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Mal’tsev products of varieties, II

Tomasz Penza and Anna B. Romanowska

Abstract. The Mal’tsev product of two varieties of the same similarity
type is not in general a variety, because it can fail to be closed under
homomorphic images. In the previous paper we provided a new sufficient
condition for such a product to be a variety. In this paper we extend
that result by weakening the assumptions regarding the two varieties.
We also explore the various special cases of our new result and provide
a number of examples of its application.

Mathematics Subject Classification. 03C05, 08B05, 08A05.

Keywords. Mal’tsev product; equational base; variety.

1. Introduction

This paper is a continuation of the paper [8] by the same authors. The reader
should consult [8] for further background and all notions that are not explic-
itly defined.

Let V and W be varieties of the same similarity type τ : Ω → N. The
Mal’tsev product V ◦ W of V and W consists of all algebras A of type τ
with a congruence θ, such that A/θ belongs to W and every congruence class
of θ that is a subalgebra of A belongs to V . Each algebra A of type τ has
the smallest congruence such that the corresponding quotient algebra belongs
to W . This congruence is called its W-replica congruence and will be denoted
by ̺. (See e.g. [11, Ch. 3].) The congruence θ in the definition of the Mal’tsev
product may be taken to be the W-replica congruence ̺ of A. (See [6].) Thus
the definition of the Mal’tsev product of varieties becomes

V ◦W = {A | (∀a ∈ A) (a/̺ ≤ A ⇒ a/̺ ∈ V)}. (1.1)

By results of Mal’tsev [6, Ths. 1, 2], it is known that the Mal’tsev product
V ◦ W is closed under the formation of subalgebras and of direct products.
However in general, it is not closed under homomorphic images. We are inter-
ested in sufficient conditions for the Mal’tsev product V ◦W to be a variety.

If the factor W of the Mal’tsev product V ◦W is idempotent, then each
W-replica congruence class a/̺ of any algebra A in V ◦W is a subalgebra of
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A, and

V ◦W = {A | (∀a ∈ A) (a/̺ ∈ V)}.

In this case, we say that A is a W-sum of V-algebras. (See [8, Sec. 1]). In
this paper we extend the main result of [8], in which the second factor W of
the Mal’tsev product V ◦W is required to be an idempotent variety. Now it
is allowed to be a member of a wider class of varieties that we named term
idempotent varieties. This change forces us to pay more attention to the
role of idempotent elements (or just idempotents) in the theory of Mal’tsev
products. Recall that for an algebra A with a congruence θ, a congruence class
a/θ is a subalgebra of A iff a/θ is an idempotent element of the quotient
algebra A/θ. Thus for A ∈ V ◦ W , the congruence classes a/̺ of the W-
replica congruence ̺ that are subalgebras of A are precisely those that are
idempotents of A/̺ ∈ W . Some special terms are used to keep track of those
congruence classes. Let V be a variety of type τ and t be a term of this type.
If V satisfies the identities

ω(t, . . . , t) = t, (1.2)

for all basic operations ω ∈ Ω, then we say that t is a term idempotent of V .
(See [8, Sec. 1].) (Iskander [4] and [5] uses the name unit term for a unary term
idempotent.) To justify the name, first recall that the free V-algebra over X
may be represented as the quotient XΩ/̺, where XΩ is the absolutely free
algebra XΩ over X and ̺ is its V-replica congruence. (See e.g. [11, Ch. 3].)
Then note that a term t, with variables in a set X , is a term idempotent of V
precisely if t/̺ is an idempotent of the free V-algebra over X . A motivating
example is provided by the term t(x) := xx−1 in a variety of groups or of
inverse semigroups. Note that a variety V is idempotent if a variable x is a
term idempotent of V . Moreover, if a variety V is idempotent, then every term
of type τ is a term idempotent of V . Note also that if t is a term idempotent
of V and A ∈ V , then for each a ∈ A, the element t(a) is an idempotent of A.

We will restrict our attention to types with no symbols of nullary op-
erations. It is a reasonable assumption when dealing with Mal’tsev products
for the following reasons. First, note that if the type of V and W contains
symbols of nullary operations, then each algebra A in V ◦ W has only one
congruence class of ̺ that is a subalgebra, namely the one containing the
constants. If additionally W is idempotent, then V ◦W is just the variety V .
Then, if the type contains a symbol c of a nullary operation, then one can
replace it by a symbol of a constant unary basic operation c(x), and in this
way obtain equivalent varieties V ′ and W ′ of a type without constants. The
varieties V ′ and W ′ satisfy the identity c(x) = c(y), and the unary operation
is constant on all algebras of these varieties.

This paper is organized as follows. Section 2 contains a summary of
earlier sufficient conditions for a Mal’tsev product V ◦ W to be a variety.
In Section 3 we introduce term idempotent varieties and investigate their
properties. Section 4 contains the main result of this paper, Theorem 4.1,
providing a sufficient condition for the Mal’tsev product of a variety V and
a term idempotent variety W to be a variety. This theorem extends several
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earlier results and has a number of interesting consequences and applications
that are discussed in Section 5. Finally, in Section 6, we investigate a subclass
of term idempotent varieties W consisting of the so-called polarized varieties.
They have a rather special property that V ◦W is a variety for any variety V .
This result is not a consequence of the main theorem of Section 4.

With the exception of some examples, we usually assume that V and
W are varieties of the same finitary type τ : Ω → N without symbols of
nullary operations, and that all varieties, algebras and terms are of this type.
If a variety V satisfies an identity p = q, then the terms p and q are called
equivalent in V or V-equivalent. An identity is trivial if it is of the form
p = p. A term t(x1, . . . , xn) is called constant in V , if V satisfies the identity
t(x1, . . . , xn) = t(y1, . . . , yn).

