appear empiri-
cally better at approximate state tracking on the non-
commutative tasks than the transformer. For length-n
sequences from A4 × Z5 or A5, the transformer re-
quires at least as many (and frequently fewer) layers as
S4 or Mamba to solve the task.

7. Conclusion
We have shown that SSMs, like transformers, can only ex-
press computation in the complexity class L-uniform TC0.
This means they cannot solve inherently sequential problems
like graph connectivity, boolean formula evaluation, and—

8
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of particular interest for state tracking—the permutation
composition problem S5. S5 can be naturally expressed by
true recurrent models like RNNs and captures the essence of
hard state tracking due to its NC1-completeness. In practice,
one-layer RNNs can easily learn a task capturing S5 SSMs
require depth growing with the sequence length. These re-
sults reveal that SSMs cannot truly track state: rather, they
can only solve simple state-tracking problems for which
shallow shortcuts exist (Liu et al., 2023).

We also showed that simple extensions of SSMs can express
S5, although this comes with potential drawbacks as far
as parallelism and learning dynamics. In future work, it
would be interesting to more thoroughly explore the prac-
tical viability of our SSM extensions. Ultimately, this line
of work has the potential to unlock new neural architectures
that balance the parallelism of transformers and SSMs with
full expressive power for state tracking, enabling LLMs that
can benefit from scale while enjoying a greater capacity to
reason about games, code, and language.

Broader Impact
This paper aims to advance the foundational understanding
of state-space architectures for deep learning. Such work
can affect the development and deployment of deep learning
models in a variety of ways, which in turn can have societal
impacts. However, we find it difficult to meaningfully spec-
ulate about or anticipate these downstream impacts here.
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A. Floating-Point Arithmetic
Definition A.1 (Iterated D-product). For ϕ1, . . . , ϕz ∈ D,
their iterated D-product is:

z⊗
i=1

ϕi ≜ castD

(
z∏

i=1

castR(ϕi)

)
. (8)

Here castR converts a number in D to the corresponding
real number. D is implicit in the notations castR and

⊗
.

Lemma A.2 (Iterated D-product). Let ϕ1, . . . , ϕz ∈ D be
such that z ≤ n and each ϕi can be represented as an n-bit
integer. If operators castD and castR are in L-uniform TC0,
then the iterated D-product

⊗z
i=1 ϕi can be computed in

L-uniform TC0.

Proof. By preconditions of the lemma, we can compute
yi = castR(ϕi) for each i in L-uniform TC0. Since each
ϕi is equivalent to an n-bit integer, yi can be viewed as an
n-bit integer. The iterated integer product y =

∏z
i=1 yi

can be computed with an L-uniform TC0 circuit (Hesse,
2001). Finally, by a precondition of the lemma, we can cast
the result back to D, i.e., compute castD(y) which equals
the iterated D-product

⊗z
i=1 ϕi, with an L-uniform TC0

circuit.

Lemma A.3 (Iterated float product). Let ϕ1, . . . , ϕz be
c log n precision floats and z ≤ n. Then the iterated float
product

⊗z
i=1 ϕi can be computed in L-uniform TC0.
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Proof. The idea is to convert (by scaling up) the sequence
of ϕi to another sequence of floats that are all representable
as integers, apply Lemma A.2, reverse the scaling, and cast
the result back to a c log n precision float.

Let e be the smallest exponent across all ϕi and q =
max{0,−e}. Construct re-scaled floats ψi = ϕi2

q by
adding q to the exponent of ϕi, using up to c log n additional
bits in the exponent if necessary to keep the computation
exact. Note that e, q, and all ψi can easily be computed ex-
actly by an L-uniform TC0 circuit as they involve fixed-arity
arithmetic operations. Further, by construction, every ψi

has a non-negative exponent and thus represents an integer.

The maximum number representable by each c log n preci-
sion float ϕi is upper bounded by 2n

c

. Thus, the maximum
number representable by each entry ψi is 2n

c ×2q = 2n
c+q .

Let m = nc + q. It follows that each ψi can be equivalently
represented as an m-bit integer. Further, this integer can be
computed by left-shifting the mantissa of ψi by a number
of bits equal to the value of the exponent of ψi (which is
non-negative). Finally, this left-shift, and thus the castR op-
eration over m-precision floats, can be easily computed by
an L-uniform threshold circuit of size poly(m). In the other
direction, casting from reals to m-precision floats can also
be easily accomplished by an L-uniform threshold circuit of
size poly(m).

