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Abstract: Traffic congestion at intersections is a significant issue in urban areas, leading to 

increased commute times, safety hazards, and operational inefficiencies. This study aims to 

develop a predictive model for congestion at intersections in major U.S. cities, utilizing a 

dataset of trip-logging metrics from commercial vehicles across 4,800 intersections. The 

dataset encompasses 27 features, including intersection coordinates, street names, time of 

day, and traffic metrics (Kashyap et al., 2019). Additional features, such as rainfall/snowfall 

percentage, distance from downtown and outskirts, and road types, were incorporated to 

enhance the model's predictive power. The methodology involves data exploration, feature 

transformation, and handling missing values through low-rank models and label encoding. 

The proposed model has the potential to assist city planners and governments in anticipating 

traffic hot spots, optimizing operations, and identifying infrastructure challenges. 
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1. Introduction 
 

Urban traffic congestion is a significant challenge faced by modern cities, impacting 

commute times, safety, and overall quality of life for residents (Weisbrod et al., 2003). 

Intersections, which serve as crucial points of convergence for vehicular traffic, are 

particularly susceptible to congestion, leading to stop-and-go patterns and increased travel 

times (Gazis, 2002). Predicting congestion at intersections can provide valuable insights for 

city planners and governments, enabling them to implement strategies for optimizing traffic 

flow, enhancing infrastructure, and improving the overall transportation system (Wang et al., 



2016). 

This study aims to develop a predictive model for congestion at intersections in major 

U.S. cities, leveraging a comprehensive dataset of trip-logging metrics from commercial 

vehicles. The dataset encompasses a wide range of features, including intersection 

coordinates, street names, time of day, and traffic metrics, providing a rich source of 

information for identifying potential congestion patterns. Additionally, the insights gained 

from this study could be integrated with road surface condition monitoring systems to further 

enhance autonomous driving capabilities by accounting for both traffic congestion patterns 

and road surface conditions (Zhao et al., 2023). 

 

2. Literature Review 
 

Numerous studies have explored the application of machine learning and predictive 

modeling techniques to address urban traffic challenges. Researchers have employed various 

approaches, including neural networks (Huang et al., 2014), decision trees, and ensemble 

methods, to predict traffic flow and congestion patterns. However, many of these studies have 

focused on specific cities or regions, limiting their generalizability to diverse urban 

environments. Additionally, the incorporation of contextual features, such as weather 

conditions, road types, and proximity to central business districts, has been shown to enhance 

the predictive power of traffic models. By accounting for these external factors, models can 

better capture the complexities of urban traffic dynamics and provide more accurate 

predictions. 

Neural networks, particularly deep learning architectures, have gained significant 

attention in traffic prediction due to their ability to capture non-linear relationships and 

extract relevant features from raw data (Lv et al., 2015). Traffic Flow Prediction with Big 

Data: A Deep Learning Approach by Lv et al. proposed a stacked autoencoder model for 

traffic flow prediction, demonstrating improved performance compared to traditional 



methods. Decision trees and ensemble methods, such as random forests and gradient 

boosting, have also been widely employed in traffic prediction tasks (Vlahogianni et al., 

2014). These approaches are capable of handling non-linear relationships and can provide 

interpretable models, making them valuable for understanding the underlying factors 

influencing traffic patterns. 

While these studies have contributed to the advancement of traffic prediction models, 

there is a need for more comprehensive research that considers diverse urban environments 

and integrates multiple data sources to capture the full complexity of traffic dynamics. 

Additionally, the development of robust and scalable models that can be effectively deployed 

in real-world intelligent transportation systems remains an ongoing challenge. Combined with 

computer vision for human poses (Zhu et al., 2021), traffic predicting models could 

potentially benefit autonomous driving technology. 

3. Methodology 
 

Data Exploration and Feature Engineering: The study commenced with a 

comprehensive exploration of the dataset provided on Kaggle (Kashyap et al., 2019), 

examining the distributions, patterns, and relationships among the various features. This 

analysis informed the feature engineering process, where additional features, such as the 

percentage of rainfall/snowfall, distance from downtown and outskirts, and road types, were 

derived and incorporated into the dataset. 