We usually abbreviate lists of variables x1, . . . , xn as x. For a term
t = t(x1, . . . , xn) we also write t(x). Note that t(x) need not necessarily
involve the full set x1, . . . , xn of variables from x. Similarly, we abbreviate lists
of elements a1, . . . , an of some algebra as a, and we write t(a) for t(a1, . . . , an).
With the exception of this special notation, we follow the usage of notation
and conventions similar to those of [3], [8] and [11].

For further information regarding Mal’tsev products, we refer the reader
to [6] and [7]. For universal algebra, see [2] and [11].

2. A brief summary of earlier results

We proceed with a brief summary of the earlier sufficient conditions for V ◦W
to be a variety. However let us first recall a result about the identities true
in V ◦W .

Definition 2.1. [8, Def. 2.1] Let V and W be varieties of type τ , and let Σ be
an equational base for V . We define the following set ΣW of identities:

ΣW := {u(r1, . . . , rn) = v(r1, . . . , rn) |

(u = v) ∈ Σ,

∀ i = 1, . . . , n− 1, W |= ri = ri+1,

∀ω ∈ Ω, W |= ω(r1, . . . , r1) = r1}.

The last two conditions of this definition imply that W |= ω(ri, . . . , ri) = ri
for all ω ∈ Ω and each i = 1, . . . , n− 1, and thus all ri are term idempotents
of W . One can say that every identity in ΣW is obtained from some identity
of Σ by substituting for its variables pairwise W-equivalent term idempotents
of W .

Theorem 2.2. [8, Lem. 2.2] Let V and W be varieties of type τ , and let Σ be
an equational base for V. Then the variety H(V◦W) generated by the Mal’tsev
product V ◦W is defined by the identities ΣW .

Corollary 2.3. If the Mal’tsev product V ◦ W is a variety, then ΣW is an
equational base for V ◦W.
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Theorem 2.4. [8, Th. 3.3] Let V and W be varieties of type τ , and let W be
idempotent. If there exist terms f(x, y) and g(x, y) such that

(a) V |= f(x, y) = x and V |= g(x, y) = y,
(b) W |= f(x, y) = g(x, y),

then the Mal’tsev product V ◦W is a variety.

An identity is called regular if both its sides contain precisely the same
variables; otherwise it is irregular. Furthermore an identity is called strongly
irregular, if it is of the form t(x, y) = x, where t(x, y) is a binary term
containing both variables x and y. A variety is called strongly irregular if it
satisfies a strongly irregular identity. For a plural type τ , i.e. one with no
nullary operations and at least one non-unary operation, the variety Sτ of
τ -semilattices is the unique variety of type τ that is equivalent to the variety
S of semilattices. This variety satisfies precisely all the regular identities of
type τ . (See [10] and [3] for details.) As a corollary of Theorem 2.4 one obtains
the following theorem.

Theorem 2.5. [3, Th. 6.3] If V is a strongly irregular variety of a plural type τ ,
then V ◦ Sτ is a variety.

Algebras in V ◦ Sτ are called semilattice sums of V-algebras.
The main result of this paper is a common generalization of Theorem 2.4

and of the following theorem of Bergman.

Theorem 2.6. [1, Cor. 2.3] If V and W are idempotent subvarieties of a con-
gruence permutable variety, then V ◦W is a variety.

3. Term idempotent varieties

We start this section with a special property of term idempotents. The set
XΩ of terms of a given type τ (without constants) over a countably infinite
set X of variables is preordered by the following relation: p(x1 . . . xn) � q iff
there exist terms t1, . . . , tn of type τ such that q = p(t1 . . . tn). Note that if
p � q and q � p, then p and q are the same to within a renaming of the
variables. Using the rules of equational logic one easily obtains the following
lemma.

Lemma 3.1. If p is a term idempotent of a variety V, and p � q, then q is
also a term idempotent of V.

It is known that for a preordered set (P,�), the relation α defined on
P by

(p, q) ∈ α iff p � q and q � p

is an equivalence relation. Furthermore, the relation ≤ defined on P/α by

p/α ≤ q/α iff p � q

is an order relation. An upper set of a preordered set (P,�) can be defined
similarly as in the case of an ordered set. A subset Q of P is an upper set, if
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whenever p ∈ Q, q ∈ P and p � q, then q ∈ Q. Thus Lemma 3.1 shows that
term idempotents of a given variety form an upper set of (XΩ,�). It is easy
to see that the variables of X form one class of α. This class is the minimum
of the ordered set (XΩ/α,≤) and obviously each variable of X is related by
� with any other element of XΩ. Thus if a variable is a term idempotent,
then all terms are term idempotents. In other words, a variety is idempotent
iff the upper set of its term idempotents contains all terms.

Definition 3.2. A nontrivial identity p = q satisfied in a variety V will be
called term idempotent, if both p and q are term idempotents of V . A variety
V will be called term idempotent, if every nontrivial identitity it satisfies is
term idempotent.

Note that every idempotent variety is term idempotent. Below we pro-
vide some examples of term idempotent varieties that are not idempotent.

Example 3.3. Let CS be the variety of constant semigroups, i.e. the variety
of groupoids (magmas, binars) defined by the identity xy = zt. A nontrivial
identity p = q is satisfied in CS precisely if neither p nor q is a variable. (Cf [8,
Ex. 2.5].) In particular CS satisfies p · p = p for every term p different from
a variable. Consequently, all such terms are term idempotents of CS, and so
CS is a term idempotent variety.