Observing that ψ1, . . . , ψz is a sequence of floats each rep-
resentable as an m-bit integer, we now apply Lemma A.2
with D being ‘float’ to conclude that iterated float product
τ =

⊗z
i=1 ψi can be computed by an L-uniform threshold

circuit of size poly(m). Since m ≤ 2nc, this circuit is also
of size poly(n).

Finally, to compute the original iterated float product⊗z
i=1 ϕi, we divide τ by 2qz . This can be accomplished

by subtracting qz from the exponent of τ ; again, we do this
computation exactly, using up to (c + 1) log n additional
bits in the exponent if necessary. We then cast the resulting
float back to a c log n precision float. All this can be done
in L-uniform TC0, finishing the proof that

⊗z
i=1 ϕi can be

computed in L-uniform TC0.

We now extend these notions and results to matrix powering.

Definition A.4 (D-matrix power). For a matrix M over D
and z ∈ Z+, D-matrix power is defined as

Mz ≜ castD(castR(M)z). (9)

Mereghetti & Palano (2000) showed that when the datatype
D is n-bit integers, one can compute Mn in TC0. We note
that their construction also works for computing Mz for
any z ≤ n, z ∈ Z+. Further, as they remark, their con-
struction can, in fact, be done in uniform TC0. Specifically,
we observe most of their construction involves sums and

products of constantly many n-bit integers, which can be
done in L-uniform TC0. The only involved step is dividing
a polynomial of degree (up to) n by a polynomial of de-
gree (up to) k − 1 and returning the remainder. It turns out
that this ‘polynomial division with remainder’ operation can
also be performed in L-uniform TC0 (see Corollary 6.5 of
Hesse et al., 2002 and an explanation in Appendix A.1). We
thus have the following extension of Mereghetti & Palano’s
result:

Lemma A.5 (Integer matrix power, derived from Mereghetti
& Palano, 2000). Let k ∈ Z+ be a fixed constant. Let M be
a k×k matrix over n-bit integers and z ≤ n, z ∈ Z+. Then
integer matrix power Mz can be computed in L-uniform
TC0.

We extend this result to matrix powers over D rather than
integers:

Lemma A.6 (D-matrix power). Let k ∈ Z+ be a fixed
constant. Let M be a k × k matrix over a datatype D with
entries equivalently representable as n-bit integers. Let
z ≤ n, z ∈ Z+. If operators castD and castR are in L-
uniform TC0, then D-matrix power Mz can be computed in
L-uniform TC0.

Proof. By preconditions of the lemma, we can compute
castR(M) in L-uniform TC0. Since the entries of M are
equivalent to n-bit integers, castR(M) can be viewed as a
k × k integer matrix of n-bit integers. By Lemma A.5, we
can compute castR(M)z using an L-uniform TC0 circuit.
Finally, by a precondition of the lemma, we can cast the
result back to D, i.e., compute castD(castR(M)z) which
equals Mz , with an L-uniform TC0 circuit.

Lemma A.7 (Float matrix power). Let k, c ∈ Z+ be fixed
constants. Let M be a k × k matrix over c log n precision
floats. Let z ≤ n, z ∈ Z+. Then float matrix power Mz can
be computed in L-uniform TC0.

Proof. The idea is to convert (by scaling up) M to another
float matrix all whose entries are representable as integers,
apply Lemma A.6, reverse the scaling, and cast the result
back to c log n precision floats.

Let e be the smallest exponent across all float entries of M
and q = max{0,−e}. Construct a re-scaled float matrix
M̃ = M2q by adding q to the exponent of every entry of
M , using up to c log n additional bits in the exponent if
necessary to keep the computation exact. Note that e, q,
and M̃ can easily be computed exactly by an L-uniform
TC0 circuit as they involve fixed-arity arithmetic operations.
Further, by construction, M̃ has non-negative exponents in
all its float entries. Thus, every entry of M̃ represents an
integer.
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The maximum number representable by each c log n pre-
cision float in M is upper bounded by 2n

c

. Thus, the
maximum number representable by each entry of M̃ is
2n

c × 2q = 2n
c+q. Let m = nc + q. It follows that

each entry ϕ of M̃ can be equivalently represented as an
m-bit integer. Further, this integer can be computed by left-
shifting the mantissa of ϕ by a number of bits equal to the
value of the exponent of ϕ (which is non-negative). Finally,
this left-shift, and thus the castR operation overm-precision
floats, can be easily computed by an L-uniform threshold
circuit of size poly(m). In the other direction, casting from
reals to m-precision floats can also be easily accomplished
by an L-uniform threshold circuit of size poly(m).