Feature Transformation and Handling Missing Values: To ensure the integrity of the 

data and improve model performance, appropriate techniques were employed for feature 

transformation and handling missing values. Continuous features were scaled using min-max 

normalization, while categorical features underwent one-hot encoding (Kuhn & Johnson, 

2013). For missing values in the street name features, low-rank matrix factorization models 

were utilized, leveraging the characteristics of the data to impute missing entries (Hastie et 



al., 2009). 

Model Development and Evaluation: A variety of machine learning algorithms were 

explored for developing the predictive model, including linear regression, decision trees, 

random forests, and neural networks. The models were trained on a subset of the data (70%) 

and evaluated using appropriate metrics, such as mean squared error (MSE) for regression 

tasks, and accuracy for classification tasks (Hastie et al., 2009). 

K-fold cross-validation (k=5) was employed to ensure the robustness and 

generalizability of the models. Hyperparameter tuning was performed using randomized 

search to optimize the model's performance further (Bergstra & Bengio, 2012). 

4. Results and Analysis 
 

5.1 Dataset Description and Additional Features 

The dataset we use contains trip-logging metrics by commercial vehicles from about 

4,800 unique intersections in four major cities. It contains 27 features and more than 857k 

entries. These features include city, intersection ID’s, coordinates, entry and exit street names, 

hour of day, weekend or not, month, direction of entries and exits and percentiles for total time 

stopped, distance from first stop and time from first stop. Most of the time records are zeros. 

We have much more intersection data for city 2 and 3, less for city 0 and 1. The dataset 

contains missing values only for the two features containing street names. 

Apart from existing features, we also conducted further research and added additional 

features which might help in predicting congestion. The first feature we included was the 

percentage of rainfall/snowfall during that time. Another feature we included was the distance 

of that intersection to that city's downtown area. 

Furthermore, we also included the road type for a particular intersection. This road type 

includes information on whether the road is a street, lane, boulevard, broad, drive etc. 

Additionally, we included a feature that contains the distance of the particular intersection 



from the outskirts. 

5.2 Data Exploration, Feature Transformation and Handling 

Missingness 

We analyze how many roads are linked to a particular intersection. Some roads might 

be one way and so the number of entry and exits are counted separately. All intersections have 

at least one entry and at least one exit. The number of entry and exit streets along with the 

difference in exit and entry streets for intersections are added to our training set. 

For imputing missing values, we first split data based on cities and then use Low Rank 

Models. The street names are label encoded and then imputed using different loss and 

regularization functions. Alternatively, we also tried using multinomial and one vs. all loss for 

nominal variables. However, these techniques did not give errors within a reasonable margin 

and hence the missing names were encoded as ‘Unknown’. 

Since the directions are related to each other, they are encoded to numerical values. 

Although there is a city name feature, we check if there are roads in between the cities etc. or 

mislabeled city name in the data. By using K-means method on the longitude and latitude, we 

easily cluster the data into four groups, and the graph shows that they are perfectly clustered 

(Figure 1). This means that we do not have to deal with issues like roads between cities etc.  

 

Figure 1: Four data clusters by using K-means method. 

It is further observed that even with the separation of time, the data is highly unbalanced 

(Figure 2). Thus, we try to find the busy streets first. We restrict it to be at least 30 minutes 

waiting time on average.  



 

 Figure 2: Number of busy intersections across 24 hours span. 

Some interesting observations from the above data and chart: 

● Even though for city 0 we only have 973 unique intersections in our data, we see 

in its peak time, about a third of its intersections are busy. For city 1 we only have 377 unique 

intersections and at its peak time about half of them are busy 

● The number of busy streets is closer to each other despite the number of total 

intersections in that city. A more stringent definition of ‘busy’ may bring these curves closer. 