Example 3.4. The variety Cτ of constant algebras of type τ is defined by the
identities

ω(x1, . . . , xn) = ϕ(y1, . . . , ym),

for all ω, ϕ ∈ Ω. It satisfies precisely the nontrivial identities whose neither
side is a variable. Every term different from a variable is constant in Cτ . If
type τ consists of a single binary operation, then Cτ is just the variety CS.
For any other type, Cτ is equivalent to CS. An argument analogous to that
of Example 3.3 shows that Cτ is a term idempotent variety.

Example 3.5. Let RS be the variety of semigroups defined by the identities

(xy)z = xz = x(yz). (3.1)

The subvariety of RS defined by the idempotent law xx = x is the variety
of rectangular bands. Algebras in RS will be called rectangular semigroups.
Recall that in any variety of semigroups each term t is equivalent to a product
of variables t = x1 · · ·xn. If t is different from a variable, then (3.1) implies
that RS |= t = x1xn. Thus RS satisfies

t · t = x1xnx1xn = x1xn = t.

Consequently, all terms different from a variable are term idempotents of RS.
Since all nontrivial identities derivable from (3.1) have both sides different
from a variable, it follows that RS is term idempotent.

Example 3.6. For n ≥ 0, let Un be the variety of monounary algebras (A, f)
defined by the identity

f(fn(x)) = fn(x). (3.2)



6 T. Penza and A.B. Romanowska

Clearly, fn(x) is a term idempotent of Un. Recall that each term of mo-
nounary type has the form fm(x) for some m ≥ 0 (with f0(x) being just x).
Then by (3.2), if m ≥ n, then Un |= fm(x) = fn(x). Every nontrivial identity
derivable from (3.2) is of the form fk(x) = f l(x) for different k, l ≥ n. So
both sides of such an identity are term idempotents of Un, and hence Un is
term idempotent. Observe that U0 is idempotent, in U1 all terms different
from a variable are term idempotent, and if n ≥ 2, then in Un not all terms
different from a variable are term idempotents.

Some regular varieties provide further examples of term idempotent

varieties. Recall that the regularization Ṽ of a variety V of a plural type τ is

the variety defined by all the regular identities satisfied in V . Equivalently, Ṽ
can be defined as the join V ∨ Sτ of V and the variety Sτ of τ -semilattices.

It is known that if V is irregular, then each algebra in Ṽ is a semilattice sum

of V-algebras. If V is strongly irregular, then Ṽ coincides with the class of
P lonka sums of V-algebras. (See e.g. [9], [11, Ch. 4], [10].)

Proposition 3.7. Let V be a variety of a plural type τ . If V is term idempotent,

then Ṽ is also term idempotent.

Proof. Let u = v be a nontrivial identity satisfied in Ṽ . Then u = v is also
satisfied in V , and hence u and v are term idempotents of V . Thus V satisfies
the identities ω(u, . . . , u) = u and ω(v, . . . , v) = v for all ω ∈ Ω. Since these

identities are regular, they are also satisfied in Ṽ . Therefore u and v are term

idempotents of Ṽ , and so Ṽ is a term idempotent variety. �

Note that none of the examples of term idempotent varieties which
are not idempotent that we provided so far are strongly irregular. The next
proposition shows that this is not a coincidence.

Proposition 3.8. If a variety V is term idempotent and strongly irregular,
then V is idempotent.

Proof. The variety V satisfies a strongly irregular identity t(x, y) = x. This
identity is nontrivial, so it is term idempotent, and thus in particular its
right-hand side x is a term idempotent of V . Therefore V is idempotent. �

We conclude this section with a characterization of term idempotent
varieties in terms of replica congruences. First recall a very useful description
of a replica congruence which will also be used in the proof of the main result
in Section 4.

Definition 3.9. Let W be a variety, and let A be an algebra of the same
type as W . We define a binary relation ̺0 on the universe of A as follows:
(a, b) ∈ ̺0 if and only if there are an identity p(x) = q(x) satisfied in W , and
elements d of A, such that a = p(d) and b = q(d).

Note that the relation ̺0 is reflexive and symmetric.
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Proposition 3.10. [8, Prop. 3.2] Let W be a variety, and let A be an algebra
of the same type as W. The W-replica congruence relation ̺ of A coincides
with the transitive closure of ̺0.

Proposition 3.11. Let W be a variety of type τ . Then W is term idempotent
if and only if, for every algebra A of type τ , every congruence class a/̺ of the
W-replica congruence of A which is not an idempotent of A/̺, is a singleton.

Proof. (⇒) Assume that W is a term idempotent variety. Let a/̺ be a con-
gruence class with more than one element. We will show that a/̺ is an
idempotent of A/̺. Let b ∈ a/̺ be an element different from a. By Proposi-
tion 3.10, ̺ is the transitive closure of ̺0. Since (a, b) ∈ ̺, there is an element
c ∈ a/̺ different from a, such that (a, c) ∈ ̺0. This means that there is a
nontrivial identity p(x) = q(x) true in W , and elements d of A, such that
a = p(d) and c = q(d). Since W is a term idempotent variety, p and q are
term idempotents of W . Thus a, being a value of a term idempotent, is an
idempotent of A. It follows that for each ω ∈ Ω,

a = ω(a, . . . , a),

and hence

a/̺ = ω(a/̺, . . . , a/̺).