Note that 2q ∈ [0, nc] and hence m ∈ [nc, 2nc]. In partic-
ular, m ≥ n. Thus z ≤ n (a precision) implies z ≤ m.
Observing that M̃ is a matrix of floats each representable as
an m-bit integer, we now apply Lemma A.6 with D being
‘float’ to conclude that float matrix power M̃z can be com-
puted by an L-uniform threshold circuit of size poly(m).
Since m ≤ 2nc, this circuit is also of size poly(n).

Finally, to compute Mz , we first divide each entry of M̃z

by 2qz . This can be accomplished by subtracting qz from
the exponent of each entry of M̃ ; again, we do this compu-
tation exactly, using up to (c + 1) log n additional bits in
the exponent if necessary. We then cast all entries of the
resulting matrix back to c log n precision floats. All this can
be done in L-uniform TC0, finishing the proof that Mz can
be computed in L-uniform TC0.

A.1. L-Uniformity of Polynomial Division in TC0

Hesse et al. (2002) state that polynomial division is in L-
uniform TC0 in Corollary 6.5. For historical reasons, this
claim is preceded by weaker claims in older papers. We
briefly clarify this situation to show why the stronger claim
is valid.

Reif & Tate (1992) establish that polynomial division can
be done in P-uniform TC0, whereas we state our results for
L-uniform TC0. However, the only issue preventing these
results from going through in the L-uniform case is that, at
the time of publication, it was not known whether integer
division and iterated integer multiplication were computable
in L-uniform TC0. However, Hesse (2001) later proved ex-
actly this. Combining the two results, Theorem 3.2 from
Reif & Tate (1992) goes through with L-uniformity. Its
Corollary 3.3 then allows us to conclude that integer poly-
nomial division can be solved by L-uniform TC0 circuits
because the output of integer polynomial division is an ana-
lytic function whose Taylor expansion has a finite number
of terms (Reif & Tate, 1992).

B. Chess Reduction
We let M denote the set of chess moves in (source square,
target square) notation.

Proposition B.1. S5 can be reduced to chess state tracking
via NC0 reductions.

Proof. Without loss of generality, we consider the variant
of S5 where the output is true if and only if the original first
element returns to the first position after the given sequence
of permutations has been applied. Given an S5 instance, we
will construct an initial board state and sequence of moves
such that the final chessboard state encodes the output of
the S5 problem instance.

Initial Board State. We construct a chessboard similar to
Figure 1 but with a black rook at a8 and black queens at b8
to e8.

Chess Move Sequence. We then construct a finite func-
tion f : S5 → M∗ that encodes a permutation π as a
sequence of chess moves. We first factor each permutation
π to a sequence of transpositions τ1(π) · · · τmπ

(π). Each
transposition τ can in turn be expressed as a sequence of
chess moves analogously to Figure 1. For example, trans-
posing items 1 and 3 can be expressed as the move sequence:
(a8, a7), (a1, b1), (c8, c6), (b1, a1), (a7, c7), (a1, b1),
(c6, a6), (b1, a1), (c7, c8), (a1, b1), (a6, a8), (b1, a1),
which has the crucial property that it transposes a8 with c8.
We denote the mapping from transpositions to chess move
sequences as f : T → M∗. Putting it all together, we have
that

f(π) =

mπ∏
j=1

f(τj(π)).

To reduce a sequence of permutations w ∈ S∗
5 , we let

f(w) =

n∏
i=1

f(wi).

Putting It All Together. We call our oracle for chess state
tracking with the constructed initial board state and f(w) as
the sequence of chess moves. By construction, we can then
return true if and only if the rook is at a8. The reduction can
be implemented in NC0 because it is a simple elementwise
mapping of the input tokens, and decoding from the output
chessboard is a finite table lookup.

As a fun aside, we note that the chess board constructed
in Proposition 3.3 is reachable in a standard chess game.
The chess sequences encoding permutation sequences are
all valid chess games, except that they ignore the fact that
repeated board states in chess will technically lead to draws.
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