Visualizing the busy intersections in for the cities of Atlanta (Figure 3), Boston (Figure 

4), Chicago (Figure 5), and Philadelphia (Figure 6): 

 
 

Figure 3: Busy intersections in Atlanta.  
 

 
 

Figure 4: Busy intersections in Boston.  
 



 
 

Figure 5: Busy intersections in Chicago.  
 

 
 

Figure 6: Busy intersections in Philadelphia. 

 

5.3 Machine Learning Modeling 

 

Technique 1: Multiple Linear Regression 

Multiple linear regression generalizes linear regression, allowing the dependent 

variable(Y) to be a linear function of multiple independent variables (X’s) (Figure 7). 

 

 

Figure 7: Multiple linear regression formula. 

The validity of the model depends on whether the assumptions of the linear regression 

model are satisfied. These are: 

● The independent variable is not random. This is true in our case. 

● The variance of the error term is constant across observations. This is 

important for evaluating the goodness of the fit. 

● Errors are non-autocorrelated. For this, the Durbin-Watson statistic must be 

close to 2 which is true in our analysis. 



● Errors are normally distributed. If not, then we can’t use some of the statistics, 

such as the F-test. 

● There is no multicollinearity. We ensure this by looking at the correlation 

matrix of features. 

All these assumptions were rigorously tested by us and then the model was further 

used. To decide on a good model, we used stepwise regression. We tested plenty of 

combinations of features by adding or removing them one at a time. We added or removed 

these features based on our logical understanding and by looking at the dataset. Finally, we 

selected the one that resulted in the best quality which we interpreted using AIC and BIC. 

In our study, the outliers are anomalies that are important as they are the ones which are 

actual congestions. We implemented our model by using different loss and regularization 

functions with different parameters. The Huber loss is a loss function used in robust 

regression, that is less sensitive to outliers in data. On the other hand, L2 loss is more 

sensitive to outliers and provides a more stable and closed form solution. We tested first, 

Huber loss with low values of the parameter delta. This is so that the outliers get penalized 

according to L1 and other smaller values are penalized according to L2. We further tested L2 

loss as well. We finally proceeded with Huber loss with a low value of delta along with little 

regularization based on our results. Additionally, implementing cross validation enhanced our  

confidence in the mode (Figure 8). 

 

 

 

 

Figure 8: Loss functions comparison. 

Result and Applications: Linear regression is simple and easy to interpret, and it takes 

 MSE MAE Max Error 

L2 226.8210 9.9459 297.3281 

Huber 301.2180 7.6911 309.9721 



O(1) constant computation time for prediction. It could be used for various tasks. Huber Loss 

works well on the average waiting time prediction. The mean absolute error is only around 7.69 

minutes, compared to 9.95 minutes from Least Squared Errors. On the other hand, Huber Loss 

method’s errors for the outliers are significantly higher than the Least Squared Errors methods. 

However, the outliers tend to be rare occasions. Thus, we care more about the average waiting 

time than the specific outliers in this model. In this case, we are more confident to use Huber 

Loss to predict the 50-percentile waiting time. 

 

Technique 2: K-Nearest Neighbors 

KNN is a distance-based algorithm. It is a non-parametric algorithm, which means it 

does not make any assumption on the underlying data distribution. The only assumption it 

makes is that the data points are in a metric space and thus they have a notion of distance. 

Typically, we use KNN algorithm for classification problems, but it could be used for 

regression problems as well. In our problem, it takes the average of a data point’s k nearest 

neighbor’s waiting time as the prediction. This is valid because our data lay in a feature space in 

its nature and using a distance-based algorithm is intuitive. The following photos are the trend 

of the validation mean squared error, mean absolute error, and max error as K increases for our 

baseline model. As we could see the trend, the errors start dropping first then start increasing 

again. 

 

Figure 9: Validation mean squared error, mean absolute error, and max error. 

We used grid search to find the best combination of our parameters, and the best 

combination is using uniform weights, and Euclidean metric. After some tuning and feature 



selection, we find the following two models to have the best validation results (Figure 10). 