Therefore a/̺ is an idempotent of A/̺.
(⇐) Now assume that for every algebra A of type τ , any congruence

class a/̺ which is not an idempotent of A/̺, has exactly one element. In
particular, this is true for the absolutely free algebra XΩ of type τ over a
countably infinite set X . Recall that the quotient XΩ/̺ of XΩ by its W-
replica congruence ̺, is the free W-algebra over X . (See e.g. [11, Ch. 3].) By
the definition of term idempotents, for a term t of type τ , the congruence class
t/̺ is an idempotent of XΩ/̺ precisely if t is a term idempotent of W . Now
let p = q be a nontrivial identity satisfied in W . Then p and q are different
elements of the same congruence class C := p/̺ = q/̺. Since C is not a
singleton, it is an idempotent of XΩ/̺. Hence p and q are term idempotents
of W , and therefore W is term idempotent. �

As a corollary, one obtains a result on the structure of algebras in V ◦W
for a term idempotent variety W .

Corollary 3.12. Let V and W be varieties of the same type, and let W be
term idempotent. If A ∈ V ◦W, then each congruence class of the W-replica
congruence ̺ of A is either a subalgebra of A or a singleton.

In the definition of a term idempotent variety V we require that all
nontrivial identities true in V are term idempotent. One might wonder if
this property is equivalent to the requirement that the set of identities used
to define V be term idempotent. This is not the case however, since a term
idempotent identity may entail nontrivial identities that are not term idempo-
tent. As an example consider the identity xx−1 = yy−1 true in the variety of
groups. Both of its sides are term idempotents. However this identity implies
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the nontrivial identity (xx−1)z = (yy−1)z whose both sides are equivalent
to z which is not a term idempotent.

4. A new sufficient condition for V ◦W to be a variety

We are now ready to state and prove our generalization of Theorem 2.4.

Theorem 4.1. Let V and W be varieties of the same type, and let W be term
idempotent. If there exist terms f(x, y, z) and g(x, y, z) such that

(a) V |= f(x, y, y) = x and V |= g(x, x, y) = y,
(b) W |= f(x, x, y) = g(x, x, y),
(c) f(x, x, y) is a term idempotent of W,

then the Mal’tsev product V ◦W is a variety.

Proof. We need to show that H(V ◦ W) ⊆ V ◦W . The proof will be divided
into several parts. In what follows we assume that A ∈ H(V ◦ W), i.e. A is a
quotient of an algebra belonging to V ◦W .

A. The W-replica congruence ̺ of A coincides with the relation ̺0.

By Proposition 3.10, we have to show that the relation ̺0 is transitive.
Let a, b, c ∈ A and a ̺0 b ̺0 c. If either two of the elements a, b, c are equal,
then by reflexivity and symmetry of ̺0 one obtains a ̺0 c. So let us assume
that these elements are pairwise different. Then there exist nontrivial identi-
ties p1(x1) = q1(x1) and p2(x2) = q2(x2) satisfied in W , and sets of elements
d1 and d2 in A, such that

a = p1(d1), b = q1(d1),

b = p2(d2), c = q2(d2).

Since W is term idempotent, terms p1, q1, p2, q2 are term idempotents of W .
Let

p(x1,x2) := f(p1, q1, p2) and q(x1,x2) := g(q1, q1, q2).

By (b), W satisfies the identity p = q. By Theorem 2.2, A satisfies the
identities f(p1, q1, q1) = p1 and g(p2, p2, q2) = q2. It follows that

p(d1,d2) = f(p1(d1), q1(d1), p2(d2))

= f(p1(d1), q1(d1), q1(d1)) = p1(d1) = a,

and similarly,

q(d1,d2) = g(q1(d1), q1(d1), q2(d2))

= g(p2(d2), p2(d2), q2(d2)) = q2(d2) = c.

Thus a ̺0 c, and hence ̺0 is transitive.

B. If C is a congruence class of ̺ which is a subalgebra of A, then C
satisfies the identities of (a).

Let u(x, y) = v(x, y) be an identity satisfied in V . If C has only one
element a, then u(a, a) = a = v(a, a). So C satisfies the identity u = v. Now
assume that C has more than one element. Let a, b ∈ C with a 6= b. Then
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(a, b) ∈ ̺0, so there exist a nontrivial identity p(x) = q(x) satisfied in W
and elements d of A, such that a = p(d) and b = q(d). The terms p and q
are term idempotents of W . Hence by Theorem 2.2, A satisfies the identities
u(p, q) = v(p, q) and u(p, p) = v(p, p). Therefore

u(a, b) = u(p(d), q(d)) = v(p(d), q(d)) = v(a, b),

u(a, a) = u(p(d), p(d)) = v(p(d), p(d)) = v(a, a).

It follows that C satisfies any identity in at most two variables valid in V . In
particular

C |= f(x, y, y) = x and C |= g(x, x, y) = y. (4.1)

C. Assume that W |= pi(zi) = qi(zi) for i = 1, . . . , n− 1. Then for each
i = 1, . . . , n, define terms ti,j recursively for j = 0, . . . , n− 1 by

ti,j :=





p1 for j = 0,

f(qj , pj , ti,j−1) for 0 < j < i,

g(qj , qj , ti,j−1) for j ≥ i.

(4.2)

Set

ti := ti,n−1. (4.3)

Then W |= ti = ti+1 for i = 1, . . . , n− 1.

Let 1 ≤ i ≤ n− 1. Then by (4.2) we have the following equalities

ti,0 = p1 = ti+1,0,

ti,1 = f(q1, p1, ti,0) = f(q1, p1, ti+1,0) = ti+1,1,

ti,2 = f(q2, p2, ti,1) = f(q2, p2, ti+1,1) = ti+1,2,

...

ti,i−1 = f(qi−1, pi−1, ti,i−2) = f(qi−1, pi−1, ti+1,i−2) = ti+1,i−1.

Since the identities pi = qi and f(x, x, y) = g(x, x, y) are valid in W , it follows
that

W |= ti,i = g(qi, qi, ti,i−1) = f(qi, pi, ti+1,i−1) = ti+1,i.

Hence, again by (4.2)

W |= ti,i+1 = g(qi+1, qi+1, ti,i) = g(qi+1, qi+1, ti+1,i) = ti+1,i+1,

W |= ti,i+2 = g(qi+1, qi+1, ti,i+1) = g(qi+1, qi+1, ti+1,i+1) = ti+1,i+2,

...

W |= ti,n−1 = g(qn−1, qn−1, ti,n−2) = g(qn−1, qn−1, ti+1,n−2) = ti+1,n−1.

Consequently W |= ti = ti+1.

D. The term t1 is a term idempotent of W.

By (b) and (c), g(x, x, y) is a term idempotent of W . Then we have

g(x, x, y) � g(qn−1, qn−1, t1,n−2) = t1,n−1 = t1.

By Lemma 3.1, it follows that t1 is a term idempotent of W .
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E. Let a1, . . . , an ∈ C. There exist pairwise W-equivalent term idem-
potents t1, . . . , tn of W and elements c of A, such that ai = ti(c) for each
i = 1, . . . , n.

Let 1 ≤ i ≤ n − 1. Since ai ̺
0 ai+1, there is an identity pi(zi) = qi(zi)

true in W , and elements ci of A, such that

ai = pi(ci) and ai+1 = qi(ci).

Denote the list c1, . . . , cn by c. Define terms t1, . . . , tn by (4.2) and (4.3).
Then C and D imply that the terms t1, . . . , tn are W-equivalent term idem-
potents of W . By (4.1), one obtains the following equalities:

ti,0(c) = p1(c1) = a1,

ti,1(c) = f(q1(c1), p1(c1), ti,0(c)) = f(a2, a1, a1) = a2,

ti,2(c) = f(q2(c2), p2(c2), ti,1(c)) = f(a3, a2, a2) = a3,

...

ti,i−1(c) = f(qi−1(ci−1), pi−1(ci−1), ti,i−2(c)) = f(ai, ai−1, ai−1) = ai,

ti,i(c) = g(qi(ci), qi(ci), ti,i−1(c)) = g(ai+1, ai+1, ai) = ai,

ti,i+1(c) = g(qi+1(ci+1), qi+1(ci+1), ti,i(c)) = g(ai+2, ai+2, ai) = ai.

...

ti,n−1(c) = g(qn−1(cn−1), qn−1(cn−1), ti,n−2(c)) = g(an, an, ai) = ai.

Therefore ai = ti,n−1(c) = ti(c) for each i = 1, . . . , n.

F. The subalgebra C of A satisfies any identity

u(x1, . . . , xn) = v(x1, . . . , xn)

valid in V.

Let a1, . . . , an ∈ C. Let t1, . . . , tn be terms and c be elements of A
satisfying the condition of E. By Theorem 2.2, the identity u(t1, . . . , tn) =
v(t1, . . . , tn) is valid in A. Hence

u(a1, . . . , an) = u(t1(c), . . . , tn(c)) = v(t1(c), . . . , tn(c)) = v(a1, . . . , an).

G. The Mal’tsev product V ◦W is a variety.

By F, we conclude that C ∈ V , and consequently that A ∈ V ◦W . Thus
the inclusion H(V ◦W) ⊆ V ◦W holds, and so V ◦W is a variety. �

5. Consequences and examples

Theorem 4.1 has a number of interesting consequences. First note that since
every term in an idempotent variety is a term idempotent, one easily obtains
the following corollary.

Corollary 5.1. Let V and W be varieties of the same type, and let W be
idempotent. If there exist terms f(x, y, z) and g(x, y, z) such that
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(a) V |= f(x, y, y) = x and V |= g(x, x, y) = y,
(b) W |= f(x, x, y) = g(x, x, y),

then the Mal’tsev product V ◦W is a variety.

Another special case is when the terms f(x, y, z) and g(x, y, z) do not
depend on the middle variable.

Corollary 5.2. Let V and W be nontrivial varieties, and let W be term idem-
potent. If there exist terms f(x, y) and g(x, y) such that

(a) V |= f(x, y) = x and V |= g(x, y) = y,
(b) W |= f(x, y) = g(x, y),

then the Mal’tsev product V ◦W is a variety.

Proof. We only need to show that the condition (c) of Theorem 4.1 is satisfied,
i.e. f(x, y) is a term idempotent of W . First note that the terms f(x, y)
and g(x, y) cannot coincide. Otherwise, the condition (a) would imply that
V |= x = y, contradicting the nontriviality of V . So the identity of (b) is
nontrivial, and hence f(x, y) is a term idempotent of W . �

Example 5.3. Let V be the variety of groupoids defined by identities

(xx)y = y = y(xx),

and let RS be the variety from Example 3.5. Define

f(x, y) := x(yy) and g(x, y) := (xx)y.

It is easy to see that V satisfies the identities f(x, y) = x and g(x, y) = y,
and RS satisfies the identity f(x, y) = g(x, y). Thus, by Corollary 5.2, the
Mal’tsev product V ◦ RS is a variety.

Example 5.4. Let V be a strongly irregular variety of a plural type τ that
satisfies a strongly irregular identity t(x, y) = x. By Example 3.4, the variety
Cτ of constant algebras of type τ , is a term idempotent variety. Set f(x, y) :=
t(x, y) and g(x, y) := t(y, x). Clearly V satisfies the identities f(x, y) = x
and g(x, y) = y. Since neither f(x, y) nor g(x, y) is a variable, it follows that
Cτ |= f(x, y) = g(x, y). Corollary 5.2 implies that the Mal’tsev product V ◦Cτ
is a variety.