 

 

 

 

Figure 10: The two models that have the best validation results. 

Therefore, on average we are about 6 mins off the real traffic time at each intersection, 

but this is largely due to the outliers as we see maximum error. 

Application: KNN provides a good prediction on our problem, and it’s simple and easy 

to interpret. One concern of the algorithm is that it takes a long time to run as its computation 

requires O(n) runtime. This makes the algorithm not practical for real time traffic prediction 

usage, but it can still serve as a good tool for city traffic analysis and civil engineers planning. 

 

Technique 3: Gradient Boosting 

Gradient boosting is a machine learning technique for regression and classification 

problems, which makes a prediction model as an ensemble of week prediction models. Boosting 

is an ensemble technique in which the predictors are made sequentially. The subsequent 

predictors learn from the mistakes of the previous predictors. The intuition behind gradient 

boosting algorithm is to repetitively leverage the patterns in residuals and strengthen a model with 

weak predictions and make it better. The only assumption it makes it’s the independence of the 

observations. This is satisfied as the traffic in one intersection does not depend on another 

intersection. They could be correlated but our observations on each intersection are independent. 

For our implementation, we used MSE loss as the other two algorithms. 

 MSE MAE Max Error 

K = 7 135.4573 6.1995 260.0 

K = 8 134.8533 6.2021 263.875 



Results: We tested on different parameters using grid search, and we found the best model 

with parameters [n_estimators=100, max_depth=3, learning_rate = 0.1, loss=’ls’]. As we will 

discuss later in the feature importance, we find that our weather data is not useful for prediction, 

and we run the model again without weather data (Figure 11). 

 

 

 

 

Figure 11: With or without weather data error comparisons. 

Thus, on average we are about 10 mins off the real traffic time at each intersection, but 

this is largely due to the outliers as we see maximum error. 

Application: Gradient Boosting does not have as good performance as KNN algorithm, 

but the runtime for prediction is much less. Its prediction computation complexity is only 

O(pnestimetors) where p is the number of test data points and nestimetors is the number of estimators 

(we used 100), and it does not depend on the number of training data so the prediction can be 

done in much less time. So, the Gradient Boosting algorithm could be used for real time 

prediction to get an approximate on which intersections could be busy at the time, or it can be 

used as a tool for other algorithms to find the feature importance of each feature. We will discuss 

our feature importance in the next section.  

 

6.0 Discussion 

In this study, we explored three different machine learning techniques for predicting 

traffic congestion at urban intersections: multiple linear regression, k-nearest neighbors 

(KNN), and gradient boosting. Each approach has its own strengths and limitations, and the 

choice of technique depends on the specific requirements of the problem and the underlying 

assumptions about the data. 

 MSE MAE Max Error 

With weather data 211.6662 9.4953 317.9179 

Without weather data 211.5094 9.4929 325.3719 



Multiple linear regression is a widely used technique for modeling the relationship 

between a dependent variable and one or more independent variables (Hastie et al., 2009). In 

our case, we used multiple linear regression to predict the average waiting time at 

intersections based on various features such as the time of day, day of the week, and 

intersection characteristics. The key advantage of this approach is its simplicity and 

interpretability. The model assumptions were rigorously tested, and stepwise regression was 

employed to select the best combination of features based on information criteria (AIC and 

BIC). 

To handle outliers, which represent actual congestion events, we implemented the 

model using different loss and regularization functions. The Huber loss function, which 

provides a trade-off between L1 and L2 loss, was found to be effective in reducing the impact 

of outliers while maintaining good performance for non-outlier instances. Cross-validation 

further enhanced our confidence in the model's robustness. 

The KNN algorithm is a non-parametric, distance-based approach that makes 

predictions based on the k nearest data points in the feature space (Hastie et al., 2009). In our 

case, the average waiting time of a data point was predicted using the average of its k nearest 

neighbors. This method is intuitive and does not make assumptions about the underlying data 

distribution. 