Replacing the variety Cτ by its regularization C̃τ one obtains a further

example. First note that, by Proposition 3.7, the regularization C̃τ of Cτ is a
term idempotent variety. Keep the same terms f(x, y) and g(x, y) as in the
previous case. Then note that the identity f(x, y) = g(x, y) is regular. Hence

it is also satisfied in C̃τ . By Corollary 5.2 again, the Mal’tsev product V ◦ C̃τ
is a variety for any strongly irregular variety V .

An additional assumption that the variety W of Corollary 5.2 is idem-
potent yields Theorem 2.4 as a special case. If we further set g(x, y) := y,
then the condition (a) of Corollary 5.2 reduces to only one identity and one
obtains the following corollary.
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Corollary 5.5. Let V and W be nontrivial varieties, and let W be term idem-
potent. If there exists a term f(x, y) such that

(a) V |= f(x, y) = x,
(b) W |= f(x, y) = y,

then the Mal’tsev product V ◦W is a variety.

The conditions (a) and (b) of Corollary 5.5 mean that the varieties V and W
are independent. (See e.g. [11, §3.5].) The join V ∨W of independent varieties
V and W consists of (algebras isomorphic to) products A× B of A ∈ V and
B ∈ W , and obviously V ∨W ⊆ V ◦W .

Example 5.6. The variety LZ of left-zero bands (defined by the identity
xy = x) and the variety RZ of right-zero bands (defined by the identity
xy = y) are clearly independent. So, by Corollary 5.5, the Mal’tsev product
LZ ◦ RZ is a variety. Its subvariety LZ ∨ RZ is the variety of rectangular
bands.

If we set f and g in Corollary 5.1 to be the same term, then the condition
(b) is trivially satisfied, and the identities of (a) become Mal’tsev identities.
So the variety V is congruence permutable. We thus obtain the following
extension of Theorem 2.6.

Corollary 5.7. Let V be a congruence permutable variety and W be an idem-
potent variety. Then the Mal’tsev product V ◦W is a variety.

Typical examples of congruence permutable (or Mal’tsev) varieties are
given by varieties of groups, quasigroups, loops, rings or modules. If V is any
such variety and W is an idempotent variety of the same type as V , then the
Mal’tsev product V ◦W is a variety.

Example 5.8. Now we will consider the Mal’tsev product G ◦L of the variety
of groups and the variety of lattices. To do so we first have to describe them
as varieties of the same type.

Here groups are defined as algebras (G, ·,−1 ) with one binary and one
unary operations. (See e.g. [3, Ex. 7.6].) And the variety G of groups will
be considered as the variety of algebras (G,+, ·,−1 ), satisfying the usual
identities of groups and the identity x + y = x · y.

On the other hand, lattices will be considered as algebras of the same
type as G with x−1 := x. The variety of groups is a Mal’tsev variety, and the
variety of lattices is an idempotent variety. By Corollary 5.7, the Mal’tsev
product G ◦ L is a variety.

Note that in those Mal’tsev products V ◦W considered so far which are
actually varieties, the factor V was always strongly irregular. It is natural to
ask if this strongly irregular variety V could be replaced by an irregular (but
not strongly irregular) variety V . We conclude this section with an example of
a Mal’tsev product V ◦W that is not a variety, where the factor V is irregular,
but not strongly irregular, and where the factor W is an idempotent (and
hence term idempotent) variety. In particular, this example shows that in
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Theorem 2.5, which is a corollary of Theorem 4.1, the assumption of strong
irregularity cannot be replaced by irregularity alone.

Example 5.9. It will be shown that the Mal’tsev product CS ◦ S fails to be
a variety. We provide an example of a groupoid that belongs to CS ◦ S, but
has a quotient that does not. Let A be the groupoid defined by the following
table

· a e b f
a e e b f
e e e f f
b b f f f
f f f f f

The groupoid A is a member of CS ◦ S. The semilattice replica congruence ̺
of A has two congruence classes {a, e} and {b, f} that can be seen to be con-
stant semigroups with constant values e and f respectively. The congruence
θ of A with congruence classes {a}, {b} and E := {e, f} has the quotient A/θ
given by the table

· {a} {b} E
{a} E {b} E
{b} {b} E E
E E E E

The semilattice replica congruence of A/θ is the all relation with one congru-
ence class containing all elements. However A/θ is not a constant semigroup,
hence A/θ /∈ CS ◦ S. Thus CS ◦ S is not closed under homomorphic images,
and so it is not a variety.

6. Purely polarized varieties

A variety V that has a constant unary term idempotent is called polarized.
(See [6].) Such a term is called a polar term and is denoted by p(x). The
constant value p of a polar term p(x) in a given algebra A ∈ V is called the
pole of this algebra. The pole of A is the unique idempotent of A, and a class
of a congruence on A is a subalgebra of A iff it is the congruence class of the
pole. (See [8, Sec. 1].) Since the only possible value in A of a term idempotent
of V is the pole of A, it follows that all term idempotents of V are constant
and pairwise V-equivalent. In particular every unary term idempotent is a
polar term.

Examples of polarized varieties are provided by varieties of groups with
a polar term p(x) := xx−1, varieties of loops with a polar term p(x) := x/x,
and varieties of rings with a polar term p(x) := x − x. One more example is
given by the variety Cτ of constant algebras where every unary term different
from a variable is a polar term.

A variety will be called purely polarized, if it is both polarized and term
idempotent. The two conditions are independent. For example, the variety
of groups is polarized but not term idempotent, and on the other hand, the
variety RS of rectangular semigroups of Example 3.5 is term idempotent but
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not polarized. However, if a variety satisfies both of these conditions, then
their consequences are rather strong.

Proposition 6.1. Let V be a purely polarized variety with a polar term p(x).
Let u and v be different terms of the type of V. Then

V |= u = v ⇐⇒ V |= u = p(x) and V |= v = p(x).

Proof. Suppose that V |= u = v for different terms u and v. Since V is a term
idempotent variety and the identity u = v is nontrivial, both u and v are
term idempotents of V . Since V is polarized, they are V-equivalent to p(x).
So V |= u = p(x) and V |= v = p(x). �

Typical examples of purely polarized varieties are the variety C of con-
stant semigroups and, more generally, the varieties Cτ of constant algebras of
type τ . Next we show a method of extending these examples.

Example 6.2. Constant semigroups may be defined by the consequences of
the identities x1 · · ·xn = y1 · · · yn for all n ≥ 2. Now, for k ≥ 2, consider
the variety Ck of semigroups defined by the consequences of the identities
x1 · · ·xn = y1 · · · yn, where n ≥ k. Note that C2 coincides with C. The variety
Ck satisfies all the identities p = q of type τ such that neither p nor q is a
product of less than k variables. It is easy to see that both sides of every
such identity are term idempotents of Ck, and that Ck is polarized by the
polar term p(x) = x · · ·x, where x is repeated k times. Hence Ck is purely
polarized.

Recall the preordered set (XΩ,�) of Section 3. Consider the case when
Ω consists only of a single symbol of a binary operation. Note that the pre-
order � carries over to the free semigroup XSG over X . All term idempotents
of Ck form an upper set of (XSG,�) that is generated by the element x1 · · ·xk.

Proposition 6.1 shows that both sides of every nontrivial identity satis-
fied in a purely polarized variety V are constant term idempotents of V . Such
identities will be called polar identities.

Corollary 6.3. A polarized variety V is purely polarized if and only if all
nontrivial identities satisfied in V are polar.

A term p(x) of type τ will be called a zero term of a variety V , if it is
constant and for all ω ∈ Ω and every 1 ≤ i ≤ n,

V |= ω(x1, . . . , xi−1, p(x), xi+1, . . . , xn) = p(x). (6.1)

Note that the identities of (6.1) imply

V |= ω(p(x), . . . , p(x)) = p(x).

Hence a zero term is also a polar term, and any variety with a zero term
is polarized. The pole of any algebra A in a variety with a zero term is the
zero of A (i.e. it forms a one-element sink of A). If p(x) is a zero term of V ,
then the identities of (6.1) may be easily generalized to all terms of type τ .
Indeed, for any term t(x1, . . . , xn) and every 1 ≤ i ≤ n,

V |= t(x1, . . . , xi−1, p(x), xi+1, . . . , xn) = p(x). (6.2)
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If the type τ is plural, then there exists a term t(x, y) involving both variables
x and y, such that the identities of (6.1) imply

V |= p(x) = t(p(x), p(y)) = p(y).

Thus if we restrict ourselves to plural types, a separate assumption that a
zero term is constant is unnecessary. The following proposition provides a
basic property of polar identities.

Proposition 6.4. Let V be a polarized variety. Let u = v be a nontrivial polar
identity true in V. The following conditions are equivalent:

(1) Every nontrivial consequence of a set of polar identities true in V is also
polar.

(2) Every nontrivial consequence of the identity u = v is polar.
(3) V has a zero term.

Proof. (1) ⇒ (2) This implication is obvious.
(2) ⇒ (3) Assume (2). For any ω ∈ Ω and every 1 ≤ i ≤ n, the identity

ω(x1, . . . , xi−1, u, xi+1, . . . , xn) = ω(x1, . . . , xi−1, v, xi+1, . . . , xn) (6.3)

is a nontrivial consequence of u = v. So, by (2), it is polar. The left-hand
sides of the polar identities u = v and (6.3) are constant term idempotents.
Hence they are V-equivalent, because V is a polarized variety. Consequently,
V satisfies the identity

ω(x1, . . . , xi−1, u, xi+1, . . . , xn) = u.

Therefore, the identities of (6.1) hold for the unary term p(x) := u(x, . . . , x),
and so p(x) is a zero term of V .

(3) ⇒ (1) Suppose that V has a zero term p(x). (It is also a polar term
of V .) Consider a polar identity u = v satisfied in V . We will show that the
consequences of this identity are also polar.

Let t(x1, . . . , xn) be a term and let 1 ≤ i ≤ n. Then the identity

t(x1, . . . , xi−1, u, xi+1, . . . , xn) = t(x1, . . . , xi−1, v, xi+1, . . . , xn) (6.4)

is a consequence of u = v. Since u and v are constant term idempotents, they
are both V-equivalent to p(x). Thus, for the left-hand side of (6.4), we have

t(x1, . . . , xi−1, u, xi+1, . . . , xn) = t(x1, . . . , xi−1, p(x), xi+1, . . . , xn) = p(x).

An analogous identity holds for its right-hand side. Hence both sides of (6.4)
are constant term idempotents, and so (6.4) is a polar identity.

If we substitute arbitrary terms for the variables of a constant term
idempotent of V , we again obtain a constant term idempotent. Thus an iden-
tity u′ = v′, obtained from the polar identity u = v by substituting some
terms for its variables, is also polar.

If u = v and v = w are polar identities, then obviously u = w is also
a polar identity. Therefore all nontrivial consequences of any set of polar
identities true in V are polar. �

Corollary 6.5. In a purely polarized variety, all polar terms are zero terms.
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Proof. This follows directly by Proposition 6.4 and Corollary 6.3. �

The following proposition provides an equational base for any purely
polarized variety.