After parameter tuning and feature selection, we identified two KNN models (k = 7 

and k = 8) that performed well on the validation set, with a mean absolute error of 

approximately 6 minutes. However, the maximum error was relatively high, indicating that 

the model struggled with some outlier instances. One limitation of the KNN algorithm is its 

computational complexity, which scales linearly with the number of training instances, 

making it less practical for real-time traffic prediction. 

Gradient boosting is an ensemble technique that combines multiple weak prediction 



models to create a strong predictive model (Friedman, 2001). It is a powerful algorithm that 

can handle complex, non-linear relationships in the data and is less susceptible to overfitting 

compared to other techniques. 

In our implementation, we used the mean squared error (MSE) loss function and 

performed grid search to find the optimal hyperparameters. Interestingly, we found that the 

inclusion of weather data did not significantly improve the model's performance, suggesting 

that other factors were more influential in predicting traffic congestion. 

The gradient boosting model achieved a mean absolute error of approximately 10 

minutes, which is slightly higher than the KNN models. However, its computational 

complexity for prediction is lower, making it more suitable for real-time applications or as a 

feature importance tool for other algorithms. 

 
7.0 Conclusion 
 

This study presents a comprehensive evaluation of three machine learning techniques 

for predicting traffic congestion at urban intersections. Each approach offers distinct 

advantages and trade-offs in terms of performance, interpretability, and computational 

complexity. The multiple linear regression model, while simple and interpretable, may 

struggle with capturing complex non-linear relationships in the data. However, its constant 

prediction time and ease of interpretation make it a viable option for certain applications, 

especially when coupled with robust shrinkage techniques like L4-norm shrinkage to handle 

heavy-tailed features (Zhu et al., 2021). The KNN algorithm demonstrated promising 

performance on the validation set, with a relatively low mean absolute error. However, its 

high computational complexity during prediction may limit its applicability for real-time 

traffic prediction scenarios. Gradient boosting emerged as a powerful technique that can 

handle complex relationships in the data while maintaining reasonable computational 

complexity during prediction. Its ability to identify important features also makes it a 



valuable tool for understanding the underlying factors influencing traffic congestion. 

Future research could explore ensemble methods that combine the strengths of these 

techniques or investigate more advanced deep learning models that can capture 

spatiotemporal patterns in traffic data. Additionally, incorporating real-time traffic data and 

integrating the models into intelligent transportation systems could further enhance their 

practical applicability. However, as the application of machine learning models becomes 

more widespread, data security emerges as a critical concern. As highlighted in the 

comprehensive study on cyber security indexes and data protection measures across 193 

nations, fortifying the global data fortress requires a multidimensional approach that 

addresses technical, legal, and policy aspects of data security (Weng et al., 2024). Their 

findings underscore the importance of implementing robust data protection measures, such as 

encryption, access controls, and secure data management practices, to safeguard the integrity 

and confidentiality of sensitive information, including traffic data. 

Moreover, the ability to accurately detect and track partially occluded objects is 

crucial in traffic management systems, as highlighted by the TAO-Amodal benchmark (Hsieh 

et al., 2023). This benchmark demonstrates the significance of amodal perception, the ability 

to comprehend complete object structures from partial visibility, in applications like 

autonomous driving. Techniques like self-training with label-feature consistency that can 

improve amodal perception by addressing issues with unreliable pseudo-labels could 

potentially enhance safety in autonomous vehicle deployments (Xin et al., 2023). 

Failure to prioritize data security and amodal perception could potentially undermine 

the benefits of data-driven solutions and compromise public trust. Therefore, future research 

in this domain should proactively address data security considerations and explore techniques 

for amodal object detection and tracking, aligning with best practices and adopting a holistic 

approach to ensure the responsible and secure use of data in traffic management systems. 



Overall, this study highlights the potential of data-driven approaches in addressing the 

challenge of urban traffic congestion and provides a foundation for further research and 

development in this important domain, while emphasizing the need for stringent data security 

measures and amodal perception capabilities to protect privacy, maintain public trust, and 

ensure reliable traffic management. 
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