Proposition 6.6. A variety V of type τ is purely polarized if and only if it is
defined by the identities

(a) p(x) = p(y),
(b) ω(x1, . . . , xi−1, p(x), xi+1, . . . , xn) = p(x) for all ω ∈ Ω and 1 ≤ i ≤ n,
(c) ti = p(x) for all i ∈ I,

where p(x) and {ti | i ∈ I} are some terms of type τ .

Proof. (⇒) Let V be a purely polarized variety with a polar term p(x), defined
by some identities {ui = vi | i ∈ I}. The polar term p(x) satisfies the identity
(a) and, by Corollary 6.5, also the identities of (b). By Proposition 6.1, an
identity ui = vi, for i ∈ I, has the same consequences as the identities
ui = p(x) and vi = p(x). Thus we can construct an equational base of the
required form.

(⇐) Assume that V is defined by the identities of (a), (b) and (c).
Then (a) and (b) imply that p(x) is a polar term, and hence V is polarized.
Thus, the defining identities (a), (b) and (c) of V are all polar identities. The
identities of (b) show that p(x) is a zero term of V . By Proposition 6.4, all
consequences of the defining identities are also polar, and so by Corollary 6.3,
V is purely polarized. �

We can see that purely polarized varieties form a very special class of
algebras. Additionally, we will find that they interact with Mal’tsev products
in an interesting way. First, let us look at what Theorem 4.1 says about the
special case when W is a purely polarized variety. If we set f(x, y, z) := p(x)
and g(x, y, z) := p(z) for a unary term p(x), then the conditions (a), (b) and
(c) reduce to: (a) V |= p(x) = x, (b) W |= p(x) = p(y) and (c) p(x) is a term
idempotent of W . We thus obtain the following corollary.

Corollary 6.7. Let V and W be varieties of type τ , and let W be purely
polarized with a polar term p(x). If V satisfies p(x) = x, then the Mal’tsev
product V ◦W is a variety.

Since every unary term different from a variable is a polar term of Cτ , addi-
tionally, we have the following.

Corollary 6.8. Let V be a variety of type τ . Let u(x) be a unary term of type
τ , which is not just a variable. If V satisfies u(x) = x, then the Mal’tsev
product V ◦ Cτ is a variety.

The assumption on the variety V is rather weak. For example, it is
satisfied by all idempotent varieties and all strongly irregular varieties. Sur-
prisingly, it is possible to prove a much more general result. We conclude the
paper by showing that the Mal’tsev product V ◦ W of any variety V and a
purely polarized variety W is a variety.
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This next lemma follows by Corollary 3.12 and the fact that each algebra
in a purely polarized variety has exactly one idempotent.

Lemma 6.9. Let V and W be varieties of type τ , and let W be a purely
polarized variety. If A ∈ V ◦ W, then exactly one class of the W-replica
congruence of A is a subalgebra of A, and all the other classes are singletons.

Theorem 6.10. Let V and W be varieties of type τ . If W is a purely polarized
variety, then the Mal’tsev product V ◦W is a variety.

Proof. Let A be a member of V ◦W . We will show that for any congruence θ
of A, the quotient algebra A/θ is also a member of V ◦W .

Let ̺ be the W-replica congruence of A. By Lemma 6.9, exactly one
class of ̺, call it E, is a subalgebra of A. Moreover E ∈ V , since A ∈ V ◦W .
All the other classes of ̺ are singletons. Let θ̄ := ̺ ∨ θ, and let a, b ∈ A.
Since the class E of ̺ is a subalgebra of A and other classes are singletons,
it follows that

(a, b) ∈ θ̄ ⇐⇒ either a/θ ∩ E 6= ∅ 6= b/θ ∩ E

or a/θ = b/θ and a/θ ∩ E = ∅.

Hence, one class of θ̄, denoted by Eθ, contains E and is a disjoint union of
θ-classes having a non-empty intersection with E, i.e.

Eθ = {a ∈ A | ∃e ∈ E, a θ e} =
⋃

e∈E

e/θ.

By the Second Isomorphism Theorem [11, Thm. 1.2.4], Eθ is a subalgebra
of A and

Eθ/(θ ∩ (Eθ)2) ∼= E/(θ ∩ E2) ∈ V . (6.5)

All the other classes of θ̄ coincide with θ-classes which are disjoint from E.

Now recall that (a, b) ∈ θ̄ iff (a/θ, b/θ) ∈ θ̄/θ, and by the First Isomor-
phism Theorem [11, Thm. 1.2.3],

(A/θ)/(θ̄/θ) ∼= A/θ̄ ∼= (A/̺)/(θ̄/̺). (6.6)

Since A/̺ belongs to W , it follows that its quotient (A/̺)/(θ̄/̺), and hence
also the quotients A/θ̄ and (A/θ)/(θ̄/θ), are members of W .

Under the first isomorphism of (6.6), the θ̄-class Eθ corresponds to the
θ̄/θ-class Ē := {e/θ | e ∈ E}, the unique θ̄/θ-class which is a subalgebra
of A/θ. Each of the remaining θ̄/θ-classes consists of one θ-class disjoint
from E. In particular, θ̄/θ is the W-replica congruence of A/θ. Note that,
by (6.5), Ē = Eθ/(θ ∩ (Eθ)2) ∈ V . It follows that A/θ ∈ V ◦ W , and hence
H(V ◦W) ⊆ V ◦W . Therefore V ◦W is a variety. �

Corollary 6.11. Let V be a variety of type τ . Then the Mal’tsev product V ◦Cτ
is a variety.
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